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Abstract: Conformal prediction has emerged as a useful tool for providing valid predictive inference
regardless of the data distribution. However, its implementation can be computationally intensive,
even for small-scale data sets. Hence, it is typically prohibitive to construct full conformal prediction
intervals for multiple test points, which limits its practicality. As an alternative, a sample-split approach
can be used, but it usually provides wider prediction intervals, as it does not use all observations in the
data for training. This paper attempts to fill this gap by developing a scalable conformal prediction
algorithm for multiple test points. We find that when we use kernel ridge regression for the underlying
prediction method, it is possible to reuse some computation in constructing prediction intervals across
multiple test points, which enables us to avoid repeating the heavy computation of a matrix inverse
for each test point. We propose an efficient algorithm that employs this fact, dramatically reducing
the computational cost. We demonstrate the effectiveness and practical usefulness of the proposed
algorithm in numerical experiments.
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1. Introduction

Machine learning methods, which aim to learn patterns from data and build predictive models, have
achieved remarkable success in various fields. For example, in the manufacturing sector, machine
learning is applied to optimize production processes and enable predictive maintenance, improving
productivity [17]. In medicine, it helps improve diagnostic accuracy and personalized treatment [6]. In
finance, machine learning is widely used for credit scoring, risk management, and fraud detection
through anomaly analysis [9]. The increasing utility and reliance on machine learning in various
industries highlights its growing importance.

However, over-confidence issues in machine learning methods carry inherent risks. For example,
in finance, erroneous credit assessments or failures in fraud detection can result in substantial financial
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damage, while in healthcare, misdiagnoses can pose serious threats to patient safety. Minimizing these
risks is, therefore, a critical concern in machine learning. It is crucial to quantify prediction uncertainty
and make cautious, reliable decisions based on the results.

In this context, several methods for quantifying uncertainty in machine learning have been
developed and widely adopted. These include Bayesian neural networks [8], ensemble-based
methods [14], and conformal prediction [13]. Among these, conformal prediction has received
significant attention due to its appeal in that it provides a prediction interval of desired coverage
property, only requiring very minimal assumption of the exchangeability of data without any
additional distributional assumptions (e.g., the normality assumption in linear regression).
Furthermore, conformal prediction can be applied to any machine learning algorithm, enabling
uncertainty quantification without modifying existing models, making it highly versatile [13].
Conformal prediction has been applied effectively in diverse fields such as medical diagnosis [15],
image classification [11], and natural language processing [5].

However, conformal prediction, which is also referred to as full conformal prediction, is
computationally very inefficient as it requires repeat training of the machine learning model many
times. This becomes more problematic when we compute prediction intervals for multiple test points.
On the other hand, split conformal prediction is a substantially faster alternative, which divides the
training data into two subsets: one for training the machine learning model and the other for the
calibration of uncertainty. This approach requires only a single training step, which makes it
computationally efficient. However, the width of an induced prediction interval is typically wider than
that of full conformal prediction, as it does not use the entire dataset for training.

The main thrust of this paper is to improve the computational efficiency of full conformal prediction
for multiple test points in the nonparametric regression framework. Specifically, we demonstrate that
when the prediction of the employed machine learning method is a linear function of the output vector
in the training data, such as kernel ridge regression, the computational cost of full conformal prediction
for multiple test points can be significantly reduced.

The rest of this paper is organized as follows. In Section 2, we provide some background
materials, including full conformal prediction, split conformal prediction, and kernel ridge regression.
In Section 3, we propose a novel conformal prediction algorithm for multiple test points, which has
substantially smaller computational complexity compared to a naive application of full conformal
prediction. In Section 4, we conduct numerical studies to compare the efficiency of the proposed
algorithm with existing methods. In Section 5, we discuss some possible extensions of the proposed
approach to other setups. In Section 6, we conclude with the implications of our findings and possible
future work.

For a set A, |A| denotes its cardinality. For a real value z, we let ⌈z⌉ denote the smallest integer
larger than or equal to z, and ⌊z⌋ the largest integer smaller than or equal to z. We use a standard big-O
notation. Let I be the indicator function.

2. Preliminary

2.1. Conformal prediction

Suppose that we have a training sample (X1,Y1), . . . , (Xn,Yn) where each Xi and Yi denote the input
(or feature, or predictor)) and output (or response) variables of the i-th observation, respectively. In
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this paper, we focus on the regression setup where the output variables are real-valued, and the input
variables are multivariate. An aim of conformal prediction is to construct a prediction interval for a
test output Yn+1 associated with a test input Xn+1 with guaranteed coverage. The desired coverage can
be attained only assuming the exchangeability of the data as follows.

Assumption 1 (Exchangeability). Let Zi = (Xi,Yi) for i = 1, . . . , n, n + 1. Then Z1, . . . ,Zn,Zn+1 are
exchangeable, that is, for any permutation π : {1, . . . , n, n + 1} 7→ {1, . . . , n, n + 1},

(Z1, . . . ,Zn,Zn+1) d
= (Zπ(1), . . . ,Zπ(n),Zπ(n+1)),

where d
= means that the left and right sides are equal in distribution.

We introduce full and split conformal prediction approaches.

2.1.1. Full conformal prediction

Full conformal prediction is conducted as follows. For each y ∈ R, a “candidate” of the unknown
output Yn+1, we train a machine learning method, say f̂ , based on the “augmented” training sample
{(X1,Y1), . . . , (Xn,Yn), (Xn+1, y)}. We denote by f̂ y

1:(n+1) the trained prediction function. Then we
compute the absolute value of the residual Ry

i := Yi − f̂ y
1:(n+1)(Xi) for i = 1, . . . , n and

Ry
n+1 := y − f̂ y

1:(n+1)(Xn+1). We compute the number of residuals whose absolute values are not larger
than the one Ry

n+1 associated with the test point, which is denoted as

ξ(y, Xn+1) :=
n+1∑
i=1

I
(
|Ry

i | ≤ |R
y
n+1|
)
= 1 +

n∑
i=1

I
(
|Ry

i | ≤ |R
y
n+1|
)
.

Lastly, we construct a prediction interval with coverage 1 − α ∈ (0, 1) as

Ĉfull
α (Xn+1) :=

{
y ∈ R : ξ(y, Xn+1) ≤ ⌈(1 − α)(n + 1)⌉

}
.

Under Assumption 1, this interval achieves the desired coverage:

P
(
Yn+1 ∈ Ĉfull

α (Xn+1)
)
≥ 1 − α.

The proof can be found in Theorem 2.1 in [10]. But computing such an interval is impossible (except
for some machine learning methods) since we cannot repeat the procedure for any real value y. In
practice, an approximate “grid” approach can be used, which only considers a finite number of
candidate values, say y∗1, . . . , y

∗
q. Then, the full conformal prediction interval is computed as

Ĉfull, grid
α (Xn+1) = Range

({
y∗j : ξ(y∗j, Xn+1) ≤ ⌈(1 − α)(n + 1)⌉

})
,

where Range(A) denotes the interval [mini ai,maxi ai] for a set A = {ai}. This is computationally
intensive as this requires q training processes.
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2.1.2. Split conformal prediction

Split conformal prediction, unlike the full conformal method, requires only one training process.
This approach first splits the training sample into two disjoint sets I1 and I2 with I1 ∪I2 = {1, . . . , n}.
Usually, these two subsets are equal in size. Then we train a machine learning method, say f̂ , on the
sub-sample {(Xi,Yi) : i ∈ I1}. We denote by f̂I1 the trained prediction function. Then we compute the
absolute residuals R̄i := |Yi − f̂I1(Xi)| for i ∈ I2, that is, for the observations in I2. Lastly, we construct
a prediction interval with coverage 1 − α ∈ (0, 1) as

Ĉsplit
α (Xn+1) :=

[
f̂I1(Xn+1) − γ, f̂I1(Xn+1) + γ

]
,

where γ is the t-th smallest value in {R̄i : i ∈ I2} with t := ⌈(1 − α)(|I2| + 1)⌉. Under Assumption 1,
this interval attains the desired coverage:

P
(
Yn+1 ∈ Ĉsplit

α (Xn+1)
)
≥ 1 − α.

The proof can be found in Theorem 2.2 in [10]. However, this approach is statistically less inefficient
than the full conformal prediction approach since only a part of the data is used for training. This
means that Ĉsplit

α (Xn+1) is typically wider than Ĉfull
α (Xn+1).

2.2. Kernel ridge regression

Kernel ridge regression (KRR) aims to estimate the conditional expectation f⋆(x) := E(Y |X = x) of
the output Y ∈ R given an input value X = x ∈ Rd, based on a sample (X1,Y1), . . . (Xn,Yn) which are
assumed to be i.i.d. copies of (X,Y). For notational simplicity, we write

X1:n = (X1, . . . , Xn)⊤ ∈ Rn×d, Y1:n = (Y1, . . . ,Yn)⊤ ∈ Rn.

Let κ : Rd × Rd 7→ {z ∈ R : z ≥ 0} be a positive definite kernel function and H be the associated
reproducing kernel Hibert space (RKHS) endowed with the RKHS norm ∥ · ∥H . A KRR estimator of
f⋆ is obtained by solving the following regularized empirical risk minimization problem

f̂ = argmin
f∈H

 n∑
i=1

(Yi − f (Xi))2 + λ∥ f ∥H


over the RKHS H , where λ > 0 is a regularization parameter that will be tuned to optimize the bias-
variance trade-off. This has a closed-form solution given by

f̂ (x) = κ(x, X1:n)(κ(X1:n, X1:n) + λI)−1Y1:n, (2.1)

where we denote
κ(x, X1:n) := (κ(x, X1), . . . , κ(x, Xn))⊤ ∈ R1×n

and
κ(X1:n, X1:n) := (κ(Xi, X j))i, j=1,...,n ∈ R

n×n.
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2.3. Conformal prediction with KRR

In this subsection, we introduce some implementations of full conformal prediction using KRR as
a machine learning method. The KRR estimator trained based on the augmented sample
{(X1,Y1), . . . , (Xn,Yn), (Xn+1, y)} is given by

f̂ y
1:(n+1)(x) := κ(x, X1:(n+1)l)(K1:(n+1) + λI)−1Y1:n,y,

where
κ(x, X1:(n+1)) := (κ(x, X1), . . . , κ(x, Xn)), κ(x, Xn+1)⊤ ∈ R1×n,

K1:(n+1) := κ(X1:(n+1), X1:(n+1)) := (κ(Xi, X j))i, j=1,...,n,n+1 ∈ R
(n+1)×(n+1),

and

Y1:n,y :=
Y1:n

y

 ∈ Rn+1.

The predicted value for Y1:n,y is then

Ŷy
1:(n+1) := ( f̂ y

1:(n+1)(X1), · · · , f̂ y
1:(n+1)(Xn), f̂ y

1:(n+1)(Xn+1))⊤

= K1:(n+1)(K1:(n+1) + λI)−1Y1:n,y.

For convenience, we define

S λ1:(n+1) := K1:(n+1)(K1:(n+1) + λI)−1,

which is the “smoother” matrix multiplied to the observed output vector Y1:n,y to produce its predicted
value. The vector of the residuals

Ry
1:(n+1) = (Ry

1, . . . ,R
y
n,R

y
n+1)

is represented as
(I − S λ1:(n+1))Y1:n,y.

Furthermore, it is easy to see that

Ry
1:(n+1) = a1:(n+1) + yb1:(n+1)

where

a1:(n+1) = (a1, . . . , an, an+1)⊤ := (I − S λ1:(n+1))(Y1, . . . ,Yn, 0)⊤,

b1:(n+1) = (b1, . . . , bn, bn+1)⊤ := (I − S λ1:(n+1))(0, . . . , 0, 1)⊤.

This implies that each residual is a linear function of the candidate value y. Based on this
observation, [16] developed an efficient algorithm for constructing the full conformal prediction set
with KRR. The detailed algorithm is given in Algorithm 1. Provided that the computation of the
smoother matrix S λ1:(n+1) is done, the computational complexity of this algorithm is O(n log n), which
is smaller than the O(n2q) of the grid approach described in Section 2.1.1.
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Algorithm 1 Full conformal prediction with KRR by [16]
Set Y = ∅
for i← 1 to n + 1 do

if bi < 0 then
Change the signs of ai and bi, i.e., ai := −ai and bi := −bi

end if
if bi , bn+1 then

Update Y as Y := Y ∪ {−(ai − an+1)/(bi − bn+1),−(ai + an+1)/(bi + bn+1)}
end if
if bi = bn+1 , 0 and ai , an+1 then

Update Y as Y := Y ∪ {−(a1 + an+1)/(2bi)}
end if

end for
Sort the elements of Y to get y(1) ≤ · · · ≤ y(r) with r := |Y|
Set y(0) := −∞ and y(r+1) := ∞
for j← 0 to r do

Compute N j :=
∑n

j=0 I((y( j), y( j+1)) ⊂ Ai) and M j :=
∑n

j=0 I(y( j) ∈ Ai) where Ai :={
y ∈ R : |Ry

i | ≥ |R
y
n+1|
}

end for
return Ĉfull, KRR

α (Xn+ℓ) :=
⋃

j:N j>(n+1)α(y( j), y( j+1))
⋃{

y( j) : M j > (n + 1)α
}
.

The work [2] and the subsequent work [3] proposed a different approach for conformal prediction
with KRR. Instead of using the absolute value of the residual |Ry

i |, they proposed to use the “two-sided
exceptionality” of the residual given as

Gy
i := min


n+1∑
j=1

I(Ry
j ≥ Ry

i ),
n+1∑
j=1

I(Ry
j ≤ Ry

i )


as the nonconformity measure for the i-th observation. Then, the full conformal prediction set is
given by

Ĉfull, KRR-ts
α (Xn+1) :=

{
y ∈ R : ξG(y, Xn+1) ≤ ⌈(1 − α)(n + 1)⌉

}
,

where

ξG(y, Xn+1) =
n+1∑
i=1

I(Gy
i ≤ Gy

n+1).

The construction of such a prediction set can be done with O(n log n) complexity provided that the
computation of the smoother matrix S λ1:(n+1) is done. The detailed algorithm is given in Algorithm 2.

These two algorithms improve the computational efficiency of the construction of the prediction
interval but do not concern the efficiency of the computation of the smoother matrix. But when there
are multiple test points, we need to compute the smoother matrix for each test point, so it would be
a substantial computational bottleneck. This paper proposes an efficient computational algorithm to
resolve this issue.
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Algorithm 2 Two-sided full conformal prediction with KRR by [2, 3]
for i← 1 to n do

if bn+1 − bi > 0 then
Set ui := li = (ai − an+1)/(bn+1 − bi)

else
Set li =: −∞ and ui := ∞.

end if
end for
Sort u1, . . . , un to get u(1) ≤ · · · ≤ u(n) and l1, . . . , ln to get l(1) ≤ · · · ≤ l(n)

return Ĉfull, KRR-ts
α (Xn+ℓ) :=

[
l(⌊(α/2)(n+1)⌋), u(⌈(1−α/2)(n+1)⌉)

]
.

3. Full conformal prediction with KRR for multiple test points

In this section, we describe our efficient algorithm for full conformal prediction based on KRR.
Suppose that we are given m test inputs Xn+1, . . . , Xn+m as well as n training samples
(X1,Y1), . . . , (Xn,Yn). For each test input Xn+ℓ, we define the augmented input matrix as

X1:n,n+ℓ :=
X1:n

X⊤n+ℓ

 ∈ R(n+1)×d.

Then, in the same way illustrated in Section 2.3, we know that the predicted values for Y1:n,y is given by

Ŷy
1:n,n+ℓ = S λ1:n,n+ℓY1:n,y,

where

S λ1:n,n+ℓ := K1:n,n+ℓ(K1:n,n+ℓ + λI)−1,

where

K1:n,n+ℓ := κ(X1:n,n+ℓ, X1:n,n+ℓ) := (κ(Xi, X j))i, j=1,...,n,n+ℓ ∈ R
(n+1)×(n+1).

A naive approach to compute S λ1:n,n+ℓ at each Xn+ℓ has the computational complexity of O(n3m).
However, we can substantially reduce it by leveraging the following black matrix inversion formula.

Lemma 1. Let B be a square matrix such that

B =
B11 B12

B21 B22

 ,
where B11 and B22 are square matrices. Assume that B11 and B22 − B21B−1

11 B12 are invertible. Then the
inverse B−1 is given by

B−1 =

B−1
11 + B−1

11 B12∆B21B−1
11 −B−1

11 B12∆

−∆B21B−1
11 ∆

 ,
where we define ∆ := (B22 − B21B−1

11 B12)−1.
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Proof. This result is very well known, but we give the proof for the completeness. We start with the
identity  I O

−B21B−1
11 I

 B11 B12

B21 B22

  I −B−1
11 B12

O I

 = B11 O
O B22 − B21B−1

11 B12

 ,
where O is a matrix of zeros. Taking the inverse to both sides, we get

B−1 =

 I −B−1
11 B12

O I

 B−1
11 O

O ∆

  I O
−B21B−1

11 I

 ,
which proves the desired. □

Now, we apply Lemma 1 to compute the inverse of the matrix

K1:n,n+ℓ + λI =
K1:n + λI Ln+ℓ

L⊤n+ℓ 1 + λ

 ,
where we normalize the kernel function so that κ(x, x) = 1 for any x ∈ Rd, and we denote

K1:n := κ(X1:n, X1:n) := (κ(Xi, X j))i, j=1,...,n,

Ln+ℓ := κ(Xn+ℓ, X1:n) := (κ(Xn+ℓ, X1), . . . , κ(Xn+ℓ, Xn))⊤.

We first define δn+ℓ as

δn+ℓ :=
1

(1 + λ) − L⊤n+ℓH
λ
1:nLn+ℓ

(3.1)

where we define Hλ1:n := (K1:n,n+ℓ + λI)−1. Then by Lemma 1, we have

Hλ1:n,n+ℓ := (K1:n,n+ℓ + λI)−1 =

Hλ1:n + δn+ℓHλ1:nLn+ℓL⊤n+ℓH
λ
1:n −δn+ℓHλ1:nLn+ℓ

−δn+ℓL⊤n+ℓH
λ
1:n δn+ℓ

 .
Since we have

K1:n,n+ℓHλ1:n,n+ℓ = (K1:n,n+ℓ + λI)Hλ1:n,n+ℓ − λH
λ
1:n,n+ℓ

= I − λHλ1:n,n+ℓ,

the smoother of the KRR estimator is given by

S λ1:n,n+ℓ = K1:n,n+ℓHλ1:n,n+ℓ =

K1:n Ln+ℓ

L⊤n+ℓ 1

 Hλ1:n + δn+ℓHλ1:nLn+ℓL⊤n+ℓH
λ
1:n −δn+ℓHλ1:nLn+ℓ

−δn+ℓL⊤n+ℓH
λ
1:n δn+ℓ


=

K1:nHλ1:n + δn+ℓ(K1:nHλ1:n − I)Ln+ℓL⊤n+ℓH
λ
1:n −δn+ℓ(K1:nHλ1:n − I)Ln+ℓ

δn+ℓ(δ−1
n+ℓ + L⊤n+ℓH

λ
1:nLn+ℓ − 1)L⊤n+ℓH

λ
1:n δn+ℓ(1 − L⊤n+ℓH

λ
1:nLn+ℓ)


=

I − λHλ1:n − λδn+ℓHλ1:nLn+ℓL⊤n+ℓH
λ
1:n λδn+ℓHλ1:nLn+ℓ

λδn+ℓL⊤n+ℓH
λ
1:n 1 − λδn+ℓ

 . (3.2)
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Here the last identity holds due to

δn+ℓ(1 − L⊤n+ℓH
λ
1:nLn+ℓ) = δn+ℓ(δ−1

n+ℓ − λ)
= 1 − λδn+ℓ.

In the computation in (3.2), computing Hλ1:n, which has the computational complexity of O(n3) and so
is the main computational bottleneck, can be conducted only once, since it does not depend on test
inputs. What we need to compute for every test input is the multiplication of L⊤n+ℓ and Hλ1:n, which has
the complexity of O(n2). Thus, as the construction algorithm in either Algorithm 1 or Algorithm 2
requires O(n log n) complexity, the computational complexity of computing the full conformal
prediction intervals for m test points can be reduced to

O(n3 + n2m).

This is substantially smaller than O(n3m), which is the complexity of simply applying full conformal
prediction with KRR to multiple test points.

The proposed procedure is summarized in Algorithm 3.

Algorithm 3 Full conformal prediction with KRR for multiple test points
Input: Training sample (Xi,Yi), i = 1, . . . , n, Test inputs Xn+1, . . . , Xn+m, Confidence level α ∈ (0, 1),
Regularization parameter λ, Kernel function κ
Output: Prediction intervals for Yn+1 . . . ,Yn+ℓ.

Compute Hλ1:n
for ℓ ← 1 to m do

Compute δn+ℓ according to (3.1)
Compute S λ1:n,n+ℓ according to (3.2)
Compute a1:n,n+ℓ := (I − S λ1:n,n+ℓ)(Y1, . . . ,Yn, 0)⊤ and b1:n,n+ℓ := (I − S λ1:n,n+ℓ)(0, . . . , 0, 1)⊤

Construct a 1 − α prediction interval for Yn+ℓ using either Algorithm 1 or Algorithm 2.
end for

4. Numerical experiments

In this section, we conduct a numerical study to support the effectiveness and efficiency of the
proposed algorithm for full conformal prediction.

4.1. Data

For our simulation, we consider both synthetic datasets and real-world datasets.

Synthetic data We generate both training and test samples from the following Gaussian linear
regression model

Yi|Xi
ind
∼ N(X⊤i β, 1), Xi

iid
∼ N(0, I)

for i = 1, . . . , n+m. For true regression coefficients β, we generate each element from the uniform
distribution on [−1, 1] independently. We set the dimension of the input as d = 20, the number of
training points as n = 200 and that of test points as m = 100.
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Real data We consider the following two real-world datasets, the Communities and Crime dataset [12]
and the BlogFeedback dataset [4]. The first dataset contains 1,994 data points. There remain
d = 99 covariates after preprocessing the data following the same procedure as in [1]. The second
dataset contains information on 52,397 observations, each of which has d = 280 covariates. We
apply the log transform to the output variable since it is extremely skewed. For each simulation,
we randomly select n = 200 training points from the whole dataset and then randomly select
n = 100 test points from the remaining data points.

4.2. Methods

For the full conformal prediction method with KRR, we use the radial basis kernel function given as

κ(x, x′) = exp
(
−∥x − x′∥2/d

)
where d denotes the input dimension. Such a choice of the scale parameter is the same as the default
setup Scikit-learn package in Python. The regularization parameter λ is chosen by a
cross-validation process. For prediction interval construction, we consider the two approaches
described in Section 2.3: Algorithm 1 (will be abbreviated as Full-KRR-Alg1), and Algorithm 2
(Full-KRR-Alg2).

We compare the proposed full conformal prediction method with split conformal prediction with
three different machine learning methods: KRR, random forest (RF) and Lasso. For KRR, we use the
same kernel function and the regularization parameter used for our full conformal prediction with KRR
approach. The split conformal prediction method with RF is implemented with the default settings
provided by the conformalInference package in R. For the use of Lasso, the tuning parameter
was selected through a cross-validation process. In addition, for the synthetic data, we construct a
parametric prediction interval for Gaussian linear models, which provides valid coverage under the
data-generating process of the synthetic data.

4.3. Results

For each dataset, we report the averaged coverage, width, and computation time of the
predictive intervals with their standard errors across 50 independent trials. We choose a target
coverage of

1 − α = 0.9.

Table 1 presents the results on the synthetic datasets generated from the linear regression model.
Notably, the performance of the full conformal prediction approach is comparable to that of the
parametric method, whose assumptions align with our data-generating process. Otherwise, all split
conformal methods provide wider prediction intervals than the full conformal method. In particular,
using non-linear function estimation methods such as KRR and RF performs substantially worse than
the other methods.

Tables 2 and 3 present the results on the real-world datasets. All methods attain the desired coverage.
The proposed full conformal prediction method with Algorithm 1 gives narrower prediction intervals
than all split conformal methods for both datasets. This illustrates the statistical efficiency of our
method. On the other hand, using Algorithm 2, which uses a different nonconformity score than the first
method, provides less efficient results. Moreover, the computation time of the proposed Algorithm 3 is
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comparable to the split conformal prediction methods and even smaller than those with RF and Lasso.
This result illustrates the practicality of our method.

Table 1. The coverage, width and computation time of the predictive intervals for all
methods, averaged over 50 repetitions of synthetic data generation.

Coverage Width Time (sec)
Full-KRR-Alg1 0.895 (0.039) 3.456 (0.237) 0.138 (0.035)
Full-KRR-Alg2 0.901 (0.039) 3.528 (0.246) 0.076 (0.022)
Split-KRR 0.897 (0.044) 3.729 (0.352) 0.002 (0.003)
Split-RF 0.901 (0.037) 6.189 (0.651) 0.092 (0.007)
Split-Lasso 0.906 (0.047) 3.742 (0.382) 0.023 (0.01)
Parametric 0.899 (0.038) 3.432 (0.188) 0.002 (0)

Table 2. The coverage, width and computation time of the predictive intervals for all
methods, averaged over 50 repetitions of data extraction from Communities and Crime data
set.

Coverage Width Time (sec)
Full-KRR-Alg1 0.896 (0.043) 0.387 (0.033) 0.141 (0.024)
Full-KRR-Alg2 0.899 (0.04) 0.44 (0.042) 0.078 (0.011)
Split-KRR 0.907 (0.043) 0.493 (0.072) 0.005 (0.001)
Split-RF 0.904 (0.043) 0.508 (0.074) 0.332 (0.014)
Split-Lasso 0.897 (0.049) 0.513 (0.081) 0.582 (0.161)

Table 3. The coverage, width and computation time of the predictive intervals for all
methods, averaged over 50 repetitions of data extraction from the BlogFeedback dataset.

Coverage Width Time (sec)
Full-KRR-Alg1 0.899 (0.034) 2.082 (0.21) 0.124 (0.012)
Full-KRR-Alg2 0.906 (0.031) 2.773 (0.257) 0.074 (0.02)
Split-KRR 0.897 (0.041) 3.522 (0.768) 0.009 (0.004)
Split-RF 0.902 (0.038) 2.777 (0.429) 0.401 (0.032)
Split-Lasso 0.906 (0.038) 3.366 (0.727) 0.146 (0.04)

4.4. Time comparison with the naive approach

In this experiment, we aim to illustrate how much computation time is reduced by using the
proposed algorithm compared to the naive approach that repeats computing the smoother matrix for
each test point. We set the number of training points to 200 but vary the number of test points
from 100 to 1,000 with an increment of 100. The result is presented in Figure 1, where we see that the
computation time of our method shows a much slower rate of increase than the naive approach,
indicating its superior efficiency and scalability.
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Figure 1. Computation time versus the number of test points.

5. Possible extensions

In this section, we discuss some possible extensions of the proposed approach.

5.1. Online learning

Our Algorithm 3 is naturally adapted to an online learning setup. In this setup, we assume that the
pair of input and output comes sequentially and aim to predict the next output given the previously
observed pairs. That is, we construct a prediction interval for Yt+1 given the observed sample
(X1,Y1), . . . , (Xt,Yt) for each t. The corresponding smoother of KRR is given by

S λ1:(t+1) := K1:(t+1)(K1:(t+1) + λI)−1.

But, according to Eq 3.2, this can be updated efficiently from the previous computed inverse matrix
Hλ1:t := (K1:t + λI)−1 which was used to construct a prediction interval for Yt. Namely,

S λ1:(t+1) =

I − λHλ1:t − λδt+1Hλ1:tLt+1L⊤t+1Hλ1:t λδt+1Hλ1:tLt+1

λδt+1L⊤t+1Hλ1:n 1 − λδt+1


where Lt+1 := κ(Xt+1, X1:t) and δt+1 := (1 + λ − L⊤t+1Hλ1:tLt+1)−1.

5.2. Other machine learning methods

This study focuses on the KRR prediction method, but the proposed algorithm can be applied to
any least-squares or ridge-type prediction method. Consider a prediction function of the form

f (x) = ϕ(x)⊤β,

where ϕ is a fixed “feature” map chosen by an user and β is a learnable coefficient. For example, if
ϕ(x) = x, this recovers the standard linear model. Also, this model includes various basis expansion
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methods, such as splines and piecewise polynomials. Given the augmented data
(X1,Y1), . . . , (Xn,Yn), (Xn+1, y) for full conformal prediction, suppose that we estimate β by
minimizing the following objective function

n∑
i=1

(Yi − ϕ(Xi)⊤β)2 + (y − ϕ(Xn+1)⊤β)2 + λ∥β∥22

with tuning parameter λ ≥ 0. Note that the choice of λ = 0 leads to the least-squares estimation. Then
the resulting ridge-type predicted value is given by

Ŷy
1:(n+1) = Φ1:(n+1)(Φ⊤1:(n+1)Φ1:(n+1) + λI)−1Φ⊤1:(n+1)Y1:n,y

where
Φ1:(n+1) := (ϕ(X1), . . . , ϕ(Xn), ϕ(Xn+1))⊤

denotes the matrix of the feature values. The computation of the above estimator requires the
computation of the inverse matrix (Φ⊤1:(n+1)Φ1:(n+1) + λI)−1. Therefore, to construct multiple conformal
prediction intervals, we need to compute many inverse matrices, which can be a substantial
computational burden. We can solve this issue using the same idea as the proposed algorithm. We first
note that the ridge-type estimator admits the dual form

(Φ⊤1:(n+1)Φ1:(n+1) + λI)−1Φ⊤1:(n+1) = Φ
⊤
1:(n+1)(Φ1:(n+1)Φ

⊤
1:(n+1) + λI)−1,

which allows the following representation of the predicted value

Ŷy
1:(n+1) = Φ1:(n+1)Φ

⊤
1:(n+1)(Φ1:(n+1)Φ

⊤
1:(n+1) + λI)−1Y1:n,y.

In the above display, the matrix to be inversed has a block structure such that

Φ1:(n+1)Φ
⊤
1:(n+1) + λI =

Φ1:nΦ
⊤
1:n + λI Φ1:nϕ(Xn+1)

ϕ(Xn+1)⊤Φ⊤1:n ϕ(Xn+1)⊤ϕ(Xn+1) + λ

 .
Thus, employing Lemma 1, a similar efficient algorithm as Algorithm 3 is easily derived.

6. Conclusions

In this paper, we propose an efficient algorithm for computing multiple prediction intervals using
the full conformal prediction approach. The proposed algorithm employs KRR as a prediction method,
which requires the computation of complexity O(n3) for training. Thus, for m test points, directly
applying KRR results in a computational complexity of O(n3m). However, we find that by using a
computational trick for matrix inversion, we can reduce this computational complexity to O(n3 + n2m).
Based on this observation, we propose an efficient computational algorithm for the construction of full
conformal prediction intervals for multiple test points. The numerical studies demonstrate the superior
performance and practicality of the proposed algorithm.

There are several interesting avenues for future work. First, since the proposed approach works
only for regression, extension to other learning tasks, such as classification, can be considered.
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Second, although the computation with complexity O(n3) can be conducted only once, even for
multiple test points, this might be prohibitive for large data sets. There are several approaches to
reduce the computational complexity of computing the KRR estimate by approximating the kernel
matrix, including the Nyström method [7] and the randomized sketch [18]. It would be interesting to
study how such computationally fast approximation methods for KRR can be used for full conformal
prediction and reduce the computational complexity.
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