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Abstract: This paper explores the dynamics of 2D spatiotemporal discrete systems, focusing on the
stability and bifurcations of periodic solutions, particularly 3-cycles. After introducing the concept
of a third-order cycle, we discuss both numerical and analytical techniques used to analyze these
cycles, defining four types of 3-periodic points and their associated stability conditions. As a specific
case, this study examines a spatiotemporal quadratic map, analyzing the existence of 3-cycles and
various bifurcation scenarios, such as fold and flip bifurcations, as well as chaotic behavior. In 2D
spatiotemporal systems, quadratic maps intrinsically offer better conditions that favor the emergence
of chaos, which is characterized by high sensitivity to initial conditions. The findings emphasize
the complexity of these systems and the crucial role of bifurcation curves in understanding stability
regions. The paper concludes with key insights and suggestions for future research in this field.
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1. Introduction

Understanding the dynamics of complex systems is fundamental for grasping a wide array of
natural phenomena, from chemical reactions to population dynamics [1–5]. Over the past few
decades, significant attention has been devoted to the study of spatiotemporal systems, where both
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spatial and temporal dimensions interact to shape system behavior [6–9]. In particular,
two-dimensional (2D) spatiotemporal discrete systems have attracted considerable interest for their
applications in various fields, such as digital filtering, image processing, encryption, spatial dynamical
systems, and numerical solutions for partial differential equations [10–19].

Analyzing the dynamics of periodic points in spatiotemporal discrete systems is critical for
identifying complex behaviors, such as stability transitions, bifurcations, and chaos. These
phenomena are not only of theoretical interest, but also have significant implications across various
fields. For example, in ecology, periodic cycles are essential in modeling predator-prey interactions,
where stability transitions can predict population oscillations [4, 20]. In engineering, such dynamics
inform the design of synchronized networks critical for secure communications and reliable
systems [5]. Similarly, in physics, wave propagation in discrete media, such as electrical networks
and mechanical systems, relies on understanding spatiotemporal patterns and transitions [1]. Our
results also intersect with neuroscience, where models like the Nagumo-FitzHugh equations describe
neural excitations and transitions to complex states [21].

This work aims to contribute to these fields by establishing a rigorous mathematical framework
for analyzing 3-periodic point dynamics and their bifurcations, providing valuable tools for predicting
and understanding intricate behaviors in spatiotemporal systems. Building on this extensive body of
research, this paper focuses on the stability and bifurcations in 2D spatiotemporal discrete systems,
with a particular emphasis on periodic solutions of period three. We employ analytical and numerical
techniques to examine the stability of these 3-cycles, and investigate a range of bifurcation scenarios.
This work extends the analysis presented in our earlier publication [22], continuing the exploration of
bifurcations in 2D spatiotemporal maps [23, 24], and providing deeper insights into the complexity of
such systems.

We are particularly interested in studying the 2D spatiotemporal discrete system

xm+1,n+1 = f (xm,n, xm+1,n), (1.1)

where m ∈ Z and n ∈ N represent the spatial coordinate and the time, respectively. The function
f : R2 −→ R is a nonlinear function with bounded variation.

From (1.1), we can define a 1-D recurrence on the space

X :=

[x] := (xi)∞i=−∞ ∈ R
Z : ∥[x]∥ =

√√
∞∑

i=−∞

q−|i|x2
i < ∞, q > 0

 ,
as follows: For an initial condition [x]0 =

(
xm,0

)∞
m=−∞ ∈ X, called the “boundary condition”, we

recursively construct a sequence of solutions{
[x]n =

(
xm,n

)∞
m=−∞ , n = 0, 1, 2, . . .

}
⊂ X,

by
[x]n+1 =

(
f (xm−1,n, xm,n)

)∞
m=−∞ . (1.2)

Alternatively, if F : X −→ X is the map defined by

F([x]) = ( f (xi−1, xi))∞i=−∞ , (1.3)
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for all [x] = (xi)i=∞
i=−∞ ∈ X, then system (1.1) is equivalent to the following infinite-dimensional discrete

dynamical system:
[x]n+1 = F([x]n). (1.4)

The map F defined by (1.3)-(1.4) is said to be induced by system (1.1). Clearly, a sequence
{[x]n, n = 0, 1, 2, . . .} is a solution of system (1.1) if and only if it is a solution of system (1.4)
(see [23, 24]).

In our previous work [23,24], we defined various forms of cycles for k = 1 and k = 2, and provided
the necessary and sufficient conditions for their stability. In the present study, we define four types of
3rd-order cycles and present the necessary and sufficient conditions for determining their stability.

The rest of the paper is structured as follows:
In Section 2, we analyze the properties of nonlinear dynamics, singularities, and basic bifurcations

in two-dimensional spatiotemporal discrete systems. Definitions 1 and 2 introduce the concept of a
cycle of order k. In Section 2.1, we defined the four types of 3-periodic points considered in this study.
Theorem 1 presents the main result on the stability of these cycles.

In Section 3, we investigate a spatiotemporal quadratic map. In Section 3.1, we review the results
on cycles for k = 1 and k = 2, as well as their corresponding bifurcations. Theorems 3, 4, and 5
present these findings, while Figure 7 provides visual illustrations of the complexity of the nonlinear
problem under investigation. Section 3.2 focuses on the existence of 3-cycles in the spatiotemporal
quadratic map. The definitions and propositions in this section introduce the analytical expressions for
the four types of third-order cycles considered in this study. In Section 3.4, we explore bifurcations
in a spatiotemporal quadratic map based on the parameters (a, b). This study examines bifurcation
curves, such as fold and flip bifurcations, for various cycles. These curves define regions of stability,
semi-stability, and instability within the parameter plane. The analysis highlights singular points where
bifurcation curves intersect or become tangent, illustrating the emergence and modification of stability
regions.

Finally, in Section 4 we draw relevant conclusions and discuss future perspectives for our research
in this context.

2. Singularities and basic bifurcations in 2D spatiotemporal discrete systems

Consider the function f [k] : Rk+1 −→ R, defined recursively as follows:
f [1](x0, x1) := f (x0, x1),
f [2](x0, x1, x2) := f ( f (x0, x1), f (x1, x2)) ,
f [k](x0, . . . , xk) := f

(
f [k−1](x0, . . . , xk−1), f [k−1](x1, . . . , xk)

)
, (x0, . . . , xk) ∈ Rk+1.

Definition 1. For k ∈ N∗, the map Fk : X → X is defined as

1. F0([x]) := I([x]) = [x],
2. Fk([x]) := F

(
Fk−1([x])

)
for all [x] ∈ X.

Definition 2. A sequence Pk =
(
x∗i

)∞
i=−∞

∈ X is called a periodic point of period k (or a k-cycle,
k-periodic point) for the dynamical system (1.1) if
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1. Fk(Pk) = Pk, i.e., f [k](x∗j−k, . . . , x
∗
j) = x∗j for all j ∈ Z,

2. Fr(Pk) , Pk for all r < k. That is, for every r < k, there exists at least one integer j such that

f [r](x∗j−r, . . . , x
∗
j) , x∗j.

The set
{
Pk, F(Pk), . . . , Fk−1(Pk)

}
is called a k-periodic orbit.

Remark 1. Due to the complexity of the calculations, we often focus on specific types of singularities,
detailed as follows:

1. The k-cycle of the form (xi mod j)∞i=−∞, where j ∈ N, is denoted by k j.
2. A 1-periodic point (also known as a fixed point or 1-cycle) P1 =

(
x∗i

)∞
i=−∞

is of type 11 if x∗i = x∗ ∈
R for all i ∈ Z, and of type 12 if there exist two real numbers x∗ and y∗ such that x∗2i = x∗ and
x∗2i+1 = y∗ for all i ∈ Z.
Similarly, we can define a 1-periodic point of type 1n for n ∈ N∗.

3. A 2-periodic point (also called a 2-cycle) P2 =
(
x∗i

)∞
i=−∞

is of horizontal type (H) or type 21 if
x∗i = x∗ ∈ R for all i ∈ Z, and of diagonal type (D) or 22 if there exist two real numbers x∗ and y∗

such that x∗2i = x∗ and x∗2i+1 = y∗, f (x∗, y∗) = x∗, and f (y∗, x∗) = y∗ for all i ∈ Z.
In our study, a 2-periodic point P2 =

(
x∗i

)∞
i=−∞

is considered general if there exist two real numbers
x∗ and y∗ such that x∗2i = x∗ and x∗2i+1 = y∗, and [x]∗ is of neither type 21 nor 22.

2.1. Types of 3-periodic points

A 3-periodic point (also called a 3-cycle) P3 =
(
x∗i

)∞
i=−∞

can be classified into four types:

1. Horizontal type (H) or 31 type: This occurs when x∗i = x∗ ∈ R for all i ∈ Z. In this case, there
exist three real numbers x∗, y∗, and z∗ such that x∗ , f (x∗, x∗) = y∗, y∗ , f (y∗, y∗) = z∗, and
z∗ , f (z∗, z∗) = x∗ for all i ∈ Z (see Figure 1).

2. Diagonal type (D) or 33+ type: This occurs when there exist three real numbers x∗, y∗, and z∗

such that z∗ = x∗3i+2 , x∗3i = x∗ , y∗ = x∗3i+1 , z∗ and f (x∗, y∗) = x∗, f (y∗, z∗) = y∗, f (z∗, x∗) = z∗

for all i ∈ Z (see Figure 2).
3. Super diagonal type (SD) or 32 type: This occurs when there exist six real numbers

x∗, y∗, z∗, t∗, u∗, v∗ such that z∗ = f (y∗, x∗) , x∗3i = x∗ , y∗ = x∗3i+1 , t∗ = f (x∗, y∗) , z∗ ,
u∗ = f (t∗, z∗) , f (z∗, t∗) = v∗, f (v∗, u∗) = x∗, and f (u∗, v∗) = y∗ for all i ∈ Z (see Figure 3).

4. Anti diagonal type (AD) or 33− type: If there exist three real numbers x∗, y∗, and z∗ such that
z∗ = x∗3i+2 , x∗3i = x∗ , y∗ = x∗3i+1 , z∗ and f (x∗, y∗) = z∗, f (y∗, z∗) = x∗, f (z∗, x∗) = y∗ for all i ∈ Z
(see Figure 4).

Remark 2. A 3-periodic point P3 =
(
x∗i

)∞
i=−∞

is said to be general if there exist three real numbers x∗,
y∗, and z∗ where z∗ = x∗3i+2 , x∗3i = x∗ , y∗ = x∗3i+1 , z∗ and P3 is not type 31, not type 32, and not type
33 (see Figure 5).
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f

x∗ x∗ x∗ (x∗) x∗ x∗ x∗
y∗ y∗ y∗ (y∗) y∗ y∗ y∗
z∗ z∗ z∗ (z∗) z∗ z∗ z∗
x∗ x∗ x∗ (x∗) x∗ x∗ x∗

Figure 1. 3-periodic point of type H or 31 for f .

f

x∗ y∗ z∗ (x∗) y∗ z∗ x∗
z∗ x∗ y∗ (z∗) x∗ y∗ z∗
y∗ z∗ x∗ (y∗) z∗ x∗ y∗
x∗ y∗ z∗ (x∗) y∗ z∗ x∗

Figure 2. 3-periodic point of type D or 33+ for f .

f

y∗ x∗ y∗ (x∗) y∗ x∗ y∗
t∗ z∗ t∗ (z∗) t∗ z∗ t∗
v∗ u∗ v∗ (u∗) v∗ u∗ v∗
y∗ x∗ y∗ (x∗) y∗ x∗ y∗

Figure 3. 3-periodic point of type SD or 32 for f .

f

x∗ y∗ z∗ (x∗) y∗ z∗ x∗
y∗ z∗ x∗ (y∗) z∗ x∗ y∗

x∗ y∗ (z∗) x∗ y∗ z∗
x∗ y∗ z∗ (x∗) y∗ z∗ x∗

Figure 4. 3-periodic point of type AD or 33− for f .
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f

x∗
−3 x∗

−2 x∗
−1 x∗0 x∗1 x∗2 x∗3

y∗
−3 y∗

−2 y∗
−1 y∗0 y∗1 y∗2 y∗3

z∗
−3 z∗

−2 z∗
−1 z∗0 z∗1 z∗2 z∗3

x∗
−3 x∗

−2 x∗
−1 x∗0 x∗1 x∗2 x∗3

Figure 5. Genral 3-periodic point for f .

2.2. Stability analysis

Next, we present the conditions for the local stability of the recurrence relation (1.1) at a k-cycle
point based on the results established in [23, 24].

Definition 3. A k-cycle Pk of (1.1) is defined as:

(1) Stable if for every ε > 0 and M ≥ 0 there exists δ > 0 such that ∥[x] − Pk∥ < δ implies
∥Fm([x]) − Pk∥ < ε for all m ≥ M.

(2) Attracting (sink) if there exists δ > 0 such that ∥[x] − Pk∥ < δ implies limm→+∞ ∥Fm([x]) − Pk∥ = 0.

(3) Repulsive if there exists δ > 0 such that ∥[x] − Pk∥ < δ implies limm→−∞ ∥Fm([x]) − Pk∥ = 0.

(4) Asymptotically stable if it is both stable and attracting.

(5) Unstable if it is not stable.

Remark 3. A k-cycle Pk of map (1.1) is said to be semi-stable if it is unstable, and for every ε > 0 and
M ≥ 0 there exists [x] ∈ X such that ∥Fm([x]) − Pk∥ < ε for all m ≥ M.

The stability of a k-cycle Pk is determined by analyzing the spectrum σ(JPk) of the Jacobian matrix
JPk at the k-cycle Pk. The matrix representing the Jacobian operator of the map Fk at a k-periodic point
Pk = (x∗i )∞i=−∞ is given by

JPk =
[
Ji, j

]
i, j∈Z
,

where

Ji, j =


(

f [k]
xk+ j−i

)′
(x∗j−k, . . . , x

∗
j) :=

∂ f [k](x0, . . . , xk)
∂xk+ j−i

∣∣∣∣∣∣
(x∗j−k ,...,x

∗
j)

if i − k ≤ j ≤ i,

0 otherwise.

We then have the following result:

Theorem 1. Let Pk ∈ X be a k-periodic point of (1.1), and let JPk be the Jacobian matrix of the map
Fk at Pk. Then:

(i) If
sup

{
|λ| : λ ∈ σ(JPk)

}
< 1,

then Pk is asymptotically stable.
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(ii) If
sup

{
|λ| : λ ∈ σ(JPk)

}
> 1,

then Pk is unstable. Moreover, if

inf
{
|λ| : λ ∈ σ(JPk)

}
< 1,

then Pk is semi-stable.

(iii) If
inf

{
|λ| : λ ∈ σ(JPk)

}
> 1,

then Pk is repulsive.

Proof. The proof can be easily derived from [23, Proposition 1, p. 4] by using the fact that every
k-periodic point of the map F is a fixed point for Fk . □

Determining the stability of k-cycles through the spectrum of the Jacobian matrix is a significant
mathematical challenge (see [23–25]). Next, we present a stability result for the 3-cycle of type 31,
where the spectrum of the Jacobian matrix has been well characterized. Consider the function h :
R4 −→ R defined by h := f [3], where

h(x, y, z, t) = f ( f ( f (x, y), f (y, z)), f ( f (y, z), f (z, t))).

The Jacobian matrix JP3 of F3 at the 3-cycle P3 = (x∗i )∞i=−∞ ∈ X is given by

JP3 =



. . .
...

...
...

...
...
. . .

. . . 0
...

...
...
...
. . .

. . . Φ−2 0
...

...
...
. . .

. . . Ψ−2 Φ−1 0
...
...
. . .

. . . Ω−2 Ψ−1 [Φ0] 0
...
. . .

. . . Θ−2 Ω−1 Ψ0 Φ1 0 . . .

. . . 0 Θ−1 Ω0 Ψ1 Φ2
. . .

. . .
... 0 Θ0 Ω1 Ψ2

. . .
. . .

...
... 0 Θ1 Ω2

. . .
. . .

...
...

... 0 Θ2
. . .

. . .
...

...
...

... 0 . . .
. . .

...
...

...
...
...
. . .



, (2.1)

where
Φi = h′t(x∗i−3, x

∗
i−2, x

∗
i−1, x

∗
i ),

Ψi = h′z(x∗i−2, x
∗
i−1, x

∗
i , x
∗
i+1),

Ωi = h′y(x∗i−1, x
∗
i , x
∗
i+1, x

∗
i+2),

Θi = h′x(x∗i , x
∗
i+1, x

∗
i+2, x

∗
i+3).

(2.2)

The brackets around Φ0 represent the 0-0 component of the matrix JP3 .
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Theorem 2. Let P31 = (x∗i = x∗31
)∞i=−∞ be a 3-periodic point of type 31 for system (3.1). Then, the

spectrum of the Jacobian matrix JP31
is given by

σ(JP31
) =

{
z ∈ C : z = Φ + Ψ exp(ιθ) + Ω exp(2ιθ) + Θ exp(3ιθ), ι2 = −1, θ ∈ R

}
,

where
Φ = h′t(x∗31

, x∗31
, x∗31
, x∗31

),
Ψ = h′z(x∗31

, x∗31
, x∗31
, x∗31

),
Ω = h′y(x∗31

, x∗31
, x∗31
, x∗31

),

Θ = h′x(x∗31
, x∗31
, x∗31
, x∗31

).

Additionally, the 3-cycle P31 satisfies the following stability conditions:

1. Asymptotically stable if |Φ| + |Ψ| + |Ω| + |Θ| < 1,
2. Unstable if |Φ| + |Ψ| + |Ω| + |Θ| > 1,
3. Repulsive if

∣∣∣|Φ| − |Ψ| + |Ω| − |Θ|∣∣∣ > 1.

Proof. From the definition of the Jacobian matrix JP31
associated with the 3-periodic point, JP31

can be
expressed in the following block-diagonal form:

JP31
=



. . .
. . .

...
...
...
...
. . .

. . .
. . . 0

...
...
...
. . .

. . .
. . . Φ 0

...
...
. . .

. . .
. . . Ψ [Φ] 0

...
. . .

. . .
. . . Ω Ψ Φ

. . .
. . .

. . .
. . . Θ Ω Ψ

. . .
. . .

. . .
... 0 Θ Ω

. . .
. . .

. . .
...
... 0 Θ

. . .
. . .

. . .
...
...
... 0 . . .

. . .
. . .

...
...
...
...
. . .
. . .



.

Using this structure, JP31
can be rewritten as

JP31
= Φ · I + Ψ · S + Ω · S 2 + Θ · S 3,

where Φ,Ψ,Ω, and Θ are defined as in the theorem, I denotes the identity operator, and S denotes
the shift operator on the Hilbert space X. According to the polynomial spectral mapping theorem
(see [26, Theorem 1, p. 53]), the spectrum of JP31

is given by

σ(JP31
) = Φ · σ(I) + Ψ · σ(S ) + Ω · σ(S )2 + Θ · σ(S )3,

This corresponds to the formula for σ(JP31
) provided in the theorem, i.e.

σ(JP31
) =

{
z ∈ C : z = Φ + Ψ exp(ιθ) + Ω exp(2ιθ) + Θ exp(3ιθ), ι2 = −1, θ ∈ R

}
.
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Furthermore, the spectral radius of JP31
is

sup
{
|λ| : λ ∈ σ(JPk)

}
= |Φ| + |Ψ| + |Ω| + |Θ| ,

and the minimum spectral radius is

inf
{
|λ| : λ ∈ σ(JPk)

}
= inf

{
|z| : z = Φ + Ψ exp(ιθ) + Ω exp(2ιθ) + Θ exp(3ιθ), ι2 = −1, θ ∈ R

}
Based on the spectral radius and the minimum spectral radius, the stability criteria (asymptotic stability,
instability, and repulsiveness) directly follow from Theorem 1. □

2.3. Bifurcation analysis

Consider the dynamics described by Eqs (1.1)–(1.4), which depend on two real parameters a and b.
Let JPk denote the Jacobian matrix of the map Fk at a k-cycle Pk. The k-th order bifurcation curves ΛPk

in the (a, b) parameter plane are defined by the following system:σ(JPk) ∩ S(0, 1) = S ,

ΛPk = {(a, b) ∈ R × R : S , ∅} .

For specific configurations of the multiplier set S ⊂ C, the following classical cases of bifurcation
curves can be distinguished (as described in [27, 28]):

• Fold bifurcation curve ΛPk
(k)0

: This corresponds to parameter points (a, b) ∈ R ×R where S = {+1}
for a k-cycle.
• Flip bifurcation curve ΛPk

k : This corresponds to parameter points (a, b) ∈ R × R where S = {−1}
for a k-cycle Pk ∈ X.

3. Study of a spatiotemporal quadratic map

In [29], the author asks some questions concerning noninvertible ”spatio-discrete temporal” maps,
and considers the following spatiotemporal quadratic map:

xm+1,n+1 := f (xm,n, xm+1,n) = x2
m,n + bxm+1,n + a. (3.1)

This map is of significant importance as it can serve as a fundamental building block for understanding
nonlinear cases, similar to the role played by the logistic map.

In the following, we recall some results stated in the paper [23] concerning the existence of fixed
points of type 11 and 12 in addition to the 2-periodic points of type 21 for the 2D spatiotemporal discrete
system (3.1), depending on the variation of the parameters in the (a, b)-plane.

Furthermore, we examine various bifurcation scenarios that can arise in relation to this quadratic
map. These bifurcations correspond to changes in the dynamic behavior of system (3.1) as the
parameters a and b are varied.

The 2D bifurcation diagram Figure 6 represents the stability zones of the fixed point of type 11

(noted P11) in red, the fixed point of type 12 (noted P12) in green, and the 2-periodic point of type
21 (noted P21) in blue. The diagram is plotted in the (a, b)-parameter plane, where the values of the
parameters a and b are varied.
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By examining this bifurcation diagram, one can observe how the stability regions of these points
change as the parameters a and b are adjusted. It provides insights into the parameter ranges where each
point exhibits stability or undergoes bifurcations, allowing for a visual representation of the system’s
dynamics in the (a, b)-parameter space.

Figure 6. 2D Bifurcation diagram represented by the stability zones in the (a, b)-parameter
plane. Within this diagram, different regions are colored to indicate the stability properties
of the corresponding points. The red region represents the stability zone of the fixed point
P11 , the green region indicates the stability zone of the fixed point P12 , and the blue region
represents the stability zone of the 2-periodic point P21 .

3.1. Reminder of some results on cycles 1 and 2

As the parameters a and b vary across the set of real numbers, the map (3.1) can exhibit various
equilibrium solutions. These equilibrium solutions correspond to the fixed points and 2-cycles listed
in Remark 1.

Depending on the specific values of a and b, the map (3.1) may possess stable fixed points or
periodic orbits. These equilibrium solutions can be identified by analyzing the stability properties of
the map at different parameter values. It is important to note that the specific behavior of the map
(3.1) and the occurrence of equilibrium solutions may depend on the functional form and properties
of the map itself, as well as the specific values of the parameters a and b. Further analysis and
numerical investigation may be required to determine the precise equilibrium solutions and their
stability characteristics for different parameter values within the real number range.
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3.1.1. Fixed points of type 11

For b2 − 2b + 1 − 4a ≥ 0, the map (3.1) has two fixed points of type 11, given by

P11 = (xi = x∗11
)∞i=−∞ and P′11

= (xi = x∗∗11
)∞i=−∞,

where

x∗11
= −

1
2

b +
1
2
−

1
2

√
b2 − 2b + 1 − 4a, x∗∗11

= −
1
2

b +
1
2
+

1
2

√
b2 − 2b + 1 − 4a.

3.1.2. Fixed points of type 12

For −3b2 + 6b − 3 − 4a ≥ 0, the map (3.1) has two fixed points of type 12, expressed as

P12 = (x2i = x∗12
, x2i+1 = y∗12

)∞i=−∞ and P′12
= (x2i = y∗12

, x2i+1 = x∗12
)∞i=−∞,

where 
x∗12
= −

1
2
+

1
2

b −
1
2

√
−3b2 + 6b − 3 − 4a,

y∗12
= −

1
2
+

1
2

b +
1
2

√
−3b2 + 6b − 3 − 4a.

3.1.3. Periodic point of period 2 of type 21

For −3 − 2b + b2 − 4a ≥ 0, the map (3.1) has a 2-periodic orbit {P21 , P
′
21
} of type 21, represented by

P21 = (xi = x∗21
)∞i=−∞ and P′21

= (yi = y∗21
)∞i=−∞,

where 
x∗21
= −

1
2
−

1
2

b +
1
2

√
−3 − 2b + b2 − 4a,

y∗21
= −

1
2
−

1
2

b −
1
2

√
−3 − 2b + b2 − 4a.

In Figure 6, each colored region corresponds to the existence of at least one stable singularity of
the map f for specific values of the parameters a and b. The red region indicates a stable fixed point
of type 11, the green region signifies a stable fixed point of type 12, and the blue region represents the
presence of an attractive 2-periodic orbit {P21 , P

′
21
}. Conversely, the white region signifies the absence

of stable cycles among these singularities. The analytically derived (a, b)-parametric plane shown in
Figure 6 follows the methodology described in references [23, 24].

3.1.4. Bifurcation curves

The analytical studies presented in [23–25] allow for the determination of bifurcation curves in the
(a, b)-plane that correspond to the fixed points of types 11 and 12, as well as the 2-cycle of type 21

in the quadratic map defined by equation (3.1). These references, particularly [23, 24], offer detailed
results and insights into the nature of these bifurcations.

The analytical expressions provided in these works precisely describe the locations and shapes of
the bifurcation curves in the (a, b)-plane. These curves demarcate regions where the stability of fixed
points and periodic orbits undergo qualitative changes as the parameters a and b are varied.
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Theorem 3. Let P11 = (xi = x∗11
)i=∞
i=−∞ be a fixed point of type 11 for the map (3.1) . Then:

1. The fold bifurcation curve associated with the fixed point P11 , denoted by Λ
P11
(1)0

, is given in the
(a, b)-plane by

b ±
∣∣∣∣b − 1 ±

√
b2 − 4a − 2b + 1

∣∣∣∣ = 1.

2. The flip bifurcation curve associated with the fixed point P11 , denoted by Λ
P11
1 , is given in the

(a, b)-plane by

b ±
∣∣∣∣b − 1 ±

√
b2 − 4a − 2b + 1

∣∣∣∣ = −1.

Proof. Let A := f ′y (x∗11
, x∗11

) = b and B := f ′x(x∗11
, x∗11

) = −b + 1 −
√

b2 − 4a − 2b + 1. The Jacobian
matrix JP11

at P11 is
JP11
= A · I + B · S ,

where S is the shift operator [30, 31]. According to the polynomial spectral mapping theorem (see
Theorem 1, p. 53, in Halmos [26]), the spectrum of JP11

is

σ(JP11
) = A · σ(I) + B · σ(S ).

Here, σ(I) = {A} and σ(S ) = {z ∈ C : |z| = 1} (see [30, 31]), so

σ(JP11
) =

{
z ∈ C : z = A + B exp(ιθ), θ ∈ R

}
.

Using the bifurcation conditions, S = {+1} for fold bifurcations, and S = {−1} for flip bifurcations, as
outlined in Section 3.4, the equations for the bifurcation curves are derived as

b ±
∣∣∣∣b − 1 ±

√
b2 − 4a − 2b + 1

∣∣∣∣ = 1 (fold bifurcation),

and
b ±

∣∣∣∣b − 1 ±
√

b2 − 4a − 2b + 1
∣∣∣∣ = −1 (flip bifurcation).

This completes the proof. □

Theorem 4. Let P12 = (x2i = x∗12
, x2i+1 = y∗12

)i=∞
i=−∞ be a fixed point of type 12 for the map (3.1). Then:

1. The fold bifurcation curve associated with P12 , denoted by Λ
P12
(1)0

, is given in the (a, b)-plane by

b ±

√∣∣∣∣(−1 + b +
√
−3b2 − 4a + 6b − 3

) (
−1 + b −

√
−3b2 − 4a + 6b − 3

)∣∣∣∣ = 1.

2. The flip bifurcation curve associated with P12 , denoted by Λ
P12
1 , is given in the (a, b)-plane by

b ±

√∣∣∣∣(−1 + b +
√
−3b2 − 4a + 6b − 3

) (
−1 + b −

√
−3b2 − 4a + 6b − 3

)∣∣∣∣ = −1.
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Proof. Let A := f ′y (x∗12
, y∗12

) = b , B := f ′x(x∗12
, y∗12

) = −b+1+
√

b2 − 4a − 2b + 1, and B′ := f ′x(y∗12
, x∗12

) =
−b + 1 −

√
b2 − 4a − 2b + 1. The Jacobian matrix JP12

is given by

JP12
= AI + S BB′ ,

where S BB′ is a weighted shift [26,31] with weight (... , B′ , (B) , B′, ...). According to Theorem 6, p.6
in [23, 25], we have

σ(JP12
) = {z ∈ C : |z| = R1 ∨ |z| = R2} .

where

R1 =

∣∣∣∣∣b + √(
−b + 1 +

√
b2 − 4a − 2b + 1

) (
−b + 1 −

√
b2 − 4a − 2b + 1

)
eιθ

∣∣∣∣∣ , θ ∈ [0 , 2π),

and

R2 =

∣∣∣∣∣b − √(
−b + 1 +

√
b2 − 4a − 2b + 1

) (
−b + 1 −

√
b2 − 4a − 2b + 1

)
eιθ

∣∣∣∣∣ , θ ∈ [0 , 2π).

and the bifurcation equations follow from the conditions for the fold and flip bifurcations applied to
the quadratic system (3.1). □

Theorem 5. Let P21 be a 2-cycle of type 21. Then:

1. The fold bifurcation curve associated with the 2-cycle P21 = (xi = x∗21
)i=∞
i=−∞, denoted by Λ

P21
(2)0

, is
given in the (a, b)-plane by the equation

±

∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)
∂x

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂y

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂z

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ = +1, (3.2)

2. The flip bifurcation curve associated with the 2-cycle P21 , denoted by Λ
P21
2 , is given in the (a, b)-

plane by the equation

±

∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)
∂x

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂y

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂z

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ = −1. (3.3)

Proof. Let P21 be a 2-cycle of type 21, given by P21 = (xi = x∗21
)∞i=−∞. By definition, the 2-cycle P21 is

a fixed point of the second iterate map F2, and the Jacobian matrix JP21
of F2 at P21 can be written as

JP21
=



. . .
. . .

...
...

...
...
...

. . .
. . . 0 0 0 0 · · ·

. . . B A 0 0 0 · · ·

. . . C B [A] 0 0 · · ·

· · · 0 C B A 0 · · ·

· · · 0 0 C . . .
. . .
. . .

...
...
...
. . .

. . .
. . .
. . .


,
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where A := ∂ f [2](x,y,z)
∂z

∣∣∣∣
(x∗21
,x∗21
,x∗21

)
, B := ∂ f [2](x,y,z)

∂y

∣∣∣∣
(x∗21
,x∗21
,x∗21

)
, and C := ∂ f [2](x,y,z)

∂x

∣∣∣∣
(x∗21
,x∗21
,x∗21

)
.

The Jacobian matrix JP21
can then be expressed as

J∗F[2] = A · I + B · S +C · S 2,

where S is the shift operator. According to the polynomial spectral mapping theorem, the spectrum of
JP21

is given by
σ(JP21

) = A · σ(I) + B · σ(S ) +C · σ(S 2),

where σ(I) = {A} and σ(S ) = {z ∈ C : |z| = 1}. Hence, the spectrum becomes

σ(JP21
) =

{
z ∈ C : z = A + B exp(iθ) +C exp(2iθ), θ ∈ R

}
.

For the fold bifurcation, the condition S = {1} leads to the equation

± |A| ± |B| ± |C| = 1,

which corresponds to the fold bifurcation curve

±

∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)
∂x

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂y

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂z

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ = 1.

For the flip bifurcation, the condition S = {−1} leads to the equation

±C ± |B| ± |A| = −1,

which corresponds to the flip bifurcation curve

±

∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)
∂x

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂y

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ ±
∣∣∣∣∣∣∣∣ ∂ f [2](x, y, z)

∂z

∣∣∣∣∣∣
(x∗21
,x∗21
,x∗21

)

∣∣∣∣∣∣∣∣ = −1.

□

In Figure 7a, the stability region of the fixed point P21 (highlighted in red) is enclosed by the curves
Λ

P11
1 and Λ

P11
(1)0

. Similarly, the stability region of the fixed point P12 (depicted in green) is bounded by
the curves ΛII

(1)0
and ΛII

1 .

Notably, in the region ∆, bounded on the left by the curve Λ
P11
(1)0

, no cycles exist. Upon crossing the

curve Λ
P11
(1)0

from region ∆, the spectrum σ(JP11
) of the Jacobian matrix at the fixed point P11 passes

through the value 1. This transition induces a tangent bifurcation, resulting in the birth of a 2-cycle of
type 21.

Similarly, in the region between Λ
P12
(1)0

and Λ
P12
1 , bounded on the right by Λ

P12
(1)0

, the spectrum of the
Jacobian matrix JP12

passes through the value −1. This crossing results in a flip bifurcation, leading to
the creation of a 2-cycle of type 21.

In Figure 7b, the stability region of the 2-periodic point P21 is delimited by the curves 1Λ
P21
2 , 2Λ

P21
2 ,

1Λ
P21
(2)0

, 2Λ
P21
(2)0

, 3Λ
P21
(2)0

, and 4Λ
P21
(2)0

. When the spectrum σ(JP21
) crosses the value 1, it leads to bifurcations
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characterized by the union of curves 1Λ
P21
(2)0
∪ 2Λ

P21
(2)0
∪ 3Λ

P21
(2)0
∪ 4Λ

P21
(2)0

, as described by Eq (3.2). Similarly,

the bifurcations corresponding to the spectrum reaching −1 are characterised by the curves 1Λ
P21
(2)0
∪

2Λ
P21
(2)0
∪ 3Λ

P21
(2)0
∪ 4Λ

P21
(2)0

, derived from equation (3.3). Similarly, the bifurcation curves corresponding to

the spectrum reaching −1 are defined by 1Λ
P21
2 ∪

2Λ
P21
2 , derived from Eq (3.3).

(a) Bifurcation curves for fixed points of type 11,2. (b) Bifurcation curves for the 2-cycle of type 21.

Figure 7. First and second bifurcation curves of system (3.1).

Remark 4. In Figure 7a, the singular points A and B correspond to cases where a fold bifurcation
curve Λ

P11
(1)0

is tangent to a Flip bifurcation curves 1,2Λ
P11
1 . At these points, the multipliers satisfy S 1 =

−S 2 = {1}, indicating a co-dimension-2 bifurcation. Points C and D have distinct origins: Point C
results from the intersection of two flip bifurcation curves 2Λ

P11
1 and 3Λ

P11
1 where S 1 = S 2 = {−1}.

Point D, however, emerges from the intersection of a fold bifurcation curve Λ
P21
(2)0

with a flip bifurcation

curve 1Λ
P11
1 where S 1 = −S 2 = {1}. All other intersections are solely caused by the projection of the

bifurcation curves onto the (a, b)-plane.
As indicated in Figure 7a the singular point C shown in Figure 7b involves, in addition to the

bifurcation curves 2Λ
P11
1 of the 1-cycle, the fold bifurcation curves of the 2-cycle, 1,2,3Λ

P21
(2)0

. At the

singular point K, we observe the intersection of the fold bifurcation curves of the 2-cycle, 1Λ
P21
(2)0

and
2Λ

P21
(2)0

. The singular point E is of codimension greater than 3; it arises from the intersection of three

bifurcation curves: The flip bifurcation of a 1-cycle, 1Λ
P11
1 , and the two Fold bifurcation curves of the

2-cycle, 2Λ
P21
(2)0

and 3Λ
P21
(2)0

. The multipliers at this point satisfy S 1 = −S 2 = {1}. All other intersections
are solely due to the projection of bifurcation curves onto the (a, b)-plane.

3.2. Existence of 3-cycles of the spatiotemporal quadratic map

The presence of a period-3 cycle in the logistic function has been well-established (see [32–35]).
This finding suggests the existence of even longer periodic orbits [29, 33]. The period-doubling route
to chaos, a well-known phenomenon, is demonstrably dependent on the control parameter’s strength.

Setting b = 0 in system (3.1) reduces it to the quadratic recurrence xn+1 = x2
n + a. In the bifurcation

diagram (Figure 8a), the 3-period window of the quadratic map near a = −1.7660 is displayed.
Similarly, if b is close to 0, for example, b = 0.02, could system (3.1) exhibit the same behavior?
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Effectively, for b = 0.02 and a ∈ [−1.8 , −1.7], the dynamics of system (3.1) reveal a period-3
window, followed by a sequence of chaotic regimes (see Figure 8). This transition is marked by the
emergence of a chaotic attractor, which arises after the destabilization of the 3-cycle of type 31, as
illustrated in Figure 9. In the remainder of this paper, we provide a detailed exposition of the existence
of 3-cycles of different types, along with a stability and bifurcation analysis, including a geometric
study of the foliation structure within the (a, b)-parameter plane.

(a) Bifurcation diagram of the 1-D map xn+1 =

x2
n + a versus parameter a ∈ [−1.8,−1.7]. The

attracting 3-cycles appear in the window a ∈

(−1.77,−1.750).

(b) Bifurcation diagram of system (3.1) versus b,
for b = 0.02 and a ∈ [−1.8,−1.7]. We observe the
emergence of 3-cycles of type 32 characterized by
the coexistence of two distinct values on the same
line.

Figure 8. Bifurcation diagram of system (3.1).

−2

−1

0

1

2 −2

−1

0

1

2−2

0

2

x0
x
−1

x
1

Figure 9. Projection of the attractive strange attractor on (x−1, x0, x1)-space, after
destabilization of stable 3-cycle 31 when a = −1.7660 and b = 0.05.
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3.2.1. Case of 3-cycles of type 31 (H type)

A 3-cycle of type 31 is a solution to the equation h(x, x, x, x) − x = 0 where f (x∗, x∗) , x∗. The
polynomial h(x, x, x, x) − x has degree 8 and is divisible by f (x, x) − x. Defining Q(X) as the quotient
of these two expressions gives a polynomial of degree 6, given by

Q(X) = (1 + b + b2 + a + 3ab + b2a + 2a2 + 2ba2 + a3)
+(1 + 2b + 2b2 + b3 + 2a + 4ab + 4b2a + a2 + 3ba2)X
+(1 + 3b + 3b2 + 2b3 + 3a + 6ab + 3b2a + 3a2)X2

+(1 + 3b + 5b2 + b3 + 2a + 6ab)X3

+(1 + 4b + 3b2 + 3b)X4

+(1 + 3b)X5 + X6.

If x∗ is a root of h(x, x, x, x) − x, then y = f (x, x) is also a root. The polynomial Q has 6 roots, which
form two 3-cycles of type 31.

When b = 0.002, a = −1.766, system (3.1) exhibits a stable 3-cycle of type 31 denoted P31 and
given by P31 =

(
x∗i = −1.764267556

)∞
i=−∞

. The Jacobian matrix of JP31
can be obtained as (2.1)–(2.2),

and the spectrum of the Jacobian matrix is given by

σ(JP31
) = Φ + Ψeiθ + Ωe2 iθ + Θe3 iθ,

when the values of Φ,Ψ,Ω, and Θ are approximately 0.0,−0.3044171416 × 10−5,−0.01909377224,
and −0.7703056278, respectively, so the spectrum σ(JP31

) lies inside the unit disk. Therefore, the 3-
cycle P31 is stable for the value a = −1.766 (as depicted in Figure 10a–10b), followed by a sequence
of stable/unstable regimes. It is worth noting that the 3-cycle P31 becomes destabilized and gives rise
to a strange attractor when a = −1.740 (see Figure 9). On the other hand, an unstable 3-cycle orbit of
type 31 for system (3.1) is given by

P′31
= (xi = −1.74328)∞i=−∞ 7→ (xi = 1.26954)∞i=−∞ 7→ (xi = −0.151736)∞i=−∞ 7→ P′31

.

The Jacobian matrix of JP′31
can be derived using Eqs (2.1)–(2.2), and its spectrum its given by

σ(JP′31
) = Φ + Ψeiθ + Ωe2 iθ + Θe3 iθ,

when the values of Φ,Ψ,Ω, and Θ are approximately 0.0,−0.0004864819978,−0.1732908362, and
2.246615678, respectively, so the spectrum σ(JP′31

) lies outside the unit disk (see Figure 11).
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(a) (b)

Figure 10. Behavior of the solutions near the 3-cycle P31 of the 2D spatiotemporal discrete
system (3.1) when b = 0.02 and a = −1.766. (a) The red line corresponds to the unit circle
S(0, 1), and in green the spectrums of the Jacobian of the system (3.1) evaluated at the 31-
cycle, P31 . (b) The behavior and stability of the solution within the 3-cycle P31 is stable when
b = 0.02 and a = −1.74.
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Figure 11. Behavior of the solutions near the 3-cycle P′31
of the 2D spatiotemporal discrete

system (3.1) when b = 0.02 and a = −1.74. (a) The red line corresponds to the unit circle
S(0, 1), and in green the spectrums of the Jacobian of the system (3.1) evaluated at the 3-
cycle, P′31

. (b) The behavior and instability of the solution within the 3-cycle P′31
when

b = 0.02 and a = −1.74.
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3.3. Restriction of the study on space X3

Analytically characterizing the stability of 3-cycles other than type 31 is challenging. Hence, we
have limited the study of stability to the space X3, defined as

X3 :=
{
[x] := (x3i = x, x3i+1 = y, x3i+2 = z)∞i=−∞ ∈ R

Z; (x, y, z) ∈ R3
}
⊂ X.

Since we consider only 3-cycles, we can construct a new Jacobian matrix of dimension 3 × 3. Let us
consider the function G : R3 → R given by G(x, y, z) := h(x, y, z, x). Then, we define the function
G̃ : R3 → R3 by:

G̃(x, y, z) =


G(x, y, z)
G(y, z, x)
G(z, x, y)


A general 3-cycle is therefore a fixed point of type 11, (i.e., G̃(x, y, z) = (x, y, z)) which is neither a
1-cycle nor a 2-cycle. The Jacobian matrix of G̃ at P3 = (x3i = x∗1, x3i+1 = x∗2, x3i+2 = x∗3)i=∞

i=−∞ is

J(3)
P3
=



∂G
∂x (x∗1, x

∗
2, x
∗
3) ∂G

∂y (x∗1, x
∗
2, x
∗
3) ∂G

∂z (x∗1, x
∗
2, x
∗
3)

∂G
∂z (x∗2, x

∗
3, x
∗
1) ∂G

∂x (x∗2, x
∗
3, x
∗
1) ∂G

∂y (x∗2, x
∗
3, x
∗
1)

∂G
∂y (x∗3, x

∗
1, x
∗
2) ∂G

∂z (x∗3, x
∗
1, x
∗
2) ∂G

∂x (x∗3, x
∗
1, x
∗
2)


3.3.1. Study of 3-cycle of type 33− (AD Type)

The cycle of type 33−, denoted P33− = (x3i = x∗, x3i+1 = y∗, x3i+2 = z∗)∞i=−∞, is defined by the
following system of equations: 

f (x∗, y∗) = z∗,

f (y∗, z∗) = x∗,

f (z∗, x∗) = y∗,

where (x∗, y∗, z∗) , (x∗, x∗, x∗). In this case, the partial derivatives of G(x∗, y∗, z∗) are given by

A := ∂1G(x∗, y∗, z∗) = ∂1 f (x∗, y∗)∂1 f (y∗, z∗)∂1 f (z∗, x∗) + ∂2 f (x∗, y∗)∂2 f (y∗, z∗)∂2 f (z∗, x∗),

∂2G(x∗, y∗, z∗) = ∂1 f (y∗, z∗) (∂1 f (x∗, y∗)∂2 f (y∗, z∗) + ∂1 f (y∗, z∗)∂2 f (z∗, x∗) + ∂1 f (z∗, x∗)∂2 f (x∗, y∗)) .

Let B := ∂1 f (x∗, y∗)∂2 f (y∗, z∗) + ∂1 f (y∗, z∗)∂2 f (z∗, x∗) + ∂1 f (z∗, x∗)∂2 f (x∗, y∗). Then,

∂3G(x∗, y∗, z∗) = ∂2 f (y∗, z∗) (∂1 f (x∗, y∗)∂2 f (y∗, z∗) + ∂1 f (y∗, z∗)∂2 f (z∗, x∗) + ∂1 f (z∗, x∗)∂2 f (x∗, y∗)) .

The Jacobian matrix for this cycle is
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J(3)
P33−
=


A B × ∂1 f (y, z) B × ∂2 f (y, z)

B × ∂2 f (z, x) A B × ∂1 f (z, x)
B × ∂1 f (x, y) B × ∂2 f (x, y) A

 .
The characteristic polynomial of the matrix J(3)

P33−
is

χ(t) = −t3 + t2(3b3 + 24xyz)

+t
(
−3b6 + 8b3x3 + 24b3x2y + 24b3xy2 + 8b3y3 + 24b3x2z + 24b3y2z + 24b3xz2 + 24b3yz2 − 192x2y2z2 + 8b3z3

)
+b9 + 24b6xyz + 192b3x2y2z2 + 512x3y3z3.

When b = 0.002 and a = −1.766, two anti-diagonal (33− type) 3-cycles are obtained, one of which
is stable and the other unstable.

• The stable 3-cycle of type 33− is given by

P33− = (x3i = −1.76255, x3i+1 = 0.0277649, x3i+2 = 1.34063)∞i=−∞

The Jacobian matrix is

J(3)
P33−
=


−0.524851 −0.0000875489 −3.15322 × 10−6

−3.15322 × 10−6 −0.524851 −0.0042273
0.0055577 −3.15322 × 10−6 −0.524851


and the moduli of the eigenvalues are 0.525488, 0.525488, and 0.52358.
• The second 3-cycle of type 33− is unstable, and is given by

P33− = (x3i = −1.74471, x3i+1 = −0.136876, x3i+2 = 1.27774)∞i=−∞

The Jacobian matrix is

J(3)
P33−
=


2.44108 0.000661216 −4.83078 × 10−6

−4.83078 × 10−6 2.44108 −0.00617247
0.00842831 −4.83078 × 10−6 2.44108


and the moduli of the eigenvalues are 2.4427, 2.4427, and 2.43782.

The bifurcation occurs with b = 0.002 and a ∈ (−1.755006,−1.755007). For the value
a = −1.755007, we obtain

P33− = (x3i = −1.74939, x3i+1 = −0.0548529, x3i+2 = 1.30524)∞i=−∞.

The Jacobian matrix is

J(3)
P33−
=


1.002 0.000218973 −3.992 × 10−6

−3.992 × 10−6 1.002 −0.00521052
0.00698356 −3.992 × 10−6 1.002

 .
The absolute values of the eigenvalues are 1.002995493509572, 1.002995493509572, and
1.0000000000002065.
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3.3.2. Study of 3-cycle of type 33+ (D type)

The 3-cycle of type 33+, denoted by P33+ = (x3i = x∗, x3i+1 = y∗, x3i+2 = z∗)∞i=−∞, is defined by the
system of equations

f (x∗, y∗) = x∗, f (y∗, z∗) = y∗, f (z∗, x∗) = z∗,

with (x∗, y∗, z∗) , (x∗, x∗, x∗). In this case, the partial derivatives of G(x∗, y∗, z∗) are given by

∂1G(x∗, y∗, z∗) =
(
∂1 f (x∗, y∗)

)3
+ ∂2 f (x∗, y∗)∂2 f (y∗, z∗)∂2 f (z∗, x∗),

∂2G(x∗, y∗, z∗) = ∂2 f (x∗, y∗)
((
∂1 f (x∗, y∗)

)2
+ ∂1 f (x∗, y∗)∂1 f (y∗, z∗) +

(
∂1 f (y∗, z∗)

)2
)
,

∂3G(x∗, y∗, z∗) = ∂2 f (x∗, y∗)∂2 f (y∗, z∗)
(
∂1 f (x∗, y∗) + ∂1 f (y∗, z∗) + ∂1 f (z∗, x∗)

)
.

Let A = ∂1 f (x∗, y∗) + ∂1 f (y∗, z∗) + ∂1 f (z∗, x∗) and B = ∂2 f (x∗, y∗)∂2 f (y∗, z∗)∂2 f (z∗, x∗). Then, the
Jacobian matrix for this 3-cycle is

J(3)
P33+
=



∂2 f (x, y)
((
∂1 f (x, y)

)2 A × ∂2 f (x, y)(
∂1 f (x, y)

)3
+ B +∂1 f (x, y)∂1 f (y, z) ×∂2 f (y, z)

+
(
∂1 f (y, z)

)2
)

A × ∂2 f (y, z) ∂2 f (y, z)
((
∂1 f (y, z)

)2

×∂2 f (z, x)
(
∂1 f (y, z)

)3
+ B +∂1 f (y, z)∂1 f (z, x)

+
(
∂1 f (z, x)

)2
)

∂2 f (z, x)
((
∂1 f (z, x)

)2 A × ∂2 f (z, x)
+∂1 f (z, x)∂1 f (x, y) ×∂2 f (x, y)

(
∂1 f (z, x)

)3
+ B

+
(
∂1 f (x, y)

)2
)


For the function f (x, y) = x2 + by+ a, P33+ = (x3i = x∗, x3i+1 = y∗, x3i+2 = z∗)∞i=−∞ is a 3-cycle of type

33+ if and only if x∗ (or y∗ or z∗) is a root of the following degree 6 polynomial:

Q(X) = 1 +
1
b2 +

1
b
+

a
b4 +

3a
b3 +

a
b2 +

2a2

b5 +
2a2

b4 +
a3

b6

+

(
−

1
b4 −

2
b3 −

2
b2 −

1
a
−

4b
b5 −

4b
b4 −

2a
b3 −

3a2

b6 −
a2

b5

)
X

+

(
2
b5 +

3
b4 +

3
b3 +

1
b2 +

3b
b6 +

6b
b5 +

3b
b4 +

3b2

b6

)
X2

+

(
−

1
b6 −

5
b5 −

3
b4 −

1
b3 −

6b
b6 −

2b
b5

)
X3

+

(
3
b6 +

4
b5 +

1
b4 +

3a
b6

)
X4
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+

(
−

3
b6 −

1
b5

)
X5 +

X6

b6 .

For numerical calculations, with b = 0.002 and a = −1.766, we find two unstable 33+ type cycles:
1. The first 3-cycle is given by P33+ = (−0.920506,−0.918506, 1.92051). The Jacobian matrix is

J(3)
P33+
=


−6.23979 0.0202918 6.51964 × 10−7

6.5196 × 10−7 −6.1992 0.022144
0.0221427 6.51964 × 10−7 56.668


with eigenvalue moduli 56.668, 6.23978, and 6.19921.

2. The second 3-cycle is P33+ = (−0.918507, 1.91851, 1.92051). The Jacobian matrix is

J(3)
P33+
=


−6.19923 0.0220973 0.000023364

0.000023364 56.491 0.0884281
0.022144 0.000023364 56.6679


with eigenvalue moduli 56.6679, 56.491, and 6.19923.

3.3.3. Analysis of the 3-cycle of type 32 (SD Type)

The standard definitions of cycles do not directly apply here due to the horizontal periodicity of
order 2. To analyze the 3-cycle of type 32 (SD type), we use the following function:

H(x, y) := h(y, x, y, x)

=

((
Bx + y2 + A

)2
+ B

(
By + x2 + A

)
+ A

)2
+ B

((
By + x2 + A

)2
+ B

(
Bx + y2 + A

)
+ A

)
+ A

The system of equations defining the 3-cycle of type 32, denoted P32 = (x2i = x∗, x2i+1 = y∗)∞i=−∞, is

H(x, y) = x, H(y, x) = y

The Jacobian matrix at the 3-cycle P32 is given by

J(3)
P32
=

∂H∂x (x∗, y∗) ∂H
∂y (x∗, y∗)

∂H
∂y (y∗, x∗) ∂H

∂x (y∗, x∗)


Explicitly, it can be written as

J(3)
P32
=


2(K2 + bM + a)(4Kx + b2) + b(2bM + 2bx) 2(K2 + bM + a)(2bK + 2by) + b(4My + b2)

2(M2 + bK + a)(2bM + 2bx) + b(4Kx + b2)(4My + b2) 2(M2 + bK + a)(4My + b2) + b(2bK + 2by)

 ,
where K = by + x2 + a and M = bx + y2 + a.

This type of 3-cycle appears in the bifurcation diagram (see Figure 8) near the parameter values
b = 0.02 and a = −1.794. For b = 0.02 and a = −1.766, two stable 32-cycles and one unstable 3-cycle
of type 32 are observed
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1. First stable 3-cycle of type 32:

P32 = (x2i = 0.1339723819, x2i+1 = −0.01012437968)∞i=−∞

The Jacobian matrix is

J(3)
P32
=

(
−0.1879415909 −2.523212893
0.1997303233 −0.2018565029

)
with eigenvalue modulus 0.7361.

2. Second stable 3-cycle of type 32:

P32 = (x2i = −1.648223584, x2i+1 = −0.8105549453)∞i=−∞

The Jacobian matrix is

J(3)
P32
=

(
−0.02774776706 −3.088383918

11.89855413 0.06822802353

)
with eigenvalue modulus 0.7361.

3. Unstable 3-cycle of type 32:

P32 = (x2i = −1.485768592, x2i+1 = 0.8529672112)∞i=−∞

The Jacobian matrix is

J(3)
P32
=

(
−0.2422270957 8.341366323

4.367465416 0.06941206786

)
with eigenvalues having a modulus of 0.7361.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

-1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 -1.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(b)

Figure 12. Stability zones in (a, b)-parameter plane for fixed points. The red region
represents the stability zone of the fixed point of type 11, the green region corresponds to
the fixed point of type 12, and the blue region represents the 2-periodic point of type 21. The
3-cycles of type 31 are shown in cyan. The bifurcation curve for S = {+1} of 3-cycles of
type 31 is depicted as a solid blue line, while the curve for S = {−1} is shown as a solid red
line. In (b), magnification of a specific region in (a) displays detailed stability zones and fold
bifurcation curves for 3-cycles of type 31.
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3.4. Bifurcation analysis

Figure 12 illustrates the bifurcation diagram of the spatiotemporal quadratic map f in the (a, b)
parameter plane for the 31-cycle in the case under consideration. The fold and flip bifurcations related
to the fixed points of types 11 and 12 of f have already been analyzed in Section 3.1.1 (see also [23,24]).
The definitions of fold and flip bifurcations are provided in Section 2.3. Specifically, in the (a, b)
parameter plane, the flip bifurcation curves are denoted by jΛ

31
3 , where j = 1, 2, and the fold bifurcation

curves are denoted by jΛ
31
(3)0

, where j = 1, 2. The index j differentiates between curves associated with
the same cycle. The blue region represents the stability region of the 31-cycle (see Figure 12a).

At the singular points Ci, for i = 1, 2, 4, the flip curves jΛ
31
3 (for j = 1, 2) are tangent to the fold

curves jΛ
31
(3)0

(for j = 1, 2). At these points, two of the multipliers are S 1 = −S 2 = {1} (see, for
example, [36]). At the singular point C3, the fold curves 1Λ

31
(3)0

and 2Λ
31
(3)0

are tangential to each other
(see Figure 12b).

The foliation of the parameter plane associated with the map f at the 31-cycle is qualitatively
shown in Figure 13. A fold curve 1Λ

31
(3)0

(respectively 2Λ
31
(3)0

) represents the junction of two sheets: one
associated with a semi-stable 31-cycle, and the other with an unstable 31-cycle. The flip curve 1Λ

31
3

(respectively 2Λ
31
3 ) is located on the sheets related to the 31-cycles. It consists of two segments that

meet at the points Ci (for i = 1, 2, 4), each segment being the beginning of a sheet: One is associated
with a semi-stable 31-cycle, and the other with an unstable 31-cycle.

b bb

b

C1

C2

C3
C4

Z

a

b

Λ31

(3)0

Λ31

(3)0

Λ31

(3)0

Λ31

(3)0

Figure 13. Foliation of parametric-plan of the 3-cycle 31.

Figure 14 displays the bifurcation diagram of the spatiotemporal quadratic map f in the (a, b)
parameter plane for the 33−-cycle. The corresponding foliation is qualitatively depicted in Figure 15.
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The fold curves jΛ
33−
(3)0

(for j = 1, 2), which represent the junction of two sheets, correspond to the
emergence of two 33− cycles: one stable or semi-stable and the other unstable. In Figure 15, the
orange and blue regions indicate the stability or semi-stability of the 33− cycles, while the white regions
correspond to the instability of the 33− cycles. The curves jΛ

33−
3 (for j = 1, 2) represent two distinct

branches of the flip bifurcation curves associated with the 33− cycles and their corresponding fold
curves.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 14. Bifurcation curves related to the 3-cycle 33−.

A3
2Λ

33−
(3)0

1Λ
33−
(3)0

2Λ
33−
3

A

Z

a

b

!

1Λ
33−
3

Figure 15. Foliation of parametric-plan for the 33−-cycle.

At the singular point A, the flip curves jΛ
33−
3 (for j = 1, 2) are tangential to the corresponding fold

curves jΛ
33−
(3)0

. At this point, two of the three multipliers associated with A are S 1 = −S 2 = {1}.
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Figure 16 shows the bifurcation curves of the spatiotemporal quadratic map f in the (a, b) parameter
plane for the 3+ cycle. The corresponding foliation is qualitatively illustrated in Figure 17. In this
figure, the flip bifurcation curves are denoted by jΛ

33+
3 , while the fold bifurcation curves are represented

by jΛ
33+
(3)0

, where j = 1, 2, 3. The fold curves Λ33+
(3)0
= 1Λ

33+
(3)0
∪ 2Λ

33+
(3)0
∪ 3Λ

33+
(3)0

correspond to the junction
of two sheets, signifying the emergence of two 33+ cycles one stable or semi-stable, and the other
unstable. The flip curves Λ33+

3 = 1Λ
33+
3 ∪

2Λ
33+
3 ∪

3Λ
33+
3 are associated with their corresponding fold

curves of the same index j.

At the singular points Ai (for i = 1, 2), the flip curves jΛ
33+
3 (for j = 1, 2) are tangential to the fold

curves jΛ
33+
(3)0

, with two of the three multipliers at Ai (for i = 1, 2) being S 1 = −S 2 = {1}. Conversely,
at the singular point A3, the flip curves 1Λ

33+
3 and 2Λ

33+
3 intersect, resulting in S 1 = S 2 = {−1}.

The red and blue regions in Figure 16 represent the stability or semi-stability regions of the 33+

cycles, while the white regions indicate the instability regions of these cycles.

Figure 16. Bifurcation curves related to the 33+-cycle.
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b b
b

A3

A1

A2

2Λ
33+

(3)0

1Λ
33+
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1Λ
33+

3
2Λ

33+

3
3Λ

33+

3

3Λ
33+

(3)0

Z

a

b

Figure 17. Foliation of parametric-plan for the 3-cycle 33+.

To complete the analysis of bifurcations for the spatiotemporal quadratic map f in the (a, b)
parameter plane, we now present the bifurcation structure of the SD cycle, denoted as 32. This study
focuses on the case of the first box, as discussed in [28]. Figure 18 illustrates the bifurcation curves of
the 32 cycle, while the foliation is qualitatively depicted in Figure 19. In Figure 18, the flip bifurcation
curves are denoted by Λ32

3 and Λ
32

3 , while the fold bifurcation curves are labeled as j,kΛ
32
(3)0

, where
j = 1, 2, 3 differentiates the curves of the same cycle and k = a or k = b distinguishes the different
branches of these fold bifurcation curves. The fold curves Λ32

(3)0
= 1, aΛ

32
(3)0
∪ 1, bΛ

32
(3)0
∪ 2Λ

32
(3)0

(and
3Λ

32
(3)0

) correspond to the junction of two sheets, indicating the emergence of four 32 cycles, two stable
or semi-stable and two unstable. The branches 1, aΛ

32
(3)0

and 1, bΛ
32
(3)0

merge, each giving rise to two 32

cycles, one stable or semi-stable and the other unstable.
To understand the appearance and disappearance of the 32 cycle and their stabilities, consider the

cross-section shown in Figure 19-(ii), where the parameter a is fixed at −1 and b increases from −3 to
0.5. In Figure 19-(i), the points Ki (i = 1, 2, 3, 4) indicate cycles related to fold bifurcations, where the
appearance or disappearance of cycles occurs. As b increases, 32 cycles appear through fold
bifurcations, leading to a total of four cycles (semi-stable or unstable). Before the point K1

(K1 ∈
2Λ

32
(3)0

), there is no SD cycle (considering the first box, see [28]). After crossing K1, two SD
cycles emerge, one semi-stable and one unstable. As b continues to increase, we reach the point K2

(K2 ∈
3Λ

32
(3)0

), where two additional SD cycles appear, one unstable and one semi-stable. At points K3

(K3 ∈
1, aΛ

32
(3)0

) and K4 (K4 ∈
1, bΛ

32
(3)0

), the four SD cycles disappear, indicating the end of the 32 cycles
beyond the fold bifurcation curve.

The flip bifurcation curves associated with the fold curves are Λ32
3 =

1, aΛ
32
3 ∪

2Λ
32
3 and Λ

32

3 =
1, bΛ

32
3 ∪

3Λ
32
3 . The flip curve 1, aΛ

32
3 is associated with the fold curve 1, aΛ

32
(3)0

, with the stability region
(red region in Figure 18) bounded by these two curves. Similarly, the curve 2Λ

32
3 is associated with

the fold curve 2Λ
32
(3)0

, with the stability region (blue region in Figure 18) bounded by these two curves.
At the singular point C, the flip curve Λ32

3 is tangential to the fold curve Λ32
(3)0

, with two multipliers
corresponding to C given by S 1 = −S 2 = {1}.

Similarly, the flip bifurcation curve Λ
32

3 =
1, bΛ

32
3 ∪

3Λ
32
3 consists of the branches 1, bΛ

32
3 and 3Λ

32
3 .

The flip curve 1, bΛ
32
3 is associated with the fold curve 3Λ

32
(3)0

, and the flip curve 3Λ
32
3 is associated with
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the fold curve 1, bΛ
32
(3)0

. The stability regions (orange region) are bounded by these four curves.

Figure 18. Bifurcation curves related to the 3-cycle 32.
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0
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0
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Figure 19. Foliation of parametric-plan for the 3-cycle 32.
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4. Conclusions

This study highlights the intricate dynamics of 2D spatiotemporal discrete systems, particularly
focusing on the stability and bifurcations of periodic solutions such as 3-cycles. The analysis of various
types of 3-periodic points, categorized into four types (horizontal (H), super diagonal (SD), diagonal
(D), and anti-diagonal (AD)), provides a comprehensive understanding of their stability conditions,
which are determined by the spectral properties of the Jacobian matrix.

The study emphasizes the importance of bifurcation curves in illustrating how changes in
parameters a and b can lead to qualitative shifts in system behavior, including the emergence of chaos
or the stabilization of cycles. The findings reveal the intricate interplay between stability and
bifurcations, particularly through the examination of a spatiotemporal quadratic map, which serves as
a significant model for understanding nonlinear dynamics.

Key insights include the identification of stable and unstable 3-cycles, the transition from stability
to chaos as parameters vary, and the detailed mathematical framework that supports the analysis of
these cycles. The paper also highlights the role of numerical results, such as bifurcation diagrams, in
visualizing the stability regions of fixed points and periodic orbits.

In conclusion, this study contributes to the understanding of the dynamics of 2D spatiotemporal
discrete systems through bifurcation and periodicity analysis, and also suggests future research
directions. These include potential applications to real-world phenomena such as pattern formation
and epidemic propagation, thus providing valuable insights to the field of dynamical systems.
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