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1. Introduction

As known, nonlinear partial differential (NLPD) equations have found wide applications in
modeling nonlinear phenomena in vast areas of scientific disciplines, such as optics, plasma physics,
and fluid mechanics. Owing to such capabilities, researchers have devoted an incredible amount of
their lives to creating and exploring such models. Nowadays, scholars deal with a wide range of
specific nonlinear waves for NLPD equations such as multi-soliton waves, breather waves,
complexiton waves, etc. Wazwaz [1], by applying the Hirota method, extracted multi-soliton waves of
KP equations. The author in [2] found breather waves of Kairat-II and Kairat-X equations using an
ansatz composed of trigonometric and hyperbolic functions. Hosseini et al. [3] employed a systematic
method to construct complexiton waves of a generalized KdV equation. Papers [4-7] include more
details on NLPD equations and their nonlinear waves.

One of the key characteristics of NLPD equations, which is usually explored in Mathematical
Physics, is integrability. Although the literature does not provide a unified definition for integrability,
an integrable NLPD equation includes multi-soliton waves, bilinear Backlund transformation (BBT),
etc. An effective method for analyzing the integrability of NLPD equations is the Painleve method [8].
Ma et al. [9] assessed the integrability of the Sakovich equation using the Painleve method. Chu et al. [10],
in a comprehensive study, applied the Painleveé method to check the integrability of a 2D KdV equation
with variable coefficient. Zhang et al. [11] explored the integrability of a variable coefficient
Boussinesq equation via the Painleveé method.

According to the classical Bell polynomials theory [12] proposed in 1934, Lambert et al. [13]
introduced a generalized Bell’s polynomials to establish a systematic procedure for discovering the
bilinear form, bilinear Bicklund transformation, and Lax pairs for NLPD equations. The Bell
polynomial approach [14—17] has extensively been used in recent decades to deal with NLPD
equations. Some authors have tried to apply such an effective method to deal with a series of well-
known NLPD equations. For example, Hosseini et al. [18] utilized the BPA to acquire the bilinear
representation of a generalized KdV equation. Umar et al. [19] found the BBT of a 2D generalized KP
equation using the BPA. Asadi et al. [20] employed the BPA to construct Lax pairs and conservation
laws of a 3D extended BLMP equation.

Wazwaz in [21] proposed the Korteweg-de Vries—Caudrey Dodd Gibbon equation, i.e.,

U + ¢y (u2x + %uz)x +c, (1—15u3 + Uy, + u4x)x =0,

which has been composed of KdV and CDG equations, and constructed its multi solitons using the
Hirota method. Later, some researchers conducted a complete study on the KdV-CDG equation and
its different wave structures. For instance, Biswas et al. [22] applied the F-expansion method to acquire
solitons of the KAV-CDG equation. Ma et al. [23] constructed hybrid solutions of the KdAV-CDG
equation using some particular operations. Hosseini et al. [24] employed systematic methods to extract
solitons and complexiton of the KdAV-CDG equation. Almusawa and Jhangeer [25] obtained invariant
solutions of the KAV-CDG equation using the Lie method.

In this paper, we aim to conduct a detailed exploration of the following generalized Korteweg-de
Vries—Caudrey Dodd Gibbon equation

U + ¢y (u + Uy, + guz) + ¢, (%w?’ + Uy, + u4x) =0, (1.1)
X

X
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with some applications in modeling water waves in the ocean. More precisely, we:

*  Examine the integrability of the gKdV-CDG equation using the Painlevé method;

»  Establish the Hirota D-operator expression of the gKdV-CDG equation by employing the Bell

polynomial approach;

*  Obtain multi solitons of the gKdV—CDG equation through exerting the Hirota method;

*  Construct breather and complexiton waves of the gKdV—CDG equation using distinct methods.
The paper’s structure is as follows: In Section 2, an integrability test of the governing equation is

carried out based on the Painlevé method. In Section 3, a short review of Bell’s polynomials is

presented, and the Hirota D -operator expression for the gKdV—CDG equation is constructed. In

Section 4, multi solitons along with breather and complexiton waves to the gKdV—CDG equation are

derived by serving distinct ansatzes. Additionally, in Section 4, we provide several figures positioned

two- and three-dimensionally to illustrate the dynamic features of nonlinear waves. The results are

summarized at the end of the paper.

2. Integrability test of the governing equation

Owing to the efforts of Weis et al. [8], the Painlevéproperty of the governing equation can be
formally investigated. The key idea of their method is to seek the solution of Eq (1.1) as follows

u(x, t) = j'.;o u] (xl t)(bj—a(x, t)v

where ®(x, t) is a singular manifold, u;(x, t) are expansion coefficients, and « is a pole order of the
solution u(x, t).

The Painlevétest, however, can rarely be performed directly using the above method because of
numerous complications. To overcome this shortcoming, we use Kruskal’s simplification [26,27],
which employs a specific form for the singular manifold function as

D(x,t) =x —YP(t).
The Painlevé’s test consists of three steps as follows:
First step: It involves determining the leading-order terms in Eq (1.1). To achieve this, substituting
u(x, t) = uyd 9,
into Eq (1.1) results in the values of @ and u,(t) as

« Istbranch: a = 2, uy, = —60yZ;
« 2ndbranch: a = 2, u, = —30y2.

Second step: For the above-specified values of @ and u,, the non-negative integer values of j referred
to as resonances are computed. To this end, setting

u(x, t) = ug® 2 + u;®/72,

in Eq (1.1) gives

«  resonances of 1st branch: j = —-2,-1,5,6,12;
«  resonances of 2nd branch: j = -1, 2,3, 6, 10.
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Third step: The expansion

u(x, t) = up® 2+ Zj’;lujcbj‘z,
is substituted into Eq (1.1). For the first branch, it is found that

€1
U, = —60, uy =0, Up =——, u; =0,
2

5c21/)t+cf—56102

Uy = 2002 , Us =Us, Ug =1Ug Uy =0,

U = 25cZYPE+(10cfc—50c1c3 )P +ef—10c3 cp+25¢2 ¢
8~ 72000c} ’

5192 -180c,us+(180c ¢, —36¢% Jus

u =
2 79200c2 :

30cugWe+5Czus, —120c5 ué+(6¢7—30c1¢2)ug
u =
10 26400c2 :

30czUusUe—Ue,

U1 = — Ui, = U
11 4680c, , 12 12

whereas for the second branch

Uy = _30, u, = O, U; = Uy, Uz = Ug,

—5+coud+2c, Uy +5¢, Ue = uz(cauz+cq)

Uy = = U =U
4 10c, rws 15¢, ' 6 61

—30C2uz P +5¢Up, +(8ciUF+16¢1 Couz+2¢5 +30¢1C2)us
u =
7 2400c2 ’

1

Ug = o (7597 + (30c,u3 + 60c uy + 150¢,)Y, + 25¢,us, + (30ciu, + 30c,c,)ub +
2

(—3c3u3 — 12¢,cu; — 12¢f — 30c,¢,)u3 — 60ciu, — 75¢2),

1
Ug = W(SOCZUJ” +90(c3uus + ¢cu3)Py — 15(cicp + ciuz)u,, + (2¢3 —90cic, +

20c3u)us — (90c; + 30cic, + 48c,c2u, + 16c3ul)uyus),

U9 = Uqp-

Since us, ug and u,, in the first branch and u,, u;, ug, and u,, in the second branch are arbitrary

functions of t, the necessary condition for the integrability of Eq (1.1) is satisfied. These show that
Eq (1.1) satisfies the Painlevétest for the integrability.

3. Bell polynomials and the Hirota D-operator expression
As early as the 20th century, Bell [12] established his polynomial in the form
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Ynt(y) = Yn(yt, ""ynt) = e‘ya?ey, y = et _ .

The above definition leads to the following results

Yozl,
Yl =Y
Y, = yor + ¥E,

The classical Bell polynomial, which was generalized by Lambert et al. [13], for f(xq, ..., x;) IS
Ynlxl,...,nlxl(f) = e—fa;lf a;lllef,

where the outcomes of such a generalization when f = f(x,t) are
Y.(f) = for
Vo (f) = fox + £,
Yeie(f) = foe + fifor

Following Bell’s definition, the binary Bell polynomial is

ynlxl,...,nlxl (v,w) = Ynlxl,...,nlxl ) |f

Vrixq,..rixp  ri+ry+---+r;is odd,

T1X 1, IX]= .
1T {erxl,...,rlxl' T1+72++7] is even,

wherer, = 0,1, ...,n,k = 0,1, ..., L. It is easy to check that
Yx(v) = vy,
ny(U, W) = Wy, t+ 173?,

yx,t(v: w) = Wyt + Uy

Theorem 1 (See [13]). For Yy, x,,...nx, (v, W) and D;‘ll ...D,ZIF. G, we have

Unyxy,m @ = In(F/G),w = In(FG)) = (FG)™*D,! ... D;'F.G, (3.1)
wheren, +n, +--+n; =1, and

n nl ! !
DYt . DYF.G = (3g, = 00g)" (00, = 0y1)  Fxp, 2z, x) X G}, 5,

!
" xl) |x{=x1,...,x{=xl'

Equation (3.1) for F = G is

0, n, +n, + -+ n;is odd,

— n n
G 2Dx11 ...DxllG. G = ynlxl,...,nlxl(o;z ln(G)) = {Pnlxl,_,_,nlxl(q)J n,+n, +--+n is even,

AIMS Mathematics Volume 10, Issue 3, 5248-5263.



5253

where
Py (9) = qax
Pt (@) = Gyt
Pyx(@) = Qax + 305y,
Pex (@) = Gox + 15q2xqax + 15G3y,

Theorem 2. If u = 30(In(G)).,., then the Hirota D-operator expression of Eq (1.1) is
(D,D; + ¢,D% + ¢,D} + ¢,D8)G.G = 0.
Proof. To prove such an assertion, we introduce
u = c(t)qax, 32)
with c(t) is a function to connect Eq (1.1) with P-polynomials. Inserting Eq (3.2) into Eq (1.1) gives
¢’ (6)q2x + c(E)qox; + c10(2) (%x + s + %C(t)%x%x)

1
+ Czc(t) (g C(t)zquchx + C(t)CI3xq41-x + C(t)CIZxCISx + Q7x) = 0.

Integrating with respect to x yields

(O + (O + 01600 (Qax + Qax +5c(OE:) + c20(0) (5:c(0?3, + ()2 Gax + dsx) = 0.

A direct result of comparing %Sc(t)zqu + c(t)q2xGax + Gex With Pg,(q) is c(t) = 15. Now, the
above equation can be expressed as
Pyt (@) + ¢1Pox(q) + ¢1Pax (@) + c2Psx(q) = 0. (3.3)
Through the transformation
q =2In(G) © u = 15qz, = 30(In(G)) xx,
and Eq (3.3), then the Hirota D-operator expression of Eq (1.1) is given by
(DyD; + ¢,DZ + ¢, D + ¢,D8)G.G = 0,
with the following bilinear representation
(GGrp = GxGp) + €1(GGoyx — GZ) + €1 (GGax — 4G3x Gy + 3G3y) + c2(GGox — 6G1Gsy +
15G,,Gyy — 10G2,) = 0. (3.4)
4. The gKdV-CGD equation and its nonlinear waves

In this section, we focus on the governing model in order to establish its multi solitons, breather
wave, and complexiton. The first kind of such results is supported by analyzing the three-soliton
condition as a criterion for the existence of a triple-soliton wave.
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4.1. Multi solitons of the governing equation

To arrive at the single-soliton wave, we assume
u=e?, 0; = kix + w;t,
and insert it into
Up + CqUy + C U3, + CUs, = 0.
After simplifying, we have
(w; + e (K + k) + c k) ekixteit = 0,
A direct result of the above expression gives the dispersion relation as
w; = —(c.(k + k) + c;k7),

and so, the phase variable 8; can be constructed as
Hi = kl-x - (Cl(kf + kl) + Czkis)t.

Now, the single-soliton wave of Eq (1.1) is
u = 30(In(G)) xx,
where
G=1+e%, 6, = kyx— (c;,(k3 + k) + c,kd)t.
The double-soliton wave of the governing equation can be determined by inserting

G=1+e%+e% +qa,ef%%Y%,
where

01 = kyx — (c; (k3 + ky) + kD),
0, = kox — (c1(k3 + k) + c,k3)t,
into Eq (1.1) and discovering the phase shift a,, through some systematic computations as

a 503kt —15c,k3ky+200,k3k5—15c,k k3 +5c,k5+3c1kZ—6¢1k1ky+3c1 k3
12 7 5kt 4150, k3kp+20c,k2k2+15¢,k k3 +5c,kd+3c,k2+6c1kiky+3c1 k3

Hence, the double-soliton wave of the governing equation is
u=30(In(G))yy G=1+e% +e% +a;,e%+%
where
61 = kyx — (c; (k3 + ky) + k),
0, = kyx — (c (k3 + k) + c,k3)t,

- 5cokF—15c,k3ky+20c, k7 k3 -15c,k k3 +5c, kg +3c1kZ—6c k1ky+3c k3
12 5C2k%+15C2k%k2+20C2k%k§+15€2k1k%+5C2k§+3clk%+6C1k1k2+3C1k%.

AIMS Mathematics Volume 10, Issue 3, 5248-5263.
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In order to have the triple-soliton wave, the three-soliton condition [28-30]
Yusppus=t1 PWiVy + uaVy + usVs)P(uyVy — up Vo) P (Vo — usVa) P(ua Vi — p3Vs) =
2 Y (o ppues PuaVi + uaVa + usVa) P(uy Vi — up Vo) P(up Vo — V) P(ug Vi — psVs),

in which
P=XT 4 c;X* + ¢, X* + ¢, X°,
V, = (k;,w),i=1,2,3,
s={1,1,1),(1,1,-1),(1,-1,1),(-1,1,1)},

must be zero. The results show that

2 ¥ (o ppuz)es P Vi + upVa + usVa)P(uy Vi — up Vo) P(upVy — u3Va) P(ug Vi — psVz) =
2(e; + e, +es+e,),

where

e = _81k§(k1 - kz)z(kz - k3)2k§(k2 + k3)(k1 - k3)2(k1 + ks) (g (k% — kyks + k%)cz +
e1) K3k + kg + k3) (S (6 = kukey + k3)cz + ¢1) (S U + Uy + kadky + k3 + kakes + kZ)c +
C1) (k1 + k) (g (k% — kiks + kg)cz + C1)'

e, = —81kZ (ky — kz)?(ky — ka)k3 (S (kZ + (k — o)y + kE — koks + k2)c, +
Cl) (ky + ks)z (Z (k% + kyks + k%)cz + Cl) (ky — k3)(ky + k3)2(k1 + ky —k3) (2 (k% + kiks +
k%)cz + C1) k% (g (kf —kik, + k%)cz + C1) (k1 + ky),

e3 = 81kZ(ky — kp) (S (K? + (—kz + kadky + kZ — koks + k3)c; + ¢1) (S (k3 + kyky + kB)e, +
C1) (ky — k3)k3 (kp + k3)? (g (k3 + koks + k3)c, + C1) (ky — ko + k3)(ky — k3)?(ky +
ka)kZ Uy + ko) (20 — kaks + K3)ez + 1),

ey = 81k3 (ks — k;) (g (kf + kqky + k3, + C1) (ks — k3)2k§(k2 + k3) (2 (ki +
5
(kg — k3)ky + k3 + kyks + k3)c, + C1) (ky — k3)(ky + k3)?(ky — ky — k3) (g (k3 — koks +
KDer + ¢ ) (S0 + kaks + k3)ey + 01 ) ki (ky + k)2,
is zero. For Eq (1.1), the triple-soliton wave exists as a result of the above condition.
Now, the triple-soliton wave of Eq (1.1) is

U =2(n(6))yy G=1+e% +e% +e% +a,e%*% + ;9179 + q,;e%%% +

1201305501702,

where
6, = kyx — (c1(k3 + ky) + k3¢,

AIMS Mathematics Volume 10, Issue 3, 5248-5263.
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6, = kox — (cy(k3 + ky) + c2k)t,
93 = k3x - (Cl(kg + k3) + Czkg)t,

_ 5ckT—15c,k3ky+20c,k3k3—15c,k k3 +5c,k5+3c1kZ—601kqka+3c1k3

a =
12 5C2k1}+15C2k%k2+20C2k%k%+15C2k1k§'+5€2k‘21-+3C1k%+6C1k1k2+3C1k§'
S 5cokf—15c,k3ks+20c,k2k3-15c,k k3 +5c, k4 +3c k2 —6c1k1k3+3c k3
13 7 5k +15c,k3k3+20c,k2k2+15¢,k k3 +5c,kE+3c k2 +601k k3 +3c1 k2
on = 5cyk3—15c,k3k3+20c,k3k3—15¢,k k3 +5c,k5+3c1k3—6¢1koks+3c k2
23 =

5cok3+15ck3k3+20c,k2k3+15¢,kok3+5ckE+3c1k2+6¢1kaksz+3c1kE
The single, double, and triple solitons for (a) {c; = 1,¢, = 1,k; = 0.7}, (b) {c; = 1,¢, = 1, k; =
0.7,k, = 1}, and (c) {c1 =1,¢c,=1k, = g,kz =1,k; = g} have been portrayed in Figure 1. Using

the above parameter regimes, the height and width of such waves can be assessed.

Figure 1. (a) Single soliton for c; = 1, ¢, = 1, and k; = 0.7; (b) Double soliton for c;

1,¢, =1,k; =0.7, and k, = 1; and (c) Triple soliton forc; =1,¢c, =1,k; = g, k, =
9

1,and k5 = 2

AIMS Mathematics Volume 10, Issue 3, 5248-5263.
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4.2. Breather and complexiton waves of the governing model

To obtain the breather wave of the governing equation, we apply an ansatz as
G = e "X + by cos(hY) + bye*X, 4.1)
where
X =a,x +a,t + as,
Y = aux + ast + ag,

and k, by, h, by, and a;, i = 1,2, ...,6 are unknowns. Inserting Eq (4.1) into Eq (3.4) results in
hécyal — af(15k?a?c, + ¢;)h* + a,(15k*ata,c, + 6k?a?a,c, + cia, + as)h?

— k?a,(c,alk* + c;k?a + cya; + ay) =0,
2 2 1 1 1
h*cya,a} — galaz(Skzafcz + ¢;)h? + c,k*ada, + Eclkzaf% + (E cia, + gaS) a; +-azas =0,

1 1
(—16h%cyal + 4ciath* + (—ac, — agas)h?)b3 + 16a,b, (4c2afk4 + c1k%ad + ZGmt Za2> k% =0,

whose solution is

a, = —a;(5azh*c, — 10h%aik?a?c, + k*ajc, — 3h2ajc, + k?a?c, + ¢y),
as = —h*ajc, + 10h?k?a?a3c, — 5k*afasc, + h?a3c; — 3k%a?a,c, — ciay,
b = — (15h2a3c,—5k%a%c,—3cq )bgaszh?

L=

4(5h2aZc,—15k2a%c, -3¢ )k2a?’

As a consequence, the breather wave of the governing equation is

u =30(In(G))yy G = e + bycos(hY) + b e*X,
where
X = a;x — a;(5azh*c, — 10h%a2k?aic, + k*afc, — 3h%ac, + k?a?c, + ¢t + a,
Y = a,x — (h*ajc, — 10h?k2%a?a3c, + Sk*atasc, — h?ajc, + 3k?a?a,c, + cia)t + aq,

(15n%a%c;—5k%a%c;—3cq )bGaszh?
4(5h2aZc,-15k2a%c,—3c¢1)k2a?”

b1:

Figure 2 represents the dynamical characteristics of the breather wave for
{Cl = 0.5, C2 == 1, a1 == _0.6, a3 == 0.5, a4_ = _1, a6 == 1, bO = O.l,h = 1,k S 1},

in three- and two-dimensional postures. This figure demonstrates the height and width of such a wave
for the above parameter regime.

To derive the complexiton wave, the following assumptions are taken:

AIMS Mathematics Volume 10, Issue 3, 5248-5263.
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Figure 2. Breather wave when c; = 0.5,¢, = 1,a; = —0.6,a; =0.5,a, = -1, a4 = 1,
b,=01,h=1,and k = 1.
U= +iy, v=v+iv, P(x,t)=xt+cx?+cix*+cxb.
Due to P(u,v) = 0, we obtain a nonlinear system of algebraic equations as
6CoU3Hy — 20C,u3 13 + 6Co 13 + 4ci iy — Aoy i3 + 20y iy + Vopty + Vi, =0,
CoHS — 15C,u1 k3 + 15Cuiu3 — Cou3 + cyuf — 6C1UTHE + cypz + capf — cipil + Vit — vapip = 0.
The solution set for the above system is
vy = =y (couf — 10c,uf s + Scou5 + cpf — 3cip3 + ¢y,
2 = =5Cutty + 10c,ufps — cu3 — 3ci iy + i — ¢y,
Additionally, the phase shift can be found as

_ pQiug2ivy) _ —64cau3+16cips—4cius—4(=5cauips +1062u1uz—Cz#z—301u1uz+61uz—61uz)uz
p(2p1,2v1) 64CouS+16c1 puy+4cqpud—4u?(cout—10cu2 pu3+5cu5+cq 2 —3c1ué+cq)

A, =

Now, the complexiton wave of the governing equation is
u = 30(In(G))
where
G =1+ 2e% cos(9,) + a;,e?%1,
Y =ux+vt, i =12,
v = =y (copt — 10c05 43 + 5cou3 + cypf — 3cps + ¢y),
2 = =5CoUipy + 10c15 13 — cop3 — 3ciufpy + ciu3 — iy,

—64Co UG +16C1 5 —4cy 5 —4(=5co 1 pa+10cuf i —cou3 -3¢ pf pp+cipud —cin) iz
64c ul+16ciput+acip?—apu?(copt—10c,u2ps+5c,ud+cip?—3cipd+cq)

a2 =
The dynamical feature of the complexiton wave positioned three- and two-dimensionally for

{C1—1C2—175y_1 1#2—_15}

has been given in Figure 3. Through the above parameter regime, the height and width of such a wave
can be analyzed. More details about the origin of the complexiton wave can be found in [31].
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Figure 3. Complexiton wave when¢; =1, ¢, = 1.75, y; = 1,and u, = —1.5.
4.3. Other nonlinear waves of the governing equation

Other nonlinear waves of the governing equation can be derived by serving the following ansatzes
[32]:
1) u = ASN?(x —wt, k),
2) u=ACN?(x —wt, k),
3) u=ADN?(x —wt, k),

where 4 and w are unknowns.

By setting the first ansatz in Eq (1.1), we have a nonlinear system as
1
((kz + 1)C2 - %Cd) (30k2 + A) = O,

(60k2 4+ A)(30k2 + A) =0,
10(8k* + 52k? + A + 8)c, — 20k?*c; — 5w — 15¢; = 0,
for which the solution set is
A = —-30k?, w = 16k*c, — 4k?c; + 44k?c, — 3¢, + 16¢;.
As a result, the Jacobi elliptic solution of the governing equation is
u = —30k? SN?(x — (16k*c, — 4k?c; + 44k?c, — 3¢, + 16¢,)t, k).
Considering k = 1, it gives the following bright soliton
u = —30 tanh?(x — (76¢, — 7¢;)t).

Additionally, by substituting the second ansatz in Eq (1.1), we arrive at the following nonlinear
system

(—30k? + A)((—20k? + A — 20)c, + ¢;) = 0,
(—30k? + A)(—60k? + A) = 0,
(A2 + (=20k? — 30)4 + 80k* + 520k? + 80)c, — 20c, k2 + 2¢;A — 5w — 15¢, = 0,

whose solution is
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A =30k? w = 76k*c, + 8c,k?— 76k?*c, — 3¢, + 16c,.
Accordingly, the Jacobi elliptic solution of the governing equation is
u = 30k? CN?(x — (76k*c, + 8¢ k? — 76k?c, — 3¢, + 16¢,)t, k).
Assuming k = 1, we yield the following soliton wave
u = 30 sech?(x — (5¢; + 16¢,)t).
Now, setting the third ansatz in Eq (1.1) leads to a nonlinear system as
(A-30)(A—-60) =0,
(A —30)k*(=20k?c, + (A — 20)c, + ¢;) = 0,
80k*c, + ((—304 + 520)c; — 20¢; )k? + (A% — 204 + 80)c, + 2¢;A — 5w — 15¢; = 0,
with the following solution set
A =30,w = 16k*c, — 4c,k? — 76k?c, + 9¢; + 76c,.
As a consequence, the Jacobi elliptic solution of the governing equation is
u = 30 DN2(x — (16k*c, — 4c,k? — 76k?c, + 9¢; + 76¢,)t, k).
Letting k = 1, it can obtain the following soliton wave
u = 30 sech?(x — (5¢; + 16¢,)t).

The first continuous wave and its corresponding bright wave have been depicted in three- and two-
dimensional postures in Figure 4 when (a) {c; =1,¢, =1,k = 0.1} and (b) {c; = 1,c, = 1}. This
figure illustrates the height and width of such waves for the above parameter regimes.

¢ 008
o1p 4 ! (a)

Figure 4. (a) The first continuous wave forc; = 1, ¢, = 1, and k = 0.1; and (b) the first
bright wave forc; =1 and ¢, = 1.
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5. Conclusions

In this paper, we presented an in-depth study of specific oceanic waves based on a generalized
Korteweg-de Vries—Caudrey Dodd Gibbon equation. As a starting point, we constructed the Hirota D-
operator expression of the gKdV—-CDG equation by using the Bell polynomial approach. Based on the
Painlevé¢ analysis, the governing model was tested for integrability, and multi solitons were formally
retrieved. As a result of symbolic computations, breather and complexiton waves were derived from
the gKdV-CDG equation based on distinct ansatzes. For the dynamical features of nonlinear waves, a
few representations positioned two- and three-dimensionally have been provided. Our findings suggest
useful ways for assessing the height and width of nonlinear waves in the ocean. In light of the fact that
some other waves are missing in this paper, future work can be devoted to finding these waves.
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