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1. Introduction

The fixed point and fixed-point theorems are fundamental tools in nonlinear analysis and many
research fields, such as differential equations, topology, functional analysis, optimal control, and game
theory. One of the earliest fixed-point theorems was proposed by Brouwer [1] in 1910, which states
that a continuous self-mapping on a non-empty bounded closed convex set in Euclidean space has
at least one fixed point. Subsequently, numerous scholars extended Brouwer’s fixed-point theorem
to set-valued mappings, achieving significant results. These extensions include the Kakutani fixed
point theorem [2], the Fan-Browder fixed point theorem [3, 4], and the Fan-Glicksberg fixed point
theorem [5].

The existence of solutions to many nonlinear problems can often be addressed by determining
whether certain families of sets have a nonempty intersection property. In 1929, Knaster et al. [6]
first proposed the celebrated KKM theorem in finite-dimensional spaces, which is a crucial result
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of the intersection of nonempty sets. In 1961, Ky Fan [7] generalized the KKM theorem to the
infinite dimensional spaces. These results have yielded a class of multi-valued mapping named KKM
mappings, which is closely related to fixed-point theorems. Another direction for the generalization of
fixed-point theorems is the extension of the convex structure of the space. In 1987, Horvath [8–10]
introduced the concept of H-spaces (or C-spaces) by replacing the original linear convexity with
contractibility and investigated fixed point theorems for set-valued mappings in these spaces. In 2001,
Park [11] established the Fan-Browder fixed point theorems using KKM theorems in G-convex spaces.
After that, Park [12] studied new versions of KKM theorems that derived the Fan-Browder type fixed
point theorems in G-convex spaces. Ding [13] found generalized G-KKM theorems and then acquired
a fixed-point theorem. Luo [14] obtained Ky Fan’s section theorem in topological ordered spaces, as
its application, a fixed-point theorem was acquired. Luo [15] established a generalized Fan-Browder
fixed point theorem by using the Ky Fan inequality in topologically ordered spaces. Xiang et al. [16]
demonstrated that an abstract convex space possesses the KKM property if and only if it has the
strong Fan-Browder property. Subsequently, they introduced an abstract convex structure via upper
semicontinuous set-valued mappings and established several generalized forms of the KKM lemma.
Utilizing the general KKM lemma, they derived some extensions of minimax inequalities, which
encompass several existing minimax inequalities as special cases. Since then, numerous extensions of
fixed-point theorems in topological spaces equipped with these convex structures and their applications
in nonlinear analysis (see references [17–19]).

In 2009, Agarwal et al. [20] introduced the concept of other set-valued mappings being generalized
KKM mappings. Utilizing this concept, they established several common fixed-point theorems in
locally convex Hausdorff topological linear spaces and applied them to prove Ky Fan-type minimax
inequalities. In 2010, Balaj [21] employed the Brouwer fixed-point theorem to study a common
fixed point theorem for a family of generalized equi-KKM set-valued mappings in topological linear
spaces. As an application of this result, several important results concerning equilibrium problems and
minimax inequalities were obtained. These existence results for equilibrium problems differ from the
classical existence results. For more details, see [21]. Subsequently, common fixed-point theorems and
their applications in variational inequalities, vector equilibrium problems, and Ky Fan-type minimax
inequalities have been extensively studied, with some research achievements reported in [22–24].

Currently, the study of common fixed points has predominantly focused on Hausdorff topological
spaces, while investigations within the framework of abstract convex spaces remain relatively limited.
Inspired by the research above, this paper aims to introduce the concepts of generalized equi-
KKM families of mappings and quasi-abstract convexity (concavity) to the setting of abstract convex
spaces. Furthermore, a common fixed-point theorem is established and applied to generalized abstract
equilibrium problems.

The rest of the paper is organized as follows: Section 2 provides some basic notions. Section 3
introduces the definition of a family of generalized equi-KKM mappings in an abstract convex space
fulfilling the H0-condition and establishes a common fixed-point theorem for such mappings under
certain conditions. Section 4 proposes the concepts of quasi-abstract convex (concave) mappings and
two classes of generalized abstract equilibrium problems as well as their solutions with respect to the
abstract sequences defined by parameter multi-valued mappings. As an application of the theorem
obtained in Section 3, the existence theorems for the solutions of the generalized abstract equilibrium
problems are acquired under suitable conditions. This paper is summarized in Section 5.
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2. Preliminaries

In this paper, we will use 2U to denote the set of all subsets of the space U, and 〈U〉 to denote the set
of all non-empty finite subsets of U. Let Λ ⊂ U. The notation |Λ| represents the number of elements
of Λ. We define Λ as the closure of Λ, U \Λ as the set difference, co Λ as the convex hull in Euclidean
space, and int Λ as the interior of the subset Λ. We also assume that the abstract convex space satisfies
the H0-condition.

Definition 2.1. ( [18]) A topological space U is said to be an abstract convex space with an abstract
convex structure Ξ, denoted by (U,Ξ), if the family of subsets Ξ of the topological space U satisfies the
following properties:

(1) ∅ ∈ Ξ;
(2) For any family of subsets D ⊂ Ξ, there is

⋂
Λ∈D

Λ ⊂ Ξ.

The elements in Ξ are called abstract convex subsets of the space U, or abstract convex sets for
short.

Remark 2.1. Let Ξ be an abstract convex structure of U. The convex hull conv is defined as

conv (Λ ) =
⋂

Λ⊂B
{B : B ∈ Ξ}, Λ ⊂ U.

A subset Λ ⊂ U is an abstract convex set if and only if it satisfies Λ = conv (Λ ).

Let N = {0, 1, 2, . . . , n}, ∆N = {e0, e1, . . . , en} be the standard simplex of dimension n, where
{e0, e1, . . . , en} is the canonical basis of Rn+1, and for J ⊂ N, let ∆J = co

{
e j : j ∈ J

}
be a face of ∆N .

Definition 2.2. ( [18]) (U,Ξ) satisfies the H0-condition if for any Λ = {κ0, κ1, . . . , κn} ∈ 〈U〉, there
exists a continuous mapping ξ : ∆N → conv (Λ) such that ξ (∆J) ⊂ conv

{
κ j : j ∈ J

}
for any nonempty

set J ⊂ N.

We recall the following concepts regarding the upper and lower semicontinuity of set-valued
mappings, as well as the known lemmas (see references [22] and [23] for (1) and (2) of Lemma 2.1,
respectively).

Definition 2.3. ( [25]) Suppose that U, V are topological spaces and T : U → 2V is a set-valued
mapping.

(1) T is called upper semicontinuous (for short, u.s.c.) (respectively, lower semicontinuous
(for short, l.s.c.)) if for each closed set B of V, the set {κ ∈ U : T (κ) ∩ B , ∅} (respectively,
{κ ∈ U : T (κ) ⊆ B}) is a closed set;

(2) T is closed if its graph is a closed set in U × V;
(3) T is compact if T (κ) is a compact set in V.

Lemma 2.1. Let U and V be topological spaces, and let a set-valued mapping T : U → 2V satisfy the
following properties:

(1) T is closed if V is regular and T is upper semicontinuous with closed values;
(2) T is l.s.c. if and only if, for any κ ∈ U, γ ∈ T (κ), and any net {κt} converging to κ, there exists a

net {γt} converging to γ such that γt ∈ T (κt) for any t.
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3. A common fixed point theorem

In this section, we first introduce the concept of a family of generalized equi-KKM mappings in
abstract convex spaces and then present the existence results for common fixed points under certain
conditions.

Definition 3.1. Assume that U is a nonempty set and Z is a nonempty abstract convex subset of an
abstract convex space. Let L be the family of all nonempty set-valued mappings from U to 2Z. L is
said to be a family of generalized equi-KKM mappings if, for any {κ0, κ1, . . . , κn} ∈ 〈U〉, there exists
{z0, z1, . . . , zn} ∈ 〈Z〉 such that conv {zi : i ∈ J} ⊆

⋃
i∈J

T (κi) for any nonempty set J ⊂ {0, 1, . . . , n} and

any T ∈ L.

Remark 3.1. If Z is a nonempty abstract convex subset of an abstract convex space and L is a family
of generalized equi-KKM mappings, then it follows from Lemma 3.3 in reference [2] that the family of
sets

{
T (κ) : κ ∈ U

}
has the finite intersection property for each T ∈ L.

Theorem 3.1. Suppose that U is a nonempty abstract convex subset of an abstract convex space and
V is a nonempty set. If a compact multi-valued mapping T : U × V → 2U satisfies the following
conditions:

(1) For any γ ∈ V, {κ ∈ U : κ ∈ T (κ, γ)} is closed;
(2) The family of multi-valued mappings L = {T (κ, ·)}κ∈U is generalized equi-KKM on V.

Then L = {T (κ, ·)}κ∈U has a common fixed point, i.e., there exists κ0 ∈ U such that κ0 ∈
⋂
γ∈V

T (κ0, γ).

Proof. For each γ ∈ V , let ζ (γ) = {κ ∈ U : κ < T (κ, γ)}. From (1) of Theorem 3.1, for any γ ∈ V ,
ζ (γ) is an open set. Assume that the conclusion is not true. Then for any κ ∈ U, we have κ ∈

U \
[⋂
γ∈V

T (κ, γ)
]

=
⋃
γ∈V

[
U \T (κ, γ)

]
. This implies that for any κ ∈ U, there exists γ ∈ V such that

κ < T (κ, γ). Consequently, for any κ ∈ U, there exists γ ∈ V such that κ ∈ ζ (γ), and thus U ⊂
⋃
γ∈V

ζ (γ).

Since ζ (γ) = {κ ∈ U : κ < T (κ, γ)} ⊆ U for any γ ∈ V , we obtain U =
⋃
γ∈V

ζ (γ), which means that

{ζ (γ)}γ∈V is an open coverage of U. According to T : U × V → 2U is a compact multi-valued
mapping, we acquire that the set T (U × V) ⊂ U is compact and the family of sets {ζ (γ)}γ∈V is an
open coverage of T (U × V); hence, there exists a finite subcoverage of {ζ (γ)}γ∈V . That is, there exists

{γ0, γ1, . . . , γn} ∈ 〈V〉 such that T (U × V) ⊆
n⋃

i=0
ζ (γi). For any κ ∈ U \T (U × V), i.e., there exists

κ ∈ U, but κ < T (U × V). Then κ < T (κ, γ) for any γ ∈ V . By the definition of ζ, we have κ ∈ ζ (γi)

for any i ∈ N, and hence U \T (U × V) ⊆
n⋃

i=0
ζ (γi). Combining this with the previous result, we obtain

U =
n⋃

i=0
ζ (γi). By (2) of Theorem 3.1, for {γ0, γ1, . . . , γn} ∈ 〈V〉, there exists {z0, z1, . . . , zn} ∈ 〈U〉 such

that conv {zi : i ∈ J} ⊆
⋃
i∈J

T (κ, γi) for any nonempty set J ⊆ N and any κ ∈ U.

Set W = conv {z0, z1, . . . , zn}, then {ζ (γi) ∩W}0≤i≤n is the coverage of W. Consider a partition of
unity on W, {β0, β1, . . . , βn}, subordinated to this open coverage. It satisfies the following conditions:

(1) For each i ∈ N, βi : W → [0, 1] is continuous;
(2) βi (κ) > 0⇒ κ ∈ ζ (γi) ∩W;
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(3) For each κ ∈ W,
n∑

i=0
βi (κ) = 1.

Define the mapping π : W → ∆N as π (κ) =
n∑

i=0
βi (κ) ei for any κ ∈ W. Then π is continuous. Since

U is a nonempty abstract convex subset of an abstract convex space satisfying the H0-condition; for
{z0, z1, . . . , zn} ∈ 〈U〉, there exists a continuous mapping ξ : ∆N → W such that ξ (∆J) ⊂ conv

{
z j : j ∈ J

}
for any nonempty set J ⊆ N.

Define the mapping h : ∆N → ∆N as h (κ) = (π ◦ ξ) (κ) for any κ ∈ ∆N . Since ξ and π are
continuous, the composite mapping h is also continuous. By the Brouwer fixed-point theorem, there

exists e ∈ ∆N such that e = h (e) = π ◦ ξ (e). Let κ0 = ξ (e). Then e = π (κ0) =
n∑

i=0
βi (κ0) ei. Define

I (κ0) = {i ∈ N : βi (κ0) > 0}. Then βi (κ0) > 0 for any i ∈ I (κ0). We have κ ∈ ζ (γi) ∩W, which implies
that κ0 < T (κ0, γi). Hence, κ0 <

⋃
i∈I(κ0)

T (κ0, γi).

On the other hand, for any i ∈ I (κ0), we have κ0 = ξ (e) ∈ conv {zi : i ∈ I (κ0)} ⊆
⋃

i∈I(κ0)
T (κ0, γi),

which leads to a contradiction. �

4. Applications

In this section, we introduce several concepts and provide their equivalent descriptions. We then
apply Theorem 3.1 to establish the existence of solutions for generalized abstract equilibrium problems.
Our results extend Definition 2 and Theorems 1–3 from reference [20] to abstract convex spaces
without an algebraic structure.

Definition 4.1. Suppose that U is a nonempty set, V is a nonempty abstract convex subset of an abstract
convex space satisfying the H0-condition, and Φ is an abstract convex space. Let C : U × Φ → 2Φ

and Γ : U × V → 2Φ be multi-valued mappings. For any κ ∈ U, the parametric multi-valued mapping
Cκ : Φ→ 2Φ is abstract convex valued.

(1) Γ is said to be Cκ (·)-quasi abstract convex if, for any κ ∈ U, γ1, γ2 ∈ V, and γ ∈ conv {γ1, γ2},
either Γ (κ, γ1) ⊆ Cκ (Γ (κ, γ)) or Γ (κ, γ2) ⊆ Cκ (Γ (κ, γ));

(2) Γ is said to be Cκ (·)-quasi-abstract-convex-like if, for any κ ∈ U, γ1, γ2 ∈ V, and γ ∈

conv {γ1, γ2}, either Γ (κ, γ) ⊆ Cκ (Γ (κ, γ1)) or Γ (κ, γ) ⊆ Cκ (Γ (κ, γ2)).

The following lemma can be proved by induction.

Lemma 4.1. Suppose that U is a nonempty set, V is a nonempty abstract convex subset of an abstract
convex space satisfying the H0-condition, and Φ is an abstract convex space. Let C : U × Φ → 2Φ

and Γ : U × V → 2Φ be multi-valued mappings. For any κ ∈ U, the parametric multi-valued mapping
Cκ : Φ→ 2Φ has abstract convex values.

(1) Γ is said to be Cκ (·)-quasi abstract convex if, for any κ ∈ U, γi ∈ V for i ∈ N, and γ ∈

conv {γi : i ∈ N}, there exists j ∈ N such that Γ
(
κ, γ j

)
⊆ Cκ (Γ (κ, γ));

(2) Γ is said to be Cκ (·)-quasi-abstract-convex-like if, for any κ ∈ U, γi ∈ V for i ∈ N, and
γ ∈ conv {γi : i ∈ N}, there exists j ∈ N such that Γ (κ, γ) ⊆ Cκ

(
Γ
(
κ, γ j

))
.

Assume that U is a nonempty subset of a topological linear space and ξ : U × U → R satisfies
ξ (κ, κ) ≥ 0 for any κ ∈ U. The quantitative equilibrium problem, in the sense of Blum and
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Oettli (1994), is to find κ0 ∈ U such that ξ (κ0, γ) ≥ 0 for any γ ∈ U. The scalar equilibrium problem
has been generalized in various ways to vector equilibrium problems involving multi-valued mappings.

We will investigate two types of generalized abstract equilibrium problems, described as follows.
Suppose that U is a nonempty set, V is a nonempty, compact, abstract convex subset of an abstract

convex space satisfying the H0-condition, and Φ is an abstract convex space. Let C : U × Φ → 2Φ

and Γ : U × V → 2Φ be multi-valued mappings. For any κ ∈ U, the parametric multi-valued mapping
Cκ : Φ→ 2Φ is abstract convex valued. Assume that int Cκ (v) is a nonempty abstract convex set for any
κ ∈ U and v ∈ Φ in the following cases. The two types of generalized abstract equilibrium problems
are as follows:

(1) Find κ0 ∈ U such that for some v0 ∈ Φ, Γ (κ0, γ) 1 int Cκ0 (v0) holds for any γ ∈ V .
(2) Find κ0 ∈ U such that for some v0 ∈ Φ, Γ (κ0, γ) ⊆ Cκ0 (v0) holds for any γ ∈ V .

Theorem 4.1. Suppose that U is a nonempty set, V is a nonempty, compact, abstract convex subset
of an abstract convex space satisfying the H0-condition, and Φ is an abstract convex space. Let Γ :
U × V → 2Φ and ζ : U × U → 2Φ be multi-valued mappings, and let C : U × Φ → 2Φ satisfy that
for any κ ∈ U, Cκ = C (κ, ·) : Φ → 2Φ is a closed multi-valued mapping with abstract convex values.
For any v ∈ Φ, assume that (i) int Cκ (v) , ∅; (ii) Cκ (Λ) ⊆ Cκ (B) for any ∅ , Λ ⊆ B ⊆ Φ; and
(iii) Cκ (int Cκ (v)) ⊆ int Cκ (v) for any (κ, v) ∈ U × Φ. Assume that ζ, Γ and C satisfy the following
conditions:

(1) There exists v∗ ∈ Φ such that ζ (κ, κ) 1 int Cκ (v∗) for any κ ∈ U;
(2) For any γ ∈ V, there exists z ∈ U such that ζ (κ, z) ⊆ Γ (κ, γ) for any κ ∈ U;
(3) ζ is l.s.c. on ∆U = {(κ, κ) : κ ∈ U} and the multi-valued mapping κ 7→ Cκ (Γ (κ, γ)) is closed for

any γ ∈ V;
(4) ζ is Cκ (·)-quasi-abstract-convex-like.

Then there exists κ0 ∈ U such that for some v0 ∈ Φ, Γ (κ0, γ) 1 int Cκ0 (v0) holds for any γ ∈ V.

Proof. Define a multi-valued mapping T as

T (κ, γ) = {z ∈ U : ζ (κ, z) ⊆ Cκ (Γ (κ, γ))} for any (κ, γ) ∈ U × V .

Let L =
{
T |T : U × V → 2U

}
represent the family of multi-valued mappings and M =

{κ ∈ U : κ ∈ T (κ, γ)} = {κ ∈ U : ζ (κ, κ) ⊆ Cκ (Γ (κ, γ))} for any γ ∈ V .
First, we prove that M is a closed set. Assume that κ ∈ M and {κt} is a net in M converging to κ.

Because ζ is l.s.c. on ∆U , from (3) of Theorem 4.1, for each v ∈ ζ (κ, κ), there exists a net {vt} satisfying
vt ∈ ζ (κt, κt) and vt → v. From κt ∈ M, we have vt ∈ Cκt (Γ (κt, γ)). Since κ 7→ Cκ (Γ (κ, γ)) is closed,
we acquire v ∈ Cκ (Γ (κ, γ)). Hence, κ ∈ M, and M is a closed set.

Next, we prove that L is a family of generalized equi-KKM mappings with respect to γ. Suppose
that {γ0, γ1, . . . , γn} is an arbitrary finite nonempty subset of V . By (2) of Theorem 4.1, there exists
{z0, z1, . . . , zn} ∈ 〈Z〉 such that ζ (κ, zi) ⊆ Γ (κ, γi) for any i ∈ N and any κ ∈ U. Let ∅ , J ⊂ N, and
z ∈ conv {zi : i ∈ J}. By (4) of Theorem 4.1, for each κ ∈ U, there exists iU ∈ J such that ζ (κ, z) ⊆
Cκ

(
ζ
(
κ, ziU

))
. Since ζ (κ, z) ⊆ Cκ

(
ζ
(
κ, ziU

))
⊆ Cκ

(
Γ
(
κ, γiU

))
, we acquire conv {zi : i ∈ J} ⊆

⋃
i∈J

T (κ, γi)

for any κ ∈ U. Thus, L is a family of generalized equi-KKM mappings with respect to γ.
According to Theorem 3.1, there exists κ0 ∈ U such that κ0 ∈

⋂
γ∈V

T (κ0, γ).
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Suppose that the conclusion is not true. Then for any v ∈ Φ, there exists γ ∈ V such that Γ (κ0, γ) ⊆
int Cκ0 (v). From κ0 ∈ T (κ0, γ), we can obtain ζ (κ0, κ0) ⊆ Cκ0 (Γ (κ0, γ)) ⊆ Cκ0

(
int Cκ0 (v)

)
⊆ int Cκ0 (v),

which contradicts the condition (1) of Theorem 4.1. �

Theorem 4.2. Suppose that U is a nonempty set, V is a nonempty, compact, abstract convex subset
of an abstract convex space satisfying the H0-condition, and Φ is an abstract convex space. Let Γ :
U × V → 2Φ, ζ : U × U → 2Φ, and C : U × Φ → 2Φ be multi-valued mappings. For any κ ∈ U,
Cκ = C (κ, ·) : Φ → 2Φ is a parametric multi-valued mapping with abstract convex values. Moreover,
for any κ ∈ U and v ∈ Φ, (i) Cκ (Cκ (v)) = Cκ (v); (ii) Cκ (Λ) ⊆ Cκ (B) for any nonempty subset
Λ ⊆ B ⊆ Φ. Assume that ζ, Γ and C satisfy the following conditions:

(1) There exists v∗ ∈ Φ such that ζ (κ, κ) ⊆ Cκ (v∗) for each κ ∈ U;
(2) For any γ ∈ V, there exists z ∈ U such that Γ (κ, γ) ⊆ ζ (κ, z) for any κ ∈ U;
(3) The multi-valued mapping κ 7→ Cκ (ζ (κ, κ)) is closed and Γ (· , γ) is l.s.c. for any γ ∈ V;
(4) ζ is Cκ (·)-quasi abstract convex.

Then there exists κ0 ∈ U such that Γ (κ0, γ) ⊆ Cκ0 (v∗) for any γ ∈ V.

Proof. Define a multi-valued mapping T as

T (κ, γ) = {z ∈ U : Γ (κ, γ) ⊆ Cκ (ζ (κ, z))} for any (κ, γ) ∈ U × V .

Let L =
{
T |T : U × V → 2U

}
represent the family of multi-valued mappings and M =

{κ ∈ U : κ ∈ T (κ, γ)} = {κ ∈ U : Γ (κ, γ) ⊆ Cκ (ζ (κ, κ))} for any γ ∈ V .
First, we prove that M is a closed set. Assume that κ ∈ M and {κt} is a net in M converging to κ.

Since for any γ ∈ V , the mapping Γ (· , γ) is l.s.c., for each v ∈ Γ (κ, γ), there exists a net {vt} satisfying
vt ∈ Γ (κt, γ) and vt → v for any t. Because κt ∈ M, we have vt ∈ Cκt (ζ (κt, κt)). Since the mapping
κ 7→ Cκ (ζ (κ, κ)) is closed, it follows that v ∈ Cκ (ζ (κ, κ)). Therefore, κ ∈ M, and hence M is a closed
set.

Next, we prove that L is a family of generalized equi-KKM mappings with respect to γ. Suppose
that {γ0, γ1, . . . , γn} ∈ 〈V〉. By (2) of Theorem 4.2, there exists {z0, z1, . . . , zn} ∈ 〈U〉 such that Γ (κ, γi) ⊆
ζ (κ, zi) for any i ∈ N and κ ∈ U. Let ∅ , J ⊂ N and z ∈ conv {zi : i ∈ J}. By (4) of Theorem 4.2,
for each κ ∈ U, there exists iU ∈ J such that ζ

(
κ, ziU

)
⊆ Cκ (ζ (κ, κ)). Then Γ

(
κ, γiU

)
⊆ ζ

(
κ, ziU

)
⊆

Cκ (ζ (κ, κ)) and z ∈ T
(
κ, γiU

)
⊆

⋃
i∈J

T (κ, γi). Therefore, conv {zi : i ∈ J} ⊆
⋃
i∈J

T (κ, γi), which implies

that L is a family of generalized equi-KKM mappings with respect to γ.
According to Theorem 3.1, there exists κ0 ∈ U such that κ0 ∈

⋂
γ∈V

T (κ0, γ). Then, there exists κ0 ∈ U

such that Γ (κ0, γ) ⊆ Cκ0 (ζ (κ0, κ0)) for any γ ∈ V . By (1) of Theorem 4.2, there exists v∗ ∈ Φ such that
ζ (κ0, κ0) ⊆ Cκ0 (v∗) for κ0 ∈ U. Hence Γ (κ0, γ) ⊆ Cκ0 (ζ (κ0, κ0)) ⊆ Cκ0

(
Cκ0 (v∗)

)
= Cκ0 (v∗). �

5. Conclusions

In this paper, we introduce the concepts of quasi-abstract convexity (concavity) regarding multi-
valued mappings and a family of generalized equi-KKM mappings in abstract convex spaces that
satisfy the H0-condition. These concepts are the generalizations of those given by Balaj in abstract
convex spaces. Moreover, the vector equilibrium problems are extended to abstract convex spaces.
Furthermore, we consider a common fixed-point theorem for a class of generalized equi-KKM
mappings using the Brouwer fixed-point theorem. As applications of this result, we derive the existence
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theorems for two types of generalized abstract equilibrium problems. This subject is both novel and
relevant today. However, the limitation of this paper is that it does not consider a Ky Fan-type minimax
inequality, which could be explored in future research.
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