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1. Introduction

In this paper, we pursue the study of the Mellin transform associated with the main evolution
equations on general Riemannian d-dimensional non-compact symmetric spaces X = G/K of higher
real rank initiated in [1] with the wave equation, where G denotes a semisimple Lie group, connected,
non-compact, with a finite center, and K is a maximal compact subgroup of G. Here the version of the
Mellin transform is defined as a function on the complex plane by the relation

f ∗(σ) =
1

Γ(σ)

∫ ∞

0
f (s)sσ−1ds, (1.1)

for some function f defined on the positive real axis, and Γ denotes the usual gamma function.
Generally, for some absolutely integrable function f on a finite interval (s1, s2), 0 < s1 < s2 < ∞,
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which satisfies the following bounds

f (s) = O(s−c1)︸           ︷︷           ︸
s→0

, f (s) = O(s−c2)︸           ︷︷           ︸
s→∞

, (1.2)

where c1 and c2 are positive constants such that c1 < c2, the Mellin transform f ∗ exists and it is an
analytic function on the vertical strip c1 < Re(σ) < c2, called a fundamental strip. In some cases, this
strip may extend to a half-plane (c1 = −∞ or c2 = +∞) or to the whole complex σ-plane (c1 = −∞ and
c2 = +∞).

The Mellin transform is closely connected with the Fourier and Laplace transforms. A direct
way to invert Mellin’s transformation (1.1) is to start from Fourier’s inversion theorem so that the
original function f (s) under some conditions can be recovered from its Mellin transform by the inverse
Mellin formula

f (s) =

∫ a+i∞

a−i∞
Γ(σ) f ∗(σ)s−σdσ, (1.3)

where the integration is along a vertical line through c1 < Re(σ) = a < c2.
As always, several questions arise around the convergence and analyticity of the integral (1.1) outside
the fundamental strip c1 < Re(σ) < c2. Classically, assume that f (s) admits as s → 0 a finite
asymptotic expansion of the form

f (s) =
∑

q∈I, I finite

αqsq + O(sc3), −c3 < −q ≤ c1. (1.4)

Then for c1 < Re(σ) < c2, the integral (1.1) can be decomposed as follows:

f ∗(σ) =
1

Γ(σ)

∫ 1

0
f (s)sσ−1ds +

1
Γ(σ)

∫ ∞

1
f (s)sσ−1ds

=
1

Γ(σ)

∫ 1

0
( f (s) −

∑
q∈I

αqsq)sσ−1ds +
1

Γ(σ)

∫ 1

0

∑
q∈I

αqsq+σ−1ds︸                         ︷︷                         ︸
= 1

Γ(σ)

∑
q∈I

αq

σ + q

+
1

Γ(σ)

∫ ∞

1
f (s)sσ−1ds.

The first integral on the right defines an analytic function on the strip (−c3,∞), and the second for all
σ ∈ C, so that f ∗(σ) is continuable to a meromorphic function on the strip (−c3, c2) with simple poles
of residue αq

Γ(q) at σ = −q, and no other singularities. The grouping of the poles appearing in the middle
sum is called the singular expansion of f ∗(σ) in the strip (−c3, c2) and is written

f ∗(σ) �
1

Γ(σ)

∑
q∈I

αq

σ + q
. (1.5)

In summary, there is a remarkable correspondence of coefficients in asymptotic expansion (1.4) of the
original function f (s) and in the singular expansion of its Mellin transform f ∗(σ) expressed by the rule

sq 7→
1

Γ(σ)
1

σ + q
. (1.6)
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More generally, even if the asymptotic expansion of f (s) as s→ 0 contains terms of the form sq(ln s)k,
where the k are nonnegative integers, it is possible to obtain poles of order greater than 1 at σ = −q,
since in the strip (−c3, c2)

(
∂

∂σ
)k

∫ 1

0
sq+σ−1ds =

(−1)kk!
(σ + q)k+1 . (1.7)

It should be noted that the reverse way is still valid. In other words, the singularities of the Mellin
transform f ∗(σ) can encode under certain conditions an asymptotic expansion of the original function
f (s) as s → 0. Namely, if f is a continuous function on (0,∞) with Mellin transform f ∗(σ) having a
meromorphic continuation to the extended strip (c4, c2) with a finite number of poles and a sufficiently
fast decrease (say f ∗(σ) = O(|σ|−r), r > 1 as |σ| → ∞) such that the singular expansion of f ∗(σ)
on (c4, c1) is written

f ∗(σ) �
∑
q,k

cq,k

(σ − q)k , (1.8)

then an asymptotic expansion of f (s) as s→ 0 takes the form

f (s) =
∑
q,k

cq,k
(−1)k−1

(k − 1)!
s−q(ln s)k + O(s−c4). (1.9)

So, as in the direct way, the following converse correspondence rule holds:

A
(σ − q)k+1 7→

(−1)k

k!
s−q(ln s)k. (1.10)

More elements of the theory of the Mellin transform can be found, for example, in [2–4].
By in [1, formula (1.13)], the author asserts that the zeta function ζG/K on the symmetric space

X = G/K appears as a certain limit of the Mellin transform of the Poisson kernel on this space.
However, in the general case, it is well known that

ζ(σ) =
1

Γ(σ)

∫ ∞

0

1
es − 1

sσ−1ds, Re(σ) > 1

=
1

Γ(σ)

∫ ∞

0
(
∑
k≥1

e−ks)sσ−1ds

= G∗ζ(σ), (1.11)

where Gζ(s) =
∑
k≥1

g(ks), g(s) = e−s, s > 0.

So, the singular behavior of the zeta function (which is well known) comes from the asymptotic
development of the original function g(s) = e−s, s → 0, or more precisely of the function Gζ(s) =∑
k≥1

g(ks), and the reverse way is still true as already indicated. Note that Gζ(s) presents a special case

of sums of the form
G(s) =

∑
k≥1

λkg(µks), s > 0 (1.12)

called harmonic sums, which are highly useful in the theory of Dirichlet series [5]. The λk and
µk are being interpreted as amplitudes and frequencies, respectively, and g(s) is called the base
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function. Those expressions arise in applications of combinatorial theory, especially in the evaluation
of algorithms where the problem is to find the behavior of G(s) when s tends to 0 or infinity. Motivated
by these facts, we propose to study the asymptotic of G(s), in the case where g(s) = e−bs p(s − it, x),
where b > 0 is a real parameter and

(
p(s − it, x)

)
s>0, t>0, x∈X denotes the Poisson kernel on Riemannian

symmetric space X = G/K and whose Mellin transform equals the wave kernel noted w(t, x, σ, b),
σ ∈ C.

Let ∆ be the Laplace-Beltrami operator onX = G/K. Using the inverse spherical Fourier transform,
we consider the wave convolution kernel associated with ∆ as a bi-K-invariant kernel on G expressed
as follows:

w(t, x, σ, b) =
1
|W |

∫
a?

eit
√
|λ|2+|ρ|2(b +

√
|λ|2 + |ρ|2)−σϕλ(x)|c(λ)|−2dλ, (1.13)

for t > 0, x ∈ G and σ ∈ C, such that Re(σ) > d = dim(X), and a real parameter b > 0, where a?

denotes a vector dual of a maximal abelian subspace a in the Cartan decomposition of the Lie algebra
g of the group G. Here, ϕλ denotes the spherical function on G of index λ ∈ a? and c(λ) is the Harish-
Chandra c-function. |W | denotes the cardinality of the Weyl group W associated with the root system Σ,
and ρ is the half sum of positive roots counted with their multiplicities relative to a.

The kernel w(t, x, σ, b) satisfies the wave equation ∂2

∂t2 w(t, x, σ, b) = ∆w(t, x, σ, b), and its spherical
Fourier transform is given by

ŵ(t, λ, σ, b) = eit
√
|λ|2+|ρ|2(b +

√
|λ|2 + |ρ|2)−σ, λ ∈ a?,

and it represents the convolution kernel of the operator W(t, σ, b) = eit
√
−∆(b +

√
−∆)−σ on the

symmetric space X:

W(t, σ, b) f (x) = f ? w(t, x, σ, b) =

∫
G

w(t, y−1x, σ, b) f (y)dy.

According to the formula

a−σ =
1

Γ(σ)

∫ ∞

0
e−uauσ−1du ∀a > 0, (1.14)

we easily write the integral expression (1.13) differently:

w(t, x, σ, b) =
1

Γ(σ)

∫ ∞

0
e−bs

( 1
|W |

∫
a?

e−(s−it)
√
|λ|2+|ρ|2ϕλ(x)|c(λ)|−2dλ

)
︸                                             ︷︷                                             ︸

p(s−it,x)

sσ−1ds

=
1

Γ(σ)

∫ ∞

0
e−bs p(s − it, x)︸            ︷︷            ︸

p̃(s−it,x)

sσ−1ds

= p̃∗(r − it, x)(σ), (1.15)

where p(s − it, x) denotes the bi-K-invariant convolution kernel of the Poisson operator Ps−it.
We show that the tools employed in the study of zeta functions on compact and non-compact

manifolds [6–13] can be generalized to w(t, x, σ, b) = p̃∗(r− it, x)(σ). Using pointwise kernel estimates
proved in [14–16], we shall see that w(t, x, σ, b) is a well-defined analytic function on Re(σ) > d, for
every x ∈ X = G/K. We prove that w(t, x, σ, b) extends meromorphically to the entire complex plane
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C with a finite number of simple poles on the real line at the points (σ j = d − j) j=0,··· ,d−1, by using the
short-time asymptotic expansion of the Poisson kernel

p(s − it, x) ∼ cd s−d
∑
j≥0

α j(t, x)s j, s→ 0+,

and residues given by

res(w(t, x, σ, b), σ j = d − j) =
cd

Γ(d − j)
α̃ j(t, x, b), ∀ x ∈ X = G/K.

By the fundamental correspondence (1.6), we deduce the singular expansion of w(t, x, σ, b)

w(t, x, σ, b) �
cd

Γ(σ)

d−1∑
j=0

α̃ j(t, x, b)
σ + ( j − d)

, σ ∈ C, t > 0, x ∈ X = G/K,

where

α̃ j(t, x, b) =

j∑
l=0

(−1) j−lb j−l

( j − l)!
αl(t, x), j ∈ N0.

As an application, we study the harmonic sums

G(t, x, s, b) =
∑
k≥1

p̃(ks − it, x) =
∑
k≥1

e−bks p(ks − it, x), s > 0, x ∈ X = G/K.

In particular, we prove that the Mellin transformation performs a separation principle between the base
function p̃(s − it, x) and the amplitude λk = 1 and the frequencies µk = k. More precisely, we state

G∗(t, x, σ, b) = ζ(σ)w(t, x, σ, b), Re(σ) > d, t > 0, x ∈ X = G/K,

which allows us to establish the singular expansion of the function Γ(σ)G∗(t, x, σ, b)

Γ(σ)G∗(t, x, σ, b) �
cdα̃d−1(t, x, b)

(σ − 1)2 +
a−1

σ − 1
+ cd

d−2∑
j=0

ζ(d − j)α̃ j(t, x, b)
σ − (d − j)

,

where a−1 = res(Γ(σ)G∗(t, x, σ, b), σ = 1). This translates by the converse correspondence rule (1.10)
into the asymptotic expansion of G(t, x, s, b) as s→ 0

G(t, x, s, b) ∼
1
s

(−cdα̃d−1(t, x, b) ln s + a−1) + cd

d−2∑
j=0

ζ(d − j)α̃ j(t, x, b)s j−d.

This paper is organized as follows: After recalling some basic notations and reviewing little aspects
of Spherical-Fourier analysis on non-compact symmetric spaces in Section 2, we prove the extension
of σ 7→ w(t, x, σ, b) to a meromorphic function on the entire complex plane, and we deduce its singular
expansion in Section 3. We devote Section 4 to the study of harmonic sums assigned to the wave
kernel. Finally, we give some conclusions and comparative remarks about similar and possible future
results in Section 5.
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2. Preliminaries

We recall the basic notations of Fourier analysis on Riemannian symmetric spaces of the non-
compact type. We refer to [17–19] for geometric properties and more details for harmonic analysis on
these spaces.

Throughout this paper, the symbol A . B between two positive expressions means that there is a
positive constant C such that A ≤ CB.

Let G be a non-compact connected semisimple Lie group with a finite center and K a maximal
compact subgroup of G. Let g (resp., k) be the Lie algebra of G (resp., K) and consider the Cartan
decomposition g = k⊕ p of g. Here, p is the (K-invariant) orthogonal complement of k in g with respect
to the Killing form 〈. , .〉 of g. This form induces a K-invariant scalar product on p, and, hence, a G-
invariant Riemannian metric on the symmetric homogeneous manifold X = G/K whose tangent space
at the origin eK is naturally identified with p. Fix a maximal abelian subspace a in p and denote by
a? (respectively, a?C) the real (respectively, complex) vector dual of a. The Killing form of g induces
a scalar product on a? and a C-bilinear form on a?C. If λ, µ ∈ a?C, let Hλ ∈ aC be determined by
λ(H) = 〈Hλ ,H〉, ∀H ∈ aC, and put 〈λ , µ〉 = 〈Hλ ,Hµ〉. We put |λ| = 〈λ , λ〉1/2 for λ ∈ a?. Denote by
Σ the root system of g relative to a. Let W be the Weyl group associated with Σ, and let mλ denote the
multiplicity of the root λ ∈ Σ. In particular, if a+ denotes the positive Weyl chamber in a corresponding
to some fixed set Σ+ of positive roots, we have the Cartan decomposition G = K exp(a+)K of G, where
a+ denotes the closure of a+. Each element x ∈ G is written uniquely as x = k1A(x)k2. We denote
by |x| = |A(x)| the norm defined on G. Let ρ = 1

2

∑
λ∈Σ+

mλλ and let d be the dimension of X, and D

be the dimension at infinity of X. Consider g = k ⊕ a ⊕ n, the Iwasawa decomposition of g, and the
corresponding Iwasawa decomposition G = K exp(a)N of G, where N is the analytic subgroup of G
associated to the nilpotent subalgebra n. Denote by H(x) the Iwasawa component of x ∈ G in a. There
is a basic estimate for this component (see [17, p. 476], )

|H(x)| . |x|, (2.1)

and it is called Iwasawa projection. Finally, let ` = dim(a), the real dimension of a. By definition, ` is
the real rank of G.

We identify functions on X = G/K with functions on G, which are K-invariant on the right and,
hence, bi-K-invariant functions on G with functions on X, K-invariants on the left. If f is a sufficiently
regular bi-K-invariant function on G, then its spherical-Fourier transform is a function on a?C defined by

f̂ (λ) =

∫
G

f (x)ϕ−λ(x)dx, λ ∈ a?C,

where ϕλ denotes the spherical function on G defined by

ϕλ(x) =

∫
K

e<iλ−ρ,H(xk)>dk, x ∈ G, λ ∈ a?C,

and it satisfies the basic estimates

|ϕλ(x)| ≤ ϕ0(x), ∀x ∈ G, ∀λ ∈ a?C.

The Plancherel and inversion formulas for the spherical transform are, respectively, given by
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G
| f (x)|2dx =

1
|W |

∫
a?

| f̂ (λ)|2|c(λ)|−2dλ,

f (x) = 1
|W |

∫
a?

ϕλ(x) f̂ (λ)|c(λ)|−2dλ, x ∈ G,

where |W | denotes the order of the Weyl group W and c(λ) is the Harish-Chandra c-function, and it
satisfies the estimate

|c(λ)|−2 . (1 + |λ|)d−`, (2.2)

together with all its derivatives.

3. Singular expansion of the wave kernel w(t, x, σ, b)

In this section, we use the following key pointwise estimates (see [14–16])

∀ t > 0, ∀ x ∈ X = G/K, |p(s − it, x)| .
{

s−d, 0 < s ≤ 1;
s−D, s > 1;

(3.1)

to study the analyticity of the wave kernel w(t, x, σ, b) given by the rule:

w(t, x, σ, b) =
1

Γ(σ)

∫ ∞

0
p̃(s − it, x)sσ−1ds = p̃∗(r − it, x)(σ), (3.2)

for a complex number σ ∈ C such that Re(σ) > d, and fixed x ∈ X = G/K and a real parameter
b > 0, where p̃(s − it, x) = e−bs p(s − it, x) denotes the bi-K-invariant convolution kernel of the Poisson
operator Ps−it.

3.1. Meromorphic continuation of p̃∗(r − it, x)(σ) = w(t, x, σ, b)

Theorem 3.1. The function σ 7→ w(t, x, σ, b) extends meromorphically to C with simple poles located
at σ j = d − j; j ∈ N0, for all x ∈ X and for all positive real numbers t > 0.

Proof. We divide the proof into three steps.
Step 1. The convergence of the integral given by Eq (3.2), where Re(σ) > d, is easily handled. Clearly,
using the pointwise estimates in Eq (3.1) , we have the following straightforward bound:∫ ∞

0
|e−bs p(s − it, x)sσ−1|ds .

∫ 1

0
s−d+Re(σ)−1ds +

∫ ∞

1
e−bss−D+Re(σ)−1ds,

and observe that the first integral converges for Re(σ) > d. However, the second integral is controlled
as follows: ∫ ∞

1
e−bss−D+Re(σ)−1ds .

∫ ∞

1
e−bs/2ds < ∞.

This concludes the absolute convergence for Re(σ) > d.
Step 2. We check the holomorphy of p̃∗(r − it, x)(σ) = w(t, x, σ, b). First, we split p̃∗(r − it, x)(σ) into

AIMS Mathematics Volume 10, Issue 3, 4775–4791.



4782

a local part p̃∗0(r − it, x)(σ) and a part at infinity p̃∗∞(r − it, x)(σ).
Write p̃∗(r − it, x)(σ) = p̃∗0(r − it, x)(σ) + p̃∗∞(r − it, x)(σ), where

p̃∗0(r − it, x)(σ) =
1

Γ(σ)

∫ 1

0
p̃(s − it, x)sσ−1ds, (3.3)

and
p̃∗∞(r − it, x)(σ) =

1
Γ(σ)

∫ ∞

1
p̃(s − it, x)sσ−1ds. (3.4)

To treat the local part, consider the vertical band

S β,γ = {σ ∈ C; d < β < Re(σ) < γ}, ∀0 < β < γ < ∞,

and let ε be a positive real number, and introduce the sequence (p̃∗0,ε(r − it, x)(σ))ε>0 of holomorphic
functions on S β,γ

p̃∗0,ε(r − it, x)(σ) =
1

Γ(σ)

∫ 1

ε

p̃(s − it, x)sσ−1ds.

Clearly, we have the following estimate:

|p̃∗0(r − it, x)(σ) − p̃∗0,ε(r − it, x)(σ)| =
1
|Γ(σ)|

|

∫ ε

0
p̃(s − it, x)sσ−1ds|

.

∫ ε

0
s−d+Re(σ)−1ds

≤
1

β − d
εβ−d −−−−→

ε→0+
0 uniformly for every σ ∈ S β,γ,

which proves that the sequence (p̃∗0,ε(r − it, x)(σ))ε>0 converges uniformly with limit p̃∗0(r − it, x)(σ).
Cauchy’s theorem will guarantee that this limit is holomorphic.
Now, for s large, according to (3.1), we deduce that

| p̃(s − it, x)sσ−1| . e−bss−D+Re(σ)−1,

which ensures that the integral
∫ ∞

1
p̃(s − it, x)sσ−1ds converges uniformly on Re(σ) ≤ R, for each

R ∈ R. In particular, it converges uniformly on compact subsets of C. It follows that the infinity part
p̃∗∞(r − it, x)(σ) represents an entire function of σ ( [20, Ch. XII, Lemma 1.1, p. 308]).
Step 3. It remains to prove the meromorphic extension to the entire complex plane C of the function
σ 7→ p̃∗(r − it, x)(σ) = w(t, x, σ, b) and to determine its poles. To do this, we proceed in the classical
and usual way using an appropriate asymptotic expansion of the Poisson kernel.
To start, we state

p(s − it, x) ∼ cd s−d
∑
j≥0

α js j, s→ 0+, (3.5)

where the coefficients α j = α j(t, x) are to be calculated later. Here, cd is a constant depending on d.
Given the Maclaurin series

e−bs ∼
∑
j≥0

(−1) jb j

j!
s j, s→ 0+, (3.6)
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the asymptotic expansion of the product is given by

p̃(s − it, x) = e−bs p(s − it, x) ∼ cd s−d
∑
j≥0

α̃ js j, s→ 0+, (3.7)

where

α̃ j = α̃ j(t, x, b) =

j∑
l=0

(−1) j−lb j−l

( j − l)!
αl(t, x), j ∈ N0. (3.8)

Now (3.7) is equivalent to asserting that for each nonnegative integer N, there exists a positive constant
CN > 0 such that

∀x ∈ X, ∀t > 0, | p̃(s − it, x) − cd

N∑
j=0

α̃ js j−d |≤ CN sN+1−d, 0 < s ≤ 1. (3.9)

Then we decompose p̃∗(r − it, x)(σ) for given σ with Re(σ) > d in the form

p̃∗(r − it, x) = w(t, x, σ, b) = AN(t, x, σ, b) + BN(t, x, σ, b) + p̃∗∞(r − it, x)(σ), (3.10)

where

• AN(t, x, σ, b) = 1
Γ(σ)

∫ 1

0

(
p̃(s − it, x) − cd

N∑
j=0

α̃ js j−d)sσ−1dt,

• BN(t, x, σ, b) =
cd

Γ(σ)

N∑
j=0

α̃ j

∫ 1

0
s j−d+σ−1ds =

cd

Γ(σ)

N∑
j=0

α̃ j

σ + ( j − d)
,

• p̃∗∞(r − it, x)(σ) is an entire function of σ given by Eq (3.4).

Thus, the exact argument in [1,13] shows that AN(t, x, σ, b) is uniformly convergent on Re(σ) > d−(N+

1) + ε for every ε > 0. It follows that AN(t, x, σ, b) is a holomorphic function on Re(σ) > d − (N + 1),
and (3.10) provides the meromorphic continuation of p̃∗(r − it, x) = w(t, x, σ, b) with simple poles
at (σ j = d − j) j∈N0 appearing in the function BN(t, x, σ, b), with residue given by

res(w(t, x, σ, b)), σ j = d − j) =
cd

Γ(d − j)
α̃ j(t, x, b)

=
cd

Γ(d − j)

j∑
l=0

(−1) j−lb j−l

( j − l)!
αl(x, σ), ∀ x ∈ X = G/K, (3.11)

which ends the proof of Theorem 3.1. �

Remark 3.2. Notice that, if j ≥ d, the integer d − j is negative; therefore, 1
Γ(d− j) = 0, and consequently

res(w(t, x, σ, b), σ j) = 0, which allows us to affirm that w(t, x, σ, b) has a finite number of simple poles
at the points σ j = d − j, for j = 0, 1, · · · , (d − 1), exactly as in the case of the ζ function on a compact
manifold M [11].

Remark 3.3. Generally, we cannot compare the dimension d ofX and D, the dimension at infinity of X
without specifying the geometric structure of X. For example, if G complex, one has d = D, but when
X has a normal real form, one has d < D, and in this case, the fundamental strip of p̃∗(r − it, x)(σ) =

w(t, x, σ, b) will be d < Re(σ) < D.

AIMS Mathematics Volume 10, Issue 3, 4775–4791.



4784

Let us turn to the computations of the coefficients α̃ j = α̃ j(t, x, b). To do this, we refer to the key
decomposition (3.10), which allows us to calculate the values of w(t, x, σ, b) for σ = −k, k ∈ N0 and
to deduce an explicit expression of α̃ j, or even more simply an expression of α j.

Theorem 3.4. The coefficients (α̃ j(t, x, b))t>0, x∈X are given by

α̃d+k(t, x, b) = c−1
d

(−1)k

k!
w(t, x,−k, b), k ∈ N0. (3.12)

Proof. For k ∈ N0 choose N > d + k in Eq. (3.10), which implies that −k > d − N > d − (N + 1). It
follows that AN(t, x, σ, b) is holomorphic at σ = −k, and since 1

Γ(−k) = 0, we obtain AN(t, x,−k, b) = 0,
and it is the same p̃∗∞(r− it, x)(−k) = 0. Now all that remains is to determine the value of BN(t, x,−k, b).
Write

BN(t, x,−k, b) =
cd

Γ(−k)

N∑
j=0, j,d+k

α̃ j

−k + ( j − d)︸                              ︷︷                              ︸
=0

+ f (σ)/σ=−k, (3.13)

where
f (σ) =

cd

Γ(σ)
α̃d+k

σ + k
. (3.14)

Knowing that the only singularities of BN(t, x, σ, b) are at the points (σ j = d − j) j=0,1,··· ,(d−1) and that

lim
σ→−k

f (σ) =
cdα̃d+k

res(Γ(σ),−k)
=

cdα̃d+k

(−1)k

k!

,

we conclude that f is holomorphic at σ = −k and f (−k) =
cdα̃d+k

(−1)k
k!

. Eq (3.12) follows directly. �

Remark 3.5. The results presented here are in agreement with general ζ-theory, but without any
discussion on the parity of the space-dimension.

3.2. Singular expansion of the wave kernel w(t, x, σ, b)

For the reader’s benefit, we recall the definition of the singular expansion of a
meromorphic function.

Definition 3.6. (Singular expansion) Let f (σ) be meromorphic in Q with P including all the poles
of f (σ) in Q. A singular expansion of f (σ) in Q is a formal sum of singular elements of f (σ) at all
points of P.
When S is a singular expansion of f (σ) in Q, we write

f (σ) � S , σ ∈ Q.

According to the previous paragraph and considering this last definition, it is easy to obtain the
following result.

Theorem 3.7. The singular expansion of the wave kernel w(t, x, σ, b) is given by

w(t, x, σ, b) �
cd

Γ(σ)

d−1∑
j=0

α̃ j(t, x, b)
σ + ( j − d)

, σ ∈ C, t > 0, x ∈ X = G/K. (3.15)
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Remark 3.8. It should be noted that the function BN(t, x, σ, b) in the decomposition (3.10) contains
not only a singular part, but also a regular part. Indeed, since we chose N > d + k (therefore large
enough) in the previous calculation, BN(t, x, σ, b) is written

BN(t, x, σ, b) =
cd

Γ(σ)

d−1∑
j=0

α̃ j(t, x, b)
σ + ( j − d)

+
cd

Γ(σ)

N∑
j=d

α̃ j(t, x, b)
σ + ( j − d)

.

Thus, a passage to the limit (N → ∞) without worrying about convergence problems of the second
sum, and by (3.12), we obtain the desired regular part

1
Γ(σ)

∑
j≥0

(−1) j

j!
w(t, x,− j, b)

σ + j
.

4. Harmonic sums

As an application, we shall now see the analysis of harmonic sum assigned to the wave kernel on
Riemannian symmetric spaces X = G/K. In particular, we derive a singular expansion of the Mellin
transform of this sum, and we deduce an asymptotic expansion as s→ 0 of this sum using the converse
correspondence rule (1.10). First, we introduce the general definition of harmonic sum, which will be
involved in the asymptotic analysis of wave kernel. We refer to [21] for more details about sums of
this type.

Definition 4.1. A sum of the form

G(s) =
∑
k≥1

λkg(µks), s > 0 (4.1)

is called a harmonic sum. The λk are the amplitudes, the µk are the frequencies, and g(s) is called the
base function. The Dirichlet series of the harmonic sum is the sum given by

Λ(σ) =
∑
k≥1

λkµ
−σ
k , σ ∈ C. (4.2)

Here, we consider λk = 1, µk = k and g(s) = p̃(s − it, x) = e−bs p(s − it, x) for s > 0 and

x ∈ X = G/K. In this case, Λ(σ) coincides with the zeta function ζ(σ) =
∑
k≥1

1
kσ

and

G(t, x, s, b) =
∑
k≥1

p̃(ks − it, x) =
∑
k≥1

e−bks p(ks − it, x). (4.3)

We start by calculating the Mellin transform of G(t, x, s, b).

Theorem 4.2. The Mellin transform of G(t, x, s, b) equals

G∗(t, x, σ, b) = ζ(σ)w(t, x, σ, b), t > 0, x ∈ X = G/K, (4.4)

with fundamental strip (d,∞).
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Proof. We apply the dominated convergence theorem two times. The first is dedicated to proving the
convergence of G(t, x, s, b), while the second aims to obtain the separation formula (4.4).
Consider the partial sums

Gn(t, x, s, b) =

n∑
k=1

p̃(ks − it, x) =

n∑
k=1

e−bks p(ks − it, x), n ≥ 1.

A straightforward computation using a change of variables in the definition of G∗n(t, x, σ, b) and the
inversion formula (1.3) gives

Gn(t, x, s, b) =

∫ a+i∞

a−i∞
Γ(σ)G∗n(t, x, σ, b)s−σdσ

=

∫ a+i∞

a−i∞
Γ(σ)

n∑
k=1

1
kσ

p̃∗(r − it, x)(σ)s−σ︸                                 ︷︷                                 ︸
fn(σ)

dσ, a > d. (4.5)

On the one hand, it is easy to see that

p̃∗(r − it, x)(σ) = O(1),

since p̃(s − it, x) = O(s−d) as s→ 0 and the integration is along the vertical line Re(σ) = a.
Then, this fact combined with the following well-known bounds

Γ(σ) ∼
√

2π|Im(σ)|Re(σ)−1/2e−
π
2 |Im(σ)|, Im(σ)→ ∞, (4.6)

and
|ζ(σ)| . |Im(σ)|1−ε, ε < 1, (4.7)

allow to dominate the sequence fn(σ) by an integrable function. More precisely, we obtain

| fn(σ)| . |Im(σ)|1/2−ε+ae−
π
2 |Im(σ)|s−a. (4.8)

Hence the convergence of G(t, x, s, b) by the dominated convergence theorem. Moreover, one has

G(t, x, s, b) = lim
n→∞

Gn(t, x, s, b) =

∫ a+i∞

a−i∞
Γ(σ)ζ(σ)w(t, x, σ, b)s−σdσ. (4.9)

Now, it is clear by (4.8) that Gn(t, x, s, b) = O(s−a) and that G(t, x, s, b) = O(s−a), which makes it
possible to apply the dominated convergence theorem to obtain via the definition of G∗ and interchange
integral and limits

G∗(t, x, σ, b) = ζ(σ)w(t, x, σ, b), Re(σ) > d, x ∈ X = G/K,

which ends the proof of the theorem. �

Remark 4.3. A general proof of the previous theorem consists of taking into account a base function of
fast decrease (see [21]), in order to use the dominated convergence theorem. Here we avoided this data
and took advantage of Stirling’s formula (4.6) to control the Gamma function present in the inversion
formula (4.5).
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Theorem 4.4. The asymptotic expansion of harmonic sum G(t, x, s, b) as s→ 0 is given by

G(t, x, s, b) ∼
1
s

(−cdα̃d−1(t, x, b) ln s + a−1) + cd

d−2∑
j=0

ζ(d − j)α̃ j(t, x, b)s j−d, (4.10)

where a−1 = res(Γ(σ)G∗(t, x, σ, b), σ = 1).

Proof. First, notice that there are singularities at (σ j = d − j) j=0,1,··· ,d−1. Globally, the poles of
G∗(t, x, σ, b) are a double pole at σ = 1 and simple at (σ j = d − j) j=0,1,··· ,d−2.
According to the separation formula (4.4), we obtain the singular expansion

Γ(σ)G∗(t, x, σ, b) �
cdα̃d−1(t, x, b)

(σ − 1)2 +
a−1

σ − 1
+ cd

d−2∑
j=0

ζ(d − j)α̃ j(t, x, b)
σ − (d − j)

. (4.11)

Again from the bound (4.8), we conclude that σrΓ(σ)G∗(t, x, σ, b) = O(1) as |σ| → ∞, for all r > 1. In
other words, Γ(σ)G∗(t, x, σ, b) is of fast decrease.
Now all the ingredients are ready to be able to apply the correspondence rule A

(σ−q)k+1 7→
(−1)k

k! s−q(ln s)k

in singular expansion (4.11), and the asymptotic expansion is deduced directly. �

Remark 4.5. It is not difficult to see that Γ(σ)G∗(t, x, σ, b) admits a meromorphic continuation toC and
satisfies the conditions of the converse correspondence rule; thus, a complete asymptotic expansion of
G(t, x, s, b) results.

Note that it is possible to express certain coefficients α̃d+k(t, x, b) via the transform G∗(t, x, σ, b).
More precisely, one has:

Theorem 4.6. The coefficients (α̃d+2k+1(t, x, b))t>0, x∈X are given by

α̃d+2k+1(t, x, b) = c−1
d

(2k + 2)G∗(t, x,−2k − 1, b)
(2k + 1)!B2k+2

, k ∈ N0, (4.12)

where Bk denotes the Bernoulli numbers.

Proof. First, we know that

ζ(−k) = (−1)k Bk+1

k + 1
, k ∈ N0, (4.13)

and that
ζ(−2k) = 0, B2k+1 = 0, k ≥ 1, (4.14)

which implies that G∗(t, x,−2k, b) = 0, ∀ k ≥ 1.
For the odd negative integers, by (3.12) we write

w(t, x,−2k − 1, b) = cd(−1)2k+1(2k + 1)!α̃d+2k+1(t, x, b), k ∈ N0.

Let us introduce this in the equation G∗(t, x,−2k − 1, b) = ζ(−2k − 1)w(t, x,−2k − 1, b) well combined
with (4.13), and the desired result is simply deduced. �
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Remark 4.7. Notice that Bernoulli numbers can appear in the singular expansion of Γ(σ)G∗(t, x, σ, b)
given by formula (4.11). In fact, the function φ(s) = 1

es−1 admits an expansion near s = 0

1
es − 1

=
∑
k≥−1

Bk+1

(k + 1)!
sk,

and by definition, its Mellin transform equals ζ(σ), which implies the singular expansion

Γ(σ)ζ(σ) �
∑
k≥−1

Bk+1

(k + 1)!
1

σ + k
, σ ∈ C,

leading to writing (4.11) differently, showing the numbers Bk, since one has Γ(σ)G∗(t, x, σ, b) =

Γ(σ)ζ(σ)w(t, x, σ, b).

Remark 4.8. Consider the function

ψ(t, x, s, b) =

∫ ∞

0

1
es/u − 1

p̃(u − it, x)
du
u
, s > 0, t > 0, x ∈ X = G/K.

It is easy to see that
ψ∗(σ) = Γ(σ)G∗(t, x, σ, b), Re(σ) > d.

Thus, ψ(t, x, s, b) can be considered as the integral version of the harmonic series G(t, x, s, b).
Consequently, it has the same asymptotic expansion (4.10), and its Mellin transform has the same
singular expansion (4.11).

5. Conclusions

The results presented in this paper will be helpful in understanding the Mellin transform associated
with the main evolution equations in Riemannian symmetric spaces of the non-compact type. We
proved that the wave kernel σ 7→ w(t, x, σ, b) = p̃∗(r − it, x)(σ) extends meromorphically to the entire
complex plane C with a finite number of simple poles on the real line, and we derived its singular
expansion. In addition, we stated the singular expansion of the Mellin transform σ 7→ G∗(t, x, σ, b)
of the harmonic sums G(t, x, s, b) to deduce its asymptotic expansion near s → 0 by the converse
correspondence rule.

In [1] we have studied the Mellin transform

w∗(z, x, σ, b) =
1

Γ(z)

∫ ∞

0
e−btw(t, x, σ)tz−1dt,

for z, σ ∈ C with Re(σ) > d, and a fixed element x ∈ X = G/K and a real parameter b > 0, where
w(t, x, σ) denotes the wave kernel on X = G/K defined by

w(t, x, σ) =
1
|W |

∫
a?

eit
√
|λ|2+|ρ|2(|λ|2 + |ρ|2)−σ/2ϕλ(x)|c(λ)|−2dλ,

and we have obtained similar results as in subsection 3.1. In short, we can afford to configure the two
studies, the previous and the current one, as follows:

w̃(t, x, σ) = e−btw(t, x, σ)→t→z w̃∗(z, x, σ, b),
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p̃(s − it, x) = e−bs p(s − it, x)→s→σ p̃∗(r − it, x)(σ) = w(t, x, σ, b).

Thanks to our results furnished in Theorems 3.7, 4.2, and 4.4, we can elaborate on the same ones about
singular expansion and harmonic sums. More precisely, if d = 2p + 1 is odd, we prove the following
further results about the Mellin transform w∗(z, x, σ, b):
• Singular expansion:

w̃∗(z, x, σ, b) �
cd

Γ(z)

d−3
2∑

j=0

ã j(x, σ, b)

z + ( j − d−1
2 )

, Re(σ) > d, x ∈ X = G/K.

• Harmonic sums:
H(t, x, σ, b) =

∑
k≥1

e−bktw(kt, x, σ), x ∈ X = G/K,

H∗(z, x, σ, b) = ζ(z)w∗(z, x, σ, b), Re(z) >
d − 1

2
,

Γ(z)H∗(z, x, σ, b) �
cdã d−3

2
(x, σ, b)

(z − 1)2 +
a−1

z − 1
+ cd

d−5
2∑

j=0

ζ(d−1
2 − j)ã j(x, σ, b)

z − (d−1
2 − j)

,

H(t, x, σ, b) ∼
1
t
(−cdã d−3

2
(x, σ, b) ln t + a−1) + cd

d−5
2∑

j=0

ζ(
d − 1

2
− j)ã j(x, σ, b)t j− d−1

2 , t → 0,

where a−1 = res(Γ(z)H∗(z, x, σ, b), z = 1).
We hope to return to all the questions proposed here in the special case when G is a complex

semisimple Lie group, since the Harish-Chandra c-function and the spherical function ϕλ have
elementary expressions, which can be a decisive factor to better express the coefficients α j(t, x, b).
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