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Abstract: This paper discusses the robustness of neutral-type Cohen-Grossberg neural networks
with time delays and stochastic disturbances. And the problem is whether the Cohen-Grossberg
neural networks, which originally maintain exponential stability, still achieves exponential stability
when subjected to three simultaneous disturbances, namely, time delays, stochastic perturbations,
and neutral terms. First, the width of the time delays, the strength of the stochastic disturbances,
and the neutral term preset parameter size are derived through the Bellman-Gronwall Lemma, the
Itô formula, and the properties of integrals. Next, the values of the three perturbation factors of
time delay, stochastic disturbance, and neutral term are obtained by solving a multivariate privacy
transcendental equation, which allows the Cohen-Grossberg neural networks to remain exponentially
stable after being disturbed. Finally, the numerical example is provided to validate the results of this
brief.
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1. Introduction

The Cohen-Grossberg network model was first proposed by Cohen and Grossberg [1], and it has
become one of the most important network models. In particular, recurrent neural networks and
Hopfield neural networks are special cases of Cohen-Grossberg neural networks (CGNNs) [1]. The
CGNNs have received more and more attention from scholars due to their potential applications
in many fields such as signal processing [2], image processing [3], associative memory [4] and
combinatorial optimisation [5]. The evolution of many control systems is not only determined by
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the states at the current and past moments, but also by the changing rate of the states at the past
moments. The system with the derivatives of states at the past moments plays a decisive role, as a very
important class of systems, which is the neutral system [6]. Different from general systems, the neutral
system can more accurately and deeply reflect the law of system changing. The majority of systems
can be regarded as a special case of the neutral system. Consequently, neutral CGNNs have received
considerable attention; for instance, here are some interesting findings on CGNNs with NTs [2, 6–11].

As we all know, stability is often a prerequisite before the practical applications, so there have
been some previous efforts, to name a few, as follows, [12–20] report the stable conditions of various
types of neural networks under different exogenous perturbations, including neutral terms (NTs) [10,
14, 20], time delays (TDs) [15, 17, 18, 21], stochastic disturbances (SDs) [16, 17, 20], or other external
disturbances such as uncertainty parameters [22,23], reaction-diffusion terms [24,25], etc. Noting that
the aforementioned literature has focused on the issue of stability or synchronization, with only a few
scholars addressing the robustness of stability (RoS). Robustness is the capacity of a system to retain
its properties across a spectrum of parameters or structural alterations. Although results on system
robustness are relatively few compared to various stability studies, there are still some interesting
findings [20, 26–29]. However, the problem of robustness for CGNNs with neutral terms is more
complex due to the existence of the amplification functions and the derivative time delay terms, which
is the focus of this brief.

In the decades, Zhang et al. [30] conducted the global exponential adaptive synchronization of
neutral neural networks with random perturbations. Faydasicok et al. [31] investigated the global
asymptotic stability of a class of CGNNs with TDs and NTs. Wan and Zhou [32, 33] discussed
the stability or exponential stability of the neutral CGNNs with TDs, respectively. Fang et al. [26]
addressed the robustness of fuzzy systems with segmented variables and random disturbances. Zhu
and Cao [35] investigated the robust exponential stability of CGNNs with impulsive stochastic Markov
switching and TDs. Wang et al. [20] studied the global robust exponential synchronization problem
for CGNNs with neutral-type intervals and mixed time delays. Despite the numerous references,
the combined effect of the aforementioned perturbations on the neutral CGNNs with stochastic
disturbances and time delays (STNCGNNs) with RoS has not yet been obtained. Moreover, in the
previous explorations on the RoS analysis of the system [10, 26, 36], the calculation of the upper limit
the system can withstand is complicated in the presence of multiple disruptions. A binary linkage
criterion for the robustness of a nonlinear BAM with two disturbing factors was provided in [29],
which reduced the computational complexity. This also prompts us to consider the influence of three
or even more factors. How to formulate the interactions between the perturbations mentioned above
more succinctly that warrants further study.

Following the aforementioned discussions, this brief discusses the sufficient condition to guarantee
the robustness of the exponential stability of STNCGNNs. The main contributions to the objectives of
concern are as follows:

(1) By employing some inequality techniques, including the Bellman-Gronwall Lemma, the Itô
formula, and the Cauchy inequality, the multivariate implicit transcendental equation incorporating
random perturbations, time delays, and contraction coefficients of the neutral term is obtained.
Consequently, the upper bounds on the impact of these perturbations on the stability of CGNNs are
estimated, which guarantees the initially stabilized CGNNs are able to maintain GES when subjected
to perturbations. The idea of RoS can be utilized to control scenarios where disturbances are present.
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(2) This paper investigates the robust exponential stability of Cohen-Grossberg neural networks
with NTs, TDs, and SDs. This paper considers the effects of three factors, rather than just one or two
as previously discussed in the literature ( [13, 14, 16, 32, 35–37]). It not only enriches the theoretical
study of CGNNs but also provides theoretical support for the analysis and design of the stability of the
Cohen-Grossberg system.

(3) Instead of solving multiple transcendence equations as [26, 36], when there are multiple
disturbances, the upper bounds on the disturbances that the system can withstand are calculated by
solving the same implicit transcendence equation that characterizes the coupling between the NTs,
TDs, or SDs in the form of a boundary constraint, which simplifies the computational process. The
method for establishing the upper bound is further simplified.

(4) CGNNs are a generalized recurrent neural network that contains numerous neural networks due
to its amplification function. How to deal with the effect of the amplification function on CGNNs is
an issue. In this brief, we consider a class of bounded amplification functions, which ensures that
neurons respond efficiently to input variations throughout the range of activity and accelerate system
convergence to a steady state.

The following is an overview of the structure of this brief. Preliminaries and modeling are presented
in Section II. The theoretical result of the RoS of STNCGNNs is shown in Section III. Simulations are
given in Section IV. Finally, conclusions are drawn in Section V.

2. Preliminaries and modeling

For the remainder of this article, the set of real numbers is denoted by R, and N∗ denotes the
set of integers from 1 to N. Denote R+ = [0,+∞), and let the n-dimensional Euclidean space be
denoted by Rn. The vector norm ||ζ || =

∑n
i=1 |ζi| for any vector ζ ∈ RN , and for a matrix M, ||M|| =

max1≤ j≤n
∑n

i=1

∣∣∣ki j

∣∣∣. Let (Ω,F , {Ft}t≥0 ,P) be a complete probability space. {Ft}t≥0, a filtration, is right-
continuous and increasing, and contains all P-null sets. E(·) stands for the mathematical expectation
operator about the probability measure P.

Consider the following model of CGNNs:

u̇i(t) = di(ui(t))[−hi(ui(t)) +

N∑
j=1

ci j f j(u j(t)) + Ii], t ≥ t0,

u(t0) = u0, i ∈ N∗,

(2.1)

where N represents the number of cells, t0 is the initial moment, and u0 is the initial state of
CGNNs (2.1). The vector u(t) = (u1(t), ..., uN(t)) describes the state of the ith unit at time t, and
di(t) refers to an amplification function. The function hi is a well-behaved function that ensures the
solutions of CGNNs (2.1) are bounded. The coefficient ci j is the configuration strength between cell
i and cell j. fi represents the activation function of the ith cell, and Ii is a constant parameter that
represents the external input.

Assuming u∗ is an equilibrium point of CGNNs (2.1), and we translate the equilibrium point to the
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origin. Let e(t) = u(t) − u∗; consequently, system (2.1) can be converted to the following form:

ėi(t) = −ai(ei(t))[bi(ei(t)) −
N∑

j=1

ci jg j(e j(t))], t ≥ t0,

e(t0) = e0, i ∈ N∗,

(2.2)

where e0 = u0−u∗, ai(ei(t)) = di(ei(t)+u∗i ), bi(ei(t)) = hi(ei(t)+u∗i )−hi(u∗i ), g j(ei(t)) = f j(ei(t)+u∗i )− f j(u∗i ).
It is evident that the origin is a point of equilibrium of CGNNs (2.2). Therefore, the stability of u∗ is
equivalent to the stability of the origin of CGNNs (2.2).

For the purpose of this paper, we give some necessary assumptions.

Assumption 1. [3] There are a > 0 and a > 0 satisfying

a ≤ ai(e) ≤ a,∀e ∈ R, i ∈ N∗,

for functions ai(·), and ai(·) are continuous and bounded.

Assumption 2. [11] For functions bi(·), there are constants Bi > 0, i ∈ N∗, satisfying

bi(y) − bi(x)
y − x

≤ Bi,∀y, x ∈ R, y , x.

We investigate the model of neutral Cohen-Grossberg neural networks with TDs, and SDs in this
paper, which is given as follows:

d[qi(t) −
N∑

j=1

Gi j(q j(t − δ))] = −ai(qi(t))
[
bi(qi(t)) −

N∑
j=1

ci jg j(q j(t)) −
N∑

j=1

li jw j(q j(t − δ))
]
dt

+ σqi(t)dB(t), t ≥ t0,

qi(t) =ϕi(t − t0), i ∈ N∗,

(2.3)

where ai(·), bi(·), g j(·), and ci j are the same as in (2.2). Gi j(·) is the neutral term, and δ is the time
delay. li j and w j(·) are the connection strength and activation function with time delay, respectively.
σ represents the noise strength, and the process B(t) is a scalar Brownian motion, defined on the
probability space (Ω,F , {Ft}t≥0 ,P).

Assumption 3. [10] These functions g j(·), w j(·) and Gi j(·) satisfy the Lipschitz condition

|g j(y) − g j(x)| ≤ K j|y − x|,∀x, y ∈ R,

|w j(y) − w j(x)| ≤ W j|y − x|,∀x, y ∈ R,

|Gi j(y) −Gi j(x)| ≤ Pi j|y − x|,∀x, y ∈ R,

where K j and W j are known constants, g(0) = 0, and w(0) = 0, j = 1, 2, ...,N, and the value of Pi j is
constrained to the interval (0,1) to guarantee the non-increasing monotonicity of the system.

Remark 1. The Lipschitz conditions are common in the existing literature [2, 10, 34, 38], and
Assumptions 3–5 are included here. The value of the neutral term preset parameter P ∈ (0, 1) is
in order to ensure that the functions Gi j(·) of (2.3) are decaying rather than growing and finally reach
the GES. The same constraint is found in the literature [10, 38].
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From Assumption 3, for any initial value t0 and e0, CGNNs (2.2) have a unique state e(t; t0, e0) for
t ≥ t0. And for any initial value t0 ∈ R, ϕ(·) ∈ Rn , STNCGNNs (2.3) exhibit a unique solution, denoted
by q(t; t0, ϕ(·)) for t ≥ t0, and q = 0 is the equilibrium point of STNCGNNs (2.3).

If system (2.3) does not have neutral terms, time delays, and random disturbances, it degenerates
into the following form:

ėi(t) = − ai(ei(t))[bi(ei(t)) −
N∑

j=1

ci jg j(e j(t)) −
N∑

j=1

li jw j(e j(t))], t ≥ t0,

e(t0) =e0 = ϕ(0), i ∈ N∗.

(2.4)

Now we give definitions for the global exponential stability of CGNNs (2.4) and the mean square
global exponential stability of STNCGNNs (2.3).

Definition 1. [10] The state of CGNNs (2.4) is global exponential stability (GES) if there are positive
scalars α and β such that ||e(t; t0, e0)|| ≤ ||e0||α exp(−β(t − t0)) holds, where t ≥ t0, t0 ∈ R+, e0 ∈ Rn.

Definition 2. [30] STNCGNNs (2.3) is almost surely global exponential stability (ASGES), if for any
t0 ∈ R+, q0 ∈ Rn, the Lyapunov exponent

lim sup
t−→∞

(
ln |q(t; t0, q0)|

t
) < 0

almost surely, where q(t; t0, q0) is the state of STNCGNNs (2.3).

Definition 3. [30] STNCGNNs (2.3) is mean square global exponential stability (MSGES), if for any
t0 ∈ R+, q0 ∈ Rn, the Lyapunov exponent

lim sup
t−→∞

(
ln |q(t; t0, q0)|2

t
) < 0,

where q(t; t0, q0) is the state of STNCGNNs (2.3).

Remark 2. It can be seen from Definitions 2 and 3 that ASGES implies the MSGES, but the converse
is not true. It is worth noting that when Assumption 3 holds, and STNCGNNs (2.3) is MSGES, then
STNCGNNs (2.3) is ASGES.

Definition 4. [26] The state of STNCGNNs (2.3) is MSGES if there are positive scalars α and β

satisfying E ||q(t; t0, ϕ(t0))||2 ≤
∣∣∣∣∣∣ϕ(t0)2

∣∣∣∣∣∣α exp(−β(t − t0)) for t ≥ t0, t0 ∈ R+, ϕ(t0) ∈ Rn.

Assumption 4.
P2(1008Θ2(a − a)2 ||L||2 W2 + 6) < exp(−2Θh̃)/2, (2.5)

where h̃ = z1 + 2z5, z1 = 42Θ
[ ξ

Θ
+ 2(a − a)2 ||C||2 K2] + 6σ2, z5 = 126κδ(6ξ + σ2).

Assumption 5.

42ζα2/β exp
(
84Θ

[
ξ + 2Θ(a − a)2 ||C||2 K2]) + 2α2 exp(−2βΘ) < 1. (2.6)

where ξ = Θa2(
||B||2 + ||C||2 K2 + ||L||2 W2), ζ = Θ(a − a)2( ||B||2 + 2 ||C||2 K2 + ||L||2 W2).
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3. Results

In this section, we are going to give the sufficiency criterion that the perturbed neutral CGNNs can
still remain stable.

Theorem 1. Let Assumption 1 through Assumption 5 be true, and system (2.4) achieves GES. The
MSGES and ASGES of STNCGNNs (2.3) are guaranteed if 0 < P < P̃, 0 < δ < δ̃, and 0 < σ < σ̃, P̃,
δ̃, and σ̃ can be obtained by solving the transcendental equation:

2h2 exp(2Θh̃)

1 − h1 exp(2Θh̃)
+ 2α2 exp(−2β(Θ − δ)) = 1, (3.1)

where z1 = 42Θ
[ ξ

Θ
+ 2(a − a)2 ||C||2 K2] + 6σ2, z2 = 42ζ + 6σ2, z3 = 42κδ($ + 4), z4 = 1008Θκ ||P||2,

z5 = 126κδ(6ξ+σ2), h1 = 2z4 +12 ||P||2, h2 = z3 + z4 +18 ||P||2 + (z2/2+ z5)α2/β+h1α
2 exp(−2β(Θ−δ)),

h̃ = z1 + 2z5, m̂ = supt0−δ+Θ≤t≤t0−δ+2Θ E ||e(t) − q(t)||2, m = supt0−δ≤t≤t0−δ+Θ E ||q(t)||2, Θ ≥ ln 2α2/β.

Proof. From systems (2.3) and (2.4), we have

ei(t) − qi(t) +

N∑
j=1

Gi j(q j(t − δ)) −
N∑

j=1

Gi j(q j(t0 − δ))

=

∫ t

t0

{
− ai(ei(s))[bi(ei(s)) −

N∑
j=1

ci jg j(e j(s)) −
N∑

j=1

li jw j(e j(s))] + ai(qi(s))[bi(qi(s)) −
N∑

j=1

ci jg j(q j(s))

−

N∑
j=1

li jw j(q j(s − δ))]
}
ds −

∫ t

t0
σqi(s)dB(s).

(3.2)
When t0 ≤ t ≤ t0 + 2Θ, we further obtain

E||e(t) − q(t)||2

≤3E
N∑

i=1

∣∣∣∣∣ N∑
j=1

Gi j(q j(t0 − δ)) −
N∑

j=1

Gi j(q j(t − δ))
∣∣∣∣∣2 + 3E

N∑
i=1

∣∣∣∣∣ ∫ t

t0

{
ai(qi(s))bi(qi(s)) − ai(ei(s)bi(ei(s)))

+

N∑
j=1

ci j
[
ai(ei(s))g j(e j(s)) − ai(qi(s))g j(q j(s))

]
+

N∑
j=1

li j
[
ai(ei(s))w j(e j(s)) − ai(qi(s))w j(q j(s − δ))

]}
ds

∣∣∣∣∣2
+ 3E

N∑
i=1

∣∣∣∣∣ ∫ t

t0
σqi(s)dB(s)

∣∣∣∣∣2
≤3E

N∑
i=1

[ N∑
j=1

Pi j

∣∣∣q j(t0 − δ) − q j(t − δ)
∣∣∣ ]2

+ 3E
N∑

i=1

{∫ t

t0

{
aBi

∣∣∣qi(s) − ei(s)
∣∣∣ + (a − a)Bi |ei(s)|

+

N∑
j=1

∣∣∣ci j

∣∣∣ [aK j

∣∣∣e j(s) − q j(s)
∣∣∣ + (a − a)K j

∣∣∣q j(s)
∣∣∣ ] +

N∑
j=1

∣∣∣li j

∣∣∣ [(a − a)W j

∣∣∣e j(s)
∣∣∣ + aW j

∣∣∣e j(s) − q j(s)
∣∣∣

+ aW j

∣∣∣q j(s) − q j(s − δ)
∣∣∣ ]}ds

}2

+ 3E
N∑

i=1

∫ t

t0
|σqi(s)|2 ds
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≤6 ||P||2 E ||q(t0 − δ)||2 + 6 ||P||2 E ||q(t − δ)||2 + 21(t − t0)
[
a2
||B||2

∫ t

t0
E ||q(s) − e(s)||2 ds

+ (a − a)2 ||B||2
∫ t

t0
E ||e(s)||2 ds + a2

||C||2 K2
∫ t

t0
E ||e(s) − q(s)||2 ds + (a − a)2 ||C||2 K2

∫ t

t0
E ||q(s)||2 ds

+ (a − a)2 ||L||2 W2
∫ t

t0
E ||e(s)||2 ds + a2

||L||2 W2
∫ t

t0
E ||e(s) − q(s)||2 ds

+ a2
||L||2 W2

∫ t

t0
E ||q(s) − q(s − δ)||2 ds

]
+ 6σ2

∫ t

t0
E ||e(s)||2 ds + 6σ2

∫ t

t0
E ||q(s) − e(s)||2 ds.

(3.3)

When t0 ≤ t ≤ t0 + 2Θ, we have

E||e(t) − q(t)||2

≤6 ||P||2 sup
t0−δ≤t≤t0

E ||q(t)||2 + 6 ||P||2 E ||q(t − δ)||2 + (42ζ + 6σ2)
∫ t

t0
E ||e(s)||2 ds

+ z1

∫ t

t0
E ||e(s) − q(s)||2 ds + 42κ

∫ t

t0
E ||q(s) − q(s − δ)||2 ds.

(3.4)

where κ = Θa2
||L||2 W2, ξ = Θa2(

||B||2 + ||C||2 K2 + ||L||2 W2), and ζ = Θ(a − a)2( ||B||2 + 2 ||C||2 K2 +

||L||2 W2), z1 = 42Θ

[
ξ

Θ
+ 2(a − a)2 ||C||2 K2

]
+ 6σ2.

Next, we deal with the time delay term.∫ t

t0
E ||q(s) − q(s − δ)||2 ds =

∫ t0 +δ

t0
E ||q(s) − q(s − δ)||2 ds +

∫ t

t0+δ

E ||q(s) − q(s − δ)||2 ds. (3.5)

When t0 ≤ t ≤ t0 + δ, we have∫ t0 +δ

t0
E ||q(s) − q(s − δ)||2 ds ≤ 2

∫ t0+δ

t0
E ||q(s)||2 ds + 2

∫ t0+δ

t0
E ||q(s − δ)||2 ds

≤ 4δ sup
t0−δ≤s≤t0+δ

E ||q(s)||2 .
(3.6)

When t0 + δ ≤ t ≤ t0 + 2Θ, by (2.3), the Cauchy inequality and the expectation inequality, we obtain∫ t

t0+δ

E ||q(s) − q(s − δ)||2

≤

∫ t

t0+δ

{
3E

N∑
i=1

∣∣∣∣∣ N∑
j=1

Gi j(q j(s − δ)) −
N∑

j=1

Gi j(q j(s − 2δ))
∣∣∣∣∣2 + 3E

N∑
i=1

∣∣∣∣∣∫ s

s−δ
σqi(r)dB(r)

∣∣∣∣∣2
+ 3E

N∑
i=1

∣∣∣∣∣∫ s

s−δ
−ai(qi(r))

[
bi(qi(r)) −

N∑
j=1

ci jg j(q j(r)) −
N∑

j=1

li jw j(q j(r − δ))
]
dr

∣∣∣∣∣2}ds

≤ 6 ||P||2
∫ t

t0+δ

(
E ||q(s − δ)||2 + E ||q(s − 2δ)||2

)
ds +

[
18(ξ − κ) + 3σ2] ∫ t

t0+δ

ds
∫ s

s−δ
E ||q(r)||2 dr

+ 18κ
∫ t

t0+δ

ds
∫ s

s−δ
E ||q(r − δ)||2 dr.

(3.7)
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For the first item in the inequality (3.7), we have∫ t

t0+δ

(
E ||q(s − δ)||2 + E ||q(s − 2δ)||2 ≤

∫ t−δ

t0
E ||q(s)||2 ds +

∫ t−2δ

t0−δ
E ||q(s)||2 ds

≤ δ sup
t0−δ≤s≤t0

E ||q(s)||2 + 2
∫ t−δ

t0
E ||q(s)||2 ds

≤ 3δ sup
t0−δ≤s≤t0+δ

E ||q(s)||2 + 4Θ sup
t0+δ≤s≤t0−δ+2Θ

E ||q(s)||2 .

(3.8)

By changing the order of integrations, we have∫ t

t0+δ

ds
∫ s

s−δ
E ||q(r)||2 dr =

∫ t

t0
dr

∫ min(r+δ,t)

max(t0+δ,r)
E ||q(r)||2 ds

≤ δ

∫ t

t0
E ||q(r)||2 dr,

(3.9)

and ∫ t

t0+δ

ds
∫ s

s−δ
E ||q(r − δ)||2 dr =

∫ t

t0
dr

∫ min(r+δ,t)

max(t0+δ,r)
E ||q(r − δ)||2 ds

≤ δ

∫ t

t0
E ||q(r − δ)||2 dr

≤ δ2 sup
t0−δ≤s≤t0

E ||q(s)||2 + δ

∫ t

t0
E ||q(r)||2 dr.

(3.10)

Substituting (3.8)–(3.10) into (3.7) for t0 + δ ≤ t ≤ t0 + 2Θ, we obtain∫ t

t0+δ

E ||q(s) − q(s − δ)||2 ds

≤ 6 ||P||2 (3δ sup
t0−δ≤s≤t0+δ

E ||q(s)||2 + 4Θ sup
t0+δ≤s≤t0−δ+2Θ

E ||q(s)||2) + δ
[
18(ξ − κ) + 3σ2] ∫ t

t0
E ||q(s)||2 ds

+ 18κδ2 sup
t0−δ≤s≤t0

E ||q(s)||2 + 18κδ
∫ t

t0
E ||q(s)||2 ds

)
≤ δ$ sup

t0−δ≤s≤t0+δ

E ||q(s)||2 + 24Θ ||P||2 sup
t0+δ≤s≤t0−δ+2Θ

E ||q(s)||2 + 3δ(6ξ + σ2)
∫ t

t0
E ||q(s)||2 ds,

(3.11)

where $ = 18
(
||P||2 + Θa2

||L||2 W2δ
)
.

Substituting (3.11) and (3.6) into (3.4), we have

E ||e(t) − q(t)||2

≤6 ||P||2
(

sup
t0−δ≤t≤t0

E ||q(t)||2 + sup
t0−δ≤t≤t0−δ+2Θ

E ||q(t)||2
)

+ z1

∫ t

t0
E ||e(s) − q(s)||2 ds + (42ζ + 6σ2)

∫ t

t0
E ||e(s)||2 ds

+ 42κδ
(
$ + 4

)
sup

t0−δ≤s≤t0+δ
E ||q(s)||2 + 1008Θκ ||P||2 sup

t0+δ≤s≤t0−δ+2Θ

E ||q(s)||2 + 126κδ(6ξ + σ2)
∫ t

t0
E ||q(s)||2 ds
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=12 ||P||2 sup
t0−δ≤t≤t0+δ

E ||q(t)||2 + 6 ||P||2 sup
t0+δ≤s≤t0−δ+2Θ

E ||q(t)||2 + z1

∫ t

t0
E ||e(s) − q(s)||2 ds + z2

∫ t

t0
E ||e(s)||2 ds

+ z3 sup
t0−δ≤s≤t0+δ

E ||q(s)||2 + z5

∫ t

t0
E ||q(s)||2 ds + z4 sup

t0+δ≤s≤t0−δ+2Θ

E ||q(s)||2

≤(12 ||P||2 + z3) sup
t0−δ≤t≤t0+δ

E ||q(t)||2 + (z4 + 6 ||P||2) sup
t0+δ≤t≤t0−δ+2Θ

E ||q(t)||2 + (z1 + 2z5)
∫ t

t0
E ||e(s) − q(s)||2 ds

+ (z2 + 2z5)
∫ t

t0
E ||e(s)||2 ds

≤(z1 + 2z5)
∫ t

t0
E ||e(s) − q(s)||2 ds +

[
z3 + 18 ||P||2 + (z2/2 + z5)α2/β + z4

]
sup

t0−δ≤t≤t0−δ+Θ

E ||q(t)||2

+ (z4 + 6 ||P||2) sup
t0−δ+Θ≤t≤t0−δ+2Θ

E ||q(t)||2

≤(z1 + 2z5)
∫ t

t0
E ||e(s) − q(s)||2 ds +

[
z3 + 18 ||P||2 + (

z2

2
+ z5)α2/β + z4

]
sup

t0−δ≤t≤t0−δ+Θ

E ||q(t)||2

+ 2(z4 + 6 ||P||2) sup
t0−δ+Θ≤t≤t0−δ+2Θ

E ||e(t) − q(t)||2 + 2(z4 + 6 ||P||2) sup
t0−δ+Θ≤t≤t0−δ+2Θ

E ||e(s)||2

≤h̃
∫ t

t0
E ||e(s) − q(s)||2 ds + h1m̂ + h2m.

(3.12)

Thus, by using the Bellman-Gronwall lemma, we obtain

E ||e(t) − q(t)||2 ≤
(
h1m̂ + h2m

)
exp(2Θh̃).

Consequently, for t0 − δ + Θ ≤ t ≤ t0 − δ + 2Θ, we have

m̂ = sup
t0−δ+Θ≤t≤t0−δ+2Θ

E ||e(s) − q(s)||2 ≤ sup
t0≤t≤t0+2Θ

E ||e(t) − q(t)||2

≤
h2 exp(2Θh̃)

1 − h1 exp(2Θh̃)
m,

(3.13)

where z2 = 42ζ + 6σ2, z3 = 42κδ($ + 4), z4 = 1008Θκ ||P||2, z5 = 126κδ(6ξ + σ2), h1 =

2z4 + 12 ||P||2, h2 = z3 + z4 + 18 ||P||2 + (z2/2 + z5)α2/β + h1α
2 exp(−2β(Θ − δ)), h̃ = z1 + 2z5,

m̂ = supt0−δ+Θ≤t≤t0−δ+2Θ E ||e(t) − q(t)||2, m = supt0−δ≤t≤t0−δ+Θ E ||q(t)||2.
Thus, by system (2.4) is GES, for t0 − δ + Θ ≤ t ≤ t0 − δ + 2Θ, we have

E ||q(t)||2 ≤
2h2 exp(2Θh̃)

1 − h1 exp(2Θh̃)
m + 2E ||e(t)||2

≤

[ 2h2 exp(2Θh̃)

1 − h1 exp(2Θh̃)
+ 2α2 exp(−2β(Θ − δ))

]
m.

(3.14)

It is obviously that for t0 ≤ t ≤ t0 + 2Θ, (3.14) is also true. Let

H(P, σ, δ) =
2h2 exp(2Θh̃)

1 − h1 exp(2Θh̃)
+ 2α2 exp(−2β(Θ − δ)). (3.15)

If P = σ = δ = 0, then

H(0, 0, 0) =42ζα2/β × exp
(
84Θ

[
ξ + 2Θ(a − a)2 ||C||2 K2]) + 2α2 exp(−2βΘ).
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From Assumption 7, we know that H(0, 0, 0) < 1, and H(+∞,+∞,+∞) = +∞. This implies the
existence of P̃, σ̃, and δ̃, and this yields the transcendental equation H(P̃, σ̃, δ̃) = 1, which provides the
upper bounds for NTs, SDs, and TDs.

Define Υ = − ln H/Θ, one can see that Υ > 0 when P < P̃, σ < σ̃, and δ < δ̃. From the existence
and uniqueness of the solution of STNCGNNs (2.3), when t ≥ t0 + (υ− 1)Θ, for any υ = 1, 2, ...,N, we
have

q(t; t0, ϕ) = q(t; t0 + (υ − 1)Θ, q(t0 + (υ − 1)Θ; t0, ϕ)). (3.16)

By (3.14) and (3.16), it yields that

sup
t0−δ+υΘ≤t≤t0−δ+(υ+1)Θ

E ||q(t; t0, ϕ)||2

≤ exp(−ΥΘ)
× sup

t0−δ+(υ−1)Θ≤t≤t0−δ+(υ−1)Θ+Θ

E ||q(t; t0, e0)||2

≤ ...

≤ exp(−υΥΘ) sup
t0−δ≤t≤t0−δ+Θ

E ||q(t; t0, ϕ)||2

= m exp(−υΥΘ).

(3.17)

Therefore, for any t ≥ t0−δ+Θ, there exists a positive integer υ such that t0−δ+υΘ ≤ t ≤ t0−δ+(υ+1)Θ,

E ||q(t; t0, ϕ)||2 ≤m exp(−Υ(t − t0 + δ − Θ))
=m exp(Υ(Θ − δ)) exp(−Υ(t − t0)).

(3.18)

Obviously, (3.18) also holds for t− δ ≤ t ≤ t0 − δ+ Θ. Therefore, system (2.3) is MSGES and ASGES.

Remark 3. Compared with the existing articles ( [13, 14, 17, 26]) that studied the robustness of the
system, the system discussed in this article contains three factors, neutral terms, time delays, and
random disturbances—which have more complexity and are more strongly connected to real-world
applications.

Remark 4. Instead of solving multiple transcendental equations to compute the upper bounds on the
disturbances that the system can withstand, a ternary implicit equation in the form of a boundary
restriction is solved to obtain the upper bounds on the neutral terms, TDs, and SDs, which reduces the
computational complexity.

4. Examples

Consider the system (2.3) with the following parameters:

C =

[
0.006 0.002
0.003 0.008

]
, L =

[
0.012 0.007
0.002 0.005

]
,
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a1(·) = 1.5 + 0.5sin(·), a2(·) = 1.5 − 0.5cos(·), bi(·) = 0.015(·), f (·) = tanh(·), and
g(·) = (·)/(1 + exp(−(·))). Then, it can be obtained: a = 2, a = 1 and

B =

[
0.015 0

0 0.015

]
.

Based on the parameters above, the stable state trajectories of system (2.4) are shown in Figure 1,
where PSAL is the function of the selected α = 1.3 and β = 0.5. By (3.1), when only a single
disturbance occurs, the maximum values are P̃ = 0.0318, δ̃ = 0.1011, and σ̃ = 0.0505, respectively.
The trajectories of the system (2.3) with P = 0.02, δ = 0.0357, and σ = 0.025 are depicted in
Figure 2, where the initial values of states q1(t) and q2(t) are {0.5, 0.1, 0.3, 0.8,−0.6,−0.4,−0.9,−0.2}
and {−0.1,−0.5,−0.3,−0.8, 0.6, 0.4, 0.9, 0.2}.

0 5 10 15 20 25 30 35 40

t

-1.5

-1

-0.5

0

0.5

1

1.5

e
(t

)

Figure 1. The trajectories of (2.4).

From Eq (3.1), it can be seen that P, δ, andσ are interconnected, with a change in one value affecting
the others. As an illustration, if we select P = 0.0195 and δ = 0.042, through the application of (3.1),
we obtain σ̃ = 0.0227. When P, δ, and σ no longer satisfy (3.1), the trajectories of system (2.3) are
shown in Figure 3 for P = 0.02, δ = 0.2727, and σ = 0.23, where the initial values of states q1(t) and
q2(t) are {0.5, 0.1, 0.3, 0.8, 0.6, 0.4, 0.9, 0.2} and {−0.1,−0.5,−0.3,−0.8,−0.6,−0.4,−0.9,−0.2}.
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Figure 2. The trajectories of (2.3) with P = 0.02, δ = 0.0357, and σ = 0.025.
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Figure 3. The trajectories of (2.3) with P = 0.02, δ = 0.2727, and σ = 0.23.

Remark 5. The RoS of Theorem 1 in Section III implies that if the actual values of perturbations
of CGNNs (2.3) are limited to tolerable limits, then system (2.3) will again be stable. In Section IV,
Figure 1 describes the original stable trajectories of (2.4). Figure 2 illustrates the state trajectories
of STNCGNNs (2.3) when the actual values of the external disturbances satisfy the implicit Eq (3.1),
which is stable. And Figure 3 presents the state trajectories of STNCGNNs (2.3) for the actual values
of the external disturbances no longer satisfying the implicit equation, which is unstable.

Next, we give an application of the RoS of CGNNs to recover noisy images (see Figure 4). The
main steps are as follows:
(1) Constructing CGNNs-type Auto-Encoder for training to learn noise-free images.
(2) Input noisy image.
(3) Auto-Encoder for processing.
(4) Output recovered image.
Where the auto-encoder is trained based on reconstruction error and mean square error is used as the
loss function.
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A. Original image B. Noise image C. Recovered image
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Figure 4. Simulation results of noise image recovered.

Remark 6. For comparison purposes, Table 1 shows how this article differs from previous pivotal
references, with × meaning it does not exist and X indicating its existence. The results demonstrate
that the findings of this paper further extend and reinforce the existing work on RoS.

Table 1. Comparing with some of the previous literature.

Models/Refs. NTs TDs SDs CGNNs RoS

[6] X X × × ×

[7–9, 11] X X × X ×

[10] X X × × X
[13, 35] × X × X X
[15, 16, 34] × X X X ×

[20, 37] X X × X X
[26] × × X × X
[36] × X X × X
this article X X X X X

5. Conclusions

This paper presents sufficient criteria for ensuring the robustness of global exponential stability
of the neutral CGNNs with time delays and stochastic disturbances. According to the Itô integral,
Gronwall lemma, and mathematical expectation inequality properties, a multivariable implicit
transcendental equation can be used to derive upper bounds for the NTs, TDs and SDs when multiple

AIMS Mathematics Volume 10, Issue 3, 4938–4954.
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disturbances are present, which greatly simplifies the computational complexity. A bounded restriction
is imposed on the amplification function in order to accelerate system convergence and reduce time
complexity.

In the future, we will further discuss the effect of other factors such as uncertain parameters, the
derivative of deviation, and reaction-diffusion terms, etc., on the CGNNs with neutral terms and
the case of expanding the amplification function to non-negative. Also consider combining famous
methods like linear matrix inequalities and Liapunov function theory to reduce the conservatism.
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