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1. Introduction and preliminaries

Fixed point theory is an important branch of nonlinear functional analysis. It has been widely
applied in mathematics and other disciplines. As an example, it has important applications in different
subjects such as quantum physics, computer science, and economics, etc. For several decades, it has
been a hot topic to extend fixed point results from metric spaces to general spaces wherein b-metric
space has a significant impact. The concept of b-metric space was introduced by Bakhtin [1] in 1989.
The triangular inequality from the metric space is replaced by the quasi-triangular inequality in the b-
metric space. Due to its simplicity, elegance, and the fact that, in general, a b-metric is not continuous
(as we know, the usual metric is a continuous mapping), the study of fixed point theorems in such
spaces has strong theoretical and practical significance. Moreover, [1] extended the famous Banach
contraction mapping principle from metric spaces to b-metric spaces. In 1993, Czerwik [2] generalized
fixed point theorems for ϕ-contraction and Kannan-type contraction from metric spaces to b-metric
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spaces. Since then, many scholars have devoted themselves to considering fixed point theorems in
b-metric spaces; the reader refers to [3–5]. On the other hand, Beg and Abbas [6] obtained a common
fixed point theorem for two mappings under weak contractive conditions in metric spaces. Later, Abbas
et al. [7] extended the conclusion of [6] to four mappings in partially ordered metric spaces. Recently,
Jiang et al. [8] obtained the common fixed point theorems for four mappings satisfying the generalized
(ψ, β, L)-contractive conditions in partially ordered b-metric spaces.

Based on this, throughout this paper we acquire some conclusions for four self-mappings in
complete partially ordered b-metric spaces that satisfy the generalized contractive conditions. Our
results greatly weaken the conditions from [8, Theorems 1, 2] and [9, Theorem 15] by deleting the
functions ϕ, ψ, and the constant L. Moreover, our proof process is much simpler than the counterpart
of Theorem [8, Theorems 1]. Furthermore, we correct the proof errors of [8, Theorem 1]. In addition,
we give some examples to illustrate the superiority of our results. Otherwise, since fixed point theory
has a large number of applications for all classes of equations (see e.g., [10]), in this paper we also use
our results to show the existence and uniqueness of a solution to some equations.

In this paper, R represents the set of all real numbers,N represents the set of all nonnegative integers,
and N∗ represents the set of all positive integers. First of all, let’s recall some basic concepts below.

Definition 1.1. ([11]) Let X be a nonempty set, d : X × X → R a mapping, and s ≥ 1 a constant. d is
called a b-metric on X, and (X, d) is called a b-metric space if for all x, y, z ∈ X, it satisfies

(1) d (x, y) ≥ 0, d (x, y) = 0⇔ x = y;
(2) d (x, y) = d (y, x);
(3) d (x, y) ≤ s[d (x, z) + d (z, y)],

where (3) is a quasi-triangular inequality. In this case, if X is endowed with a partial order, then (X,�, d)
is called a partially ordered b-metric space.

Remark 1.2. It is obvious that the class of b-metric space is larger than that of metric space since any
metric space is a b-metric space with s = 1. In general, a b-metric space is not necessarily a metric
space, see [12, Examples 1.2–1.5].

Definition 1.3. ( [5]) Let {xn} be a sequence in a b-metric space (X, d) and x ∈ X. If lim
n→∞

d (xn, x) = 0,
then {xn} is called to be convergent to x, denoted by lim

n→∞
xn = x or xn → x (n→ ∞).

Definition 1.4. ([12]) Let {xn} be a sequence in a b-metric space (X, d). Then {xn} is called a b-Cauchy
sequence if lim

n,m→∞
d (xn, xm) = 0. If all b-Cauchy sequences are convergent, then (X, d) is called a

complete b-metric space.

Definition 1.5. ( [5]) Let (X, d) be a b-metric space. A mapping F : X → X is called continuous at
x ∈ X if lim

n→∞
d(Fxn, Fx) = 0 whenever {xn} ⊂ X with lim

n→∞
d(xn, x) = 0.

In general, b-metric is not continuous; kindly see the following example.

Example 1.6. Let X = R and define a mapping d : X × X → R as

d (x, y) =

|x − y|, xy , 0,
α|x − y|, xy = 0,
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where α > 1 is a constant. It is easy to see that d is a b-metric with coefficient s = α. Choose xn = 1,

yn =
1
n

, then

d (xn, 1) = 0, d (yn, 0) =
α

n
→ 0 (n→ ∞) .

Thus, xn → 1 (n→ ∞) , yn → 0 (n→ ∞), but

d (xn, yn) = |1 −
1
n
| → 1 , d (1, 0) = α (n→ ∞) .

That is to say, the b-metric d is not continuous.

Remark 1.7. In Example 1.6, we restrict α > 1. If α = 1, then (X, d) will become a metric space and
the metric d is continuous. It shows that the value of α can affect whether the b-metric is continuous
or not in the space.

Definition 1.8. ([8]) Let (X,�, d) be a partially ordered b-metric space, x, y ∈ X and {xn} a sequence in
X. Let f , g, h be self-mappings on X, ( f , g) be the mapping pair with f (X) ∪ g(X) ⊆ h(X).

(1) The elements x, y are called comparable if x � y or y � x holds.
(2) The pair ( f , g) is called partially weakly increasing with respect to h if f x � gy, where y =

h−1( f x) for each x ∈ X, where h−1(u) = {v ∈ X : hv = u} for u ∈ X.
(3) The pair ( f , g) is called compatible if lim

n→∞
f xn = lim

n→∞
gxn = t ∈ X implies lim

n→∞
d ( f gxn, g f xn) = 0.

(4) The element x is called a coincidence point of f and g, and the element y is called a point of
coincidence of f and g if y = f x = gx.

(5) The pair ( f , g) is called weakly compatible if f x = gx implies f gx = g f x.
(6) f is called dominating if x � f x holds for each x ∈ X; f is called dominated if f x � x holds for

each x ∈ X.

We give three examples as follows.

Example 1.9. Let X = [0,+∞) be endowed with the usual ordering. Define three self-mappings f , g, h
as

f (x) = ex − 1, g(x) = x, h(x) = ln(x + 1),

then ex − 1 ≤ eex−1 − 1 for all x ∈ X. Hence, the pair ( f , g) is partially weakly increasing with respect
to h, and the pair ( f , h) is weakly compatible.

Example 1.10. Let X = [0,+∞) be endowed with the usual ordering. Define a mapping by f (x) = ex,
then x ≤ ex for all x ∈ X. Hence, f is dominating.

Example 1.11. Let X = [0,+∞) be endowed with the usual ordering. Define a mapping by f (x) =

ln(x + 1), then ln(x + 1) ≤ x for all x ∈ X. Thus, f is dominated.

The following lemma will be used constantly in the sequel.

Lemma 1.12. ([13, 14]) Let {xn} be a sequence in a b-metric space (X, d). If

d (xn+1, xn+2) ≤ λd (xn, xn+1) (n = 1, 2, · · · )

holds, where λ ∈ [0, 1) is a constant, then {xn} is a b-Cauchy sequence in X.
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2. Main results

In this section, we give a new concept called ordered contractive pair for four mappings on partially
ordered b-metric space. By using this concept, we obtain some theorems for the existence of a common
fixed point and coincidence point. We also give two examples to support our results.

Definition 2.1. Let (X,�, d) be a partially ordered b-metric space, f , g, S ,T be self-mappings on X.
The pair ( f , g) is called an ordered contractive pair with respect to S and T if for any comparable
elements x, y ∈ X, it satisfies

sεd ( f x, gy) ≤ max {d (S x,Ty) , d (S x, f x) , d (Ty, gy)} , (2.1)

where ε > 2 is a constant.

Theorem 2.2. Let (X,�, d) be a complete partially ordered b-metric space with coefficient s > 1,
f , g, S ,T be self-mappings on X, {xn}, {yn} be sequences in X. If the following conditions are satisfied:

(1) f X ⊆ T X, gX ⊆ S X;
(2) ( f , g) is an ordered contractive pair with respect to S and T;
(3) f , g are dominating, S ,T are dominated;
(4) {xn} is nondecreasing, xn � yn for all n ∈ N∗ and yn → z (n→ ∞) imply xn � z;
(5) (i) f or S is continuous, ( f , S ) are compatible, and (g,T ) are weakly compatible or

(ii) g or T is continuous, (g,T ) are compatible, and ( f , S ) are weakly compatible,
then the mappings f , g, S ,T possess a common fixed point in X. Moreover, the common fixed point is
unique if and only if the set of common points is well ordered.

Proof. Choose x0 ∈ X, by the condition (1), construct a sequence {yn} in X as follows:

y2n−1 = T x2n−1 = f x2n−2, y2n = S x2n = gx2n−1,

where n ∈ N∗. By the condition (3), it follows that

x2n−2 � f x2n−2 = T x2n−1 � x2n−1, x2n−1 � gx2n−1 = S x2n � x2n.

Thus, xn � xn+1 (n ∈ N).
Assume that there exists n0 ∈ N such that d

(
y2n0 , y2n0+1

)
= 0, i.e., y2n0 = y2n0+1. By the condition (2),

it is easy to see from (2.1) that

sεd
(
y2n0+1, y2n0+2

)
= sεd

(
f x2n0 , gx2n0+1

)
≤ max

{
d
(
S x2n0 ,T x2n0+1

)
, d

(
S x2n0 , f x2n0

)
, d

(
T x2n0+1, gx2n0+1

)}
= max

{
d
(
y2n0 , y2n0+1

)
, d

(
y2n0 , y2n0+1

)
, d

(
y2n0+1, y2n0+2

)}
= max

{
0, 0, d

(
y2n0+1, y2n0+2

)}
= d

(
y2n0+1, y2n0+2

)
,

then

d
(
y2n0+1, y2n0+2

)
≤

1
sε

d
(
y2n0+1, y2n0+2

)
,
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so d
(
y2n0+1, y2n0+2

)
= 0, i.e., y2n0+1 = y2n0+2.

Similarly, via y2n0+1 = y2n0+2 it implies y2n0+2 = y2n0+3. It will be seen from this that {yn} is a constant
if n ≥ 2n0 + 1. Again by

x2n−2 � f x2n−2 = y2n−1 = T x2n−1 � x2n−1,

x2n−1 � gx2n−1 = y2n = S x2n � x2n,

x2n � f x2n = y2n+1 = T x2n+1 � x2n+1,

it means that y2n−1 � x2n−1 � y2n, y2n � x2n � y2n+1. Accordingly, if n ≥ 2n0 + 1, then {xn} is also a
constant and equal to {yn}. As a consequence, y2n0 is a common fixed point of f , g, S ,T .

Assume that d (y2n, y2n+1) > 0 for all n ∈ N. Note that x2n and x2n+1 are comparable; by (2.1), it
establishes that

sεd (y2n+1, y2n+2) = sεd ( f x2n, gx2n+1)

≤ max {d (S x2n,T x2n+1) , d (S x2n, f x2n) , d (T x2n+1, gx2n+1)}
= max {d (y2n, y2n+1) , d (y2n, y2n+1) , d (y2n+1, y2n+2)}
= max {d (y2n, y2n+1) , d (y2n+1, y2n+2)} . (2.2)

If

d (y2n, y2n+1) ≤ d (y2n+1, y2n+2) ,

then by (2.2) we have

d (y2n+1, y2n+2) ≤
1
sε

d (y2n+1, y2n+2) ,

which follows that d (y2n+1, y2n+2) = 0. This is a contradiction. Therefore, we get

d (y2n+1, y2n+2) < d (y2n, y2n+1) .

Now by (2.2) we gain

sεd (y2n+1, y2n+2) ≤ d (y2n, y2n+1) ,

which implies that

d (y2n+1, y2n+2) ≤
1
sε

d (y2n, y2n+1) . (2.3)

Since x2n−1 and x2n are comparable, by (2.1) it is valid that

sεd (y2n, y2n+1) = sεd ( f x2n, gx2n−1)

≤ max {d (S x2n,T x2n−1) , d (S x2n, f x2n) , d (T x2n−1, gx2n−1)}
= max {d (y2n, y2n−1) , d (y2n, y2n+1) , d (y2n−1, y2n)}
= max {d (y2n−1, y2n) , d (y2n, y2n+1)} . (2.4)

If

d (y2n−1, y2n) ≤ d (y2n, y2n+1) ,
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then by (2.4) one has

d (y2n, y2n+1) ≤
1
sε

d (y2n, y2n+1) ,

thus, d (y2n, y2n+1) = 0. This is a contradiction. Consequently, we arrive at

d (y2n, y2n+1) < d (y2n−1, y2n) ,

by using (2.4), we deduce

sεd (y2n, y2n+1) ≤ d (y2n−1, y2n) ,

which means that
d (y2n, y2n+1) ≤

1
sε

d (y2n−1, y2n) . (2.5)

Combine (2.3) and (2.5), it is obvious that

d (yn, yn+1) ≤
1
sε

d (yn−1, yn) .

Making full use of Lemma 1.12, we claim that {yn} is a b-Cauchy sequence in X. Since (X,�, d) is
complete, then there is a z ∈ X such that lim

n→∞
yn = z.

Now assume that the condition (i) holds. Without loss of generality, let S be continuous. Since
( f , S ) is compatible and

lim
n→∞

f x2n+2 = z = lim
n→∞

S x2n+2,

we speculate that

lim
n→∞

d ( f S x2n+2, S f x2n+2) = 0,

that is,

lim
n→∞

d ( f y2n+2, S y2n+3) = 0.

Note that S is continuous; it is clear that

d ( f y2n+2, S z) ≤ s[d ( f y2n+2, S y2n+3) + d (S y2n+3, S z)]→ 0 (n→ ∞) .

Thus, we have
lim
n→∞

d ( f y2n+2, S z) = 0. (2.6)

In what follows, we will prove z = S z. As a matter of fact, in view of x2n+1 � gx2n+1 = S x2n+2,
by (2.1), it is valid that

sεd ( f y2n+2, y2n+2) = sεd ( f S x2n+2, gx2n+1)

≤ max {d (S S x2n+2,T x2n+1) , d (S S x2n+2, f S x2n+2) , d (T x2n+1, gx2n+1)}
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= max {d (S y2n+2, y2n+1) , d (S y2n+2, f y2n+2) , d (y2n+1, y2n+2)} . (2.7)

By (2.6) and the fact that S is continuous, we acquire that

d(S y2n+2, f y2n+2) ≤ s[d(S y2n+2, S z) + d(S z, f y2n+2)]→ 0 (n→ ∞) ,

which establishes that
lim
n→∞

d (S y2n+2, f y2n+2) = 0. (2.8)

Since {yn} is a b-Cauchy sequence, then

lim
n→∞

d (y2n+1, y2n+2) = 0. (2.9)

Taking advantage of (2.8) and (2.9), there exists N1 ∈ N such that for any n > N1, we have

d (S y2n+2, y2n+1) ≥ d (S y2n+2, f y2n+2) , (2.10)

d (S y2n+2, y2n+1) ≥ d (y2n+1, y2n+2) . (2.11)

Utilizing (2.7) and (2.10) together with (2.11), we obtain

sεd ( f y2n+2, y2n+2) ≤ d (S y2n+2, y2n+1) (n > N1) . (2.12)

Making the most of the quasi-triangular inequality of b-metric, we gain

d (S y2n+2, y2n+1) ≤ s[d (S y2n+2, f y2n+2) + d ( f y2n+2, y2n+1)]
≤ sd (S y2n+2, f y2n+2) + s2d ( f y2n+2, y2n+2) + s2d (y2n+2, y2n+1) . (2.13)

By using (2.12) and (2.13), for each n > N1, it is curious that

sεd ( f y2n+2, y2n+2) ≤ sd (S y2n+2, f y2n+2) + s2d ( f y2n+2, y2n+2) + s2d (y2n+2, y2n+1) .

By taking the upper limit as n → ∞ from the above inequality together with (2.8) and (2.9), it is
palpable that

lim sup
n→∞

d ( f y2n+2, y2n+2) ≤
1

sε−2 lim sup
n→∞

d ( f y2n+2, y2n+2) , (2.14)

then by (2.14), it is valid that

lim
n→∞

d ( f y2n+2, y2n+2) = 0. (2.15)

By virtue of

d (S z, z) ≤ sd (S z, f y2n+2) + sd ( f y2n+2, z)

≤ sd (S z, f y2n+2) + s2d ( f y2n+2, y2n+2) + s2d (y2n+2, z) .

By taking the upper limit as n → ∞ from the above inequality together with (2.6) and (2.15), it leads
to d (S z, z) = 0, i.e., S z = z.
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It suffices to prove f z = z. Indeed, on account of x2n+1 � gx2n+1 and gx2n+1 → z, then by the
condition (4), x2n+1 � z, in other words, z and x2n+1 are comparable. Using (2.1), we obtain

sεd ( f z, y2n+2) = sεd ( f z, gx2n+1)

≤ max {d (S z,T x2n+1) , d (S z, f z) , d (T x2n+1, gx2n+1)}
= max {d (z, y2n+1) , d (z, f z) , d (y2n+1, y2n+2)} . (2.16)

As {yn} is a b-Cauchy sequence, it follows immediately that

lim
n→∞

d (z, y2n+1) = 0, (2.17)

lim
n→∞

d (y2n+1, y2n+2) = 0. (2.18)

Utilizing (2.17) and (2.18), there exists N2 ∈ N such that for any n > N2, it leads to

d (z, f z) ≥ d (z, y2n+1) , (2.19)

d (z, f z) ≥ d (y2n+1, y2n+2) . (2.20)

By (2.16), (2.19), and (2.20), it can be seen that

sεd ( f z, y2n+2) ≤ d (z, f z)

≤ sd (z, y2n+2) + sd (y2n+2, f z) (n > N2). (2.21)

By taking the upper limit as n→ ∞ from (2.21), it is simple that

lim sup
n→∞

d ( f z, y2n+2) ≤
1

sε−1 lim sup
n→∞

d ( f z, y2n+2) ,

then

lim
n→∞

d ( f z, y2n+2) = 0. (2.22)

Note that
d ( f z, z) ≤ sd ( f z, y2n+2) + sd (y2n+2, z) ,

by taking the limit as n→ ∞ from the above inequality together with (2.22), we arrive at d ( f z, z) = 0,
i.e., f z = z.

Via the condition (1), there is a w ∈ X such that z = f z = Tw. It will need to prove Tw = gw. Via
z = f z = Tw � w, it implies z � w. By utilizing (2.1), we obtain

sεd (Tw, gw) = sεd ( f z, gw)

≤ max {d (S z,Tw) , d (S z, f z) , d (Tw, gw)}
= max {0, 0, d (Tw, gw)}
= d (Tw, gw) ,

which follows that d (Tw, gw) = 0, that is, Tw = gw. Because (g,T ) is weakly compatible, it is curious
that

gz = g f z = gTw = Tgw = TTw = T f z = Tz.
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Therefore, z is a coincidence point of g and T .
In the sequel, we need to show z = gz. By x2n � f x2n and f x2n → z (n→ ∞), by the condition (4),

it leads to x2n � z. Again by (2.1), it is straightforward to see that

sεd (y2n+1, gz) = sεd ( f x2n, gz)

≤ max {d (S x2n,Tz) , d (S x2n, f x2n) , d (Tz, gz)}
= max {d (y2n, gz) , d (y2n, y2n+1) , 0} . (2.23)

Owing to lim
n→∞

d (y2n, y2n+1) = 0, we claim that there exists N3 ∈ N such that for each n > N3, we have

d (y2n, gz) ≥ d (y2n, y2n+1) . (2.24)

By (2.23) and (2.24), it is verified that

sεd (y2n+1, gz) ≤ d (y2n, gz) ≤ sd (y2n, y2n+1) + sd (y2n+1, gz) (n > N3).

By taking the upper limit as n→ ∞ from the above inequality, it can be shown that

lim sup
n→∞

d (y2n+1, gz) ≤
1

sε−1 lim sup
n→∞

d (y2n+1, gz) .

Thus, one has

lim
n→∞

d (y2n+1, gz) = 0. (2.25)

Using the quasi-triangular inequality of b-metric, we obtain

d (gz, z) ≤ sd (gz, y2n+1) + sd (y2n+1, z) .

By taking limit as n→ ∞ from the above inequality together with (2.25), we declare d (gz, z) = 0, i.e.,
gz = z.

In summary, we have f z = gz = S z = Tz = z. Hence, z is a common fixed point of f , g, S ,T . We
can take a similar argument when f is continuous.

Similarly, if condition (ii) holds, we can also find the common fixed point of f , g, S ,T .
Finally, we assume that the set of common fixed points of f , g, S ,T , denoted by Y , is well ordered.

We want to prove that the common fixed point of f , g, S ,T is unique. Indeed, if there exist p, q ∈ Y ,
then

f p = gp = S p = T p, f q = gq = S q = Tq.

Since Y is well ordered, then by (2.1), it is clear that

sεd (p, q) = sεd ( f p, gq)

≤ max {d (S p,Tq) , d (S p, f p) , d (Tq, gq)}
= max {d (p, q) , 0, 0}
= d (p, q) .

This leads to d (p, q) = 0, that is, p = q.
Conversely, if the common fixed point of f , g, S ,T is unique, then the set of common fixed points

of f , g, S , and T is a singleton. It is clear that the set is well ordered. �
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Remark 2.3. The condition ε > 2 from Definition 2.1 is vital, and it cannot be replaced by ε > 1 or
ε > 0. Indeed, if ε ≤ 2, then (2.15) does not hold based on the fact that (2.15) comes from (2.14).

Remark 2.4. Theorem 2.2 is an extension and improvement of Theorem 2.1 in [7]. The former extends
the latter from metric space to b-metric space. In fact, the former condition is weaker than the latter.
Moreover, Theorem 2.2 also improves Theorem 1 in [8]. This is because compared to Theorem 1, the
conditions of Theorem 2.2 are weaker since Theorem 1 has limitations such as the functions β and ψ
and the constant L, which greatly restrict its application possibility. In addition, it corrects the proof
error from [8, Theorem 1]. Indeed, the 8th line of Page 8 from [8, Theorem 1] is incorrect because the
authors used the false inequality |d(x, y) − sd(x, z)| ≤ sd(z, y). The false inequality cannot be obtained
by the quasi-triangular inequality d(x, y) ≤ s[d(x, z) + d(z, y)]. Our proof of Theorem 2.1 in this paper
only uses d(x, y) ≤ s[d(x, z) + d(z, y)] instead of |d(x, y) − sd(x, z)| ≤ sd(z, y).

Remark 2.5. The results obtained in this paper are similar to those in [15], which gave the coincidence
point of four mappings under different contractive conditions. However, this paper studies the existence
and uniqueness of common fixed points and coincidence points of four mappings satisfying the
contractive conditions. The contractive conditions of the mappings in [15, Theorem 2.1] are different
from the counterpart in the present theorem, and it requires that all the mappings be continuous. In
Theorem 2.2, the continuity condition was weakened, and only one of the mappings needed to be
continuous. Our theorem ignores the b-closed set condition from [15, Theorem 2.2]; thereby, our
result broadens the scope of the theorem from [15].

The following is an example to support the validity of Theorem 2.2.

Example 2.6. Let X = [0,+∞) with the partial order as

x � y⇔
{

x ≥ y + 0.01, x , y,
x = y, x = y.

Choose the b-metric d(x, y) from Example 1.6, then (X,�, d) is a complete partially ordered b-metric
space. Define four self-mappings f , g, S ,T as

f (x) = ln(x + 1), g(x) =
x
2
,

S (x) = ex − 1, T (x) = x.

Simple calculations show that f , g are dominating, S ,T are dominated. Then the pair ( f , g) is an
ordered contractive pair with respect to S and T , where α = 1.0001 and ε = 3. It can be seen from
Figure 1 that the value on the left of (2.1) is smaller than the value on the right. As a consequence, all
the conditions of Theorem 2.2 are satisfied, and f , g, S ,T have a unique common fixed point z = 0. In
fact, g,T have a common fixed point z if f , g, S ,T have a common fixed point z. Hence, the fact that
g,T have a common fixed point z = 0 implies f , g, S ,T have a unique common fixed point z = 0.
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Figure 1. Left and right data of (2.1).

In the sequel, we will give a theorem for the existence of a coincidence point of four mappings.

Theorem 2.7. Let (X,�, d) be a complete partially ordered b-metric space with coefficient s > 1 and
f , g, S ,T be continuous self-mappings on X. If the following conditions are satisfied:

(1) f X ⊆ T X, gX ⊆ S X;
(2) The pairs ( f , S ) and (g,T ) are compatible;
(3) The pairs ( f , g) and (g, f ) are partially weakly increasing with respect to T and S , respectively;
(4) (2.1) holds for some ε > 0 when S x and Ty are comparable,

then ( f , S ) and (g,T ) have a coincidence point z ∈ X. Moreover, z is the coincidence point of f , g, S ,T
if S z and Tz are comparable.

Proof. Choose x0 ∈ X, by the condition (1), construct a sequence {yn} in X as follows:

y2n−2 = f x2n−2 = T x2n−1, y2n−1 = gx2n−1 = S x2n,

where n ∈ N∗. Then yn � yn+1 (n ∈ N). Indeed, by the construction, one the one hand, it establishes
x2n+1 ∈ T−1( f x2n). By the condition (3), it follows that

T x2n+1 = f x2n � gx2n+1 = S x2n+2.

On the other hand, x2n+2 ∈ S −1(gx2n+1), as the condition (3), it satisfies

S x2n+2 = gx2n+1 � f x2n+2 = T x2n+3.

Accordingly, we obtain

T x1 � S x2 � T x3 � · · · � T x2n+1 � S x2n+2 � T x2n+3 � · · · .
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In other words, we obtain

y0 � y1 � y2 � · · · � y2n � y2n+1 � y2n+2 � · · · .

Next, we will finish the proof of this theorem.
First, we will prove

d (yn+1, yn+2) ≤ λd (yn, yn+1) (n ∈ N), (2.26)

where λ ∈ [0, 1) is a constant.
Assume that yn , yn+1 for all n ∈ N. Due to the fact that S x2n = y2n−1 and T x2n+1 = y2n are

comparable, by the condition (4), (2.1) implies

sεd (y2n, y2n+1) = sεd ( f x2n, gx2n+1)

≤ max {d (S x2n,T x2n+1) , d (S x2n, f x2n) , d (T x2n+1, gx2n+1)}
= max {d (y2n−1, y2n) , d (y2n−1, y2n) , d (y2n, y2n+1)}
= max {d (y2n−1, y2n) , d (y2n, y2n+1)} . (2.27)

If
d (y2n−1, y2n) ≤ d (y2n, y2n+1) ,

then by (2.27) it follows that
sεd (y2n, y2n+1) ≤ d (y2n, y2n+1) ,

so d (y2n, y2n+1) = 0, that is, y2n = y2n+1. This is a contradiction with the assumption. Thus, we have

sεd (y2n, y2n+1) ≤ d (y2n−1, y2n) ,

which means that
d (y2n, y2n+1) ≤

1
sε

d (y2n−1, y2n) . (2.28)

Thanks to the fact that S x2n+2 = y2n+1 and T x2n+1 = y2n are comparable, then by (2.1) it is not hard to
verify that

sεd (y2n+1, y2n+2) = sεd ( f x2n+2, gx2n+1)

≤ max {d (S x2n+2,T x2n+1) , d (S x2n+2, f x2n+2) , d (T x2n+1, gx2n+1)}
= max {d (y2n+1, y2n) , d (y2n+1, y2n+2) , d (y2n, y2n+1)}
= max {d (y2n, y2n+1) , d (y2n+1, y2n+2)} . (2.29)

If
d (y2n, y2n+1) ≤ d (y2n+1, y2n+2) ,

then by (2.29), one has
sεd (y2n+1, y2n+2) ≤ d (y2n+1, y2n+2) ,

which leads to d (y2n+1, y2n+2) = 0, i.e., y2n+1 = y2n+2. This is a contradiction with the assumption.
Hence, we claim

sεd (y2n+1, y2n+2) ≤ d (y2n, y2n+1) ,
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which educes that
d (y2n+1, y2n+2) ≤

1
sε

d (y2n, y2n+1) . (2.30)

Put λ =
1
sε
∈ [0, 1); then by (2.28) and (2.30), (2.26) holds.

Assume that there exists n0 ∈ N such that yn0 = yn0+1. Next, first we will prove it by two cases that
{yn} is a constant sequence as n > n0. At this time, (2.26) holds, too.

Case 1. If n0 = 2k − 1, then y2k−1 = y2k, thereby y2k = y2k+1. Actually, notice that S x2k = y2k−1 and
T x2k+1 = y2k are comparable, then by (2.27), it is clear that

sεd (y2k, y2k+1) ≤ max {d (y2k−1, y2k) , d (y2k, y2k+1)} = d (y2k, y2k+1) .

So then d (y2k, y2k+1) = 0, that is, y2k = y2k+1.
Case 2. If n0 = 2k, then y2k = y2k+1, accordingly, y2k+1 = y2k+2. Virtually, since S x2k+2 = y2k+1 and

T x2k+1 = y2k are comparable; thus, by using (2.29), it is valid that

sεd (y2k+1, y2k+2) ≤ max {d (y2k, y2k+1) , d (y2k+1, y2k+2)} = d (y2k+1, y2k+2) .

Hence, d (y2k+1, y2k+2) = 0, i.e., y2k+1 = y2k+2.
Secondly, we will prove that the mappings f , g, S ,T have a coincidence point. In fact, making full

use of (2.26) and Lemma 1.12, we claim that {yn} is a b-Cauchy sequence. Since (X,�, d) is complete,
then there is a z ∈ X satisfying lim

n→∞
yn = z. Thereupon, one has

lim
n→∞

d (S x2n, z) = lim
n→∞

d ( f x2n, z) = lim
n→∞

d (T x2n+1, z) = lim
n→∞

d (gx2n+1, z) = 0.

By the condition (2), it implies

lim
n→∞

d (S f x2n, f S x2n) = lim
n→∞

d (Tgx2n+1, gT x2n+1) = 0.

Note that f , g, S ,T are continuous; it is easy to see that

lim
n→∞

d (S f x2n, S z) = lim
n→∞

d ( f S x2n, f z) = 0,

lim
n→∞

d (Tgx2n+1,Tz) = lim
n→∞

d (gT x2n+1, gz) = 0.

Notice

d (S z, f z) ≤ sd (S z, S f x2n) + sd (S f x2n, f z)

≤ sd (S z, S f x2n) + s2d (S f x2n, f S x2n) + s2d ( f S x2n, f z) , (2.31)

and

d (Tz, gz) ≤ sd (Tz,Tgx2n+1) + sd (Tgx2n+1, gz)

≤ sd (Tz,Tgx2n+1) + s2d (Tgx2n+1, gT x2n+1) + s2d (gT x2n+1, gz) . (2.32)

By taking the limits as n→ ∞ from (2.31) and (2.32), we have

d (S z, f z) = 0, d (Tz, gz) = 0,
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that is, S z = f z, Tz = gz. Consequently, z is a coincidence point of ( f , S ) and (g,T ).
Finally, we assume that S z and Tz are comparable. We will prove f z = gz. As a matter of fact, by

virtue of (2.1), it follows that

sεd ( f z, gz)

≤ max {d (S z,Tz) , d (S z, f z) , d (Tz, gz)}
= d (S z,Tz) = d ( f z, gz) ,

that is,

d ( f z, gz) ≤
1
sε

d ( f z, gz) ,

hence, d ( f z, gz) = 0. Therefore, f z = gz = S z = Tz, that is to say, z is a coincidence point of
f , g, S ,T . �

Remark 2.8. Based on the main results of [8, 9], Theorem 2.7 has a sharp improvement. For one
thing, it deletes the functions β and ψ and the constant L from [8, Theorem 2]. For another thing, it
changes [9, Theorem 15] from metric space to b-metric space; further, it also deletes the functions β
and ψ from [9, Theorem 15]. Therefore, Theorem 2.7 has a possibility for greater applications in the
future.

The following corollary is a distinct outcome of Theorem 2.7, which is different from the main
results from [15].

Corollary 2.9. Let (X,�, d) be a complete partially ordered b-metric space with coefficient s > 1 and
f , g, S be continuous self-mappings on X. If the following conditions are satisfied:

(1) f X ∪ gX ⊆ S X;
(2) The pairs ( f , S ) and (g, S ) are compatible;
(3) The pairs ( f , g) and (g, f ) are partially weakly increasing with respect to S ;
(4) The following inequality

sεd ( f x, gy) ≤ max {d (S x, S y) , d (S x, f x) , d (S y, gy)}

holds for all x, y ∈ X satisfying S x and S y are comparable, where ε > 0 is a constant,
then f , g, S have a coincidence point in X.

Finally, we give an example to illustrate Theorem 2.7.

Example 2.10. Let X = {1, 2, 3} with the usual partial order. Act a mapping d : X × X → R as

d(x, y) = |x − y|2,

then (X,�, d) is a complete partially ordered b-metric space with coefficient s = 2. Define self-
mappings f , g, S ,T on X by

f (x) =

(
1 2 3
1 1 1

)
, g(x) =

(
1 2 3
1 1 2

)
,

T (x) =

(
1 2 3
1 2 3

)
, S (x) =

(
1 2 3
1 3 3

)
.

After careful circulations, we know f , g, S ,T satisfy all the conditions of Theorem 2.7 with ε = 2.
Therefore, f , g, S ,T have a coincidence point z = 1.
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3. Applications

In this section, we will give some applications in the existence and uniqueness of solutions to several
equations.

First of all, we consider the following equation:
d2x
dt2 = λ(t, x(t)), t ∈ [a, b],

x (a) = x(b) = 0,
(3.1)

where λ : [a, b] × R→ R is a continuous function.

Theorem 3.1. For Eq (3.1), if the following condition holds:

|λ(t, x(t)) − λ(t, y(t))| ≤ k|x(t) − y(t)|, (3.2)

where k > 0 is a constant, λ(t, 0) = 0, and k(b − a)2 ≤ 23− ε2 with ε > 2, then Eq (3.1) has a unique
solution in [a, b].

Proof. Equation (3.1) is equivalent to the equation below:

x(t) =

∫ b

a
Ω(t, r)λ(r, x(r)) dr, (3.3)

where

Ω(t, r) =


r − a
a − b

(b − t), a ≤ r ≤ t,

t − a
a − b

(b − r), t ≤ r ≤ b.
(3.4)

We use reverse thinking to prove (3.3). That is to say, we utilize (3.3) to show (3.1). Indeed, by
using (3.3) and (3.4), we have

x(t) =

∫ b

a
Ω(t, r)λ(r, x(r)) dr

=

∫ t

a
Ω(t, r)λ(r, x(r)) dr +

∫ b

t
Ω(t, r)λ(r, x(r)) dr

=

∫ t

a

r − a
a − b

(b − t)λ(r, x(r)) dr +

∫ b

t

t − a
a − b

(b − r)λ(r, x(r)) dr

=
b − t
a − b

∫ t

a
(r − a)λ(r, x(r)) dr +

t − a
a − b

∫ b

t
(b − r)λ(r, x(r)) dr, (3.5)

then

dx
dt

= −
1

a − b

∫ t

a
(r − a)λ(r, x(r)) dr +

b − t
a − b

(t − a)λ(t, x(t))
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+
1

a − b

∫ b

t
(b − r)λ(r, x(r)) dr −

t − a
a − b

(b − t)λ(t, x(t))

= −
1

a − b

∫ t

a
(r − a)λ(r, x(r)) dr +

1
a − b

∫ b

t
(b − r)λ(r, x(r)) dr,

which infers that

d2x
dt2 = −

1
a − b

(t − a)λ(t, x(t)) −
1

a − b
(b − t)λ(t, x(t)) = λ(t, x(t)).

By (3.5), x(a) = x(b) = 0. As a consequence, (3.1) holds.
Let X = C[a, b] with partial order as

x � y⇔ max
t∈[a,b]

|x(t)| ≥ max
t∈[a,b]

|y(t)|.

Define a mapping d : X × X → [0,+∞) as

d(x, y) = max
t∈[a,b]

|x(t) − y(t)|2,

then (X, d) is a complete b-metric space with s = 2.
In order to find the solution of (3.3), we need to look for the fixed point of the following mapping:

f x(t) =

∫ b

a
Ω(t, r)λ(r, x(r)) dr, ∀ t ∈ [a, b].

Since λ is continuous, then f is a self-mapping on X. Via (3.2) it is not hard to verify that

| f x − gy|2 =

∣∣∣∣∣∣
∫ b

a
Ω(t, r)(λ(r, x(r)) − λ(r, y(r))) dr

∣∣∣∣∣∣2
≤

(∫ b

a
|Ω(t, r)||λ(r, x(r)) − λ(r, y(r))| dr

)2

≤

(∫ b

a
|Ω(t, r)|k|x(r) − y(r)| dr

)2

≤ k2
(∫ b

a
|Ω(t, r)| max

r∈[a,b]
|x(r) − y(r)| dr

)2

= k2
(∫ b

a
|Ω(t, r)| dr

)2

max
r∈[a,b]

|x(r) − y(r)|2

=
1
4

k2[(t − a)(b − t)]2d(x, y)

≤
1

64
k2(b − a)4d(x, y)

≤
1
26

(
23− ε2

)2
d(x, y)

=
1
2ε

d(x, y),
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where g = f .
Since λ(t, 0) = 0, then by (3.2), it is easy to see that

| f x| =

∣∣∣∣∣∣
∫ b

a
Ω(t, r)λ(r, x(r)) dr

∣∣∣∣∣∣
≤

∫ b

a
|Ω(t, r)||λ(r, x(r)) − 0| dr

=

∫ b

a
|Ω(t, r)||λ(r, x(r)) − λ(r, 0)| dr

≤

∫ b

a
|Ω(t, r)|k|x(r) − 0| dr

≤ k
∫ b

a
|Ω(t, r)| max

r∈[a,b]
|x(r)| dr

= k
∫ b

a
|Ω(t, r)| dr max

r∈[a,b]
|x(r)|

=
1
2

k(t − a)(b − t) max
r∈[a,b]

|x(r)|

≤
1
8

k(b − a)2 max
r∈[a,b]

|x(r)|

≤ max
r∈[a,b]

|x(r)|,

so x � f x, that is, f , g are dominating. Let S = T = I be an identity mapping on X. Accordingly, S ,T
are dominated. Consequently, all the conditions of Theorem 2.2 are satisfied. Hence, by Theorem 2.2,
f has a unique fixed point in X. Thus, Eq (3.3) has a unique solution in [a, b]. In other words, Eq (3.1)
has a unique solution in [a, b]. �

We next consider the following equation:

x(t) = γ

∫ b

a
λ(t, r, x(r)) dr, (3.6)

where γ is a constant and λ : [a, b] × [a, b] × R→ R is a continuous function.

Theorem 3.2. For Eq (3.6), if the following condition is satisfied:

|λ(s, t, x(t)) − λ(s, t, y(t))| ≤ k|x(t) − y(t)|, (3.7)

where k > 0 is a constant, λ(s, t, 0) = 0, and kγ(b − a)s
ε
2 ≤ 1 with ε > 2, then Eq (3.6) has a unique

solution in [a, b].

Proof. Let X = C[a, b] with partial order as

x � y⇔ max
t∈[a,b]

|x(t)| ≥ max
t∈[a,b]

|y(t)|.

Define a mapping d : X × X → R as

d(x, y) = max
t∈[a,b]

|x(t) − y(t)|2.
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then (X, d) is a complete b-metric space with s = 2.
In order to find the solution of (3.6), we need to look for the fixed point of the following mapping:

f x(t) = γ

∫ b

a
λ(t, r, x(r)) dr, ∀ t ∈ [a, b].

Since f x(t) is continuous, then f is a self-mapping on X. It is not hard to verify from (3.7) that

| f x − gy|2 =

∣∣∣∣∣∣
∫ b

a
γ(λ(t, r, x(r)) − λ(t, r, y(r))) dr

∣∣∣∣∣∣2
≤ |γ|2

(∫ b

a
|λ(t, r, x(r)) − λ(t, r, y(r))| dr

)2

≤ |γ|2
(∫ b

a
k|x(r) − y(r)| dr

)2

≤ |kγ|2
(∫ b

a
max
r∈[a,b]

|x(r) − y(r)| dr
)2

= (kγ)2(b − a)2 max
r∈[a,b]

|x(r) − y(r)|2

≤
1
sε

d(x, y),

where g = f .
Since λ(s, t, 0) = 0, then by (3.7), it follows that

| f x| =

∣∣∣∣∣∣
∫ b

a
γ(λ(t, r, x(r)) − 0) dr

∣∣∣∣∣∣
≤ |γ|

∫ b

a
|λ(t, r, x(r)) − 0| dr

= |γ|

∫ b

a
|λ(t, r, x(r)) − λ(t, r, 0)| dr

≤ |γ|

∫ b

a
k|x(r) − 0| dr

≤ k|γ|
∫ b

a
max
r∈[a,b]

|x(r)| dr

= k|γ|(b − a) max
r∈[a,b]

|x(r)|

≤ max
r∈[a,b]

|x(r)|,

so x � f x, that is, f , g are dominating. Let S = T = I be an identity mapping on X. It is easy to see that
S ,T are dominated. Thus, all the conditions of Theorem 2.2 are satisfied. Therefore, by Theorem 2.2,
f has a unique solution in X, i.e., Eq (3.6) has a unique solution in [a, b]. �

Subsequently, we consider Riemann–Liouville type nonlinear fractional-order differential equations
as follows:

R
a Dµ

t x(t) = λ(t, x(t)), t ∈ [a, b], 1 ≤ µ < 2, (3.8)
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where λ : [a, b] × R→ R is a continuous function.

Theorem 3.3. For Eq (3.8), if the following condition holds:

|λ(t, x(t)) − λ(t, y(t))| ≤ k|x(t) − y(t)|, (3.9)

where k > 0 is a constant, λ(t, 0) = 0 and k(b − a)µsε+1 ≤ Γ(µ + 1) with ε > 2, then Eq (3.8) has a
unique solution in [a, b].

Proof. By using integration by substitutions and parts, after careful computations, Eq (3.8) is
equivalent to the equation below:

x (t) =
1

Γ(µ)

∫ t

a
(t − r)µ−1λ(r, x(r)) dr, (3.10)

where Γ(µ) is a Gamma function.
Let X = C[a, b] with partial order as

x � y⇔ max
t∈[a,b]

|x(t)| ≥ max
t∈[a,b]

|y(t)|,

and define a mapping d : X × X → R as

d(x, y) =


max
t∈[a,b]

|x(t) − y(t)|, xy , 0,

α max
t∈[a,b]

|x(t) − y(t)|, xy = 0,

where α ≥ 1 is a constant, then (X, d) is a complete b-metric space with s = α.
In order to find the solution of (3.10), we need to look for the fixed point of the following mapping:

f x (t) =
1

Γ(µ)

∫ t

a
(t − r)µ−1λ(r, x(r)) dr.

Owing to f x(t) being continuous, f is thus a self-mapping on X. Hence, by (3.9) we have

α| f x − gy| = α

∣∣∣∣∣∣ 1
Γ(µ)

∫ t

a
(t − r)µ−1(λ(r, x(r)) − λ(r, y(r))) dr

∣∣∣∣∣∣
≤

α

Γ(µ)

∫ t

a
(t − r)µ−1|λ(r, x(r)) − λ(r, y(r))| dr

≤
α

Γ(µ)

∫ t

a
(t − r)µ−1k|x(r) − y(r)| dr

≤
α

Γ(µ)

∫ t

a
(t − r)µ−1k max

r∈[a,b]
|x(r) − y(r)| dr

≤
αk

Γ(µ)
max
r∈[a,b]

|x(r) − y(r)|
∫ t

a
(t − r)µ−1 dr

=
αk(t − a)µ

µΓ(µ)
d(x, y)

≤
αk(b − a)µ

Γ(µ + 1)
d(x, y)
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≤
1
αε

d(x, y),

where g = f .
Since λ(t, 0) = 0, then by (3.9), it establishes that

| f x| =

∣∣∣∣∣∣ 1
Γ(µ)

∫ t

a
(t − r)µ−1(λ(r, x(r)) − 0) dr

∣∣∣∣∣∣
≤

1
Γ(µ)

∫ t

a
(t − r)µ−1|λ(r, x(r)) − λ(r, 0)| dr

≤
1

Γ(µ)

∫ t

a
(t − r)µ−1k|x(r) − 0| dr

≤
1

Γ(µ)

∫ t

a
(t − r)µ−1k max

r∈[a,b]
|x(r)| dr

≤
k

Γ(µ)
max
r∈[a,b]

|x(r)|
∫ t

a
(t − r)µ−1 dr

=
k(t − a)µ

µΓ(µ)
max
r∈[a,b]

|x(r)|

≤
k(b − a)µ

Γ(µ + 1)
max
r∈[a,b]

|x(r)|

≤ max
r∈[a,b]

|x(r)|,

thus, x � f x, that is, f , g are dominating. Let S = T = I be an identity mapping on X. As a result, S ,T
are dominated. Then all the conditions of Theorem 2.2 are satisfied. Therefore, by Theorem 2.2, f has
a unique solution in X. Thus, Eq (3.10) has a unique solution in [a, b]. In other words, Eq (3.8) has a
unique solution in [a, b]. �

In the end, we consider the equation as below:
d2x
dt2 + w2x = G(t, x(t)), t ∈ [0, 1],

x (0) = 0, x′(0) = 0,
(3.11)

where G : [0, 1] × R→ R is a continuous function and w , 0.

Theorem 3.4. For Eq (3.11), if it satisfies

|G(t, x(t)) −G(t, y(t))| ≤ k|x(t) − y(t)|, (3.12)

where k > 0 is a constant, G(t, 0) = 0 and ks
ε
2 ≤ 1 with ε > 2, then Eq (3.11) has a unique solution in

[0, 1].

Proof. Eq (3.11) is equivalent to the equation below:

x(t) =

∫ t

0
Ω(t, r)G(r, x(r)) dr, (3.13)
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where

Ω(t, r) =
1
w

sin(w(t − r)).

Let X = C[0, 1] with partial order as

x � y⇔ max
t∈[0,1]

|x(t)| ≥ max
t∈[0,1]

|y(t)|.

Define a mapping d : X × X → [0,+∞) as

d(x, y) = max
t∈[0,1]

|x(t) − y(t)|2,

then (X, d) is a complete b-metric space with s = 2.
In order to find the solution of (3.13), we need to look for the fixed point of the following mapping:

f x(t) =

∫ t

0
Ω(t, r)G(r, x(r)) dr, ∀ t ∈ [0, 1].

Since G is continuous, then f is a self-mapping on X. By utilizing (3.12), we arrive at

| f x − gy|2 =

∣∣∣∣∣∣
∫ t

0
Ω(t, r)(G(r, x(r)) −G(r, y(r))) dr

∣∣∣∣∣∣2
≤

(∫ t

0
|Ω(t, r)||G(r, x(r)) −G(r, y(r))| dr

)2

≤

(
k
∫ t

0
|Ω(t, r)||x(r) − y(r)| dr

)2

≤ k2
(∫ t

0
|Ω(t, r)| max

r∈[0,1]
|x(r) − y(r)| dr

)2

= k2
(∫ t

0
|Ω(t, r)| dr

)2

max
r∈[0,1]

|x(r) − y(r)|2

≤ k2d(x, y)

≤
1
sε

d(x, y),

where g = f .
Owing to G(t, 0) = 0, then by (3.12), it is valid that

| f x| =

∣∣∣∣∣∣
∫ t

0
Ω(t, r)G(r, x(r)) dr

∣∣∣∣∣∣
≤

∫ t

0
|Ω(t, r)||G(r, x(r)) − 0| dr

=

∫ t

0
|Ω(t, r)||G(r, x(r)) −G(r, 0)| dr
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≤ k
∫ t

0
|Ω(t, r)||x(r) − 0| dr

≤ k
∫ t

0
|Ω(t, r)| max

r∈[0,1]
|x(r)| dr

≤ k max
r∈[0,1]

|x(r)|

≤ max
r∈[0,1]

|x(r)|,

which implies x � f x. Thereby, f , g are dominating. Let S = T = I be an identity mapping on X.
Accordingly, S ,T are dominated. As a result, all the conditions of Theorem 2.2 are satisfied. Hence,
by Theorem 2.2, f has a unique fixed point in X. That is to say, Eq (3.13) has a unique solution in
[0, 1]. In other words, Eq (3.11) has a unique solution in [0, 1]. �

4. Conclusions

Fixed point theory is one of the most important branches of nonlinear analysis. The development
of fixed point theory for contractive mappings is of great importance. Stimulated by this fact, in this
paper, the ordered contractive pair for four mappings defined on a partially ordered b-metric space
(X,�, d) is considered. The mapping pair ( f , g) is called an ordered contractive pair with respect to the
mappings S and T if (2.1) is satisfied for every comparable elements x, y ∈ X. By using this concept,
under suitable conditions, we establish the existence of common fixed point and coincidence point for
the four mappings f , g, S ,T . Moreover, we claim that the common fixed point is unique if and only
if the set of common points is well ordered (see Theorem 2.2). In addition, we give two examples to
illustrate the superiority of our results (see Examples 2.6 and 2.10). We also use our results to cope
with the existence and uniqueness of solution to several equations. We make a conclusion that our
results will be helpful for researchers in this field for further study and substantial development.
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