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1. Introduction 

Mathematics has played an influential role in improving civilizations throughout the ages. 

Mathematical modeling has described and predicted real-world phenomena. Therefore, the study of 

numerous natural laws underscores the significance of calculus. 

L'Hôpital and Leibniz exchanged a letter at the end of 1965 raising a question about the 

significance of taking a fractional derivative such as 1 2 1 2d y dx . Its relevance has grown significantly 
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over the past century because of its widespread applications across various scientific and engineering 

disciplines [1–3]. Subsequently, academics have proposed numerous definitions of fractional 

derivatives. These include Caputo, Riesz, Riemann–Liouville [4], conformable derivatives [5,6], beta 

derivatives, M-truncated derivatives [7,8], Atangana–Caputo [9,10], and Caputo–Fabrizio. Most of 

these lack some basic properties for the case of integer order, such as the chain rule, the product rule, 

and the quotient rule. 

Khalil and associates [5] developed the conformable derivative (CD) as a contemporary substitute 

for the traditional limit definition of the function derivative. Khalil also introduced the conformable 

fractional derivative (CFD), which expands integer-order calculus properties and demonstrates the 

conformable fractional Leibniz rule. In [6], Abdeljawad introduced mathematical concepts such as the 

chain rule, integration by parts, and Taylor series expansion to extend the conformable operators to 

higher orders. Therefore, the conformable derivative exhibits almost all typical derivative 

characteristics. Recently, many researchers have developed several subsequent studies that cite the 

CFD, such as the Conformable double Laplace-Sumudu iterative method [11], the modified 

conformable double Laplace-Sumudu approach with applications [12], the double-conformable 

fractional Laplace-Elzaki decomposition method [13], the conformable fractional double Laplace 

transform [14–16], the Conformable double Sumudu transform [17,18], and the modified double 

conformable Laplace transform [19]. 

Martinez and colleagues discovered the nonconformable Laplace transform local fractional 

derivative [20]. They proved that it exists and discussed its main features. The new derivative adheres 

to the classical properties of integer derivatives indicated above, and its simplicity has led to its use in 

various situations [21,22]. Injrou and Hatem [21] introduced the nonconformable double Laplace 

transform to solve some fractional PDEs. In [22], Benyettou and Bouagade also discussed how to use 

double nonconformable Laplace and Sumudu transforms to solve fractional Fornasini-Marchesini 

models. 

Integral transforms such as the Sumudu transform [23], the Elzaki transform [24], the Aboodh 

transform [25], the double Sumudu transform [26], the double Laplace-Sumudu transform [27], and 

the double Sumudu-Elzaki transform [28] are more advantageous due to their ability to simplify 

complex mathematical problems, particularly when solving differential equations with specific 

boundary conditions. By carefully selecting a transformation class, you can often transform the 

derivatives and boundary values in a complex differential equation into expressions that an algebraic 

equation can represent. The solution was reached by changing the resolution of the original differential 

equation, and to finish the process, the inverse transformation is needed [29–31]. The Elzaki transform 

is a changed version of the general Laplace and Sumudu transforms. It can quickly, correctly, and 

effectively solve a large number of linear differential equations. The Elzaki transform helped users 

solve integral, partial, and fractional differential equations [32,33], ordinary differential equations with 

variable coefficients [34], and systems with these equations [35]. The main point of this study is to 

find more uses for the Elzaki transform, especially in fixing various types of fractional differential 

equations with nonconformable derivatives. 

The study’s framework consists of the following components: Section 2 delineates the definitions 

and theories of the NCFD, highlighting its crucial properties that bolster our primary findings. Section 3 

provides fundamental definitions and theories about NCET. Section 4 examines some examples to 

illustrate the effectiveness, convergence, and accuracy of the proposed approach. In Section 5, we 

demonstrate the accuracy and usefulness of the proposed method by comparing approximate and exact 
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results using graphs and numerical tables. Section 6 discusses the results of the study, and Section 7 

provides conclusions. 

2. Preliminary 

First, we will discuss the idea of the nonconformable fractional derivative (NCFD) and some of 

its most important properties, which help support our main results, as shown in the definitions 

below [36]. 

Definition 2.1 ([36]). The NCFD of the function :[0, )g  →  of order β is denoted by ( )( )3N g z
 

and defined as: 

( )( )
( ) ( )

3
0

lim , 0, (0,1].
g z z g z

N g z z












−

→

+ −
=       (2.1) 

Remark 2.1. If g  is β-differentiable in some ( )0, ,  0,   
( ) ( )

0
lim
z

g z


+→
 exists, then 

( ) ( ) ( ) ( )
0

0 lim .
z

g g z
 

+→
=         (2.2) 

Remark 2.2. If g  is β-differentiable, then ( )( ) ( )3 ,N g z z g z − =  where 

( )
( ) ( )

0
lim .

g z g z
g z





→

+ −
 =        (2.3) 

Remark 2.3. To denote the nonconformable fractional derivatives of the function g  of order β at ,z  

we can express 
( ) ( )g z


  as ( )( )D g z   or ( )( )
d

g z
d z





 . Furthermore, if the NCFD 
3N 

  of the 

function g  of order β exists, we simply say that g  is differentiable N. 

In the following theorem, we will prove that the chain rule is valid for nonconformable fractional 

derivatives [36,37]. 

Theorem 2.1 ([36,37]). (Chain rule) Suppose that (0,1]  and f, h are two functions, where f is an 

N-differentiable at 0,z   and h is differentiable in the range of ( ).f z  Then 

( )( ) ( )( ) ( )( )3 3 .N f h z f h z N h z =       (2.4) 

Proof. We will prove the rule using the principal limit in two cases. 

Case i: Let f be constant in a neighborhood of 0,b   then ( )( )3 0.N f h z =  

Case ii: Let f be non-constant in a neighborhood of 0,b    then ( ) ( )0 1 20 : f t f t     for any 

( )1 2 0 0, , .t t b z b z − +  Therefore, since f is continuous at ,b  for   sufficiently small, we have 
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( )( )
( )( ) ( )( )
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Putting ( ) ( )1 h b b h b  −= + −  in the first limit, we get 

( )( )
( )( ) ( )( ) ( ) ( )

( )( ) ( )( )

1

1

3
0 0

1

3

lim lim

.
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−
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The following function illustrates one of the key and fundamental properties of our work: 

Definition 2.2 ([20]). Let 0 1,   and ,a  then the definition of the fractional exponential is: 

( )

1

3 1, .

z
a

n
E a z e






+

+=         (2.5) 

In the following theorem, we will list some basic properties associated with the derivative 
3N   [36,37]. 

Theorem 2.2 ([36,37]). Suppose 0 1,    and , :[0, )g h  →   be N-differentiable at a point 

0,z   and 1 2, , ,a c c   then 

( ) ( ) ( )
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1
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Proof. See [20]. 

Now, we will define a nonconformable fractional integral. 

Definition 2.3. Let 0 1,    and 0 0,z    then the definition of the nonconformable fractional 

integral of the function 0:[ , )g z  →  of order   is denoted by ( )
3 0N zJ g z

 and defined as: 

( ) ( )
( )

3 0

0 0

.

z z

N z

z z

g x
J g z g x d x dx

x



 −
= =        (2.6) 

The following statement bears a resemblance to one known from ordinary calculus (see [38]). 

Theorem 2.3. Suppose that h is N-differentiable in ( )0 ,z   with 0 1.   Then 
0 ,z z   we have 

i) If h is differentiable, then ( )( ) ( ) ( )
3 0 3 0 .N zJ N h z h z h z  = −  

ii) ( )( )( ) ( )
3 03 3 .N zN J N h z h z   =  

Proof. 

i) From (2.3), we have 

( )( ) ( )
( ) ( )

( ) ( )
3 0

0 0 0

3

3 3 0 .

z z z

N z

z z z

N h x h x x
J N h z N h x d x dx dx h z h z

x x

 

  

  

−

− −


= = = = −  

 

ii) With the same method, we have 

( )( )( )
( )

( )
3 0

0

3 3 .

z

N z

z

h xd
N J N h z z dx h z

dz x

   



−

−

 
= = 

  
  

The following result clarifies another significant and essential aspect of our work: 

Theorem 2.4 (Integration by parts). Suppose that ,u v  are N-differentiable functions in ( )0 , ,z 

with 0 1.   Then, 0 ,z z   and we have 

( )( )( ) ( ) ( ) ( )( )( )
3 0 3 03 0 3 .N z N zJ u N v z uv z uv z J u N v z    = − −   

Proof. It is sufficient to apply Theorems 2.2 and 2.3. 

3. Nonconformable fractional Elzaki transform (NCFET) 

In this section, we demonstrate the first steps toward formalizing a new type of nonconformable 

fractional Elzaki transform. This transform can be applied to a wide range of fractional differential 

equations. 

Definition 3.1 (Exponential order). A function ( )g z  is considered to be of generalized exponential 
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order β if there exist two positive constants K  and a  such that ( ) ( )3 ,
n

g z K E a z  for sufficiently 

large z. 

Now, we are going to define the NCFET. 

Definition 3.2. Let ( )g z  be a real function defined for 0,z   and consider ,u  if the integral 

( )( )

3

3 3

3 0

0 0

1
, ( )

1 1
, , ( ) ,

n

n n

N

E z g z
u

J E z g z u E z g z d z u dz
u u z




   

+ +

−

 
− 

     − + = − =   
   

    (3.1) 

converge for the given value of u , then we define the function ( )G u  by the following 

( ) ( )( )3

3 0

1
, ,

n

NG u J E z g z
u





 
= − + 

 
       (3.2) 

and we will write ( ) ( ).NG u E g=  

We will refer to the operator NE  as the N-transformed of Elzaki and to G  as the N-transformed 

of .g  Consequently, we represent the N-transformed inverse Elzaki as follows: 

( )  ( ) ( )

1

11 1
( ) .

2

zi
u

N

i

E G u g z ue G u du
i









+
+ 

+−

− 

= =        (3.3) 

Remark 3.1. According to the NCFET definition, we can conclude that the NCFET is a linear integral 

transformation, as illustrated below: 

   

   

3

3 3

3 3

1 2 1 2

0

1 2

0 0

1 2

0 0

1 2

1
( ) ( ) , ( ) ( )

1 1
, ( ) , ( )

1 1
, ( ) , ( )

( ) ( ) ,

n

N

n n

n n

N N

E c g z c h z u E z c g z c h z d z
u

u E z c g z d z u E z c h z d z
u u

c u E z g z d z c u E z h z d z
u u

c E g z c E h z

 

   

   

+

+ +

+ +

 
+ = − + 

 

   
= − + −   

   

   
= − + −   

   

= +



 

 

 

where 1c  and 2c  are constants. 

The following theorem sets the usual Laplace transform (LT) and the nonconformable fractional 

Laplace transform (NCFLT). 

Theorem 3.1 ([20]). Let ( ) :[0, )g z  →  be an N-transformable function and ,s  then 

( )( ) ( )( )
1

11 , (0,1],NL g z L g z  +
  

= +   
  

     (3.4) 
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where 

( )( ) ( ) ( )
0

: .szL g z s G s e g z dz



−= =        (3.5) 

In the following theorem, we explain the NCFLT of some functions, as established in Theorem 2.1 

from [20]. 

Theorem 3.2 ([20]). Suppose 1 ,c   ,m +  ,s and 0 1.   Then 

1)   1
1 , , 0,N

c
L c s

s
=   

2) 
1

1

!
, 1,

1

m

N m

z m
L m

s





+

+

  
  =  −  +  

 

3) ( )
( )

3

1 1

1

1
, , 0,

n

NL E c z s c
s c


  = −   −

 

4) 
( )

1

1
1 2 2

1

sin : ,
1

N

cz
L c u

s c





+  
=  

+ +  
 

5) 
( )

1

1 2 2

1

cos ,
1

N

z s
L c

s c





+  
=  

+ +  
 

6) 
( )

1
2 21

1 12 2

1

sinh : , 0,
1

N

cz
L c u s c

s c





+  
= −   

+ −  
 

7) 
( )

1
2 2

1 12 2

1

cosh , 0.
1

N

z s
L c s c

s c





+  
= −   

+ −  
 

The following theorem sets the duality between the NCFLT and the NCFET. 

Theorem 3.3 (Duality between the NCFLT and the NCFET). Let ( ) :[0, ) ,g z  →   be an N-

transformable function and 0 1.   Then 

( )( ) ( )( ) 1: : , , .N N s
u

E g z u u L g z s s u
→

=        (3.6) 

Proof. From Definition 3.2, we have 

( )( ) ( )

1

3
1

0 0

1
: , ( ) ( ) .

z

un

NE g z u u E z g z d z u e g z z dz
u



 

 

+
  −

+ 
= − = 

 
      (3.7) 

Let’s put 
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1

1

z
w dw





+

=  =
+ .z dz         (3.8) 

By substituting Eq (3.8) into Eq (3.7), we obtain 

( )( ) ( )( )

( )( ) ( )( )

1

1

0

1

1
1

1

: 1

1 : .

w

u
N

N s
u

s
u

E g z u u e g w dw

u L g w u L g z s










−

+

+

→

→

= +

  
= + =  

  


 

The following theorem describes the NCFET of a few fundamental functions. 

Theorem 3.4. Suppose 1 ,c   ,m +  , ,s u  and 0 1.   The NCFET for some functions 

is given below: 

1)   2

1 1 ,NE c c u=  

2) 
1

2! , 0,
1

m

m

N

z
E m u u





+
+

  
  =  

+   

 

3) ( )
( )

3

2

1 1

1

, ,1 0.
1

n

N

u
E E c z c u

c u


  = −   −
 

Proof. Here, we shall use Theorems 3.2 and 3.3 to support our conclusions. 

(1) We know that: 

    11 1 .N N s
u

E c uL c
→

=  

Therefore 

  21
1 1 .

1N

c
E c u c u

u

 
 

= = 
 
 

 

(2) We notice that: 

1 1

1

.
1 1

m m

N N

s
u

z z
E u L

 

 

+ +

→

      
   =   

+ +         

 

Thus 
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1
2

1

!
! .

1 1

m

m

N m

z m
E u m u

u





+
+

+

 
       = = 
 +        
    

(3) Similarly, from the proofs of (1) and (2), we get 

( ) ( )
( )

3 3

2

11 1 1

1
1

1
, , ,1 0.

1 1

n n

N N
s

u

u
E E c z u L E c z u c u

c u
c

u

 
→

 
 

     = = = −     −  −    

 

Table 1 below summarizes the NCFET for certain essential functions. 

Table 1. The NCFET for certain essential functions. 

Sr. No ( )g z
 

( ) ( )NE g z G u  =   
1 

1c  
2

1c u  

2 

1

1

m

z



+ 
 

+   

2! mm u +

 

3 ( )3

1,
n

E c z  
( )

2

11

u

c u−
 

4 
1

1sin
1

z
c





+ 
 

+   

3

1

2 2

1(1 )

c u

c u+
 

5 
1

1cos
1

z
c





+ 
 

+   

2

2 2

1(1 )

u

c u+
 

6 
1

1sinh
1

z
c





+ 
 

+   

3

1

2 2

1(1 )

c u

c u−
 

7 
1

1cosh
1

z
c





+ 
 

+   

2

2 2

1(1 )

u

c u−
 

Theorem 3.5 (Derivative properties). Let ( ) :[0, ) ,g z  →   be a transformable function and

0 1.    Then, the NCFET of the NCFDs ( )3N g z
  and ( )( )3 3N N g z    can be represented as 

follows: 

( ) ( ) ( )3

1
0 ,NE N g z G u u g

u

  = − 
        (3.9) 

( )( ) ( ) ( ) ( )3 3 32

1
0 0 .NE N N g z G u g u N g

u

    = − −
 

     (3.10) 

Proof. We proceed with proving the result (3.9). 
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( ) ( )3

3 3

0

1
, .

n

NE N g z u E z N g z d z
u

 

 


 

  = −  
 

      (3.11) 

Let’s put 

( ) ( )

3 3

3

1 1 1
, , ,

.

n n
w dwE z E z dz

u u u

dv N g z d z v g z

 





=  =
   
− − −   
   

=  =

      (3.12) 

By substituting Eq (3.12) into Eq (3.11), we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( )

3 3

3

00

2

1 1 1
, ,

1 1
0 0 .

n n

N

N N

E N g z u E z g z E z g z d z
u u u

u g E g z E g z u g
u u



  

      
  = − + −      

      

 
   = − + = −    

 


 

We can also use the same method to illustrate the final result (3.10). 

The following example is a further generalization of the findings described above: 

( )( )( )

( ) ( ) ( ) ( )( )

( )( )( )( )

3 3 3

2 3 4

3 3 3

3 3 3

...

1
0 0 0

... ... 0 .

N

n n n

n

E N N N

G u u g u N g u N N g
u

u N N N g

  

  

  



− − −

 
  

= − − −

− −

    (3.13) 

Theorem 3.6 (Convolution theorem). Let g and h be two functions, such that , :[0, ) ,g h  → and 

0 1.   Then 

( ) ( ) ( )
1

( ) .NE g h z G u H u
u

  =          (3.14) 

Proof. Using Eq (3.6), we derive 

( ) ( )

   

   

( ) ( )

1

1 1

( ) ( )

( ) ( )

1 1
( ) ( )

1
.

N N s
u

N Ns s
u u

N N

E g h z u L g h z

u L g z L h z

u E g z E h z
u u

G u H u
u

→

→ →

    =    

 
=   

 
=  

 

=

 

Now, we present the conditions of boundedness and the existence of the NCFET. 
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If ( )g z  is a generalized exponential order, then there exist two constants , 0,Z K   and a  

such that ( ) ( )3 ,
n

g z K E a z  for all z Z   and 0 1.   

Therefore, 

( ) ( )3 , ,
n

g z O E a z= as ,z→  

or, equivalently, 

( )3 3
1 1 1

lim , lim , 0, .
n n

z z
E z g z K E a z a

u u u
 

→ →

    
− = − − =     
    

 

Therefore, ( )g z  is an N-transformable function. 

Theorem 3.7. Suppose that ( )g z  is a piecewise continuous function of exponential order β defined 

on the interval ( )0, Z  . Then, the NCFET of ( )g z   is well-defined for all 
1

u
  provided that 

1
Re .a

u

 
 

 
 

Proof. We deduce, from the definition of NCFET, 

( ) ( )

( )

3

3

0

2

0

1
,

1 1
, ,Re .

1

n

n

u u E z g z d z
u

Ku
K uE a z d z a

u au u

 

 





 
 = − 

 

     
 − − =      −     





   (3.15) 

Thus, from Eq (3.15) we obtain 

( )lim 0,
z

u
→

 =  or ( )lim 0.
z

u
→

 =  

4. Applications of the NCFET method 

In this section, we demonstrate the efficiency and simplicity of this transformation by solving the 

following classes of NCFDEs using NCFET. 

Example 4.1. Consider the following differential equation of NCFD: 

( ) ( )3 , 0,0 1,N g z g z z  =          (4.1) 

with the initial condition (IC), 

( ) 00 .g g=           (4.2) 
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We can rewrite Eq (4.1) for 1 =  as the following of ordinary differential equation (ODE): 

( ) ( ) ( ) 0, 0 ,g z g z g g = =         (4.3) 

and the exact solution is 

( ) 0 .zg z g e=          (4.4) 

Solution. Applying the NCFET to Eq (4.1), we obtain 

( ) ( )0

1
.G u u g G u

u
− =         (4.5) 

By simplification of Eq (4.5), we have 

( )
2

0 .
1

g u
G u

u
=

−
          (4.6) 

Taking ( ) 1

NE G u−
 of Eq (4.6), we get 

( ) ( )

1

3 1

0 0, .

z

n
g z g E z g e






 

+

+= =       (4.7) 

When 0, →  the solution leads to the exact answer. 

Example 4.2. Consider the following differential equation of NCFD: 

( )( ) ( )3 3 0, 0,0 1,N N g z k g z z  + =        (4.8) 

with the ICs 

( ) ( )0 30 , 0 0.g g N g= =         (4.9) 

We can rewrite Eq (4.8) for 1 =  as the following of ODE: 

( ) ( ) ( ) ( )00, 0 , 0 0,g z k g z g g g + = = =     (4.10) 

and the exact solution is 

( ) ( )0 cos .g z g k z=        (4.11) 

Solution. Applying the NCFET to Eq (4.7), we obtain 

( ) ( )02

1
0.G u g k G u

u
− + =       (4.12) 

By simplification of Eq (4.12), we have 
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( )
2

0

2
.

1

g u
G u

k u
=

+
          (4.13) 

Taking ( ) 1

NE G u−
 from Eq (4.13), we get 

( )
1

0 cos .
1

z
g z g k





+ 
=  

+ 
       (4.14) 

When 0, →  the solution leads to an exact answer. 

Example 4.3. Consider the Bertalanffy-logistic equation of NCFD [39]: 

( ) ( ) ( )
2 3

3 , 0,0 1,N g z g z g z z  = −    
     (4.15) 

with the IC, 

( ) 00 .g g=           (4.16) 

We can rewrite Eq (4.15) for 1 =  as the following of ordinary Bertalanffy-logistic equation: 

( ) ( ) ( ) ( )
2 3

0, 0 ,g z g z g z g g  = − =        (4.17) 

and the exact solution is: 

( )

3
1

3 3
01 1 .

z

g z g e
−  

= + −  
   

       (4.18) 

Solution. By using the substitute 

1

3g =  in Eq (4.15), we get 

( ) ( )( )
1

3
3 0 0

1
1 , .

3
N z z g  = − =       (4.19) 

Applying the NCFET to Eq (4.19), we obtain 

( )
22

2 033
.

3 3
N

uu
E z u

u u


  = − +  + +

      (4.20) 

Taking ( ) 1

NE z−
 from Eq (4.20), we get 

( ) ( )

1 3
1

3 13
01 1 .

z

g z g e





+

−
+

  
 = + − 
   

      (4.21) 

When 0, →  the solution leads to the exact answer. 
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5. Numerical results 

This section assesses the accuracy and effectiveness of the proposed approach by comparing the 

approximate and precise outcomes using graphs and numerical tables, considering various scenarios 

for β. 

5.1. Graphical analysis 

Figures 1–3 show the line plots of the approximate solutions of the proposed method from 

Examples 4.1–4.3 at varying values of β. Figures 4–6 display the line plots of the approximate 

solutions of the proposed method and the exact solutions from Examples 4.1–4.3 at 1. =  

 

Figure 1. Example 1: approximate solution graph of ( )g z  for Eq (4.7) at varying values 

of β when 1, = −  and 0 1.g =
 

 

Figure 2. Example 2: approximate solution graph of ( )g z  for Eq (4.14) at varying values 

of β and 0 1.k g= =  
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Figure 3. Example 3: approximate solution graph of ( )g z  for Eq (4.21) at varying values 

of β and 
0 2.g =  

 

Figure 4. Example 1: approximate and exact solutions graph of ( )g z  for Eqs (4.3) and (4.7) 

at 1, =  1, = −  and 
0 1.g =  

 

Figure 5. Example 2: approximate and exact solutions graph of ( )g z  for Eqs (4.11) 

and (4.14) at 1, =  and 0 1.k g= =  
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Figure 6. Example 3: approximate and exact solutions graph of ( )g z  for Eqs (4.18) 

and (4.21) at 1, =  and 
0 2.g =  

5.2. Tabular results 

Tables 2–7 show a comparison of the exact and approximate answers for each problem. These 

comparisons give us valuable information about how the solution works in different fractional 

situations for  , which allows us to fully examine its performance. 

Table 2. Comparison of the approximate solution’s behaviour and exact solution when β 

takes the values 0.01, 0.03, 0.05, and 1 for Eq (4.7), 1, = −  and 0 1.g =  

z  
NCFET at 

0.05 =  

NCFET at 

0.03 =  

NCFET at 

0.01 =  

NCFET at 

1 =  

Exact at 

1 =  
0 

0.25 

0.5 

0.75 

1 

1 

0.800795 

0.631303 

0.494561 

0.385821 

1 

0.792287 

0.621607 

0.485829 

0.378752 

1 

0.783396 

0.611629 

0.476904 

0.371540 

1 

0.969233 

0.882497 

0.75484 

0.606531 

1 

0.778801 

0.606531 

0.472367 

0.367879 

Table 3. Comparison of the approximate solution’s behaviour and exact solution when β 

takes the values 0.5, 0.75, 0.85, and 1 for Eq (4.7), 1, = −  and 0 1.g =  

z  
NCFET at 

0.5 =  

NCFET at 

0.75 =  

NCFET at 

0.85 =  

NCFET at 

1 =  

Exact at 

1 =  
0 

0.25 

0.5 

0.75 

1 

1 

0.920044 

0.790016 

0.648552 

0.513417 

1 

0.950747 

0.843760 

0.707939 

0.564718 

1 

0.959260 

0.860758 

0.727994 

0.582433 

1 

0.969233 

0.882497 

0.75484 

0.606531 

1 

0.778801 

0.606531 

0.472367 

0.367879 
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Table 4. Comparison of the approximate solution’s behaviour and exact solution when β 

takes the values 0.01, 0.03, 0.05, and 1 for Eq (4.14), and 0 1.k g= =  

z  
NCFET at 

0.05 =  

NCFET at 

0.03 =  

NCFET at 

0.01 =  

NCFET at 

1 =  

Exact at 

1 =  
0 

0.25 

0.5 

0.75 

1 

1 

0.975426 

0.896066 

0.762204 

0.579745 

1 

0.973017 

0.889088 

0.7505523 

0.564579 

1 

0.970351 

0.881565 

0.738171 

0.548607 

1 

0.999512 

0.992198 

0.960709 

0.877583 

1 

0.968912 

0.877583 

0.731689 

0.540302 

Table 5. Comparison of the approximate solution’s behaviour and exact solution when β 

takes the values 0.5, 0.75, 0.85, and 1 for Eq (4.14), and 0 1.k g= =  

z  
NCFET at 

0.5 =  

NCFET at 

0.75 =  

NCFET at 

0.85 =  

NCFET at 

1 =  

Exact at 

1 =  
0 

0.25 

0.5 

0.75 

1 

1 

0.99653 

0.972351 

0.907706 

0.785887 

1 

0.998725 

0.985604 

0.940941 

0.841129 

1 

0.999135 

0.98878 

0.950031 

0.857431 

1 

0.999512 

0.992198 

0.960709 

0.877583 

1 

0.968912 

0.877583 

0.731689 

0.540302 

Table 6. Comparison of the approximate solution’s behaviour and exact solution when β 

takes the values 0.01, 0.03, 0.05, and 1 for Eq (4.21), and 
0 2.g =  

z  
NCFET at 

0.05 =  

NCFET at 

0.03 =  

NCFET at 

0.01 =  

NCFET at 

1 =  

Exact at 

1 =  

0 

0.25 

0.5 

0.75 

1 

2 

1.912947 

1.829159 

1.752081 

1.681853 

2 

1.908984 

1.824016 

1.746781 

1.676925 

2 

1.904818 

1.818677 

1.741308 

1.671843 

2 

1.987201 

1.949909 

1.891262 

1.815930 

2 

1.902655 

1.815930 

1.738505 

1.669242 

Table 7. Comparison of the approximate solution’s behaviour and exact solution when β 

takes the values 0.5, 0.75, 0.85, and 1 for Eq (4.21), and 0 2.g =  

z  
NCFET at 

0.5 =  

NCFET at 

0.75 =  

NCFET at 

0.85 =  

NCFET at 

1 =  

Exact at 

1 =  
0 

0.25 

0.5 

0.75 

1 

2 

1.966281 

1.907922 

1.838205 

1.763354 

2 

1.979406 

1.932624 

1.868385 

1.792913 

2 

 1.983006 

1.940260 

 1.878265 

1.802775 

2 

1.987201 

1.949909 

1.891262 

1.815930 

2 

1.902655 

1.815930 

1.738505 

1.669242 

6. Discussion 

This section discusses the accuracy and usefulness of the proposed approach based on the graphs 

and tabular results from the previous section. Figures 1–3 show that the current method's solutions get 

closer to each other as β approaches one, but they do not get closer to the exact solutions. We also 

note that when the fractional value of β approaches zero, the solutions closely approximate the exact 
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ones. Furthermore, we can see in Figures 4–6 that the NCFET solutions do not represent the exact 

solutions in the classical case, i.e., 1 = . Based on Tables 2–7, the NCFET method is more accurate 

and comes closer to exact solutions when 0.05,0.03,0.01. =  Finally, the test case’s figures and 

tables show how effective, reliable, and feasible the suggested approach is. They also show that our 

method quickly finds the exact solutions by looking at how it works in various fractional situations. 

The previous analysis reveals the following observations regarding the comparison between 

nonconformable fractional derivatives and other fractional derivatives: 

• Scholars have primarily written about nonconformable fractional derivatives. For instance, 

they discussed the single and double Laplace transforms [20–22]. They did not compare the 

approximate solutions of these techniques to the exact solutions. So, we fixed these issues with this 

method. We suggested and showed that the answers to nonconformable fractional derivatives can be 

very close to the real ones if you look at how they behave in various fractional situations. 

• It was shown that the approximate solutions, graphs, and numerical results of nonconformable 

fractional derivatives in the classical case ( 1 = ) do not converge to the exact solutions found in the 

studied examples. This differs from other fractional derivatives (see [14,18,40,41]). 

• The findings show that the way nonconformable fractional derivatives behave as solutions 

changes for different fractional cases. For example, as β approaches zero, the approximate solution 

for the nonconformable fractional derivative converges to the exact solution. On the other hand, for 

the other fractional derivatives [11,17,42], the approximate solution gets closer and closer to the exact 

solution as the fractional values get closer to the classical case, that is, 1 = . 

7. Conclusions 

The main goal of this work was to apply the basic ideas of the classical Elzaki transform to the 

nonconformable fractional Elzaki transform. We have successfully constructed some of these theorems 

and relations using the nonconformable derivative definition. We discussed and proved new results 

related to derivatives, boundedness, existence, and the convolution theorem. In addition, we offered 

2D graphical representations for obtaining solutions with varying values of β. This study's findings 

suggest that the results from the fractional case align with those from the ordinary case. The results of 

this study show that NCFET is a beneficial and easy way to solve fractional ODEs with 

nonconformable derivatives. We plan to use NCFET in the future to solve more FDEs involving 

nonconformable derivatives that arise in applied sciences and engineering. 
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