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Abstract: I investigated soliton phenomena in a prominent nonlinear fractional partial differential
equation (FPDE) namely the conformable coupled Drinfeld-Sokolov-Wilson system (CCDSWS) using
a novel variant of the novel extended direct algebraic method (EDAM), namely r+mEDAM. The
conformable fractional derivatives are used to generalize the model due to the memory and hereditary
features that are inherent in the fractional dynamics. The model was initially transformed into a more
manageable system of integer-order nonlinear ordinary differential equations (NODEs) through the
implementation of complex transformation. The obtained system of NODEs is further transformed
into a system of algebraic equations, which yields, by solving new plethora of soliton solutions for
CCDSWS in the form of generalized trigonometrical, exponential hyperbolical, and rational functions.
Moreover, we employed 2D, 3D, and contour graphics to show the behavior of acquired solitons,
making it abundantly evident that the obtained solitons take the shape of kink, anti-kink, bright, dark,
bright-dark, and bell-shaped kink solitons within the framework of CCDSWS. The results confirmed
the efficiency of the presented approach in finding solitonic solutions, which in its turn expands
knowledge of nonlinear FPDEs. The aimed to theoretical and application perspectives in fractional
solitons applicable in areas such fluid mechanics, plasma physic, optical communications, etc.
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1. Introduction

Nonlinear fractional partial differential equations (NFPDEs) are commonly used in various of
scientific fields because it presents stable modeling of such processes that cannot be modeled by
linear equations [1–4]. They are used in physics to describe waves, turbulence, and behavior of
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fluids by providing an understanding of weather and particles. These equations assist engineers to
analyze heat transfer, structural forces, and currents with the aim of coming up with efficient systems.
NFPDEs are used to model many different processes in the life sciences such as infection transmission,
population dynamics, and in neural networks. They are employed in the area of environmental science
in estimations of all ecological transformations ranging from climate models to those of ecosystems.
NFPDEs are an efficient and marked means of solving different actual problems in different branches
of science, and they are the basis of modern scientific research [5–7].

Due to the limitations of numerical methods such as the Chebyshev wavelet method [8], the Elzaki
transform decomposition method [9], and many researchers seek analytical solutions when solving
NFPDEs because of challenges such as complexity of the computational requirements, errors and
high computational costs. Analytical results provide the most basic of equations that can provide a
lot of insight of the system without necessarily having to do a lot of computations. Some of these
methods include the Adomian decomposition method (ADM) [10], Laplace ADM [11], the homotopy
perturbation method [12], (G′/G)-expansion techniques [13], and the Natural transform method [14],
which has made the studies and understanding of the mathematical models represented by NFPDEs
much easier.

The study of soliton solutions, with reference to NFPDEs, has always been a concern for physicists
and applied mathematicians. In order to describe and analyze of soliton behaviors in NFPDEs, some
analytical methods have been proposed such as the (G′/G)-expansion approach [15], tan-cot function
method [16], Sardar sub-equation method [17], Kudryashov method [18], sub-equation method [19],
Khater method [20], exp-function method [21], extended direct algebraic method (EDAM) [22, 23],
and others [24–26]. Among these analytical techniques for obtaining soliton solutions, EDAM is one
of modern approaches for NFPDEs. This method involves a change of procedure in transforming
NFPDEs to NODEs to be solved via series solutions. The resulting NODE is, in turn, utilized to
derive an algebraic equation system which, upon solving, yields a large number of soliton solutions in
generalized hyperbolic, rational, exponential, and trigonometric forms to the NFPDE. The said EDAM
is quite remarkable for being highly efficient in terms of generating a larger number of soliton solution
families.

The goal of this study is to deploy the r+mEDAM to investigate and classify soliton solutions for
the CCDSWS. This model’s mathematical formulation is described as [27, 28]:

Dσ
t z + Dς

x(u
2) = 0,

Dσ
t u − Dς

x(D
ς
x(D

ς
x(u))) + 3uDσ

t z + 3zDς
xu = 0,

(1.1)

where Dς
x(·) and Dσ

t (·) are conformable fractional derivatives, and u = u(x, t) and z = z(x, t) are
functions of both spatial variable x and temporal variable t that define the amplitudes of wave
modes. Drinfeld and Sokolov demonstrated that this system is a subcategory of the four-times
reduced Kadomtsev-Petviashvili model [29] and they included it in the construction of the general
Drinfeld-Sokolov system [30]. Wilson then developed the coupled Drinfeld-Sokolov-Wilson system
(CDSWS), which is crucial in modeling dispersive phenomena in water waves and fluid mechanics.
Gravitational water flow dominated by shear stress, such as overland flows, flows through vegetation,
dam breakdowns, and floods, has been successfully modeled using the diffusive wave approximations
of the shallow water equations (SWEs). Furthermore, the nonlinear CCDSWS is used in the study of
dusty plasmas.
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Several researchers have used various methodologies to address the proposed model in the literature.
As documented in [31], Arora and Kumar used the homotopy analysis method (HAM) to approximate
solutions for the CDSWS. As described in [32], Usman et al. used the Lie Symmetry technique in
conjunction with the Jacobi elliptic function method for the CDSWS. In a similar way, Singh et al;
in [33] used an effective numerical algorithm that combined the HAM, the Sumudu transform approach,
and homotopy polynomials to approximate solutions for a nonlinear fractional CDSWS. In our study,
we intend to use the r+mEDAM to handle the reduced NODEs from CCDSWS, enabling us to arrive at
solutions in the form of rational, periodic, hyperbolic, and exponential functions. The various solutions
are kink, anti-kink, bright, dark, and bell-shaped kink waves.

The rest of the paper is structured as follows: The r+mEDAM is described in Section 2. In Section 3
the CCDSWS’s soliton solutions. Section 4 includes a discussion and several graphics, and I concludes
my research.

2. Methodology and material

In this section, I offer the definition of the conformable fractional derivative and describe the
working methodology of proposed r+mEDAM.

The definition of conformable fractional derivative

The advantages of the conformable fractional derivative over other fractional derivative operators
can be used to achieve explicit soliton solutions to NFPDEs. Interestingly, alternate formulations
of fractional derivatives do not yield the soliton solution of Eq (1.1) because they violate the chain
rule [34, 35]. The conformable fractional derivatives are incorporated into Eq (1.1). The ς-order
conformable fractional derivative operator is defined as follows [36]:

Dς
ξu(ξ) = lim

y→0

u(yξ1−ς + ξ) − u(ξ)
y

, ς ∈ (0, 1]. (2.1)

The following characteristics of this derivative are used in this study:

Dς
ξξ

m = mξm−ς, (2.2)

Dς
ξ(m1σ(ξ) ± m2ρ(ξ)) = m1Dς

ξ(σ(ξ)) ± m2Dς
ξ(ρ(ξ)), (2.3)

Dς
ξζ[τ(ξ)] = ζ′τ(τ(ξ))Dς

ξτ(ξ), (2.4)

where m, m1, m2 represent constants, whereas σ(ξ), ρ(ξ), ζ(ξ), and τ(ξ) are arbitrary differentiable
functions. Additionally, the following theorem demonstrates how conformable fractional derivative
complies with the chain rule, a crucial rule in the resolution of CKGEs.

Theorem 2.1. Let ζ(ξ) and τ(ξ) are arbitrary differentiable functions then

Dς
ξζ[τ(ξ)] = ζ′τ(τ(ξ))Dς

ξτ(ξ).

Proof. If the function τ is a constant in a neighborhood ξ0, then Dς
ξζ(τ(ξ0)) = 0. However, we make

the following assumption about non-constant function τ in the vicinity of ξ0. Here, find an y > 0 3
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τ(ξ1) , τ(ξ2) for any ξ1, ξ2 ∈ (ξ0 − y0, ξ0 + y0). Thus, since the function τ is continuous at ξ0, for ξ0 > a,
ξς0 , a (where a ≥ 0), we acquire,

Dς
ξ(ζ ◦ τ)(ξ0) = lim

y→0

ζ(τ(ξ0 + yξ−ς0 (ξ0 − a))) − ζ(τ(ξ0))

y(1 − aξ−ς0 )

= lim
y→0

ζ(τ(ξ0 + yξ−ς0 (ξ0 − a))) − ζ(τ(ξ0))

τ(ξ0 + yΩ
−ς
0 (ξ0 − a)) − τ(ξ0)

·
τ(ξ0 + yΩ

−ς
0 (ξ0 − a)) − τ(ξ0)

y(1 − aξ−ς0 )

= lim
y1→0

ζ(τ(ξ0) + y1) − ζ(τ(ξ0))
y1

·
τ(ξ0 + yξ−ς0 (ξ0 − a)) − τ(ξ0)

y(1 − aξ−ς0 )

=ζ′(τ(ξ0))Dς
ξ(τ)(ξ0).

Thus, the conformable fractional derivative satisfies the chain rule. �

3. The methodology of r+mEDAM

In this section, I introduce the r+mEDAM technique. Consider the general NFPDE given as [22]:

E(u, uDς
xu,D

σ
t u,Dς

x(D
ς
xu) . . .) = 0, (3.1)

where u = u(x, t).
To investigate Eq (3.1), we take the following steps:
(1) A variable transformation of the form u(x, t) = U(ξ) (where ξ can be expressed in a variety of

ways) is performed first, which transforms (3.1) into the following NODE:

F(U,UU′,U′′′, . . . ) = 0, (3.2)

where primes denote derivatives of U with respect to ξ in (3.2). Equation (3.2) may be integrated once
or may be integrated n times to find the constant of integration.

(2) We propose that (3.2) has the following series form solution:

U(ξ) =

N∑
i=−N

ki(r + Ψ(ξ))i. (3.3)

The parameters ki (where i = −N, . . . ,N) are estimated, and Ψ(ξ) satisfies the given ODE:

Ψ′(ξ) = ln(%)( j + kΨ(ξ) + l(Ψ(ξ))2), (3.4)

where % , 0, 1 and j, k, l are constants.
(3) In Eq (3.3), we can achieve a positive integer N through the achievement of a symbiotic balance

between the maximum nonlinear term and the maximum order derivative.
(4) To build a polynomial expression in Ψ(ξ) It is possible to substitute the found equation with

respect to x for the equation received as a result of integration of (3.2) for Ψ(ξ), and then to arrange
all the terms of Ψ(ξ) in the same manner. The coefficients of this derivation polynomial are then set to
zero, and a system of nonlinear algebraic equations in ki (i = N, . . . ,N) and other related parameters
are obtained.
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(5) This system of these nonlinear algebraic equations is solved using the Maple software.
(6) Accounting for the unknown parameters and substituting them into Eq (3.3) together with the

Ψ(ξ) (the general solution of (3.4)) yields the soliton solutions for Eq (3.1). Using the generic solution
of Eq (4.1), we can obtain the families of soliton solutions shown below:

Family 1. For H < 0, l , 0:

Ψ1(ξ) = −
k
2l

+

√
−H tan%

(
1
2

√
−Hξ

)
2l

,

Ψ2(ξ) = −
k
2l
−

√
−H cot%

(
1
2

√
−Hξ

)
2l

,

Ψ3(ξ) = −
k
2l

+

√
−H

(
tan%

(√
−Hξ

)
±

(√
pq sec%

(√
−Hξ

)))
2l

,

Ψ4(ξ) = −
k
2l
−

√
−H

(
cot%

(√
−Hξ

)
±

(√
pq csc%

(√
−Hξ

)))
2l

,

and

Ψ5(ξ) = −
k
2l

+

√
−H

(
tan%

(
1
4

√
−Hξ

)
− cot%

(
1
4

√
−Hξ

))
4c

.

Family 2. For H > 0, l , 0:

Ψ6(ξ) = −
k
2l
−

√
H tanh%

(
1
2

√
Hξ

)
2l

,

Ψ7(ξ) = −
k
2l
−

√
H coth%

(
1
2

√
Hξ

)
2l

,

Ψ8(ξ) = −
k
2l
−

√
H

(
tanh%

(√
Hξ

)
±

(√
pqsech%

(√
Hξ

)))
2l

,

Ψ9(ξ) = −
k
2l
−

√
H

(
coth%

(√
Hξ

)
±

(√
pqcsch%

(√
Hξ

)))
2l

,

and

Ψ10(ξ) = −
k
2l
−

√
H

(
tanh%

(
1
4

√
Hξ

)
− coth%

(
1
4

√
Hξ

))
4l

.

Family 3. For jl > 0 and k = 0:

Ψ11(ξ) =

√
j
l

tan%
( √

jlξ
)
,

Ψ12(ξ) = −

√
j
l

cot%
( √

jlξ
)
,

Ψ13(ξ) =

√
j
l

(
tan%

(
2

√
jlξ

)
±

(√
pq sec%

(
2

√
jlξ

)))
,
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Ψ14(ξ) = −

√
j
l

(
cot%

(
2

√
jlξ

)
±

(√
pq csc%

(
2

√
jlξ

)))
,

and

Ψ15(ξ) =
1
2

√
j
l

(
tan%

(
1
2

√
jlξ

)
− cot%

(
1
2

√
jlξ

))
.

Family 4. For jl < 0 and k = 0:

Ψ16(ξ) = −

√
−

j
l

tanh%
( √
− jlξ

)
,

Ψ17(ξ) = −

√
−

j
l

coth%
( √
− jlξ

)
,

Ψ18(ξ) = −

√
−

j
l

(
tanh%

(
2

√
− jlξ

)
±

(
i
√

pqsech%
(
2

√
− jlξ

)))
,

Ψ19(ξ) = −

√
−

j
l

(
coth%

(
2

√
− jlξ

)
±

(√
pqcsch%

(
2

√
− jlξ

)))
,

and

Ψ20(ξ) = −
1
2

√
−

j
l

(
tanh%

(
1
2

√
− jlξ

)
+ coth%

(
1
2

√
− jlξ

))
.

Family 5. For l = j and k = 0:
Ψ21(ξ) = tan% ( jξ) ,

Ψ22(ξ) = − cot% ( jξ) ,

Ψ23(ξ) = tan% (2 jξ) ±
(√

pq sec% (2 jξ)
)
,

Ψ24(ξ) = − cot% (2 jξ) ±
(√

pq csc% (2 jξ)
)
,

and

Ψ25(ξ) =
1
2

tan%

(
1
2

jξ
)
−

1
2

cot%

(
1
2

jξ
)
.

Family 6. For l = − j and k = 0:
Ψ26(ξ) = − tanh% ( jξ) ,

Ψ27(ξ) = − coth% ( jξ) ,

Ψ28(ξ) = − tanh% (2 jξ) ±
(
i
√

pqsech% (2 jξ)
)
,

Ψ29(ξ) = − coth% (2 jξ) ±
(√

pqcsch% (2 jξ)
)
,

and

Ψ30(ξ) = −
1
2

tanh%

(
1
2

jξ
)
−

1
2

coth%

(
1
2

jξ
)
.
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Family 7. For J = 0:

Ψ31(ξ) = −2
j (kξ ln % + 2)

k2ξ ln %
.

Family 8. For k = $, j = s$(s , 0) and l = 0:

Ψ32(ξ) = %$ξ − s.

Family 9. For k = l = 0:
Ψ33(ξ) = jξ ln(%).

Family 10. For k = j = 0:

Ψ34(ξ) = −
1

lξ ln(%)
.

Family 11. For j = 0, k , 0 and l , 0:

Ψ35(ξ) = −
pk

l
(
cosh% (kξ) − sinh% (kξ) + p

) ,
and

Ψ36(ξ) = −
k
(
cosh% (kξ) + sinh% (kξ)

)
l
(
cosh% (kξ) + sinh% (kξ) + q

) .
Family 12. For k = $, l = s$(s , 0) and j = 0:

Ψ37(ξ) =
p%ξ$

p − sq%ξ$
.

Where q, p > 0 and are known as a deformation parameter, and H = k2 − 4 jl. The following is a
description of the trigonometric and hyperbolic functions that are generalized:

sin% (ξ) =
pΨiξ − qΨ−iξ

2i
, cos% (ξ) =

pΨiξ + qΨ−iξ

2
,

sec% (ξ) =
1

cos% (ξ)
, csc% (ξ) =

1
sin% (ξ)

,

tan% (ξ) =
sin% (ξ)
cos% (ξ)

, cot% (ξ) =
cos% (ξ)
sin% (ξ)

.

Similarly,

sinh% (ξ) =
pΨξ − qΨ−ξ

2
, cosh% (ξ) =

pΨξ + qΨ−ξ

2
,

sech% (ξ) =
1

cosh% (ξ)
, csch% (ξ) =

1
sinh% (ξ)

,

tanh% (ξ) =
sinh% (ξ)
cosh% (ξ)

, coth% (ξ) =
cosh% (ξ)
sinh% (ξ)

.
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4. Execution of r+mEDAM

In this section, we look at soliton solutions for CCDSWS with r+mEDAM. We begin by applying
the wave transformation as follows:

u(x, t) = U(ξ), z(x, t) = Z(ξ), ξ = κ
xς

ς
− ω

tσ

σ
, (4.1)

to achieve the soliton result for (1.1). The subsequent scheme of nonlinear ordinary differential
equations is obtained by transforming (1.1)

− ωZ′ + κ(U2)′ = 0,
− ωU′ − κ3U′′′ + 3κ(UZ′ + ZU′) = 0.

(4.2)

Integrating both equations in (4.2) with respect to ξ while keeping the integration constant equal to
zero yields:

Z =
κ

ω
U2. (4.3)

Putting (4.3) in the first part of (4.2) yields the single NODE shown below:

κ3ωU′′ + ω2U − 3κ2U3 = 0. (4.4)

Soliton solutions for CCDSWS

Establishing a homogeneous balance between the highest order derivative U′′ and the nonlinear
term U3 yields N + 2 = 3N, implying that N = 1. We obtain the following series type of result for (4.4)
by substituting N = 1 in (3.3):

U(ξ) =

1∑
i=−1

ki(r + Ψ(ξ))i = k−1(r + Ψ(ξ))−1 + k0 + k1(r + Ψ(ξ))1. (4.5)

Substituting (4.5) into (4.4) and grouping together the terms containing the same powers of Ψ(ξ) we
obtain the expression Ψ(ξ).A set of nonlinear algebraic equations is obtained by setting each coefficient
equal to zero. Applying Maple to investigate the scheme yields the following two cases of results:

Case 1.

k−1 =

√
H (ln (%))2 κ2

(
j − rk + r2l

)
√

3
, k0 =

√
H (−2 lr + k) (ln (%))2 κ2

2
√

3
,

k1 = 0, κ = κ, ω =
κ3 (ln (%))2 H

2
.

(4.6)

Case 2.

k−1 = 0, k0 =
k1 (−2 lr + k)

2l
, k1 = k1, κ =

k1
4√3

4√
Λ ln (%) l

, ω =
3

3
4

4√
Λk1

2 ln (%) l
. (4.7)
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Where Λ = k1
2H
l2 .

Taking into account case 1 and using (4.1), (4.3), and (4.5) together with the corresponding solution
of (3.4), we construct the following families of soliton results for (1.1):

Family 1.1. When H < 0, l , 0:

u1,1(x, t) =
1
6

√
3
√

H (ln (%))2 κ2
(
−H + (−2 lr + k)

√
−H tan%

(
1
2

√
−Hξ

))
2 lr − k +

√
−H tan%

(
1
2

√
−Hξ

) ,

z1,1(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2
(
−H + (−2 lr + k)

√
−H tan%

(
1
2

√
−Hξ

))
2 lr − k +

√
−H tan%

(
1
2

√
−Hξ

) )2

,

(4.8)

u1,2(x, t) =
1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
−H cot%

(
1
2

√
−Hξ

))
−2 lr + k +

√
−H cot%

(
1
2

√
−Hξ

) ,

z1,2(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
−H cot%

(
1
2

√
−Hξ

))
−2 lr + k +

√
−H cot%

(
1
2

√
−Hξ

) )2

,

(4.9)

u1,3(x, t) =
1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
−H cot%

(
1
2

√
−Hξ

))
−2 lr + k +

√
−H cot%

(
1
2

√
−Hξ

) ,

z1,3(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
−H cot%

(
1
2

√
−Hξ

))
−2 lr + k +

√
−H cot%

(
1
2

√
−Hξ

) )2

,

(4.10)

u1,4(x, t) =

1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
2

√
−H(cot%(

√
−Hξ)+

√
pq csc%(

√
−Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2,

z1,4(x, t) =
κ

ω

( 1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
2

√
−H(cot%(

√
−Hξ)+

√
pq csc%(

√
−Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2

)2

,

(4.11)

and

u1,5(x, t) =

1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l + 1

4

√
−H(tan%( 1

4

√
−Hξ)−cot%( 1

4

√
−Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2,

z1,5(x, t) =
κ

ω

( 1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l + 1

4

√
−H(tan%( 1

4

√
−Hξ)−cot%( 1

4

√
−Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2

)2

.

(4.12)
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Family 1.2. When H > 0, l , 0:

u1,6(x, t) =
1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
H tanh%

(
1
2

√
Hξ

))
−2 lr + k +

√
H tanh%

(
1
2

√
Hξ

) ,

z1,6(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
H tanh%

(
1
2

√
Hξ

))
−2 lr + k +

√
H tanh%

(
1
2

√
Hξ

) )2

,

(4.13)

u1,7(x, t) =
1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
H coth%

(
1
2

√
Hξ

))
−2 lr + k +

√
H coth%

(
1
2

√
Hξ

) ,

z1,7(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2
(
H + (−2 lr + k)

√
H coth%

(
1
2

√
Hξ

))
−2 lr + k +

√
H coth%

(
1
2

√
Hξ

) )2

,

(4.14)

u1,8(x, t) =

1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
2

√
H(tanh%(

√
Hξ)+

√
−pqsech%(

√
Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2,

z1,8(x, t) =
κ

ω

( 1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
2

√
H(tanh%(

√
Hξ)+

√
−pqsech%(

√
Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2

)2

,

(4.15)

u1,9(x, t) =

1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
2

√
H(coth%(

√
Hξ)+

√
pqcsch%(

√
Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2,

z1,9(x, t) =
κ

ω

( 1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
2

√
H(coth%(

√
Hξ)+

√
pqcsch%(

√
Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2

)2

,

(4.16)

and

u1,10(x, t) =

1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
4

√
H(tanh%( 1

4

√
Hξ)−coth%( 1

4

√
Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2,

z1,10(x, t) =
κ

ω

( 1
√

3

√
H (ln (%))2 κ2

(
j − rk + r2l

)
(
r − 1

2
k
l −

1
4

√
H(tanh%( 1

4

√
Hξ)−coth%( 1

4

√
Hξ))

l

) +
1

2
√

3

√
H (−2 lr + k) (ln (%))2 κ2

)2

.

(4.17)

Family 1.3. When jl > 0 and k = 0:

u1,11(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
− j + lr

√
j
l tan%

( √
l jξ

))
(
r +

√
j
l tan%

( √
l jξ

)) ,

z1,11(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
− j + lr

√
j
l tan%

( √
l jξ

))
(
r +

√
j
l tan%

( √
l jξ

)) )2

,

(4.18)
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u1,12(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
j + lr

√
j
l cot%

( √
l jξ

))
(
−r +

√
j
l cot%

( √
l jξ

)) ,

z1,12(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
j + lr

√
j
l cot%

( √
l jξ

))
(
−r +

√
j
l cot%

( √
l jξ

)) )2

,

(4.19)

u1,13(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
− j cos%

(
2

√
l jξ

)
+ lr

√
j
l sin%

(
2

√
l jξ

)
+ lr

√
j
l
√

pq
)

(
r cos%

(
2

√
l jξ

)
+

√
j
l sin%

(
2

√
l jξ

)
+

√
j
l
√

pq
) ,

z1,13(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
− j cos%

(
2

√
l jξ

)
+ lr

√
j
l sin%

(
2

√
l jξ

)
+ lr

√
j
l
√

pq
)

(
r cos%

(
2

√
l jξ

)
+

√
j
l sin%

(
2

√
l jξ

)
+

√
j
l
√

pq
) )2

,

(4.20)

u1,14(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
j sin%

(
2

√
l jξ

)
+ lr

√
j
l cos%

(
2

√
l jξ

)
+ lr

√
j
l
√

pq
)

(
−r sin%

(
2

√
l jξ

)
+

√
j
l cos%

(
2

√
l jξ

)
+

√
j
l
√

pq
) ,

z1,14(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
j sin%

(
2

√
l jξ

)
+ lr

√
j
l cos%

(
2

√
l jξ

)
+ lr

√
j
l
√

pq
)

(
−r sin%

(
2

√
l jξ

)
+

√
j
l cos%

(
2

√
l jξ

)
+

√
j
l
√

pq
) )2

,

(4.21)

and

u1,15(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
2 j cos%

(
1
2

√
l jξ

)
sin%

(
1
2

√
l jξ

)
− lr

√
j
l + 2 lr

√
j
l

(
cos%

(
1
2

√
l jξ

))2
)

(
−2 r cos%

(
1
2

√
l jξ

)
sin%

(
1
2

√
l jξ

)
−

√
j
l + 2

√
j
l

(
cos%

(
1
2

√
l jξ

))2
) ,

z1,15(x, t) =
κ

ω

( √H (ln (%))2 κ2
(
2 j cos%

(
1
2

√
l jξ

)
sin%

(
1
2

√
l jξ

)
− lr

√
j
l + 2 lr

√
j
l

(
cos%

(
1
2

√
l jξ

))2
)

−
√

3
(
−2 r cos%

(
1
2

√
l jξ

)
sin%

(
1
2

√
l jξ

)
−

√
j
l + 2

√
j
l

(
cos%

(
1
2

√
l jξ

))2
) )2

.

(4.22)

Family 1.4. When jl > 0 and k = 0:

u1,16(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
j + lr

√
−

j
l tanh%

( √
−l jξ

))
(
−r +

√
−

j
l tanh%

( √
−l jξ

)) ,

z1,16(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
j + lr

√
−

j
l tanh%

( √
−l jξ

))
(
−r +

√
−

j
l tanh%

( √
−l jξ

)) )2

,

(4.23)
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u1,17(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
j + lr

√
−

j
l coth%

( √
−l jξ

))
(
−r +

√
−

j
l coth%

( √
−l jξ

)) ,

z1,17(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
j + lr

√
−

j
l coth%

( √
−l jξ

))
(
−r +

√
−

j
l coth%

( √
−l jξ

)) )2

,

(4.24)

u1,18(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
j cosh%

(
2

√
−l jξ

)
+ lr

√
−

j
l sinh%

(
2

√
−l jξ

)
+ lr

√
−

j
l

√
−pq

)
(
−r cosh%

(
2

√
−l jξ

)
+

√
−

j
l sinh%

(
2

√
−l jξ

)
+

√
−

j
l

√
−pq

) ,

z1,18(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
j cosh%

(
2

√
−l jξ

)
+ lr

√
−

j
l sinh%

(
2

√
−l jξ

)
+ lr

√
−

j
l

√
−pq

)
(
−r cosh%

(
2

√
−l jξ

)
+

√
−

j
l sinh%

(
2

√
−l jξ

)
+

√
−

j
l

√
−pq

) )2

,

(4.25)

u1,19(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
j sinh%

(
2

√
−l jξ

)
+ lr

√
−

j
l cosh%

(
2

√
−l jξ

)
+ lr

√
−

j
l
√

pq
)

(
−r sinh%

(
2

√
−l jξ

)
+

√
−

j
l cosh%

(
2

√
−l jξ

)
+

√
−

j
l
√

pq
) ,

z1,19(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
j sinh%

(
2

√
−l jξ

)
+ lr

√
−

j
l cosh%

(
2

√
−l jξ

)
+ lr

√
−

j
l
√

pq
)

(
−r sinh%

(
2

√
−l jξ

)
+

√
−

j
l cosh%

(
2

√
−l jξ

)
+

√
−

j
l
√

pq
) )2

,

(4.26)

and

u1,20(x, t) =

− 1
√

3

√
H (ln (%))2 κ2

(
2 jΩ + 2 lr

√
−

j
l

(
cosh%

(
1
2

√
−l jξ

))2
− lr

√
−

j
l

)
(
−2 rΩ + 2

√
−

j
l

(
cosh%

(
1
2

√
−l jξ

))2
−

√
−

j
l

) ,

z1,20(x, t) =
κ

ω

(− 1
√

3

√
H (ln (%))2 κ2

(
2 jΩ + 2 lr

√
−

j
l

(
cosh%

(
1
2

√
−l jξ

))2
− lr

√
−

j
l

)
(
−2 rΩ + 2

√
−

j
l

(
cosh%

(
1
2

√
−l jξ

))2
−

√
−

j
l

) )2

,

(4.27)

where

Ω = cosh%

(
1
2

√
−l jξ

)
sinh%

(
1
2

√
−l jξ

)
.

Family 1.5. When l = j and k = 0:

u1,21(x, t) = −
1
√

3

√
H (ln (%))2 κ2 j

(
−1 + r tan% ( jξ)

)
r + tan% ( jξ)

,

z1,21(x, t) =
κ

ω

(
−

1
√

3

√
H (ln (%))2 κ2 j

(
−1 + r tan% ( jξ)

)
r + tan% ( jξ)

)2

,

(4.28)
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u1,22(x, t) = −
1
3

√
3
√

H (ln (%))2 κ2 j
(
1 + r cot% ( jξ)

)
−r + cot% ( jξ)

,

z1,22(x, t) =
κ

ω

(
−

1
3

√
3
√

H (ln (%))2 κ2 j
(
1 + r cot% ( jξ)

)
−r + cot% ( jξ)

)2

,

(4.29)

u1,23(x, t) = −
1
3

√
3
√

H (ln (%))2 κ2 j
(
− cos% (2 jξ) + r sin% (2 jξ) + r

√
pq

)
r cos% (2 jξ) + sin% (2 jξ) +

√
pq

,

z1,23(x, t) =
κ

ω

(
−

1
3

√
3
√

H (ln (%))2 κ2 j
(
− cos% (2 jξ) + r sin% (2 jξ) + r

√
pq

)
r cos% (2 jξ) + sin% (2 jξ) +

√
pq

)2

,

(4.30)

u1,24(x, t) = −
1
3

√
3
√

H (ln (%))2 κ2 j
(
sin% (2 jξ) + r cos% (2 jξ) + r

√
pq

)
−r sin% (2 jξ) + cos% (2 jξ) +

√
pq

,

z1,24(x, t) =
κ

ω

(
−

1
3

√
3
√

H (ln (%))2 κ2 j
(
sin% (2 jξ) + r cos% (2 jξ) + r

√
pq

)
−r sin% (2 jξ) + cos% (2 jξ) +

√
pq

)2

,

(4.31)

and

u1,25(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
(
2 cos%

(
1
2 jξ

)
sin%

(
1
2 jξ

)
− r + 2 r

(
cos%

(
1
2 jξ

))2
)

2 r cos%
(

1
2 jξ

)
sin%

(
1
2 jξ

)
+ 1 − 2

(
cos%

(
1
2 jξ

))2 ,

z1,25(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
(
2 cos%

(
1
2 jξ

)
sin%

(
1
2 jξ

)
− r + 2 r

(
cos%

(
1
2 jξ

))2
)

2 r cos%
(

1
2 jξ

)
sin%

(
1
2 jξ

)
+ 1 − 2

(
cos%

(
1
2 jξ

))2

)2

.

(4.32)

Family 1.6. When l = − j and k = 0:

u1,26(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
(
−1 + r tanh% ( jξ)

)
−r + tanh% ( jξ)

,

z1,26(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
(
−1 + r tanh% ( jξ)

)
−r + tanh% ( jξ)

)2

,

(4.33)

u1,27(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
(
−1 + r coth% ( jξ)

)
−r + coth% ( jξ)

,

z1,27(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
(
−1 + r coth% ( jξ)

)
−r + coth% ( jξ)

)2

,

(4.34)

u1,28(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
(
− cosh% (2 jξ) + r sinh% (2 jξ) + r

√
−pq

)
−r cosh% (2 jξ) + sinh% (2 jξ) +

√
−pq

,

z1,28(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
(
− cosh% (2 jξ) + r sinh% (2 jξ) + r

√
−pq

)
−r cosh% (2 jξ) + sinh% (2 jξ) +

√
−pq

)2

,
(4.35)
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u1,29(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
(
− sinh% (2 jξ) + r cosh% (2 jξ) + r

√
pq

)
−r sinh% (2 jξ) + cosh% (2 jξ) +

√
pq

,

z1,29(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
(
− sinh% (2 jξ) + r cosh% (2 jξ) + r

√
pq

)
−r sinh% (2 jξ) + cosh% (2 jξ) +

√
pq

)2

,

(4.36)

and

u1,30(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
(
2 cosh%

(
1
2 jξ

)
sinh%

(
1
2 jξ

)
− 2 r

(
cosh%

(
1
2 jξ

))2
+ r

)
2 r cosh%

(
1
2 jξ

)
sinh%

(
1
2 jξ

)
− 2

(
cosh%

(
1
2 jξ

))2
+ 1

,

z1,30(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
(
2 cosh%

(
1
2 jξ

)
sinh%

(
1
2 jξ

)
− 2 r

(
cosh%

(
1
2 jξ

))2
+ r

)
2 r cosh%

(
1
2 jξ

)
sinh%

(
1
2 jξ

)
− 2

(
cosh%

(
1
2 jξ

))2
+ 1

)2

.

(4.37)

Family 1.7. When H = 0:

u1,31(x, t) =
1
6

√
3
√

H (ln (%))2 κ2
(
2 k2ξ ln (%) j − k3ξ ln (%) r + 4 lr j (B) − 2 k j (B)

)
rk2ξ ln (%) − 2 j (B)

,

z1,31(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2
(
2 k2ξ ln (%) j − k3ξ ln (%) r + 4 lr j (B) − 2 k j (B)

)
rk2ξ ln (%) − 2 j (B)

)2

,

(4.38)

where B = kξ ln (%) + 2.

Family 1.8. When k = $, j = s$(s , 0) and l = 0:

u1,32(x, t) =
1
6

√
3
√

H$ (ln (%))2 κ2
(
s − r + %$ξ

)
r + %$ξ − s

,

z1,32(x, t) =
κ

ω

(1
6

√
3
√

H$ (ln (%))2 κ2
(
s − r + %$ξ

)
r + %$ξ − s

)2

.

(4.39)

Family 1.9. When k = l = 0:

u1,33(x, t) =
1
3

√
3
√

H (ln (%))2 κ2 j
r + jξ ln (%)

,

z1,33(x, t) =
κ

ω

(1
3

√
3
√

H (ln (%))2 κ2 j
r + jξ ln (%)

)2

.

(4.40)

Family 1.10. When j = k = 0:

u1,34(x, t) =
1
3

√
3
√

Hlr (ln (%))2 κ2

rlξ ln (%) − 1
,

z1,34(x, t) =
κ

ω

(1
3

√
3
√

Hlr (ln (%))2 κ2

rlξ ln (%) − 1

)2

.

(4.41)
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Family 1.11. When j = 0, k , 0 and l , 0:

u1,35(x, t) = −
1
6

√
3
√

H (ln (%))2 κ2k
(
lr cosh% (kξ) − lr sinh% (kξ) − lrp + pk

)
lr cosh% (kξ) − lr sinh% (kξ) + lrp − pk

,

z1,35(x, t) =
κ

ω

(
−

1
6

√
3
√

H (ln (%))2 κ2k
(
lr cosh% (kξ) − lr sinh% (kξ) − lrp + pk

)
lr cosh% (kξ) − lr sinh% (kξ) + lrp − pk

)2

,

(4.42)

and

u1,36(x, t) =
1
6

√
3
√

H (ln (%))2 κ2k
(
lrq + (k − lr) cosh% (kξ) + (k − lr) sinh% (kξ)

)
−lrq + (k − lr) cosh% (kξ) + (k − lr) sinh% (kξ)

,

z1,36(x, t) =
κ

ω

(1
6

√
3
√

H (ln (%))2 κ2k
(
lrq + (k − lr) cosh% (kξ) + (k − lr) sinh% (kξ)

)
−lrq + (k − lr) cosh% (kξ) + (k − lr) sinh% (kξ)

)2

.

(4.43)

Family 1.12. When k = $, l = s$(s , 0) and j = 0:

u1,37(x, t) = −
1
6

√
3
√

H (ln (%))2 κ2$
(
rp − rs%$ξ + 2 rsp%$ξ − p%$ξ

)
rp − rs%$ξ + p%$ξ

,

z1,37(x, t) =
κ

ω

(
−

1
6

√
3
√

H (ln (%))2 κ2$
(
rp − rs%$ξ + 2 rsp%$ξ − p%$ξ

)
rp − rs%$ξ + p%$ξ

)2

,

(4.44)

where

ξ = κ
xς

ς
−
κ3 (ln (%))2 H

2
tσ

σ
.

Now, taking into account case 2 and utilizing (4.1), (4.3), and (4.5) together with the corresponding
solution of (3.4), we construct the following families of soliton solutions for (1.1).

Family 2.1. When H < 0, l , 0:

u2,1(x, t) =
1
2

k1
√
−H tan%

(
1
2

√
−Hξ

)
l

,

z2,1(x, t) =
κ

ω

(1
2

k1
√
−H tan%

(
1
2

√
−Hξ

)
l

)2

,

(4.45)

u2,2(x, t) = −
1
2

k1
√
−H cot%

(
1
2

√
−Hξ

)
l

,

z2,2(x, t) =
κ

ω

(
−

1
2

k1
√
−H cot%

(
1
2

√
−Hξ

)
l

)2

,

(4.46)

u2,3(x, t) =
1
2

k1
√
−H

(
sin%

(√
−Hξ

)
+
√

pq
)

cos%
(√
−Hξ

)
l

,

z2,3(x, t) =
κ

ω

(1
2

k1
√
−H

(
sin%

(√
−Hξ

)
+
√

pq
)

cos%
(√
−Hξ

)
l

)2

,

(4.47)
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u2,4(x, t) = −
1
2

k1
√
−H

(
cos%

(√
−Hξ

)
+
√

pq
)

sin%
(√
−Hξ

)
l

,

z2,4(x, t) =
κ

ω

(
−

1
2

k1
√
−H

(
cos%

(√
−Hξ

)
+
√

pq
)

sin%
(√
−Hξ

)
l

)2

,

(4.48)

and

u2,5(x, t) = −
1
4

k1
√
−H

(
−1 + 2

(
cos%

(
1
4

√
−Hξ

))2
)

cos%
(

1
4

√
−Hξ

)
sin%

(
1
4

√
−Hξ

)
l
,

z2,5(x, t) =
κ

ω

(
−

1
4

k1
√
−H

(
−1 + 2

(
cos%

(
1
4

√
−Hξ

))2
)

cos%
(

1
4

√
−Hξ

)
sin%

(
1
4

√
−Hξ

)
l

)2

.

(4.49)

Family 2.2. When H > 0, l , 0:

u2,6(x, t) = −
1
2

k1
√

H tanh%
(

1
2

√
Hξ

)
l

,

z2,6(x, t) =
κ

ω

(
−

1
2

k1
√

H tanh%
(

1
2

√
Hξ

)
l

)2

,

(4.50)

u2,7(x, t) = −
1
2

k1
√

H coth%
(

1
2

√
Hξ

)
l

,

z2,7(x, t) =
κ

ω

(
−

1
2

k1
√

H coth%
(

1
2

√
Hξ

)
l

)2

,

(4.51)

u2,8(x, t) = −
1
2

k1
√

H
(
sinh%

(√
Hξ

)
+
√
−pq

)
cosh%

(√
Hξ

)
l

,

z2,8(x, t) =
κ

ω

(
−

1
2

k1
√

H
(
sinh%

(√
Hξ

)
+
√
−pq

)
cosh%

(√
Hξ

)
l

)2

,

(4.52)

u2,9(x, t) = −
1
2

k1
√

H
(
cosh%

(√
Hξ

)
+
√

pq
)

sinh%
(√

Hξ
)

l
,

z2,9(x, t) =
κ

ω

(
−

1
2

k1
√

H
(
cosh%

(√
Hξ

)
+
√

pq
)

sinh%
(√

Hξ
)

l

)2

,

(4.53)

and

u2,10(x, t) =
1
4

k1
√

H

cosh%
(

1
4

√
Hξ

)
sinh%

(
1
4

√
Hξ

)
l
,

z2,10(x, t) =
κ

ω

(1
4

k1
√

H

cosh%
(

1
4

√
Hξ

)
sinh%

(
1
4

√
Hξ

)
l

)2

.

(4.54)
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Family 2.3. When jl > 0 and k = 0:

u2,11(x, t) = k1

√
j
l

tan%
( √

jlξ
)
,

z2,11(x, t) =
κ

ω

(
k1

√
j
l

tan%
( √

jlξ
) )2

,

(4.55)

u2,12(x, t) = −k1

√
j
l

cot%
( √

jlξ
)
,

z2,12(x, t) =
κ

ω

(
− k1

√
j
l

cot%
( √

jlξ
) )2

,

(4.56)

u2,13(x, t) =
k1

√
j
l

(
sin%

(
2

√
jlξ

)
+
√

pq
)

(
cos%

(
2

√
jlξ

)) ,

z2,13(x, t) =
κ

ω

(k1

√
j
l

(
sin%

(
2

√
jlξ

)
+
√

pq
)

(
cos%

(
2

√
jlξ

)) )2

,

(4.57)

u2,14(x, t) =
−k1

√
j
l

(
cos%

(
2

√
jlξ

)
+
√

pq
)

(
sin%

(
2

√
jlξ

)) ,

z2,14(x, t) =
κ

ω

(−k1

√
j
l

(
cos%

(
2

√
jlξ

)
+
√

pq
)

(
sin%

(
2

√
jlξ

)) )2

,

(4.58)

and

u2,15(x, t) =

−1
2 k1

√
j
l

(
−1 + 2

(
cos%

(
1
2

√
jlξ

))2
)

(
cos%

(
1
2

√
jlξ

)) (
sin%

(
1
2

√
jlξ

)) ,

z2,15(x, t) =
κ

ω

(−1
2 k1

√
j
l

(
−1 + 2

(
cos%

(
1
2

√
jlξ

))2
)

(
cos%

(
1
2

√
jlξ

)) (
sin%

(
1
2

√
jlξ

)) )2

.

(4.59)

Family 2.4. When jl > 0 and k = 0:

u2,16(x, t) = −k1

√
−

j
l

tanh%
( √
− jlξ

)
,

z2,16(x, t) =
κ

ω

(
− k1

√
−

j
l

tanh%
( √
− jlξ

) )2

,

(4.60)

u2,17(x, t) = −k1

√
−

j
l

coth%
( √
− jlξ

)
,

z2,17(x, t) =
κ

ω

(
− k1

√
−

j
l

coth%
( √
− jlξ

) )2

,

(4.61)
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u2,18(x, t) =
−k1

√
−

j
l

(
sinh%

(
2

√
− jlξ

)
+
√
−pq

)
(
cosh%

(
2

√
− jlξ

)) ,

z2,18(x, t) =
κ

ω

(−k1

√
−

j
l

(
sinh%

(
2

√
− jlξ

)
+
√
−pq

)
(
cosh%

(
2

√
− jlξ

)) )2

,

(4.62)

u2,19(x, t) =
−k1

√
−

j
l

(
cosh%

(
2

√
− jlξ

)
+
√

pq
)

(
sinh%

(
2

√
− jlξ

)) ,

z2,19(x, t) =
κ

ω

(−k1

√
−

j
l

(
cosh%

(
2

√
− jlξ

)
+
√

pq
)

(
sinh%

(
2

√
− jlξ

)) )2

,

(4.63)

and

u2,20(x, t) =

−1
2 k1

√
−

j
l

(
2

(
cosh%

(
1/2

√
− jlξ

))2
− 1

)
(
cosh%

(
1
2

√
− jlξ

)) (
sinh%

(
1
2

√
− jlξ

)) ,

z2,20(x, t) =
κ

ω

(−1
2 k1

√
−

j
l

(
2

(
cosh%

(
1/2

√
− jlξ

))2
− 1

)
(
cosh%

(
1
2

√
− jlξ

)) (
sinh%

(
1
2

√
− jlξ

)) )2

.

(4.64)

Family 2.5. When l = j and k = 0:

u2,21(x, t) = k1 tan% ( jξ) ,

z2,21(x, t) =
κ

ω

(
k1 tan% ( jξ)

)2

,
(4.65)

u2,22(x, t) = −k1 cot% ( jξ) ,

z2,22(x, t) =
κ

ω

(
− k1 cot% ( jξ)

)2

,
(4.66)

u2,23(x, t) =
k1

(
sin% (2 jξ) +

√
pq

)
cos% (2 jξ)

,

z2,23(x, t) =
κ

ω

(k1

(
sin% (2 jξ) +

√
pq

)
cos% (2 jξ)

)2

,

(4.67)

u2,24(x, t) = −
k1

(
cos% (2 jξ) +

√
pq

)
sin% (2 jξ)

,

z2,24(x, t) =
κ

ω

(
−

k1

(
cos% (2 jξ) +

√
pq

)
sin% (2 jξ)

)2

,

(4.68)
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and

u2,25(x, t) = −
1
2

k1

(
−1 + 2

(
cos%

(
1
2 jξ

))2
)

cos%
(

1
2 jξ

)
sin%

(
1
2 jξ

) ,

z2,25(x, t) =
κ

ω

(
−

1
2

k1

(
−1 + 2

(
cos%

(
1
2 jξ

))2
)

cos%
(

1
2 jξ

)
sin%

(
1
2 jξ

) )2

.

(4.69)

Family 2.6. When l = − j and k = 0:

u2,26(x, t) = −k1 tanh% ( jξ) , z2,26(x, t) =
κ

ω

(
− k1 tanh% ( jξ)

)2

, (4.70)

u2,27(x, t) = −k1 coth% ( jξ) , z2,27(x, t) =
κ

ω

(
− k1 coth% ( jξ)

)2

, (4.71)

u2,28(x, t) = −
k1

(
sinh% (2 jξ) +

√
−pq

)
cosh% (2 jξ)

,

z2,28(x, t) =
κ

ω

(
−

k1

(
sinh% (2 jξ) +

√
−pq

)
cosh% (2 jξ)

)2

,
(4.72)

u2,29(x, t) = −
k1

(
cosh% (2 jξ) +

√
pq

)
sinh% (2 jξ)

,

z2,29(x, t) =
κ

ω

(
−

k1

(
cosh% (2 jξ) +

√
pq

)
sinh% (2 jξ)

)2

,

(4.73)

and

u2,30(x, t) = −
1
2

k1

(
2

(
cosh%

(
1
2 jξ

))2
− 1

)
cosh%

(
1
2 jξ

)
sinh%

(
1
2 jξ

) ,
z2,30(x, t) =

κ

ω

(
−

1
2

k1

(
2

(
cosh%

(
1
2 jξ

))2
− 1

)
cosh%

(
1
2 jξ

)
sinh%

(
1
2 jξ

) )2

.

(4.74)

Family 2.7. When j = k = 0:

u2,31(x, t) = −
k1

lξ ln (%)
, z2,31(x, t) =

κ

ω

(
−

k1

lξ ln (%)

)2

. (4.75)

Family 2.8. When j = 0, k , 0 and l , 0:

u2,32(x, t) =
1
2

k1k
(
cosh% (kξ) − sinh% (kξ) − p

)
l
(
cosh% (kξ) − sinh% (kξ) + p

) ,

z2,32(x, t) =
κ

ω

(1
2

k1k
(
cosh% (kξ) − sinh% (kξ) − p

)
l
(
cosh% (kξ) − sinh% (kξ) + p

) )2

,

(4.76)
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and

u2,33(x, t) = −
1
2

k1k
(
cosh% (kξ) + sinh% (kξ) − q

)
l
(
cosh% (kξ) + sinh% (kξ) + q

) ,

z2,33(x, t) =
κ

ω

(
−

1
2

k1k
(
cosh% (kξ) + sinh% (kξ) − q

)
l
(
cosh% (kξ) + sinh% (kξ) + q

) )2

.

(4.77)

Family 2.9. When k = $, l = s$(s , 0) and j = 0:

u2,34(x, t) = −
1
2

$1

(
p − s%$ξ + 2 sp%$ξ

)
s (−p + s%$ξ)

,

z2,34(x, t) =
κ

ω

(
−

1
2

$1

(
p − s%$ξ + 2 sp%$ξ

)
s (−p + s%$ξ)

)2

,

(4.78)

where

ξ =
k1

4√3
4√
Λ ln (%) l

xς

ς
−

3
3
4

4√
Λk1

2 ln (%) l
tσ

σ
.

5. Discussion and graphs

In this section, I delve into the soliton solutions discovered during our CCDSWS research. These
soliton solutions are derived using a novel r+mEDAM, which enables us to fully appreciate the
CCDSWS’s intricate dynamics. Visual displays effectively depict a variety of soliton behaviors,
particularly kink, anti-kink, bright, dark, bright-dark, and bell-shaped kink solitons.

Five distinct soliton types exist in the CCDSWS’s realm, namely kink, anti-kink, bright, dark,
bright-dark, and bell-shaped kink solitons, which manifest in dispersive phenomena within water
waves and fluid mechanics. These soliton types demonstrate the diversity of wave behavior and
characteristics, which contributes to a comprehensive understanding of dispersive phenomena in
various physical systems such as water waves and fluid mechanics. Solitons form as a result of the
delicate balance of nonlinear and dispersive effects in wave equations, resulting in the formation
of stable, localized wave patterns. Solitons are the result of nonlinear interactions between wave
components that maintain their shape and amplitude over long distances. Each of these soliton types
has its own set of characteristics, such as anti-kink, and the reverse of a kink, soliton is a monotonous
shift in the opposing direction, from an upper asymptotic phase to a lower one. It can depict backward-
moving formations or reversal shifts in the structure’s parameters. In contrast, a kink soliton is a
confined, monotonic wave that joins two different asymptotic states and usually moves across the
medium from one stable condition to another. The smooth shift between two states of equilibrium
may be represented by a kink soliton, which may be connected to variations in the system’s physical
characteristics across spatial domains, especially optical brilliance or charge density. A localized dip
(a smaller amount of amplitude) in wave strength encircled by an uninterrupted backdrop of higher
amplitude is what defines a dark soliton. This kind of kink soliton, which is frequently associated
with phase displacements or wave shortfalls in nonlinear media, is a localized loss of wave energy or
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amplitude. A bright soliton, on the other hand, is a localized wave with a peak intensity higher than
the background, typically appearing in systems with a focusing or attractive nonlinearity. This soliton
type may represent regions of localized energy or wave amplitude enhancement, potentially describing
high-intensity optical pulses or coherent structures in the system. Combining the characteristics of
bright solitons and kinks, a bell-shaped kink has a symmetric bell-like contour and a smooth localized
topology. Energy outbursts or shifts with spatial symmetries may be modeled by this kind of kink
soliton, which depicts energy or intensity changes with a symmetric and concentrated profile. Last,
a bright-dark soliton is an amalgamated form in which a backdrop of dark soliton is integrated with
a bright soliton. The complicated interaction between energy concentration and depletion may be
reflected by bright-dark soliton, which might represent simultaneous enhancement and repression of
wave patterns in linked fields. These solitons are essential components in the study of fluid mechanics
and wave physics, exemplifying a wide range of important wave phenomena.

Figure 1 shows the dynamical behaviors of soliton solutions u1,10 and z1,10 respectively described
in (4.17) for j = 1, k = 10, l = 3, r = 10, % = e, κ = 0.005. Using the same parameter values, the
2D graphs are constructed simultaneously for t = 0. Overall, the graphs for u1,10 represent dark-bright
soliton profiles while the graphs for z1,10 represent bright soliton profiles.

Figure 1. The dynamical behaviors of soliton solutions u1,10 and z1,10, respectively, described
in (4.17) are depicted for j = 1, k = 10, l = 3, r = 10, % = e, κ = 0.005. Using the same
parameter values, the 2D graphs are constructed simultaneously for t = 0.
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Figure 2 shows the dynamical behaviors of soliton solutions u1,21 and z1,21, respectively, described
in (4.28) for j = 5, k = 0, l = 5, r = 0, % = e, κ = 0.0001. Using the same parameter values, the 2D
graphs are constructed simultaneously for t = 10. Overall, the graphs for u1,21 represent dark-bright
soliton profiles while the graphs for z1,21 represent bright soliton profiles.

Figure 2. The dynamical behaviors of soliton solutions u1,21 and z1,21, respectively, described
in (4.28) are depicted for j = 5, k = 0, l = 5, r = 0, % = e, κ = 0.0001. Using the same
parameter values, the 2D graphs are constructed simultaneously for t = 10.
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Figure 3 shows the dynamical behaviors of soliton solutions u1,32 and z1,32, respectively, described
in (4.39) for j = 6, k = 3, l = 0, $ = 3, s = 2, r = 1, % = 2, κ = 0.00015. Using the same parameter
values, the 2D graphs are constructed simultaneously for t = 20. Overall, the graphs for u1,32 represent
dark-bright soliton profile and z1,32 represent bright soliton profiles.

Figure 3. The dynamical behaviors of soliton solutions u1,32 and z1,32, respectively, described
in (4.39) are depicted for j = 6, k = 3, l = 0, $ = 3, s = 2, r = 1, % = 2, κ = 0.00015. Using
the same parameter values, the 2D graphs are constructed simultaneously for t = 20.
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Figure 4 shows the dynamical behaviors of soliton solutions u2,16 and z2,16, respectively, described
in (4.60) for j = 30, k = 0, k1 = 0.00075, l = −20, r = 100, % = e. Using the same parameter values,
the 2D graphs are constructed simultaneously for the t = 100. Overall, the graphs for u2,16 represent
anti-kink soliton profiles while the graphs for z2,16 represent bell-shape kink soliton profiles.

Figure 4. The dynamical behaviors of soliton solutions u2,16 and z2,16, respectively, described
in (4.60) are depicted for j = 30, k = 0, k1 = 0.00075, l = −20, r = 100, % = e. Using the
same parameter values, the 2D graphs are constructed simultaneously for the t = 100.
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Figure 5 exhibits the dynamical behaviors of soliton solutions u2,33 and z2,33, respectively, described
in (4.77) for j = 0, k1 = 0.010, k = 2, p = 1, l = 30, r = 25, % = 3. Using the same parameter values,
the 2D graph are constructed simultaneously for t = 30. Overall, the graphs for u2,33 represent kink
soliton profiles while the graphs for z2,33 represent bell-shape kink soliton profiles.

Figure 5. The dynamical behaviors of soliton solutions u2,33 and z2,33, respectively, described
in (4.77) are depicted for j = 0, k1 = 0.010, k = 2, p = 1, l = 30, r = 25, % = 3. Using the
same parameter values, the 2D graph are constructed simultaneously for t = 30.

6. Conclusions

In this exploration, r+mEDAM, a generalized version of mEDAM, is used to explore and analyse
novel soliton solutions in the context of the nonlinear CCDSWS. This transformative technique
reformulates the model into a set of nonlinear equations that are then solved using Maple software,
yielding a large number of soliton solutions such as kink, anti-kink, bright, dark, bright-dark, and
bell-shaped kink soliton solutions. New families of generalized functions, such as generalized
trigonometric, hyperbolic, rational, and exponential functions, are among these solutions. Some
soliton solutions are visually represented by appropriately tuning the constant parameters via graphical
analysis and comparison, enabling a deeper understanding of real-world physical phenomena. This
method is highly regarded as a scientific method that is both compatible and effective for examining
various nonlinear mathematical models in engineering and physics, specifically those that address real-
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world problems.
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11. H. Gündoǧdu, Ö. F. Gözükızıl, Solving nonlinear partial differential equations by using Adomian
decomposition method, modified decomposition method and Laplace decomposition method,
MANAS J. Eng., 5 (2017), 1–13.

AIMS Mathematics Volume 10, Issue 3, 4747–4774.

http://dx.doi.org/https://doi.org/10.1007/978-3-0348-0513-1
http://dx.doi.org/https://doi.org/10.1007/b138648
http://dx.doi.org/https://doi.org/10.57262/ade/1366896236
http://dx.doi.org/https://doi.org/10.1051/mmnp/2021016
http://dx.doi.org/https://doi.org/10.1007/s40819-022-01285-6


4773

12. S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial
differential equations of fractional order, Phys. Lett. A, 365 (2007), 345–350.
https://doi.org/10.1016/j.physleta.2007.01.046

13. H. Khan, S. Barak, P. Kumam, M. Ariff, Analytical solutions of fractional Klein-Gordon
and gas dynamics equations, via the (G′/G)-expansion method, Symmetry, 11 (2019), 566.
https://doi.org/10.3390/sym11040566

14. R. Shah, H. Khan, P. Kumam, M. Arif, D. Baleanu, Natural transform decomposition method
for solving fractional-order partial differential equations with proportional delay, Mathematics, 7
(2019), 532. https://doi.org/10.3390/math7060532

15. R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (G′
G )-expansion methods

for travelling wave solutions of fractional Maccari’s system with complex structure, Alex. Eng. J.,
79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007

16. M. Kamrujjaman, A. Ahmed, J. Alam, Travelling waves: interplay of low to high Reynolds
number and tan-cot function method to solve Burger’s equations, J. Appl. Math. Phys., 7 (2019),
861–873. https://doi.org/10.4236/jamp.2019.74058

17. M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-
Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron.,
54 (2022), 402. https://doi.org/10.1007/s11082-022-03819-0

18. M. S. Islam, K. Khan, M. A. Akbar, The generalized Kudrysov method to solve some coupled
nonlinear evolution equations, Asian J. Math. Comput. Res., 3 (2015), 104–121.

19. A. Bekir, E. Aksoy, A. C. Cevikel, Exact solutions of nonlinear time fractional partial
differential equations by sub-equation method, Math. Methods Appl. Sci., 38 (2015), 2779–2784.
https://doi.org/10.1002/mma.3260

20. S. Bibi, S. T. Mohyud-Din, U. Khan, N. Ahmed, Khater method for nonlinear Sharma
Tasso-Olever (STO) equation of fractional order, Results Phys., 7 (2017), 4440–4450.
https://doi.org/10.1016/j.rinp.2017.11.008

21. M. Dehghan, J. Manafian Heris, A. Saadatmandi, Application of the exp-function method for
solving a partial differential equation arising in biology and population genetics, Int. J. Numer.
Methods Heat Fluid Flow, 21 (2011), 736–753. https://doi.org/10.1108/09615531111148482

22. S. Noor, A. S. Alshehry, A. Khan, I. Khan, Analysis of soliton phenomena in (2 + 1)-dimensional
Nizhnik-Novikov-Veselov model via a modified analytical technique, AIMS Math., 8 (2023),
28120–28142. https://doi.org/10.3934/math.20231439

23. H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions
for the fractional coupled Konno-Onno system using improved versions of a novel analytical
technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686

24. R. Ali, M. M. Alam, S. Barak, Exploring chaotic behavior of optical solitons in complex structured
conformable perturbed Radhakrishnan-Kundu-Lakshmanan model, Phys. Scr., 99 (2024), 095209.
https://doi.org/10.1088/1402-4896/ad67b1

AIMS Mathematics Volume 10, Issue 3, 4747–4774.

http://dx.doi.org/https://doi.org/10.1016/j.physleta.2007.01.046
http://dx.doi.org/https://doi.org/10.3390/sym11040566
http://dx.doi.org/https://doi.org/10.3390/math7060532
http://dx.doi.org/https://doi.org/10.1016/j.aej.2023.08.007
http://dx.doi.org/https://doi.org/10.4236/jamp.2019.74058
http://dx.doi.org/https://doi.org/10.1007/s11082-022-03819-0
http://dx.doi.org/https://doi.org/10.1002/mma.3260
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2017.11.008
http://dx.doi.org/https://doi.org/10.1108/09615531111148482
http://dx.doi.org/https://doi.org/10.3934/math.20231439
http://dx.doi.org/https://doi.org/10.3390/math11122686
http://dx.doi.org/https://doi.org/10.1088/1402-4896/ad67b1


4774

25. M. Iqbal, W. A. Faridi, R. Ali, A. R. Seadawy, A. A. Rajhi, A. E. Anqi, et al., Dynamical study of
optical soliton structure to the nonlinear Landau-Ginzburg-Higgs equation through computational
simulation, Opt. Quant. Electron., 56 (2024), 1192. https://doi.org/10.1007/s11082-024-06401-y

26. R. Ali, Z. Zhang, H. Ahmad, M. M. Alam, The analytical study of soliton dynamics in fractional
coupled Higgs system using the generalized Khater method, Opt. Quant. Electron., 56 (2024),
1067. https://doi.org/10.1007/s11082-024-06924-4

27. S. Noor, A. S. Alshehry, H. M. Dutt, R. Nazir, A. Khan, R. Shah, Investigating the dynamics
of time-fractional Drinfeld-Sokolov-Wilson system through analytical solutions, Symmetry, 15
(2023), 703. https://doi.org/10.3390/sym15030703

28. X. Z. Zhang, M. I. Asjad, W. A. Faridi, A. Jhangeer, M. İnç, The comparative report on
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