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1. Introduction and terminological excerpts

All standard sequence spaces, equipped with their respective norms, are Banach spaces, as stated
in the text. A sequence space is defined as a vector subspace of either RN or CN, which denote the
space of all real or complex valued sequences, respectively. Specifically, the Banach spaces ℓ∞, c, and
c0 denote the spaces of bounded, convergent and null sequences, respectively. Similarly, the spaces
bs, cs, and ℓ1 consist of sequences whose series are bounded, convergent, and absolutely convergent,
respectively [12].

The Köthe–Toeplitz duals of sequence spaces have strongly connected to the theory of multiplier
convergent (or bounded) series. Additionally, the duality theory also has significant implications in
the fields of the topological sequence space theory and the summability theory. The alpha-, beta-, and

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2025233


5096

gamma-duals, namely S α, S β, and S γ, of a sequence space S are defined as follows:

S α :=
{
t = (tk) ∈ RN : ts = (tksk) ∈ ℓ1 for all s = (sk) ∈ S

}
,

S β :=
{
t = (tk) ∈ RN : ts = (tksk) ∈ cs for all s = (sk) ∈ S

}
,

S γ :=
{
t = (tk) ∈ RN : ts = (tksk) ∈ bs for all s = (sk) ∈ S

}
.

Through this study, we denote the real normed and real Banach spaces by N and B, respectively.
Additionally, the space N∗ denotes the continuous dual of N. A series

∑
k xk in N is said to be

either unconditionally convergent (denoted by uc) or unconditionally Cauchy (denoted by uC) if the
rearranged series

∑
k xπ(k) either converges or forms a Cauchy series for any permutation π of N. In

the same way, a series
∑

k xk in N is considered weakly unconditionally Cauchy (denoted by wuC) if
the sequence

(∑n
k=1 xπ(k)

)
n∈N is weakly Cauchy for every permutation π of the natural numbers. It is

well-known that a series is wuC if x∗(xk) ∈ ℓ1 for every x∗ ∈ N∗and any wuC series in B is uc if and
only if B does not include any copies of c0, see [9, p.42–44]. If the reader is interested in particular
explorations of Banach spaces, they may consult Diestel’s renowned monograph [19], which is devoted
to the theory of sequences and series in Banach spaces, as well as Albiac and Kalton’s [9].

The behavior of the series
∑

k vk in N is significantly influenced by the form
∑

k µkvk. Specifically,
if the series

∑
k µkvk converges in N for any µ = (µk) ∈ E, then

∑
k vk is said to be E-multiplier

convergent. Similarly, if the partial sums of the series
∑

k µkvk form a norm Cauchy sequence in N
for every µ = (µk) ∈ E, as stated in [39], then this series is called the multiplier Cauchy series.
Useful characterizations of multiplier convergence for a series

∑
k vk in B can be expressed through the

following numerical formulations [39]:

(i)
∑

k vk is wuC if and only if it is a c0-multiplier convergent series.
(ii)
∑

k vk is uc if and only if it is an ℓ∞-multiplier convergent series.
(iii) Let χσ be the characteristic function of σ and consider the set M0 = {χσ|σ ⊂ N}. Then,

∑
k vk is

subseries convergent if and only if it is an M0-multiplier convergent series.

An important reference for a detailed study on the theory of multiplier convergence is [39].
In [3, 5, 6], Aizpuru et al. provided a new characterization of wuC and uc series by employing the
Cesàro summability method, the almost convergence method, and a general (regular) summability
matrix method. They further explored the structure of newly introduced spaces associated with series
in Banach spaces to establish conditions for the completeness and barrelledness of normed spaces.
Moreover, they characterized wuC series in terms of the continuity of linear mappings from these
spaces to a normed space X and formulated new versions of the Orlicz-Pettis theorem. For some
of the recent investigations into the scalar case of multiplier convergence, which involve various
summability methods see [10, 24, 29]. In addition, within the scope of the topic under consideration,
the multiplier convergence for vector-valued sequences one can see [11,23,27]. In [25,26], the authors
introduce the vector valued multiplier spaces associated to the series of bounded linear operators
M∞f (
∑

k Tk),M∞w f (
∑

k Tk) and M∞fλ (
∑

k Tk),M∞w fλ
(
∑

k Tk) by means of Lorentz’ almost convergence and
its slight generalization, respectively. Additionally, they give some characterizations of completeness
of these spaces and continuity and compactness of summing operator.

In the sequence spaces theory, the most useful application of the Hahn–Banach Extension Theorem
may be seen as the concept of Banach limits (non-negative, normalized, and shift-invariant linear
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functionals) defined on ℓ∞. This generalization of ordinary limit has many applications in various
fields of mathematics. In their research paper that involved the functional characteristic and extreme
points of the set of Banach limits on ℓ∞, Semenov et al. [41] gave an impressive introduction about
the recent results and developments on the theory of Banach limits and almost convergence. Banach
limits are exactly an extension of the limit functional on c to ℓ∞. In 1948, the important result due to
Lorentz [31] appeared on Banach limits, which was a beautiful characterization of almost convergence.
Eberlein [20] introduced the idea of the Banach–Hausdorff limit with invariance of Banach limits on
regular Hausdorff transformations.

Let FS be the forward-shift operator on RN with (FS x)n = xn+1 for every n ∈ N. We say that the
linear functional B on ℓ∞ is a Banach limit if the following statements holds:

(i) B is nonnegative, i.e., x = (xn) ∈ ℓ∞, B(x) ≥ 0 if xn ≥ 0 for every n ∈ N,
(ii) B(FS x) = B(x),

(iii) B(e) = 1, where e = (1, 1, 1, . . .)

holds. All Banach limits belong to the classB, and this class is a closed convex set on S ℓ∗∞ , which is the
unit sphere of ℓ∗∞, [40]. It comes from the definition that for every B ∈ B, ∥B∥ℓ∗∞ = 1, i.e., Banach limits
are defined on ℓ∞ of norm-1, and the classical limit functional lim : c→ R seems to be a restriction of
any Banach limit B : ℓ∞ → R. Moreover, another name used for Banach limits is also Banach-Mazur
limits since it is assumed that the existence was proven by Mazur. In B, the closed unit ball is denoted
by UB and the space of all vector B-valued sequences is also denoted by RN(B) (or BN).

On advanced research of recent studies related to almost summability (multiplier almost
convergence), fλ-summability (multiplier fλ-convergence), and σ-summability (multiplier σ-
convergence) associated to a formal series (an operator valued series) in normed spaces can be given
by the following references: [8, 25, 28]. By employing an expanded concept of almost summability,
in [24], the authors provided novel classes of sequence spaces that corresponded to a series in a
Banach space. In [24], the authors also provided novel characterizations of wuC and uc series using
these developed spaces. Additionally, they acquired an edition of the famous Orlicz–Pettis theorem.
This theorem exactly asserts that if a series in a normed space is weakly subseries convergent, then
it is also norm (strong) subseries convergent, as mentioned in [39, vii]. The reader can refer to
the textbooks [17] and [34] for fundamental theorems on functional analysis and the summability
theory, the papers [13, 14] on almost-conservative and almost corcive matrix transformations, and the
papers [15, 16, 22] on the almost convergence, on the convergence of a series, and related topics.

2. σ-Convergence and σ-summability

In this section, we recall the concept of σ-convergent and σ-summability, which will be used in
the rest of the paper. Raimi [36] introduced the concept of σ-convergence as a slight generalization of
Lorentz almost convergence by means of motion, which can be seen as a generalization of the forward-
shift operator via an injection of the set of positive integers N into itself. Motions have same role for
linear functionals defined on ℓ∞ with shift-invariance of the Banach limits. First, we give the notion of
σ-mean.

A motion σ : N → N is a one-to-one function that does not contain any finite orbits. An invariant
mean, often known as a σ-mean, is a continuous linear functional φ defined on ℓ∞ that satisfies the
following conditions:
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(i) φ is non-negative,
(ii) φ(x) = φ(xσ(n)),

(iii) φ(e) = 1, where e = (1, 1, 1, . . .), (cf. [36]).

Let us note that σk( j) is assumed to be the kth iteration of σ at j and σk( j) , j. It is said to be that
the bounded sequence x = (xk) σ-converges to the generalized limit l ∈ C if φ(x) = l for all φ. Invariant
mean is a generalization of the well-known lim on c, which means φ(x) = lim x,∀x ∈ c iff σ has no
finite orbits and c ⊂ Vσ ⊂ ℓ∞, [32, 33]. Let us recall that, the functional φ is 1-1 such that σk( j) , j.

We have the following:

(1) σ j(l) , l for all j, l ∈ N.
(2) σl(l) = l, since a motion has no finite orbit and σl(l) = (σl◦ I)(l) = σl[I(l)] = I(l), where I denotes

the identity function.
(3) σi+ j( j) = σi, since σi+ j( j) = (σi ◦ σ j)( j) = σi[σ j( j)] = σi( j) for all i, j ∈ N.

Here and after, we take s j =
∑ j

k=1 vk and sσm+n(n) = sn +
∑m

k=1 vσk(n).

Definition 2.1. Let v = (vk) ⊆ N. Then, it is said that v = (vk) is σ-convergent to v0 ∈ N, i.e.,

Vσ−limk vk = v0 (respectively, weakly σ-convergent to v′0 ∈ N, i.e., wVσ−limk vk = v′0) if
∑l

k=0

vσk( j)

l + 1
→

v0 as l → ∞ uniformly in j ∈ N (respectively, if
∑l

k=0
v∗(v

σk ( j))

l+1 → v∗(v′0) as l → ∞, ∀v∗ ∈ N∗ uniformly
in j ∈ N).

We denote the space of all σ-convergent sequences and weak σ-convergent sequences in N by
Vσ(N) and by wVσ(N), respectively. Therefore, we have the following:

Vσ(N) :=
{
(vk) ∈ RN(N) : Vσ lim

k→∞
vk exists

}
,

and

wVσ(N) :=
{
(vk) ∈ RN(N) : wVσ lim

k→∞
vk exists

}
.

Definition 2.2. If v = (vi) ⊆ N, then
∑

i vi is σ-convergent (respectively, weakly σ-convergent) to the
point v0 ∈ N (respectively, v′0 ∈ N), and is denoted by Vσ

∑∞
i=1 vi = v0 (respectively, wVσ

∑∞
i=1 vi = v′0)

if  j∑
i=1

vi +

l∑
i=1

(l − i + 1)vσi( j)

l + 1

→ v0

as l→ ∞ uniformly in j ∈ N (respectively, if for all v∗ ∈ N∗ j∑
i=1

vi +

l∑
i=1

(l − i + 1)v∗(vσi( j))
l + 1

→ v∗(v′0)

as l → ∞ uniformly in j ∈ N) holds. Therefore, v0 ∈ N (respectively, v′0) denotes the Vσ-sum
(respectively, wVσ-sum) of v = (vi) [10].
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3. Spaces of σ-multiplier convergence

Through this section, we concern with the spaces of σ-multiplier convergence, and give the
theorems related to their completeness. Prior to delving into this, recall that the spaces of sequences
that form bounded and null multiplier convergent series, which are alternatively known as the spaces
of the uc and wuC series, may be defined as follows:

B(ℓ∞) =

v = (vk) ∈ RN(B) :
∑

k

vk is ℓ∞ −multiplier convergent

 ,
and

B(c0) =

v = (vk) ∈ RN(B) :
∑

k

vk is c0 −multiplier convergent

 .
These are also denoted by BMC(B) and CMC(B), respectively [30]. Besides, the space B(S) of

S-multiplier convergent series is also given as follows:

B(S) =

v = (vk) ∈ RN(B) :
∑

k

vk is S- multiplier convergent

 .
In this text, it is assumed that the spaceS is a vector subspace of ℓ∞ containing c0 (i.e., c0 ⊆ S ⊆ ℓ∞).

All of the spaces B(ℓ∞), B(S), and B(c0) are complete with the following:

∥v∥ = sup
k∈N


∥∥∥∥∥∥∥

k∑
i=1

αivi

∥∥∥∥∥∥∥ : αi ∈ [−1, 1], i ∈ {1, 2, . . . , k}

 , v = (vi) ∈ RN(B). (3.1)

Let S1 and S2 be linear subspaces of ℓ∞ such that c0 ⊆ S1 ⊆ S2. Therefore, the inclusions

B(ℓ∞) ⊆ B(S2) ⊆ B(S1) ⊆ B(c0)

hold [2].
We give the following definition on Grothendieck spaces to use for our main results.

Definition 3.1. Suppose that λ ⊆ B∗∗, which is the second dual of B and σ(B∗, B) is weak∗ topology
induced by the duality between B∗ and B. Then, B is λ-Grothendieck if every σ(B∗, B)-convergent
sequence is σ(B∗, λ)-convergent. B is Grothendieck if λ = B∗∗ holds, [2].

Many of the proofs of the famous Orlicz–Pettis theorem (for the original proof of Pettis, [35])
enjoys some versions of the Schur lemma. In 1983, Swartz gives a version of this lemma related
to the uniform convergence of unconditional convergent series in linear metric B-spaces, [38]. In
2000, Aizpuru and Pérez–Fernández proved that the uniform convergence of sequences of the uc
series can be generalized to sequences of the wuC series, see [2]. Beside, in [2, 4, 7, 21], the authors
also obtained some general results on the uniform convergence of the uc series and the wuC series
through miscellaneous summability or non-summability methods using the following theorem as a
representative result of Schur lemma.
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Theorem 3.2. If v = (vn)n∈N ∈ B(ℓ∞) and for every (αk)k∈N ∈ ℓ∞, limn→∞
∑∞

k=1 αkvn
k exists in B, then

there exists v0 ∈ B(ℓ∞) such that limn→∞ ∥vn − v0∥ = 0 in B, [4, 7, 21].

By using S and σ-summability, we can describe the spaces B(S,Vσ) and Bw(S,Vσ) for the formal
series

∑
k vk as follows:

B(S,Vσ) :=

v = (vk) ∈ RN(B)
∣∣∣∣∣Vσ ∞∑

k=1

αkvk converges for each α = (αk) ∈ S

 ,
and

Bw(S,Vσ) :=

v = (vk) ∈ RN(B)
∣∣∣∣∣wVσ

∞∑
k=1

αkvk converges for each α = (αk) ∈ S

 .
In [10], it has been shown that

∑
k vk is a wuC series if and only if there exists a point v0 ∈ B such that

wVσ
∑∞

k=1 αkvk = v0 holds for every α = (αk) ∈ c0. This leads us to the inclusion Bw(S,Vσ) ⊆ B(c0).
Therefore, one can consider both of the spaces B(S,Vσ) and Bw(S,Vσ) as normed spaces with the norm
given in (3.1). Therefore, the following inclusions hold:

B(ℓ∞) ⊆ B(S,Vσ) ⊆ Bw(S,Vσ) ⊆ B(c0).

We start our main results with the following theorem, which asserts that both of the spaces B(S,Vσ)
and Bw(S,Vσ) are complete. We will only show the completeness of the space Bw(S,Vσ) since the
completeness of B(S,Vσ) may be proven in a similar way.

Theorem 3.3. B(S,Vσ) and Bw(S,Vσ) are Banach spaces with the norm given in (3.1).

Proof. We need to show that the space Bw(S,Vσ) is a closed linear subspace of B(c0). Let (vn)n∈N be a
sequence in Bw(S,Vσ). Then, we can find v0 ∈ B(c0) that satisfies the following:

lim
n

∥∥∥vn − v0
∥∥∥ = 0.

If α = (αk) ∈ S − {0} is fixed, then there exist the terms vn ∈ B that satisfies the following for each
n ∈ N:  j∑

k=1

αkv∗(vn
k) +

l∑
k=1

(l − k + 1)
l + 1

ασk( j)v∗(vn
σk( j))

→ v∗(vn),

as l→ ∞ uniformly in j ∈ N, for every v∗ ∈ B∗.
Now, let us prove that v = (vn) is a Cauchy sequence in B. For every ϵ > 0, we have to find n0 ∈ N

such that for every p, q ≥ n0, the following equality holds:

∥vp − vq∥ ≤
ϵ

3 ∥α∥
.

If p, q ≥ n0 are fixed, then there exist some v∗ ∈ UB∗ that satisfies the following:∥∥∥vp − vq

∥∥∥ = ∣∣∣v∗(vp) − v∗(vq)
∣∣∣ .
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Now, one can find m ∈ N such that∣∣∣∣∣∣∣v∗(vp) −

 j∑
k=1

αkv∗(v
p
k ) +

l∑
k=1

(l − k + 1)
l + 1

ασk( j)v∗(v
p
σk( j))


∣∣∣∣∣∣∣ < ϵ3 , (3.2)

and ∣∣∣∣∣∣∣v∗(vq) −

 j∑
k=1

αkv∗(v
q
k) +

l∑
k=1

(l − k + 1)
l + 1

ασk( j)v∗(v
q
σk( j))


∣∣∣∣∣∣∣ < ϵ3 (3.3)

are satisfied uniformly in j ∈ N. Therefore, for each v∗ ∈ B∗,∥∥∥vp − vq

∥∥∥ = ∣∣∣v∗(vp) − v∗(vq)
∣∣∣

≤ (3.2) + (3.3) +

∣∣∣∣∣∣∣
j∑

k=1

αkv∗(v
p
k − vq

k) +
l∑

k=1

(l − k + 1)
l + 1

ασk( j)v∗(v
p
σk( j) − vq

σk( j))

∣∣∣∣∣∣∣
≤
ϵ

3
+
ϵ

3
+ ∥vp − vq∥ ∥α∥

≤ ϵ.

Moreover, from the completeness of B, we can find v0 ∈ B such that the following equation holds:

lim
n
∥vn − v0∥ = 0.

Next, let us take the fixed v∗ ∈ B∗ − {0} and ϵ > 0. There exists n ∈ N such that∥∥∥vn − v0
∥∥∥ ≤ ϵ

3 ∥α∥ ∥v∗∥
,

and
∥vn − v0∥ ≤

ϵ

3 ∥v∗∥
.

Additionally, we can find k0 such that for every k ≥ k0, we have∣∣∣∣∣∣∣
 j∑

k=1

αkv∗(vn
k) +

l∑
k=1

(l − k + 1)
l + 1

ασk( j)v∗(vn
σk( j))

 − v∗(vn)

∣∣∣∣∣∣∣ < ϵ3 ,
uniformly in j ∈ N, for every v∗ ∈ B∗. Therefore,∣∣∣∣∣∣∣

 j∑
k=1

αkv∗(v0
k) +

l∑
k=1

(l − k + 1)
l + 1

ασk( j)v∗(v0
σk( j))

 − v∗(v0)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
j∑

k=1

αkv∗(v0
k − vn

k) +
l∑

k=1

(l − k + 1)
l + 1

ασk( j)v∗(v0
σk( j) − vn

σk( j))

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
 j∑

k=1

αkv∗(vn
k) +

l∑
k=1

(l − k + 1)
l + 1

ασk( j)v∗(vn
σk( j))

 − v∗(vn)

∣∣∣∣∣∣∣ + |v∗(vn) − v∗(v0)|
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≤
∥∥∥vn − v0

∥∥∥ ∥α∥ ∥v∗∥ + ϵ
3
+ ∥v∗∥ ∥vn − v0∥

≤ ϵ,

uniformly in j ∈ N for each v∗ ∈ B∗. Therefore, the proof has been completed. That is, v0 ∈ Bw(S,Vσ).
□

Now, we give the definitions of linear summing and linear weak summing operators from S into the
Banach space B.

Definition 3.4. Let v = (vk) be an arbitrary sequence in B(S,Vσ) and α = (αk), as well as be the
sequence of scalars in S. We define the linear operator

Lv : S → B

by

Lv(α) = Vσ
∞∑

k=1
αkvk. (3.4)

Definition 3.5. If v = (vk) is an arbitrary sequence in Bw(S,Vσ), then, we define the linear weakly
summing operator Lw

v : S → B as follows:

Lw
v (α) = wVσ

∞∑
k=1
αkvk. (3.5)

According to these definitions we give the continuity principles for the operators Lv and Lw
v .

Proposition 3.6. The linear operators Lv : S → B and Lw
v : S → B defined by (3.4) and (3.5) are

continuous for the arbitrary sequences in B(S,Vσ) and Bw(S,Vσ), respectively.

Proof. Again, to avoid routine repetition, we only show that the linear operatorLw
v is continuous. Now,

let v = (vk) be a sequence in Bw(S,Vσ) and α = (αk) ∈ S. Therefore, we find v∗ ∈ UB∗ that satisfies the
equality:

∥Lw
v (α)∥ = |v∗(Lw

v (α))|.

Additionally, we have

|wVσ
∞∑

k=1

αkvk| = lim
l→∞

∣∣∣∣∣∣∣
 j∑

k=1

αkv∗(vk) +
l∑

k=1

(l − k + 1)
l + 1

ασk( j)v∗(vσk( j))


∣∣∣∣∣∣∣ ,

uniformly in j ∈ N. If l, j ∈ N, then the inequalities∣∣∣∣∣∣∣
 j∑

k=1

αkv∗(vk) +
l∑

k=1

(l − k + 1)
l + 1

ασk( j)v∗(vσk( j))


∣∣∣∣∣∣∣ ≤ ∥α∥∞∥v∥.

holds and this completes the proof, that is, Lw
v is continuous. □
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4. Uniform σ-convergence

Our main result establishes the existence of the uniform σ-convergence from point-wise σ-
convergence in certain contexts. This result has similar implications to the Hahn–Schur Theorem,
which is a fundamental theorem in functional analysis related to the uniform convergence properties
of sequences in B(ℓ∞) and in B(c0). Additionally, some versions have also been employed by several
authors (see, [1, 2, 18]).

Now, we give a theorem which can be considered a generalization of the uniform convergence of
the uC series to the wuC series using σ-convergence method, which is exactly a version of Theorem
3.2. First, we need to give the following useful results for the proof of our main theorem.

Remark 4.1. (i) Let us consider the inclusion map I : c0 → S and the canonical base (ek) of c0.
Thus, we have c∗∗0 ≡ ℓ∞; therefore, the sequence α = (αk) ∈ ℓ∞ can be identified with the mapping
S∗ → R defined by the following:

s∗ 7−→
∞∑

k=1

αks∗(ek),

where (ek)k∈N is the sequence whose kth position is 1 and all the others are 0. Therefore, one can
identify the space ℓ∞ with a linear subspace of S∗∗, (see also, [4, 7, 21]).

(ii) Let the inclusions B ⊆ λ ⊆ B∗∗ hold. If B is a λ-Grothendieck and (v∗n) ⊆ B∗ is w∗-convergent
to some v∗ ∈ B∗, then the sequence of functionals (v∗n) is also σ(B∗, λ)-convergent to v∗, ( [21],
Lemma 2.13).

(iii) If y = (yk) is a sequence in B(c0) that satisfies ∥y∥ > ϵ, ∀ϵ > 0, then, there exists v∗ ∈ UB∗ such
that the following holds, ( [21], Lemma 2.16):

ϵ <

∞∑
k=1

|v∗(yk)| < ∞.

(iv) If S is an ℓ∞-Grothendieck and ( fn)n∈N is an arbitrary sequence in S∗ such that weak* converging
to zero, then, we have the following:

lim
n→∞

∞∑
k=1

αk fn(ek) = 0,

for each α = (αk)k∈N ∈ ℓ∞, ( [21], Lemma 2.15 (3)).

Finally, we present our main result related to the Hahn–Schur theorem.

Theorem 4.2. Suppose that (vn)n∈N is a sequence in B(c0) and S is an ℓ∞-Grothendieck space. If for
each α = (αk) ∈ S,

lim
n→∞

wVσ
∞∑

k=1

αkvn
k

exists, then there exist the point v0 ∈ B(c0) that satisfies

lim
n→∞
∥vn − v0∥ = 0

in B(c0).
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Proof. First, suppose that (vn)n∈N is not a Cauchy sequence in B(c0), and let (n j) be an increasing
sequence of natural numbers for every ϵ > 0 such that ∥y j∥ > ϵ for each j ∈ N, where y j = vn j − vn j+1 .
Now, from Remark 4.1 (iii), for every j ∈ N, there exists v∗j ∈ UB∗ such that the inequality

ϵ <

∞∑
k=1

|v∗j(y
j
k)|

holds. From the Proposition 3.6, we also have the continuous linear map Lw
y j : S → B defined by the

following:

(αk)k∈N 7−→ L
w
y j((αk)k∈N) = wVσ

∞∑
k=1

αky
j
k, ∀ j ∈ N.

By our hypothesis, for every α = (αk) ∈ S, the following

lim
j→∞
Lw

y j((αk)k∈N) = lim
j→∞

wVσ
∞∑

k=1

αky
j
k

exists in B, and the sequences
(
wVσ
∑∞

k=1 αky
n j

k

)
j∈N and

(
wVσ
∑∞

k=1 αky
n j+1

k

)
j∈N are the subsequences of

the original sequence
(
wVσ
∑∞

k=1 αky
j
k

)
j∈N. We conclude that the following:

lim
j→∞
Lw

y j((αk)k∈N) = lim
j→∞

wVσ
∞∑

k=1

αky
j
k

= lim
j→∞

wVσ
∞∑

k=1

αky
n j

k − lim
j→∞

wVσ
∞∑

k=1

αky
n j+1

k

= 0.

Therefore, the composite sequence (v∗j◦L
w
y j) j∈N is w∗-null sequence ofS∗ (i.e., it is weak* convergent

to zero in S∗). Since S is an ℓ∞-Grothendieck space that satisfies the inclusions c0 ⊆ S ⊆ ℓ∞, we obtain
the following by (i) and (iv) in Remark 4.1:

lim
j→∞

∞∑
k=1

αk(v∗j ◦ L
w
y j)(ek) = lim

j→∞

∞∑
k=1

αkv∗j(y
j
k) = 0, ∀α = (αk)k∈N ∈ ℓ∞.

Therefore, we have that {(v∗j(y
j
k)k∈N} j∈N ∈ ℓ1 is a weakly null sequence. On the other hand, the

sequence {(v∗j(y
j
k)k∈N} j∈N is also null with norm in ℓ1, since the space ℓ1 is a Schur space, which

contradicts
∑∞

k=1 |v
∗
j(y

j
k)| < ϵ, for all j ∈ N. □

Corollary 4.3. Let us suppose that (vn)n∈N satisfies the conditions of Theorem 4.2, and
lim
n→∞

Vσ
∑∞

k=1 αkvn
k exists for each α = (αk) ∈ S. Then, there exists v0 ∈ B(c0) that satisfies

lim
n→∞
∥vn − v0∥ = 0 in B(c0).
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5. An alternative formulation of the Hahn–Schur type theorem

In this section, we present an alternative formulation of our Hahn–Schur type theorem. Before
doing so, we introduce several preparatory materials that will be central to the proof. Let F be a σ-
Boolean algebra. Let B(F ) be the Banach space that consists of all bounded, real-valued functions on
F satisfies F -measurability equipped with the supremum norm. Furthermore, letB(F )∗ be the Banach
space of all finitely additive measures on F , which is equipped with the bounded variation norm.

We recall that BS (F ) denotes the space of simple functions, which is dense in B(F ). The density of
BS (F ) in B(F ) plays a crucial role in the arguments below, thus allowing us to approximate arbitrary
bounded measurable functions by simple functions.

Using these notions, we shall derive a refined version of our Hahn–Schur type theorem.
Additionally, we will explore its implications in connection with three fundamental properties in
the measure theory and functional analysis, namely, the Vitali-Hahn-Saks (VHS) property, the
Grothendieck (G) property, and the Nikodym (N) property. These properties provide deep insights
into the structure and behavior of measures and Banach spaces, which will illuminate various aspects
of our main results.

Lemma 5.1. (Vitali-Hahn-Saks) A sequence v = (vn) in B(F )∗ is uniformly strongly additive if (vn(A))
converges for every A ∈ F [7].

Lemma 5.2. (Grothendieck) A sequence v = (vn) has the same behavior with Schur sequences but in
the weak-* topology. Equivalently, B(F ) is a Grothendieck space [7].

Lemma 5.3. (Nikodym) The family M ⊆ B(F )∗, where v(A) : v = (vn) ∈ M is bounded for every
A ∈ F , is uniformly bounded, that is, BS (F ) is barrelled [7].

Let F be a Boolean subalgebra of P(N) such that

Φ(N) := {A ⊆ N : card(A) < ∞} ⊆ F .

Boolean subalgebras of this form are referred to as natural Boolean algebras in [2]. Recall that if F
is a Boolean algebra, then its Stone space T is the totally disconnected, compact Hausdorff space that
arises from the set of all ultrafilters on F , which is equipped with the Stone topology. It is a standard
result that the family C(T ) of the real-valued continuous functions on T can be embedded into ℓ∞ by
identifying each continuous function with its bounded extension over T .

Following [37], the Boolean algebra F is said to precisely possess the Grothendieck property when
C(T ) has the Grothendieck property. Similarly, F is said to have the Nikodym property whenever the
space C0(T ) is a barrelled space which consists of real-valued continuous functions on T that takes
finitely many values. In particular, F is said to satisfy the Vitali–Hahn–Saks property if and only if it
has both the Grothendieck and Nikodym properties.

Theorem 5.4. Let v = (vn) be a sequence in B(c0) and suppose that F is a natural Boolean algebra
that satisfies the Vitali-Hahn-Saks property. If lim

n→∞
wVσ
∑

i∈A vn
i exists for every A ∈ F , then one can

find V0 ∈ B(c0) such that limn→∞ ∥vn − V0∥ = 0 in B(c0).

Proof. Let S denote the Stone space of F . Then, C(S ) is a Grothendieck space, while C0(S ) is
barrelled. Moreover, C(S ) can be linearly and isometrically identified with a closed subspace M of
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ℓ1 that includes c0. Naturally, this implies that M is also Grothendieck. Consider the following weakly
summing operator for every n ∈ N, Lw

vn : S → B as

Lw
vn(α) = wVσ

∞∑
k=1
αkvn

k ,

and denote the corresponding restriction of Lw
vn to M0 by Lw

vn(0), where M0 represents the subspace of
M that consists of finite-valued sequences. If β = (βk) ∈ M0, then,

lim
n→∞

wVσ
∞∑

k=1

βkvn
k

exists. Since M0 is barrelled (as it corresponds to C0(S ) in this identification), there exists a constant
H > 0 such that ∥Lw

vn∥ = ∥L
w
vn(0)∥ < H for all n ∈ N. Furthermore, the density of M0 in M implies

that limn→∞ wVσ
∑∞

k=1 αkvn
k exists for every α = (αk) ∈ M. By Theorem 4.2, we can conclude that there

exists some V0 ∈ B(c0) such that limn→∞ ∥vn − V0∥ = 0 in B(c0). □

Since the multiplier spaces B(S,Vσ) and Bw(S,Vσ) are complete with the norm given in (3.1), and
S is an ℓ∞-Grothendieck space, one can easily prove the following corollary in the light of previous
results.

Corollary 5.5. Let (vn)n∈N be a sequence in Bw(S,Vσ) (or B(S,Vσ)) and S be an ℓ∞-Grothendieck
space. Therefore, (vn)n∈N converges in Bw(S,Vσ) (or B(S,Vσ)) if and only if limn→∞ wVσ

∑∞
k=1 αkvn

k (or
limn→∞ Vσ

∑∞
k=1 αkvn

k) exists for every α = (αk)k∈N ∈ S.

6. Conclusions

In the present paper, the spaces B(S,Vσ) and Bw(S,Vσ) were defined using σ-convergence and a
subset S of ℓ∞ that contains c0, i.e., c0 ⊆ S ⊆ ℓ∞. Thus, the spaces B(S,Vσ) and Bw(S,Vσ) were shown
as Banach spaces with their natural supremum norm. Additionally, a classical result of the Hahn–Schur
type theorem on generalization of the uniform convergence of uc series to the wuC series was given by
the concept of σ-convergence as a summability method. Some versions of this type generalizations can
be found in [1,4,7,21] by means of the classical concept of convergence, matrix summability methods,
almost convergence, and statistically convergence, respectively.
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34. M. Mursaleen, F. Başar, Sequence spaces: topics in modern summability theory, Boca Raton: CRC
Press, 2020. https://doi.org/10.1201/9781003015116

35. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc., 44 (1938), 277–304.

36. R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30
(1963), 81–94. https://doi.org/10.1215/s0012-7094-63-03009-6

37. W. Schachermayer, On some classical measure-theoretic theorems for non-sigma-complete
Boolean algebras, Diss. Math., 214 (1982), 1–33.

38. C. Swartz, The schur lemma for bounded multiplier convergent series, Math. Ann., 263 (1983),
283–288. https://doi.org/10.1007/bf01457131

39. C. Swartz, Multiplier convergent series, Singapore: World Scientific Publishing, 2008.
https://doi.org/10.1142/9789812833884

40. E. M. Semenov, F. A. Sukochev, Invariant Banach limits and applications, J. Funct. Anal., 259
(2010), 1517–1541. https://doi.org/10.1016/j.jfa.2010.05.011

41. E. M. Semenov, F. A. Sukochev, A. Usachev, The main classes of invariant Banach limits, Izv.
Math., 83 (2019), 124–150. https://doi.org/10.1070/im8704

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 5095–5109.

https://dx.doi.org/https://doi.org/10.1016/j.aml.2009.06.005
https://dx.doi.org/https://doi.org/10.1201/9781003015116
https://dx.doi.org/https://doi.org/10.1215/s0012-7094-63-03009-6
https://dx.doi.org/https://doi.org/10.1007/bf01457131
https://dx.doi.org/https://doi.org/10.1142/9789812833884
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2010.05.011
https://dx.doi.org/https://doi.org/10.1070/im8704
https://creativecommons.org/licenses/by/4.0

	Introduction and terminological excerpts
	-Convergence and -summability
	Spaces of -multiplier convergence
	Uniform -convergence
	An alternative formulation of the Hahn–Schur type theorem
	Conclusions

