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Abstract: This study investigated the application of Bayesian multiple change-point detection
techniques in the context of piecewise polynomial signals. Given the limited number of existing
methodologies for identifying change-points in such signals, we proposed an objective Bayesian
change-point detection approach that accommodated heterogeneous error distributions. Our
methodology was grounded in a piecewise polynomial regression framework and employed binary
segmentation. Initially, we identified change-points across various signals using Bayesian binary
segmentation. Subsequently, we applied Bayesian model selection to ascertain the most suitable
polynomial order for the identified segments. This approach facilitated a change-point detection
method that minimized reliance on subjective inputs. We incorporated intrinsic priors that allowed
for the formulation of Bayes factors and model selection probabilities. To evaluate the efficacy of the
proposed change-point detection techniques, we conducted a simulation study alongside two empirical
case studies: one involving the Goddard Institute for space studies surface temperature analysis and
the other concerning the daily closing stock prices of Samsung Electronics Co.
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Abbreviations:

y = (y1, · · · , yn): observation vector; K: number of change-points; τ = (τ1, · · · , τK): change-points
location vector; Ii = (τi−1, τi]: change-points interval; yi = (yτi−1+1, · · · , yτi): observation vector in
change-points interval Ii; θi: parameter vector of model Mi; πN(θi): noninformative prior for θi of
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model Mi; πI(θ j|θi): the conditional intrinsic prior of θ j for each point θi; πI(θ j): the unconditional
intrinsic prior of θ j; mi(y): marginal distribution in model Mi; BI

i j(y): Bayes factor with the intrinsic
priors {πN(θi), πI(θ j)} for models Mi and M j; P(Mi): prior probability of model Mi; P(Mi|y): posterior
probability of model Mi; λ: threshold criterion; MSE: mean squared error; MSR: mean squared
residual; K̂: estimated number of change-points; τ̂ = (τ̂1, · · · , τ̂K̂): estimated change-points location
vector; dH: Hausdorff distance

1. Introduction

The issue of change-point detection has been the subject of investigation by scholars across multiple
disciplines, including economics, climatology, oceanography, biosciences, and technology, for several
decades (Bai and Perron [1]; Killick et al. [2]; Futschik et al. [3]; Galceran et al. [4]). The primary
goal of change-point detection is to identify the location and number of structural changes in a given
sequence of observations by time or location, as well as to provide an assessment of accuracy.

The most fundamental model for this problem is represented by

yi = fi + ϵi, i = 1, · · · , n, (1.1)

where the observations yi, for i = 1, · · · , n, are composed of a deterministic and unknown signal fi

with structural changes at certain points, plus a set of independent and identically distributed Gaussian
random variables ϵ1, · · · , ϵn with mean zero and finite variance σ2.

The canonical multiple change point problem, in which the signal fi is represented as a piecewise
constant function, has been extensively examined in the academic literature, leading to the
development of numerous methodologies. Frequently employed techniques involve the optimization
of a fitness or cost function, such as log-likelihood or the sum of squared errors, across all potential
segmentations. Additionally, model selection strategies are utilized to mitigate the risk of overfitting.
In this domain, Yao and Au [5, 6] employed the Bayesian information criterion (BIC), while Zhang
and Siegmund [7, 8] utilized a modified variant of this criterion. Bai and Perron [9] introduced a
method for estimating structural breaks concurrently by minimizing the residual sum of squares.
Furthermore, Braun et al. [10] expanded the BIC methodology to encompass a broader range of
distributions in which the variance is proportional to a function of the mean. Additionally, Boysen
et al. [11] applied the least squares criterion, incorporating a linear penalty for the number of
change-points. The fused Lasso technique, as described by Tibshirani and Wang [12], incorporates an
L1 penalty into the least squares component, which serves to penalize the variations between
consecutive segment means. Harchaoui and Lévy-Leduc [13] utilized the least absolute shrinkage and
selection operator algorithm to determine the positions of multiple change-points within a
one-dimensional piecewise constant signal. Additionally, Jeng et al. [14] introduced a likelihood ratio
selection method aimed at identifying signal segments, demonstrating that this approach yields
consistent estimations. Frick et al. [15] estimated the unknown step function by minimizing the
number of change points in the receptive region of a multi-scale test. Killick et al. [16] and Maidstone
et al. [17] proposed methods to optimize the penalized cost function. To address the computational
complexity of change-point configurations, strategies such as binary segmentation (Olshen et al. [18];
Venkatraman and Olshen [19]), dynamic programming algorithms (Jackson et al. [20]; Killick
et al. [16]; Haynes et al. [21]; Maidstone et al. [17]), and screening and ranking algorithms (Hao
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et al. [22]) have been suggested. For the Bayesian inference of change-points, several Markov chain
Monte Carlo (MCMC) and direct simulation methods have been proposed. Several MCMC
procedures were developed to approximate the posterior distribution of the change point locations
(Barry and Hartigan [23]; Chib [24]; Lavielle and Lebarbier [25]; Fearnhead and Clifford [26]; Koop
and Potter [27]; Fearnhead and Liu [28]; Giordani and Kohn [29]; Martinez and Mena [30]).
Alternatively, Fearnhead [31] and Ruggieri [32] avoided the MCMC approaches by directly sampling
from the posterior distribution through the use of dynamic programming-like recursions.

Beyond the canonical change point problem, signals in which fi is modeled as a piecewise
polynomial of order k ≥ 1 have received less attention in the literature despite many applications, such
as monitoring patient health (Aminikhanghahi and Cook [33]), finance (Bianchi et al. [34]) and
climate change (Robbins et al. [35]). Bai and Perron [9] proposed a method based on Wald-type
sequential tests, while Maidstone et al. [17] devised a dynamic programming applied to an
l0-penalized least square procedure. Kim et al. [36] developed a methodology called l1-trend filtering
in continuous piecewise linear models. Subsequently, Baranowski et al. [37] put forward the
narrowest over threshold (NOT) method, and Anastasiou and Fryzlewicz [38] developed an
isolate-detect (ID) approach, which both provide asymptotically consistent estimators of the number
and locations of change points. Maeng and Fryzlewicz [39] then proposed the TrendSegment
methodology for detecting multiple change-points corresponding to linear trend changes or point
anomalies. In particular, Mehrizi and Chenouri [40] proposed a change point detection method,
pattern recovery using trend filtering, based on trend filtering for identifying change points in
piecewise polynomial signals. Gavioli-Akilagun and Fryzlewicz [41] proposed a change-points
detection procedure based on performing local tests at a number of scales and locations on a sparse
grid, which adapts to the choice of grid in the sense that by choosing a sparser grid one explicitly pays
a lower price for multiple testing in piecewise polynomial model. On the other hand, Faulkner and
Minin [42] investigated a more aggressive horseshoe prior, which demonstrated superior local
adaptivity to abrupt changes or jumps. Kowal et al. [43] proposed dynamic shrinkage processes for
Bayesian trend filtering with even stronger localized adaptivity to irregular features through modeling
dependence between the local scale parameters. Zhao et al. [44] investigated two accelerated
primal-dual mirror dynamical approaches for smooth and nonsmooth convex optimization problems.
Shirilord and Dehghan [45] proposed an enhancement to the convergence rate of Landweber’s method
by incorporating the concept of momentum acceleration in least squares problems.

A crucial condition in most of the studies cited above, with the exception of Baranowski et al. [37], is
the assumption of a constant variance σ2 in (1.1). However, this assumption is often violated in many
applications, such as the analysis of array of CGH (comparative genomic hybridization) data (Arlot
and Celisse [46]; Muggeo and Adelfio [47]), or economic applications, where the real interest rate
is modeled by Bai and Perron [1] as a piecewise linear regression with covariates and heterogeneous
noise (see Pein et al. [48]). In this paper, we aim to develop a unified method for objective Bayesian
change-point detection in a general setting, where there can be multiple types of features in a signal and
the features can have different variances from one another. Our method is capable of detecting change-
points in piecewise polynomial signals of order k (where k = 0, 1, 2, · · · ) with and without continuity
constraints at the locations of change points, as well as with heterogeneous variances. Most of the
existing methods have been developed under the assumption of homogeneous variance, and therefore
may not perform well under heterogeneous variances.
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The problem of detecting change-points is equivalent to a model selection problem, so we propose
to develop a method using a Bayesian model selection procedure in the presence of heterogeneous
Gaussian error noise and without requiring subjective input. To this end, we construct intrinsic priors
which allow us to define Bayes factors (BFs) and model selection probabilities. The intrinsic priors
are based on the work of Berger and Pericchi [49] and Moreno et al. [50] and are motivated and
justified for model selection by Berger and Pericchi [51] and Moreno [52]. The Bayesian
change-point detection methodology we propose comprises two primary components. The first
component involves identifying change-points within the underlying signals through the application
of a piecewise polynomial model utilizing Bayesian binary segmentation. The second component
entails the selection of the most appropriate polynomial model order for the identified segments,
achieved through Bayesian model selection. To facilitate this process, we incorporate intrinsic priors
that ensure the BFs and model selection probabilities are rigorously defined. Furthermore, our
approach demonstrates consistency when the sample size is sufficiently large, as it relies on BFs
informed by these intrinsic priors. This methodology is versatile and can be applied to a diverse array
of signal types, including those that may or may not adhere to continuity constraints at the
change-point locations, signals characterized by heterogeneous variances, and mixed signals that
exhibit both linear and nonlinear behaviors—challenges that existing methods fail to address.
Additionally, our approach yields the most plausible change trends for each interval surrounding the
detected change-points.

2. Bayesian multiple change-points detection methods

For a given sequence of data, assume that there are K change-points located at the vector

τ = (τ1, · · · , τK),

where τi < τ j if i < j, and
τ0 = 0 and τK+1 = n.

Thus, the K change-points will divide the data into K+1 segments, with the ith segment spanning from
time τi−1 + 1 to time τi. Each segment follows a k-order polynomial structure, with optional continuity
constraints at the change-points.

2.1. Binary segmentation

Binary segmentation, initially introduced by Scott and Knott [53], is the predominant method
employed for the identification of multiple change-points. This technique utilizes a singular
change-point detection approach and entails a recursive examination of the entire dataset to identify a
change-point. Upon the identification of a change-point, the dataset is divided into two subsegments
delineated by the change-point. The change-point detection method is subsequently applied to these
two subsegments, and this iterative process continues until no additional change-points are identified.

The binary segmentation procedure has been found to be consistent under certain regularity
conditions for the number and locations of change-points (Vostrikova [54]). Its advantages include
low computational complexity O(n log n), simplicity in its structure, and ease of coding, even for
more sophisticated models (Fryzlewicz [55]). As stated by Killick et al. [16], it can be considered as
one of the most widely used change-point search methods.
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One issue with binary segmentation is that its power to detect short segments in the data sequence
can be low. To address this, a number of adaptations have been proposed: circular binary segmentation
(Olshen et al. [18]), wild binary segmentation (Fryzlewicz [55]), NOT (Baranowski et al. [37]) and ID
(Anastasiou and Fryzlewicz [38]).

2.2. Bayesian change-points detection method

We propose an objective Bayesian detection method based on binary segmentation. Our process
consists of three steps. In the first step, binary segmentation is applied to the entire data sequence to
obtain a location vector

τ = (τ1, · · · , τK)

of the true change-points. In the second step, we must verify whether the change-point intervals
detected by the binary segmentation are truly distinct. This is necessary because signals with frequent
change-points and various features may lead to false positives in the binary segmentation. If the
signals of the adjacent change-point intervals are the same, then false change-points among the
detected change-points can be eliminated. Finally, in each of the change-point intervals found, the
order of the polynomial model that has the most appropriate trend for the interval is determined.
Thus, the Bayesian detection method can be summarized as follows:

Step 1 (Detection of change-points): First, we apply binary segmentation. Then, we formulate the
single change-point detection problem as a hypothesis testing problem. For the given point j, we test
the null hypothesis H0 that the observed data yi, i = 1, · · · , n, follows a distribution f0, against the
alternative hypothesis H1 that the data follows two separate distributions f1 and f2 for the intervals

i = 1, · · · , j and i = j + 1, · · · , n,

respectively. We calculate the BFs B10( j) for all j, and determine

BM = max
1< j<n

B10( j).

If BM exceeds the threshold λ, then we reject the null hypothesis of no change. We then split the
sequence into two subsequences according to the detected change-point and test them for additional
single change-points. We repeat this process until no further subsequences have change-points.

Step 2 (Merge): Second, for the detected change-point intervals in Step 1, we need to check whether
the adjacent two change-point intervals are really different or not. Let

τ = (τ1, · · · , τK)

be the detected change-point locations. That is, for the given change-point locations τi−1, τi and τi+1,
we consider the null hypothesis

H0 : y j ∼ f0, j = τi−1 + 1, · · · , τi+1,

against the alternative

H1 : y j ∼

{
f1, j = τi−1 + 1, · · · , τi,

f2, j = τi + 1, · · · , τi+1,
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where i = 1, · · · ,K. Then, we compute the BF B10(i) to assess the evidence of the alternative
hypothesis. If B10(i) does not exceed the threshold λ, then the null hypothesis is accepted and the two
change-point intervals combine into one change-point interval. This process is repeated until no
further change-point intervals combine into one change-point interval. This step is used to remove the
false positives in the detected change-points by binary segmentation.

Step 3 (Determiantion of order of polynomial model): Finally, for each change-point interval
identified in Step 2, we determine the optimal polynomial model that best captures the trend of the
signal in that interval.

2.3. The decision criteria for the detection of change-points

In general, Bayesian testing uses a threshold of λ = 1 to divide a sequence of data into two
subsequences when the BF BM > 1. However, due to the recursive nature of binary segmentation,
multiple change-points may be divided into many small and noisy segments, which can lead to false
positives. This can cause difficulty in change-point detection, as each false positive leads to further
subdivision of the data, creating more chances for false positives, whereas each false negative
terminates the investigation of a particular segment (Jensen [56]).

The traditional interpretations of BFs that are in the ranges of

1 < BM < 3, 3 < BM < 10, 10 < BM < 30, and BM > 100

are considered to be of no more than a bare mention, substantial, strong, and decisive, respectively.
The selection of a decision criterion is dependent upon the main goal of the analysis; for primarily
descriptive models, a criterion as low as 3 may be acceptable, whereas for a highly rigorous theoretical
test, a criterion as high as 100 may be required. For further guidance on the selection of a decision
criterion, we refer to the work of Kass and Raftery [57].

We propose using the decision criterion B̄, which is the mean of the computed BFs in a given
sequence for detecting a change-point, as an alternative to the decision criterion BM > λ. The result
of averaging of BFs is largely unaffected by the situation in which the sequence has the segments with
some noisy observations. This can prevent the problem of overfitting the true number of change-points
in the sequence with false positives. Therefore, we use both decision criteria, B̄ > λ and BM > λ, in
our work.

We investigate the choice of the threshold λ for Bayesian change-point detection in terms of the
mean square error (MSE), mean square residual (MSR), and accuracy of the estimated change-points
through a simulation study in the next section. We consider the decision criterion for λ that minimizes
MSE and MSR, and yields the exact number and locations of the change-points.

3. Bayesian method for detection of change-points

We consider the observations y1, · · · , yn from the model

yi = fi(xi) + ϵi, i = 1, · · · , n. (3.1)

where yi ∈ R are response, fi is a deterministic and piecewise-polynomial signal containing K change-
points, xi ∈ R are fixed input points, and the error ϵi are independent errors having normal distribution
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with mean 0 and variance σ2
i . It can be assumed that the domain of input points is the compact unit

interval [0, 1], that is,
xi = i/n

for i = 1, · · · , n.
Our Bayesian change-point detection methodology involves identifying change-points through the

application of piecewise polynomial regressions and ascertaining the order of each polynomial
regression within the identified change-point intervals. The initial phase of the Bayesian change-point
detection process entails the identification of change-points, which delineate K + 1 polynomial
regressions defined across K + 1 intervals, denoted as I1, · · · , IK+1. Let

τ = (τ1, · · · , τK)

represent the locations of change-points, and define the intervals of these change-points as

Ir = (τr−1, τr]

for r = 1, · · · ,K, with the conditions

τ0 = 0 < τ1 < τ2 < · · · < τK < τK+1 = n.

This framework establishes a partition of the observations into K + 1 segments, denoted by lengths
n1, · · · , nK+1. Consequently, we can articulate our piecewise polynomial regression model as follows:
for each y j ∈ yi, j = 1, · · · , n,

yi = Xiβi + ϵ i, i = 1, · · · ,K + 1, (3.2)

where
yi = (yτi−1+1, · · · , yτi),

Xi is the ni × k design matrix and is given by

Xi =


1 xτi−1+1 x2

τi−1+1 · · · xk−1
τi−1+1

1 xτi−1+2 x2
τi−1+2 · · · xk−1

τi−1+2
...

...
... · · ·

...

1 xτi x2
τi

· · · xk−1
τi

 , (3.3)

βi is k × 1 vector of the regression coefficients, and ϵ i is an error vector distributed as

ϵ ∼ Nni(0, σ
2
i Ini).

The second part is finding the most reasonable model by determining the order k of the polynomial
regression model in the given intervals Ii, i = 1, · · · ,K + 1.

3.1. Bayesian testing for the detection of a change-point

Bayesian change-point detection initiates with the identification of change-point locations, denoted
as

τ = (τ1, · · · , τK),
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where

1 < τ1 < · · · < τK .

These change-points delineate K+1 segments, each characterized by distinct signals. We postulate that
the random variable Yi follows a normal distribution with a mean of Xiβi and a variance of σ2

i Ii within
the intervals (τi−1, τi] for i = 1, · · · ,K + 1. Our approach to detecting intervals with varying signals
is grounded in Bayesian hypothesis testing. Specifically, we establish intrinsic priors that ensure the
BFs and model selection probabilities are well-defined. The detection methodology primarily employs
binary segmentation, which serves to identify the locations of intervals exhibiting different signals.

Let τ denote a location characterized by the presence of distinct signals. The vector

y1 = (y1, · · · , yτ)T

represents independent random samples drawn from the normal distribution N(X1β1, σ
2
1I1), while

y2 = (yτ+1, · · · , yn)T

constitutes independent random samples from the normal distribution N(X2β2, σ
2
2I2). Consequently,

the problem of location detection can be reformulated as a hypothesis testing problem involving the
null hypothesis

H0 : β1 = β2

and the alternative hypothesis

H2 : β1 , β2.

The two statistical models under comparison, as specified by the hypotheses, are

M1 : Nn(y|Xβ, σ2In), πN(θ1) =
c1

σ
(3.4)

and

M2 : Nτ(y1|X1β1, σ
2
1Iτ)Nn−τ(y2|X2β2, σ

2
2In−τ), πN(θ2) =

c2

σ1σ2
, (3.5)

where X1 is defined as the τ× k design matrix, and X2 is the (n− τ)× k design matrix within the overall
design matrix X. The vectors βi (for i = 1, 2) represent the k × 1 regression coefficient vectors, with

θ1 = (β, σ)

and

θ2 = (β1,β2, σ1, σ2)

denoting the respective parameters associated with these models.
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3.2. Intrinsic priors

Model (3.4) is a subset of (3.5). It is evident that a theoretically minimal training sample consists
of the random vectors z1 and z2, each of dimension k + 1. In the context of Model M1, z1 follows
a normal distribution Nk+1(Z1β, σ

2Ik+1), while z2 adheres to a normal distribution Nk+1(Z2β, σ
2Ik+1).

Conversely, under Model M2, z1 is characterized by a normal distribution Nk+1(Z1β1, σ
2
1Ik+1) and z2 by

a normal distribution Nk+1(Z2β2, σ
2
2Ik+1). It is important to note that Z1 and Z2 denote the unknown

design matrices of dimensions (k + 1) × k associated with z1 and z2 in each respective model (refer to
Casella and Moreno [58]). The intrinsic prior, as established in the following theorem, is derived from
the works of Berger and Pericchi [49] and Moreno et al. [50].

Theorem 1. For each point θ1, the intrinsic prior of θ2 under the minimal training sample z is

πI(θ2|θ1) =
2∏

i=1

2
π

1
σ

(
1 +
σ2

i

σ2

)−1

Nk(βi|β, (σ
2
i + σ

2)W−1
i ), (3.6)

where
Wi = ZT

i Zi, i = 1, 2.

Proof. See Appendix A. □

It is observed that two closely related forms have been suggested for the evaluation of the matrix
W−1

i (Casella and Moreno [58]; Girón et al. [59]). Although both essentially give a similar posterior
answer, the computationally simpler form is given in Girón et al. [59] as

W−1
i =

ni

k + 1
(XT

i Xi)−1, i = 1, 2, (3.7)

where
n1 = τ and n2 = n − τ.

Notice that the mean of the conditional intrinsic prior for βi depends on the model M1, but the matrix
W−1

i depends on the design matrix of the X1 and X2 of model M2. The model M1 plays the role of the
null hypothesis and the intrinsic prior for the parameters of the model M2 is centered at the null, which
seems a natural requirement for a sharp null hypothesis (Casella and Moreno [58]). The marginal
distribution of βi is a proper prior that does not have moments. This implies that the intrinsic prior for
βi, conditional on the null (β, σ), has a heavy tail as expected for a default prior.

The unconditional intrinsic prior for (βi, σi) obtained by integrating out β and σ is

πI(β1,β2, σ1, σ2) =
∫ ∫

c1

σ

2∏
i=1

2
π

σ

σ2
i + σ

2
Nk(βi|β, (σ

2
i + σ

2)W−1
i )dβdσ. (3.8)

The pair {πN(θ1), πI(θ2)} is called the intrinsic priors for comparing models M1 and M2 and, although
they are improper, they are well calibrated since both depend on the same arbitrary constant c1. Further,
they are a well established limit of proper priors (Moreno et al. [50]).
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3.3. The BF

We aim to test whether a location τ is the point of divergence for various signals by utilizing the BF.
Consequently, we calculate the BFs employing intrinsic priors. For a given data (y,X), the BF with the
intrinsic priors {πN(θ1), πI(θ2)} is

BI
12(y) =

∫
Nn(y|Xβ, σ2In)πN(θ1)dθ1∫

Nτ(y1|X1β1, σ
2
1Iτ)Nn−τ(y2|X2β2, σ

2
2In−τ)πI(θ2)dθ2

, (3.9)

where
θ1 = (β, σ)

and
θ2 = (β1,β2, σ1, σ2).

The resulting BF is given in Theorem 2.

Theorem 2. The BF with the intrinsic priors is

BI
21(y) = π−2|XT XT |

1
2 [yT (In −H1)y]

n−k
2

×

∫ ∞

0

∫ ∞

0

ω
− 1

2
1 ω

− 1
2

2

(1 + ω1)(1 + ω2)
|Σ1|

− 1
2 |Σ2|

− 1
2 |Σ|−

1
2 H−

n−k
2

2 dω1dω2, (3.10)

where n1 = τ, n2 = n − τ,

H1 = X(XT X)−1XT ,Σ = XT
1Σ
−1
1 X1 + XT

2Σ
−1
2 X2,

H2 =

2∑
i=1

yT
i Σ
−1
i yi −

 2∑
i=1

XT
i Σ
−1
i yi

T

Σ−1

 2∑
i=1

XT
i Σ
−1
i yi

 ,
|Σi| = ω

ni
i

[
1 +

ni

k + 1
1 + ωi

ωi

]k

, i = 1, 2,

Σ−1
i =

1
ωi

Ini −
ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1

Xi(XT
i Xi)−1XT

i

 , i = 1, 2,

XT
i Σ
−1
i Xi =

1
ωi

1 − ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1 XT
i Xi, i = 1, 2,

yT
i Σ
−1
i yi =

1
ωi

yT
i yi −

ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1

yT
i Xi(XT

i Xi)−1XT
i yi

 , i = 1, 2

and

XT
i Σ
−1
i yi =

1
ωi

1 − ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1 XT
i yi, i = 1, 2.

Proof. See Appendix B. □

It is important to note that the intrinsic BF cannot be derived analytically; rather, it necessitates two-
dimensional integration. The identification of change points is initiated using the binary segmentation
method, which is based on the aforementioned BF.
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4. Model selection in the change-point interval

We now aim to identify the most appropriate polynomial regression model within the specified
intervals I j for j = 1, · · · ,K + 1 as discussed in the previous section. We will proceed under the
assumption that the polynomial regression model for a particular interval I can be articulated in the
following manner:

y = Xkβk + ϵ, (4.1)

where Xk is the n j × k design matrix and is given by

Xk =


1 x1 x2

1 · · · xk−1
1

1 x2 x2
2 · · · xk−1

2
...
...
... · · ·

...

1 xn j x2
n j
· · · xk−1

n j

 , (4.2)

βk is the k × 1 vector of the regression coefficients and ϵ is an error vector distributed as

ϵ ∼ Nn j(0, σ
2
kIn j).

Then we find the reasonable order k for the given polynomial regression model. Therefore the models
being compared are

Mi : Nn j(y|Xiαi, σ
2
i In j), π

N
i (θi) =

ci

σi
, i = 1, · · · , k − 1 (4.3)

and

Mk : Nn j(y|Xkβk, σ
2
kIn j), π

N
k (θk) =

ck

σk
, (4.4)

where the n j × i design matrix Xi, i = 1, · · · , k are given by

X1 =


1
1
...

1

 , X2 =


1 x1

1 x2
...
...

1 xn j

 , · · · , Xk =


1 x1 x2

1 · · · xk−1
1

1 x2 x2
2 · · · xk−1

2
...
...
... · · ·

...

1 xn j x2
n j
· · · xk−1

n j

 , (4.5)

αi, i = 1, · · · , k − 1, are the i × 1 regression coefficient vectors, βk is the k × 1 regression coefficient
vector,

θi = (αi, σi), i = 1, · · · , k − 1

and

θk = (βk, σk).
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4.1. Intrinsic priors

For the models (4.3) and (4.4), the Bayes factor BN
ik(y,X) compares the model {Nn j(y| Xiαi,

σ2
i In j), π

N
i (θi)} with the full model {Nn j(y|Xkβk, σ

2
kIn j), π

N
k (θk)}. Since the sampling model Nn j(y|Xiαi,

σ2
i In j) is nested in Nn j(y|Xkβk, σ

2
kIn j), we can apply the intrinsic method to derive intrinsic priors for

comparing model Mi and Mk, for any i.
It is easily seen that a theoretical minimal training sample is a random vector z of dimension k + 1.

Under model Mi, z has a density Nk+1(Ziαi, σ
2
i Ik+1), and under model Mk, z has Nk+1(Zkβk, σ

2
kIk+1). We

note that Zi and Zk represent (k + 1) × i and (k + 1) × k unknown design matrics associated with z in
each model. Then, the intrinsic prior is given in Theorem 3.

Theorem 3. For each point (αi, σi), the intrinsic prior of (βk, σk) under the minimal training sample z
is

πI
k(βk, σk|αi, σi) =

2
π

σi

σ2
k + σ

2
i

Nk(βk|α̃i, (σ2
k + σ

2
i )W−1

k ), (4.6)

where
W−1

k =
n j

k + 1
(XT

k Xk)−1

and
α̃i = (αT

i , 0
T )

is k × 1 vector with 0 being the null vector of k − i components.

Proof. See Appendix C. □

The unconditional intrinsic prior for (βk, σk) obtained by integrating out αi and σi is

πI
k(βk, σk) =

2ci

π

∫
1

σ2
k + σ

2
i

Nk(βk|α̃i, (σ2
k + σ

2
i )W−1

k )dαidσi. (4.7)

The pair {πN
i (θi), πI

k(θk)} is referred to as the intrinsic priors utilized for the comparison of models Mi

and Mk. Despite being classified as improper priors, they exhibit strong calibration properties, as both
are contingent upon the same arbitrary constant ci. Moreover, these intrinsic priors represent a well-
recognized limit of proper priors, as noted by Moreno et al. [50].

4.2. The BF and the posterior model probability

We identify the most appropriate model by evaluating the posterior model probabilities.
Consequently, we calculate the BFs utilizing intrinsic priors. For a given data (y,X), the BF with the
intrinsic priors {πN

i (θi), πI
k(θk)} is

BI
ik(y) =

∫
Nn j(y|Xiαi, σ

2
i In j)π

N
i (θi)dθi∫

Nn j(y|Xβk, σ
2
kIn j)π

I
k(θk)dθk

, (4.8)

where
θi = (αi, σi) and θk = (βk, σk).
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The resulting BF is given in Theorem 4.

Theorem 4. The BF with the intrinsic priors is

BI
ik(y) =

1∫ ∞
0
π−1z−

1
2 (1 + z)−1

[
1 + n j(z+1)

k+1

]− k−i
2

{
1 + c(z)−1 yT (Hi−Hk)y

yT (In j−Hi)y

}− n j−i
2

dz

, (4.9)

where
c(z) = 1 +

k + 1
n j(1 + z)

, Hi = Xi(XT
i Xi)−1XT

i

and
Hk = Xk(XT

k Xk)−1XT
k .

Proof. See Appendix D. □

In general, for a dataset denoted as (y,X), the BF for a specific model Mi, in relation to the model
Mk, is defined as the ratio of their respective marginal distributions

Bik(y) =
mi(y)
mk(y)

. (4.10)

For
P(Mi) = P(Mk) = 1/2,

the posterior probability of Mi is

Pr(Mi|y) =
Bik(y)

1 + Bik(y)
. (4.11)

It is observed that the probability Pr(Mi|y) is a monotonically increasing function of the BF Bik(y).
Consequently, the ranking of models based on their posterior probabilities

{Pr(Mi|y),Mi ∈ M}

is equivalent to ranking them according to their respective BFs

{Bik(y),Mi ∈ M},

whereM denotes the comprehensive set of models. Moreover, this ordering remains unchanged when
the BF is normalized across all models, resulting in a corresponding set of probabilities

P(Mi|y) =
Bik(y)

1 +
∑k−1

j=1 B jk(y,X)
. (4.12)

This approach was examined by Casella and Moreno [58]. Subsequently, the posterior probabilities,
as indicated in Eq (4.12), are derived from the BF presented in Eq (4.9), thereby enabling the
identification of the polynomial regression order. Once the model is established, the Bayes estimator
for the regression coefficient vector, utilizing the reference prior, converges to the ordinary least
squares estimator for the specified model.
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4.3. Consistency of Bayesian procedure for model selection

We prove the consistency of the Bayesian model selection procedure encompassed by the model
Mk in Section 4.2. Using the idea of proof in [58, Theorem 3], we obtain the following Lemma 1.

Lemma 1. When the model Mi is nested in Mk, for large values of n j, the Bayes factor given in (4.9)
can be approximated by

BI
ik(y) ≈ π(k + 1)

i−k
2 I(Bn j

ik )−1 exp
{

k − i
2

log n j +
n j − i

2
logBn j

ik

}
, (4.13)

where

B
n j

ik =
yT (In j −HF)y
yT (In j −Hi)y

, Hi = Xi(XT
i Xi)−1XT

i , Hk = Xk(XT
k Xk)−1XT

k

and

I(Bn j

ik ) =
∫ ∞

0
z−1/2(1 + z)

i−k−2
2 exp

 k + 1
2(1 + z)

1 − 1
B

n j

ik

 dz.

Proof. We put
n = n j.

Then, we can express the integrand in BF (4.9) of Theorem 4 as

π−1z−
1
2 (1 + z)−1

[
1 +

n j(z + 1)
k + 1

]− k−i
2 [

1 + c(z)−1B
n j

ik

]− n−i
2

= π−1(1 + k)
k−i
2 z−

1
2 (1 + z)−1− n−i

2 [1 + k + n(z + 1)]
n−k

2

[
1 + k
1 + z

+ nBn
ik

]− n−i
2

. (4.14)

Now we have the following equations:

log[k + 1 + n(z + 1)]
n−k

2 =
n − k

2

[
log n + log(z + 1) + log

(
1 +

k + 1
n(z + 1)

)]
(4.15)

and

log
(
1 + k
1 + z

+ nBn
ik

)− n−i
2

= −
n − i

2

[
log n + logBn

ik + log
(
1 +

k + 1
z + 1

1
nBn

ik

)]
. (4.16)

Using the Eqs (4.15) and (4.16), the integrand (4.14) is expressed as

π−1(1 + k)
k−i
2 z−

1
2 (1 + z)−1− n−i

2

× exp
{

n − k
2

log n +
n − k

2
log(z + 1) +

n − k
2

log
(
1 +

k + 1
n(z + 1)

)}
× exp

{
−

n − i
2

log n −
n − i

2
logBn

ik −
n − i

2
log

(
1 +

k + 1
z + 1

1
nBn

ik

)}
. (4.17)
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Note that for large n, we have the following approximations:(
1 +

k + 1
n(z + 1)

) n−k
2

≈ exp
{

(k + 1)
2(z + 1)

}
(4.18)

and (
1 +

k + 1
z + 1

1
nBn

ik

) n−i
2

≈ exp
{

k + 1
2(1 + z)Bn

ik

}
. (4.19)

Then, the integrand (4.17) can be approximated by

π−1(1 + k)
k−i
2 z−

1
2 (1 + z)

i−k−2
2 exp

{
k + 1

2(z + 1)

(
1 −

1
Bn

ik

)}
× exp

{
i − k

2
log n +

i − n
2

logBn
ik

}
. (4.20)

Therefore, the BF (4.9) can be approximated by

BI
ik(y) ≈ π(k + 1)

i−k
2 I(Bn

ik)
−1 exp

{
k − i

2
log n +

n − i
2

logBn
ik

}
, (4.21)

where

I(Bn
ik) =

∫ ∞

0
z−1/2(1 + z)

i−k−2
2 exp

{
k + 1

2(1 + z)

(
1 −

1
Bn

ik

)}
dz.

Hence, the Lemma 1 is proved. □

Ignoring the positive terms that do not depend on n j from the posterior probability (4.12) and the
asymptotic approximation of (4.13) in Lemma 1, we obtain

P(Mi|y) =
BI

ik(y)

1 +
∑k−1

l=1 BI
lk(y)

=
cikI(Bn j

ik )−1 exp
{

k−i
2 log n j +

n j

2 logBn j

ik

}
1 +

∑k−1
l=1 clkI(Bn j

lk )−1 exp
{

k− j
2 log n j +

n j

2 logBn j

lk

} ,
and similarly, for the true model MT we have

P(MT |y) =
cTkI(Bn j

Tk)
−1 exp

{
k−T

2 log n j +
n j

2 logBn j

Tk

}
1 +

∑k−1
l=1 clkI(Bn j

lk )−1 exp
{

k− j
2 log n j +

n j

2 logBn j

lk

} ,
where cik, clk, and cTk do not depend on n j, and I(Bn j

ik )−1 and I(Bn j

Tk)
−1 are finite for all n j. Thus we can

obtain the ratio of these two probabilities, which is given by

P(Mi|y)
P(MT |y)

≈ exp

T − i
2

log n j +
n j

2
log
B

n j

ik

B
n j

Tk

 .
From Theorem 4, the intrinsic model selection procedure encompassed by the model Mk in Section 4.2
is consistent. That is, with the sampling from MT , we have that

P(Mi|y)
P(MT |y)

→ 0, [Pt],

whenever the model
Mi , MT .
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5. Numerical study

5.1. Simulation study

We compare the performance of Bayesian change-point detection methods, utilizing the BFs with
intrinsic priors, to the existing frequentist change-point detection methods: bottom-up (BUP, Keogh
et al. [60]), trend filtering (TF, Kim et al. [36]), NOT (Baranowski et al. [37]), continuous-piecewise-
linear pruned optimal partitioning (CPOP, Maidstone et al. [17]), ID (Anastasiou and Fryzlewicz [38]),
and TrendSegment (TS, Maeng and Fryzlewicz [39]).

Baranowski et al. [37], Anastasiou and Fryzlewicz [38], and Maeng and Fryzlewicz [39]
demonstrated that NOT, ID and Trend Segment outperform other competitors when estimating the
number of change-points in simulation studies. CPOP was omitted from our comparison due to its
performance being nearly identical to ID, but slightly inferior (Anastasiou and Fryzlewicz [38]). TS,
on the other hand, demonstrated much better results than CPOP (Maeng and Fryzlewicz). BUP and
TF, in comparison, showed no viable results compared to ID, NOT, TS, or CPOP, and therefore were
excluded from our comparison.

We aim to compare the performance of the proposed Bayesian detection methods with their
frequentist counterparts, namely NOT detection (Baranowski et al. [37]) implemented in the R
package NOT from CRAN, ID (Anastasiou and Fryzlewicz [38]) available in the R package IDetect,
and TS (Maeng and Fryzlewicz [39]) implemented in the R package trendsegmentR from CRAN.

We constructed underlying signals with a variety of characteristics following approaches similar to
Baranowski et al. [37] and Maeng and Fryzlewicz [39]. We simulated data from model (1) using 8
signals: (M1) wave 1, (M2) wave 2, (M3) mix 1, (M4) mix 2, (M5) teeth-linear, (M6) linear, (M7)
wave 3, and (M8) quad, shown in Figure 1. (M1) and (M2) are linear signals at change-points, with
(M2) having discontinuities. (M3) and (M4) are a mix of continuous and discontinuous change-points
with both constant and linear segments, with (M4) having particularly short segments. (M5) is
piecewise linear with a teeth shape. (M6) is a linear signal. (M7) is a mix of continuous and
discontinuous linear signals with different slopes and segment sizes. Lastly, (M8) is composed of both
constant, linear and quadratic signals with a mix of continuous and discontinuous change-points. The
underlying signals are as follows:

(M1) wave 1: length 1500; change-points at 150, 300, 450, 600, 750, 900, 1050, 1200, and 1350;
values of the slopes between change-points 3/150, -3/150, 3/150, -3/150, 3/150, -3/150, 3/150,- 3/150,
3/150, -3/150, and values of the intercepts between change-points -1, 5, -7, 11, -13, 17, -19, 23, -25,
29. We use two types of standard deviations in the noises for the heterogeneous case. That is, we use
values of standard deviations between change-points 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5 (type 1) and 2,
1, 0.5, 0.25, 0.5, 1, 2, 1, 0.5, 0.25 (type 2). In homogeneous case, we put values of standard deviations
to 1.

(M2) wave 2: length 1260; change-points at 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660,
720, 780, 840, 900, 960, 1020, 1080, 1140, and 1200; values of the slopes between change-points
0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625,
0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625, 0.0625, and values of the
intercepts between change-points -1, 7.5625, -8.5, 15.0625, -16, 22.5625, -23.5, 30.0625, -31,
37.5625, -38.5, 45.0625, -46, 52.5625, -53.5, 60.0625, -61, 67.5625, -68.5, 75.0625, -76. We use two
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types of standard deviations in the noises in the heterogeneous case. That is, we use values of
standard deviations between change-points 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1,
0.5, 1, 0.5, 1 (type 1) and 2, 1, 0.5, 0.25, 0.125, 0.25, 0.5, 1, 2, 1, 0.5, 0.25, 0.125, 0.25, 0.5, 1, 2, 1,
0.5, 0.25, 0.125 (type 2). In homogeneous case, we put values of standard deviations to 1.

(M3) mix 1: length 2048; change-points at 256, 512, 768, 1024, 1280, 1536, and 1792; values of the
slopes between change-points 0, 4/256, 0, -4/256, 0, 4/256, -4/256, 4/256, and values of the intercepts
between change-points 0, -4, 3, 15, -2, -21, 28, -28. We use two types of standard deviations in the
noises for the heterogeneous case. That is, we use values of standard deviations between change-points
1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5 (type 1) and 2, 1, 0.5, 0.25, 0.5, 1, 2, 1 (type 2). In homogeneous case, we
put values of standard deviations to 1.

(M4) mix 2: length 2048; change-points at 256, 512, 542, 768, 1024, 1280, 1310, 1536, and 1792;
values of the slopes between change-points 0, 0, 8/256, -4/256, 4/256, -4/256, 0, 0, 4/256, -4/256,
and values of the intercepts between change-points 2, -2, -12.03125, 9.390625, -15.625, 17.390625,
-7.609375, -3.609375, -25.625, 30.375. We use two types of standard deviations in the noises for the
heterogeneous case. That is, we use values of standard deviations between change-points 1, 0.5, 1, 0.5,
1, 0.5, 1, 0.5 (type 1) and 2, 1, 0.5, 0.25, 0.5, 1, 2, 1 (type 2). In homogeneous case, we put values of
standard deviations to 1.

(M5) teeth-linear: length 800; change-points at 100, 200, 300, 400, 500, 600, and 700; values of the
slopes between change-points 5/1000, 5/1000, 5/1000, 5/1000, 5/1000, 5/1000, 5/1000, 5/1000, and
values of the intercepts between change-points 1, -1, 0, -2, -1, -3, -2, -4. We use two types of standard
deviations in the noises for the heterogeneous case. That is, we use values of standard deviations
between change-points 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5 (type 1) and 2, 1, 0.5, 0.25, 0.5, 1, 2, 1 (type 2). In
homogeneous case, we put values of standard deviations to 0.5.

(M6) linear: length 1500; values of slope and intercept are 2/1500 and -1, respectively. In
homogeneous case, we put values of standard deviations to 1, and thus this signal is a linear signal
without change-points. We use two types of standard deviations in the noises for the heterogeneous
case. That is, we use values of standard deviations between change-points 1, 0.5, 1, 0.5 (type 1) and 2,
1, 0.5, 0.25 (type 2). The change-points of changes in variances are located at 300, 700, 1200 and thus
this signal is a linear signal with changes of variances.

(M7) wave 3: length 1408; change-points at 256, 512, 768, 1024, 1152, 1280, and 1344; values of
the slopes between change-points 2−8, −2−6, 2 × 2−6, −3 × 2−6, 4 × 2−6, −5 × 2−6, 6 × 2−6, −7 × 2−6

and values of the intercepts between change-points 1, 4, -16, 40, -70, 92, -126, 147. We use two types
of standard deviations in the noises for the heterogeneous case. That is, we use values of standard
deviations between change-points 1, 0.5, 0.25, 0.5, 1, 0.5, 0.25, 0.5 (type 1) and 2, 1, 0.5, 0.25, 0.5, 1,
2, 1 (type 2). In homogeneous case, we put values of standard deviations to 1.

(M8) quad: length 1408; change-points at 100, 250, and 500; values of the slopes between change-
points 0, 0, 1/100, and values of the intercepts between change-points 0, 2, 2.5 and in the quadratic
coefficient 10−5, 0, -5. We use two types of standard deviations in the noises for the heterogeneous
case. That is, we use values of standard deviations between change-points 1, 0.5, 1, 0.5 (type 1) and 2,
1, 0.5, 0.25 (type 2). In homogeneous case, we put values of standard deviations to 1.
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Figure 1. The underlying signals.
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For the given true signals, we detect the change-points using the NOT, ID, and TS methods in the
corresponding R packages. We use the recommended contrast functions for NOT and ID methods, and
the default values for the other tuning parameters.

In Bayesian change-point detection methods, we consider the threshold criteria

λ = 1, 3, 10, 20, and 100

following the guidelines of Jeffreys and Kass and Raftery as described in Section 2.3, and use the
appropriate order of polynomials for the respective true signals. We denote detection by BM as BF, and
detection by both BM and B̄ as minimum Bayes factor (MBF).

We generated 1000 datasets for each true signal in all the simulations. For each dataset, we
calculated the MSE and MSR values for each true signal to evaluate the performance of each method.
The MSE and MSR are defined as follows:

MS E =
1
n

n∑
i=1

( f̂i(xi) − fi(xi))2,

MS R =
1
n

n∑
i=1

( f̂i(xi) − yi)2,

(5.1)

where f̂i(xi) is the estimated signal and fi(xi) is the true signal between two successive change-points,
and yi is observation. The empirical distribution of the difference between the estimated number of
change-points (K̂) and the true number of change-points (K) is reported. To gauge the accuracy of the
estimated change-point locations (τ̂i), we present estimates of the scaled Hausdorff distance as

dH =
1
n

max
{

max
i

min
j
|τi − τ̂ j|,max

j
min

i
|τ̂ j − τi|

}
, (5.2)

where

i = 0, · · · ,K + 1

and

j = 0, · · · , K̂ + 1

with the convention

τ0 = τ̂0 = 0, τK+1 = τ̂K̂+1 = n

and τ̂ and τ denote estimated and true locations of the change-points. The smaller the Hausdorff
distance, the more accurate the estimation of the change-point locations. The summary of the results
for all models and methods can be found in Tables 1–6.
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Table 1. Type 1 heterogeneous variances: distribution of K̂ − K for the various competing
methods, the average MSE, the average MSR, and the average Hausdorff distance dH for
models (M1)–(M4).

K̂ − K

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSR MSE dH

(M1) ID 0 0 0 82 17 1 0 0.6528 0.0234 0.0167
K = 9 NOT 0 0 0 100 0 0 0 0.6145 0.0103 0.0070

TS 0 0 0 58 27 8 7 0.6101 0.0297 0.0236
BF: λ = 1 0 0 0 0 0 0 100 0.5910 0.0343 0.0376
BF: λ = 3 0 0 0 11 13 21 55 0.6043 0.0214 0.0260
BF: λ = 10 0 0 0 44 28 19 9 0.6094 0.0161 0.0183
BF: λ = 20 0 0 0 65 22 10 3 0.6108 0.0156 0.0170
BF: λ = 100 0 0 0 88 11 1 0 0.6122 0.0160 0.0162
MBF: λ = 1 0 0 0 45 21 19 15 0.6091 0.0172 0.0201
MBF: λ = 3 0 0 0 70 24 6 0 0.6114 0.0163 0.0173
MBF: λ = 10 0 0 0 83 17 0 0 0.6125 0.0175 0.0180
MBF: λ = 20 0 0 0 84 16 0 0 0.6128 0.0184 0.0185
MBF: λ = 100 0 0 0 92 8 0 0 0.6140 0.0204 0.0194

(M2) ID 0 0 0 69 21 9 1 0.6702 0.0753 0.0130
K = 20 NOT 0 0 0 98 2 0 0 0.6012 0.0621 0.0143

TS 0 0 0 71 17 9 3 0.6203 0.0722 0.0155
BF: λ = 1 0 0 0 0 0 0 100 0.5670 0.0943 0.0220
BF: λ = 3 0 0 0 1 4 8 87 0.5988 0.0701 0.0191
BF: λ = 10 0 0 0 27 27 21 25 0.6146 0.0657 0.0157
BF: λ = 20 0 0 0 48 32 13 7 0.6194 0.0670 0.0155
BF: λ = 100 0 0 0 75 22 3 0 0.6279 0.0763 0.0162
MBF: λ = 1 0 0 0 4 14 16 66 0.6106 0.0722 0.0181
MBF: λ = 3 0 0 0 30 33 24 13 0.6221 0.0735 0.0173
MBF: λ = 10 0 0 0 68 19 11 2 0.6302 0.0811 0.0169
MBF: λ = 20 0 0 0 76 19 5 0 0.6361 0.0872 0.0173
MBF: λ = 100 0 0 0 92 8 0 0 0.6464 0.0995 0.0184

(M3) ID 0 0 0 31 42 15 12 0.6628 0.0512 0.0206
K = 7 NOT 0 0 0 97 3 0 0 0.6148 0.0141 0.0199

TS 0 0 0 49 15 27 9 0.6183 0.0239 0.0299
BF: λ = 1 0 0 0 0 5 3 92 0.6101 0.0164 0.0399
BF: λ = 3 0 0 0 20 13 25 42 0.6162 0.0107 0.0280
BF: λ = 10 0 0 0 66 16 13 5 0.6196 0.0077 0.0129
BF: λ = 20 0 0 0 80 10 7 3 0.6199 0.0074 0.0096
BF: λ = 100 0 0 0 96 3 1 0 0.6204 0.0069 0.0059
MBF: λ = 1 0 0 0 87 7 5 1 0.6201 0.0072 0.0087
MBF: λ = 3 0 0 0 93 5 1 1 0.6203 0.0070 0.0070
MBF: λ = 10 0 0 0 97 2 1 0 0.6205 0.0070 0.0060
MBF: λ = 20 0 0 0 97 2 1 0 0.6205 0.0070 0.0060
MBF: λ = 100 0 0 0 100 0 0 0 0.6206 0.0069 0.0055

(M4) ID 0 0 0 0 0 0 100 0.6351 0.1037 0.0279
K = 9 NOT 0 0 0 94 5 1 0 0.5450 0.0119 0.0105

TS 0 0 0 30 21 21 28 0.5419 0.0217 0.0233
BF: λ = 1 0 0 0 0 0 3 97 0.5362 0.0223 0.0305
BF: λ = 3 0 0 0 9 26 24 41 0.5442 0.0145 0.0160
BF: λ = 10 0 0 0 39 38 16 7 0.5475 0.0115 0.0078
BF: λ = 20 0 0 0 57 33 8 2 0.5482 0.0114 0.0060
BF: λ = 100 0 0 0 87 13 0 0 0.5498 0.0110 0.0030
MBF: λ = 1 0 0 0 68 23 7 2 0.5483 0.0111 0.0039
MBF: λ = 3 0 0 0 78 20 2 0 0.5490 0.0109 0.0033
MBF: λ = 10 0 0 0 90 10 0 0 0.5500 0.0116 0.0031
MBF: λ = 20 0 0 0 94 6 0 0 0.5501 0.0118 0.0031
MBF: λ = 100 0 0 0 96 4 0 0 0.5502 0.0120 0.0031
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Table 2. Type 1 heterogeneous variances: distribution of K̂ − K for the various competing
methods, the average MSE, the average MSR, and the average Hausdorff distance dH for
models (M5)–(M8).

K̂ − K

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSR MSE dH

(M5) ID 0 0 0 7 49 12 32 0.6728 0.0949 0.1139
K = 7 NOT 35 32 19 11 3 0 0 0.6295 0.0574 0.1166

TS 4 19 32 21 18 3 3 0.6223 0.0621 0.1045
BF: λ = 1 0 0 0 0 5 15 80 0.5907 0.0462 0.0292
BF: λ = 3 0 0 0 24 35 24 17 0.60283 0.0353 0.0150
BF: λ = 10 0 0 0 65 30 4 1 0.60805 0.0318 0.0078
BF: λ = 20 0 0 0 79 19 2 0 0.60884 0.0311 0.0069
BF: λ = 100 0 0 0 96 4 0 0 0.61071 0.0303 0.0046
MBF: λ = 1 0 0 0 87 13 0 0 0.60983 0.0308 0.0061
MBF: λ = 3 0 0 0 96 4 0 0 0.61057 0.0303 0.0045
MBF: λ = 10 0 0 0 98 2 0 0 0.61061 0.0303 0.0043
MBF: λ = 20 0 0 0 99 1 0 0 0.61080 0.0301 0.0043
MBF: λ = 100 0 0 0 100 0 0 0 0.61097 0.0300 0.0042

(M6) ID 98 2 0 0 0 0 0 0.6494 0.0010 0.4640
K = 3 NOT 100 0 0 0 0 0 0 0.6495 0.0008 0.4667

TS 72 1 24 0 3 0 0 0.6460 0.0044 0.4105
BF: λ = 1 0 0 0 17 21 27 35 0.6416 0.0118 0.0200
BF: λ = 3 0 0 0 54 28 15 3 0.6450 0.0081 0.0147
BF: λ = 10 0 0 0 83 16 1 0 0.6467 0.0061 0.0107
BF: λ = 20 0 0 0 92 8 0 0 0.6472 0.0057 0.0088
BF: λ = 100 0 0 0 100 0 0 0 0.6477 0.0053 0.0079
MBF: λ = 1 0 0 0 98 2 0 0 0.6476 0.0054 0.0091
MBF: λ = 3 0 0 0 98 2 0 0 0.6476 0.0053 0.0097
MBF: λ = 10 0 0 0 99 1 0 0 0.6477 0.0053 0.0093
MBF: λ = 20 0 0 0 99 1 0 0 0.6477 0.0053 0.0093
MBF: λ = 100 0 3 0 97 0 0 0 0.6476 0.0052 0.0187

(M7) ID 0 0 0 0 0 4 96 0.6630 0.2729 0.0262
K = 7 NOT 0 0 0 81 8 9 2 0.4037 0.0105 0.0104

TS 0 0 0 1 2 1 96 0.3654 0.0524 0.0555
BF: λ = 1 0 0 0 0 5 14 81 0.4008 0.0130 0.0191
BF: λ = 3 0 0 0 21 34 27 18 0.4046 0.0094 0.0096
BF: λ = 10 0 0 0 66 26 7 1 0.4060 0.0081 0.0056
BF: λ = 20 0 0 0 76 21 2 1 0.4063 0.0080 0.0049
BF: λ = 100 0 0 0 93 7 0 0 0.4072 0.0079 0.0037
MBF: λ = 1 0 0 0 71 25 4 0 0.4064 0.0080 0.0059
MBF: λ = 3 0 0 0 88 12 0 0 0.4070 0.0079 0.0043
MBF: λ = 10 0 0 0 94 6 0 0 0.4074 0.0080 0.0039
MBF: λ = 20 0 0 0 94 6 0 0 0.4076 0.0081 0.0040
MBF: λ = 100 0 0 0 100 0 0 0 0.4089 0.0093 0.0044

(M8) ID 0 0 0 0 3 10 87 0.5177 0.0285 0.1679
K = 3 NOT 0 0 0 83 15 1 1 0.4940 0.0164 0.0292

TS 0 0 0 3 42 12 43 0.4935 0.0297 0.1184
BF: λ = 1 0 0 0 30 27 23 20 0.4945 0.0150 0.0170
BF: λ = 3 0 0 0 63 26 11 0 0.4996 0.0102 0.0096
BF: λ = 10 0 0 0 90 9 1 0 0.5018 0.0082 0.0072
BF: λ = 20 0 0 0 95 4 1 0 0.5022 0.0081 0.0071
BF: λ = 100 0 0 0 99 1 0 0 0.5025 0.0081 0.0077
MBF: λ = 1 0 0 0 95 3 2 0 0.5022 0.0082 0.0088
MBF: λ = 3 0 0 0 99 1 0 0 0.5025 0.0080 0.0087
MBF: λ = 10 0 0 0 100 0 0 0 0.5025 0.0081 0.0086
MBF: λ = 20 0 0 0 100 0 0 0 0.5025 0.0081 0.0086
MBF: λ = 100 0 0 0 100 0 0 0 0.5026 0.0081 0.0090
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Table 3. Type 2 heterogeneous variances: Distribution of K̂ − K for the various competing
methods, the average MSE, the average MSR, and the average Hausdorff distance dH for
models (M1)–(M4).

K̂ − K

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSR MSE dH

(M1) ID 0 0 0 38 11 15 36 1.1569 0.0584 0.0272
K = 9 NOT 0 0 0 90 7 2 1 1.1616 0.0227 0.0129

TS 0 0 0 0 0 0 100 0.6916 0.4961 0.0451
BF: λ = 1 0 0 0 1 1 1 97 1.1293 0.0564 0.0374
BF: λ = 3 0 0 0 6 18 20 56 1.1463 0.0378 0.0263
BF: λ = 10 0 0 0 44 28 16 12 1.1557 0.0291 0.0186
BF: λ = 20 0 0 0 65 22 12 1 1.1586 0.0264 0.0162
BF: λ = 100 0 0 0 89 9 2 0 1.1598 0.0266 0.0163
MBF: λ = 1 0 0 0 50 29 11 10 1.1561 0.0286 0.0201
MBF: λ = 3 0 0 0 74 23 3 0 1.1583 0.0274 0.0178
MBF: λ = 10 0 0 0 85 14 1 0 1.1595 0.0287 0.0187
MBF: λ = 20 0 0 0 90 10 0 0 1.1601 0.0288 0.0179
MBF: λ = 100 0 0 0 92 8 0 0 1.1632 0.0305 0.0212

(M2) ID 0 0 0 21 6 11 62 0.8789 0.1352 0.0181
K = 20 NOT 0 0 3 50 18 9 20 0.7994 0.1210 0.0194

TS 0 0 0 0 0 0 100 0.3338 0.5677 0.0222
BF: λ = 1 0 0 0 0 0 0 100 0.7870 0.1216 0.0213
BF: λ = 3 0 0 0 0 2 8 90 0.8268 0.0843 0.0190
BF: λ = 10 0 0 0 37 26 19 18 0.8419 0.0773 0.0160
BF: λ = 20 0 0 0 62 24 11 3 0.8472 0.0757 0.0153
BF: λ = 100 0 0 0 84 15 1 0 0.8514 0.0816 0.0171
MBF: λ = 1 0 0 0 18 30 18 34 0.8419 0.0797 0.0171
MBF: λ = 3 0 0 0 53 32 10 5 0.8483 0.0798 0.0168
MBF: λ = 10 0 0 0 82 15 2 1 0.8534 0.0833 0.0175
MBF: λ = 20 0 0 1 87 10 1 1 0.8565 0.0867 0.0182
MBF: λ = 100 0 0 1 94 5 0 0 0.8615 0.0939 0.0190

(M3) ID 0 0 0 52 12 11 25 1.4718 0.0707 0.0303
K = 7 NOT 0 0 0 64 20 7 9 1.4067 0.0521 0.0314

TS 0 0 0 0 0 0 100 1.0654 0.3940 0.0559
BF: λ = 1 0 0 0 1 2 4 93 1.4074 0.0417 0.0373
BF: λ = 3 0 0 0 17 18 28 37 1.4238 0.0249 0.0207
BF: λ = 10 0 0 0 63 22 13 2 1.4321 0.0164 0.0102
BF: λ = 20 0 0 0 82 14 4 0 1.4335 0.0151 0.0071
BF: λ = 100 0 0 0 97 3 0 0 1.4350 0.0140 0.0057
MBF: λ = 1 0 0 0 91 5 4 0 1.4342 0.0148 0.0066
MBF: λ = 3 0 0 0 95 3 2 0 1.4347 0.0145 0.0060
MBF: λ = 10 0 0 0 97 3 0 0 1.4351 0.0141 0.0061
MBF: λ = 20 0 0 0 98 2 0 0 1.4351 0.0143 0.0062
MBF: λ = 100 0 0 0 98 2 0 0 1.4351 0.0143 0.0063

(M4) ID 0 0 0 0 0 0 100 1.0555 0.1444 0.0344
K = 9 NOT 0 0 0 41 11 17 31 0.9614 0.0536 0.0247

TS 0 0 0 0 0 0 100 0.6253 0.3887 0.0564
BF: λ = 1 0 0 0 0 1 1 98 0.9752 0.0339 0.0302
BF: λ = 3 0 0 0 10 18 23 49 0.9859 0.0251 0.0189
BF: λ = 10 0 0 0 47 25 22 6 0.9913 0.0225 0.0079
BF: λ = 20 0 0 0 58 31 10 1 0.9934 0.0221 0.0057
BF: λ = 100 0 0 0 87 12 1 0 0.9962 0.0207 0.0035
MBF: λ = 1 0 0 0 65 18 8 9 0.9942 0.0212 0.0057
MBF: λ = 3 0 0 0 80 15 4 1 0.9958 0.0210 0.0041
MBF: λ = 10 0 0 0 89 11 0 0 0.9961 0.0208 0.0035
MBF: λ = 20 0 0 0 89 11 0 0 0.9961 0.0208 0.0037
MBF: λ = 100 0 0 0 92 8 0 0 0.9968 0.0217 0.0035
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Table 4. Type 2 heterogeneous variances: distribution of K̂ − K for the various competing
methods, the average MSE, the average MSR, and the average Hausdorff distance dH for
models (M5)–(M8).

K̂ − K

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSR MSE dH

(M5) ID 0 0 0 12 14 11 63 1.4279 0.1828 0.1194
K = 7 NOT 49 17 17 6 6 3 2 1.3909 0.1490 0.1250

TS 0 0 0 0 1 0 99 1.0149 0.4906 0.1161
BF: λ = 1 0 0 0 0 5 11 84 1.3494 0.0980 0.0307
BF: λ = 3 0 0 0 19 40 23 18 1.3841 0.0678 0.0169
BF: λ = 10 0 0 0 62 31 7 0 1.3972 0.0564 0.0097
BF: λ = 20 0 0 0 77 21 2 0 1.4002 0.0536 0.0085
BF: λ = 100 0 0 0 95 5 0 0 1.4031 0.0525 0.0070
MBF: λ = 1 0 0 0 81 18 1 0 1.3992 0.0551 0.0091
MBF: λ = 3 0 0 0 91 9 0 0 1.4019 0.0527 0.0078
MBF: λ = 10 0 0 0 97 3 0 0 1.4026 0.0547 0.0083
MBF: λ = 20 0 0 0 100 0 0 0 1.4040 0.0536 0.0082
MBF: λ = 100 0 0 1 99 0 0 0 1.4038 0.0545 0.0091

(M6) ID 71 9 9 8 2 0 1 1.1458 0.1110 0.4438
K = 3 NOT 96 0 3 0 0 1 0 1.1521 0.0087 0.4613

TS 0 0 0 0 0 0 100 0.6391 0.5178 0.2372
BF: λ = 1 0 0 0 21 28 22 29 1.1433 0.0202 0.0185
BF: λ = 3 0 0 0 57 28 13 2 1.1489 0.0141 0.0127
BF: λ = 10 0 0 0 87 12 1 0 1.1526 0.0104 0.0075
BF: λ = 20 0 0 0 95 4 1 0 1.1537 0.0094 0.0056
BF: λ = 100 0 0 0 100 0 0 0 1.1539 0.0091 0.0056
MBF: λ = 1 0 0 0 100 0 0 0 1.1539 0.0091 0.0056
MBF: λ = 3 0 0 0 100 0 0 0 1.1539 0.0091 0.0056
MBF: λ = 10 0 0 0 100 0 0 0 1.1539 0.0091 0.0056
MBF: λ = 20 0 0 0 100 0 0 0 1.1539 0.0091 0.0056
MBF: λ = 100 0 0 0 100 0 0 0 1.1539 0.0091 0.0056

(M7) ID 0 0 0 0 1 7 92 1.5276 0.3525 0.0489
K = 7 NOT 0 0 0 58 12 15 15 1.2558 0.0743 0.0238

TS 0 0 0 0 0 0 100 0.7915 0.5345 0.0814
BF: λ = 1 0 0 0 0 5 14 81 1.2678 0.0587 0.0168
BF: λ = 3 0 0 0 17 34 22 27 1.2822 0.0463 0.0091
BF: λ = 10 0 0 0 58 30 11 1 1.2890 0.0424 0.0064
BF: λ = 20 0 0 0 70 22 7 1 1.2900 0.0420 0.0058
BF: λ = 100 0 0 0 88 12 0 0 1.2936 0.0399 0.0053
MBF: λ = 1 0 0 0 69 23 6 2 1.2908 0.0421 0.0063
MBF: λ = 3 0 0 0 85 15 0 0 1.2931 0.0413 0.0057
MBF: λ = 10 0 0 0 96 4 0 0 1.2939 0.0422 0.0053
MBF: λ = 20 0 0 0 98 2 0 0 1.2942 0.0430 0.0053
MBF: λ = 100 0 0 0 99 1 0 0 1.2948 0.0437 0.0056

(M8) ID 0 0 0 0 0 2 98 0.5922 0.0802 0.0948
K = 3 NOT 0 0 0 3 5 8 84 0.5032 0.1358 0.0383

TS 0 0 0 0 0 0 100 0.2211 0.4181 0.0893
BF: λ = 1 0 0 0 30 19 25 26 0.6090 0.0274 0.0170
BF: λ = 3 0 0 0 58 27 8 7 0.6182 0.0190 0.0097
BF: λ = 10 0 0 0 90 7 2 1 0.6219 0.0159 0.0084
BF: λ = 20 0 0 0 92 6 2 0 0.6219 0.0159 0.0083
BF: λ = 100 0 0 0 96 4 0 0 0.6228 0.0152 0.0088
MBF: λ = 1 0 0 0 93 5 2 0 0.6220 0.0159 0.0092
MBF: λ = 3 0 0 0 97 3 0 0 0.6231 0.0147 0.0090
MBF: λ = 10 0 0 0 97 3 0 0 0.6232 0.0148 0.0104
MBF: λ = 20 0 0 0 97 3 0 0 0.6232 0.0148 0.0104
MBF: λ = 100 0 0 0 97 3 0 0 0.6232 0.0148 0.0110
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Table 5. Homogeneous variances: distribution of K̂ − K for the various competing methods,
the average MSE, the average MSR, and the average Hausdorff distance dH for models (M1)–
(M4).

K̂ − K

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSR MSE dH

(M1) ID 0 0 0 97 3 0 0 0.9985 0.0305 0.0154
K = 9 NOT 0 0 0 100 0 0 0 0.9862 0.0159 0.0090

TS 0 0 0 99 1 0 0 0.9937 0.0444 0.0290
BF: λ = 1 0 0 0 0 0 2 98 0.9477 0.0839 0.0440
BF: λ = 3 0 0 0 11 19 18 52 0.9717 0.0728 0.0392
BF: λ = 10 0 0 0 51 26 13 10 0.9833 0.0746 0.0366
BF: λ = 20 0 0 0 64 24 7 5 0.9869 0.0775 0.0371
BF: λ = 100 0 0 1 77 20 2 0 0.9950 0.0869 0.0388
BFM: λ = 1 0 0 0 39 42 11 8 0.9835 0.0761 0.0386
BFM: λ = 3 0 0 0 61 34 5 0 0.9914 0.0836 0.0384
BFM: λ = 10 0 0 1 76 23 0 0 0.9978 0.0905 0.0398
BFM: λ = 20 0 0 4 79 17 0 0 1.0005 0.0938 0.0402
BFM: λ = 100 0 0 7 85 8 0 0 1.0083 0.1040 0.0434

(M2) ID 0 0 0 98 2 0 0 1.0204 0.0902 0.0142
K = 20 NOT 0 0 0 100 0 0 0 0.9374 0.0888 0.0155

TS 0 0 2 98 0 0 0 0.9818 0.1087 0.0189
BF: λ = 1 0 0 0 0 0 0 100 0.8967 0.1773 0.0226
BF: λ = 3 0 0 0 2 5 11 82 0.9467 0.1613 0.0217
BF: λ = 10 0 0 0 25 22 30 23 0.9713 0.1687 0.0216
BF: λ = 20 0 0 0 49 33 15 3 0.9810 0.1728 0.0218
BF: λ = 100 0 0 4 80 15 1 0 0.9969 0.1865 0.0228
BFM: λ = 1 0 0 0 19 23 27 31 0.9714 0.1700 0.0220
BFM: λ = 3 0 0 0 43 40 14 3 0.9714 0.1784 0.0223
BFM: λ = 10 0 0 2 73 22 3 0 0.9984 0.1880 0.0230
BFM: λ = 20 0 0 10 76 14 0 0 1.0065 0.1968 0.0238
BFM: λ = 100 3 2 30 63 2 0 0 1.0440 0.2346 0.0329

(M3) ID 0 0 0 89 10 1 0 1.0314 0.0475 0.0264
K = 7 NOT 0 0 0 100 0 0 0 0.9847 0.0191 0.0215

TS 0 0 0 99 1 0 0 1.0034 0.0307 0.0312
BF: λ = 1 0 0 0 0 3 6 91 0.9728 0.0413 0.0490
BF: λ = 1 0 0 0 0 3 6 91 0.9728 0.0413 0.0490
BF: λ = 3 0 0 0 15 20 25 40 0.9834 0.0338 0.0421
BF: λ = 10 0 0 0 59 22 16 3 0.9895 0.0312 0.0392
BF: λ = 20 0 0 0 73 21 5 1 0.9912 0.0318 0.0392
BF: λ = 100 0 0 0 95 4 1 0 0.9943 0.0340 0.0428
BFM: λ = 1 0 0 0 86 11 3 0 0.9930 0.0334 0.0423
BFM: λ = 3 0 0 0 89 9 2 0 0.9937 0.0343 0.0436
BFM: λ = 10 0 0 0 95 5 0 0 0.9960 0.0363 0.0448
BFM: λ = 20 0 0 1 95 4 0 0 0.9970 0.0378 0.0457
BFM: λ = 100 0 0 1 98 1 0 0 0.9989 0.0400 0.0471

(M4) ID 0 0 0 0 2 8 90 1.2104 0.2413 0.0730
K = 9 NOT 0 0 0 98 2 0 0 0.9867 0.0171 0.0097

TS 0 0 0 50 40 9 1 1.0010 0.0349 0.0158
BF: λ = 1 0 0 0 0 0 1 99 0.9713 0.0393 0.0301
BF: λ = 3 0 0 0 8 19 28 45 0.9832 0.0296 0.0201
BF: λ = 10 0 0 0 41 32 19 8 0.9884 0.0268 0.0153
BF: λ = 20 0 0 0 54 34 11 1 0.9898 0.0261 0.0140
BF: λ = 100 0 0 0 82 18 0 0 0.9921 0.0261 0.0133
BFM: λ = 1 0 0 0 54 34 7 5 0.9898 0.0258 0.0148
BFM: λ = 3 0 0 0 75 21 3 1 0.9917 0.0264 0.0138
BFM: λ = 10 0 0 0 85 14 1 0 0.9928 0.0271 0.0135
BFM: λ = 20 0 0 0 88 11 1 0 0.9936 0.0283 0.0136
BFM: λ = 100 0 0 0 93 7 0 0 0.9956 0.0305 0.0148
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Table 6. Homogeneous variances: distribution of K̂ − K for the various competing methods,
the average MSE, the average MSR, and the average Hausdorff distance dH for models (M5)–
(M8).

K̂ − K

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSR MSE dH

(M5) ID 0 0 0 0 25 0 75 0.2857 0.0555 0.1142
K = 7 NOT 0 0 8 68 24 0 0 0.2432 0.0126 0.0222

TS 1 0 17 47 25 9 1 0.2523 0.0216 0.0413
BF: λ = 1 0 0 0 1 5 11 83 0.2370 0.0207 0.0295
BF: λ = 3 0 0 0 20 37 23 20 0.2421 0.0162 0.0144
BF: λ = 10 0 0 0 61 35 4 0 0.2442 0.0150 0.0072
BF: λ = 20 0 0 3 73 22 2 0 0.2446 0.0151 0.0095
BF: λ = 100 0 0 5 86 9 0 0 0.2456 0.0155 0.0100
MBF: λ = 1 0 0 4 77 17 1 1 0.2449 0.0152 0.0105
MBF: λ = 3 0 0 6 84 9 1 0 0.2456 0.0156 0.0117
MBF: λ = 10 0 0 10 85 5 0 0 0.2461 0.0160 0.0156
MBF: λ = 20 0 0 13 84 3 0 0 0.2465 0.0164 0.0191
MBF: λ = 100 0 0 22 77 1 0 0 0.2476 0.0178 0.0299

(M6) ID 0 0 0 100 0 0 0 0.9988 0.0014 0.0000
K = 0 NOT 0 0 0 100 0 0 0 0.9987 0.0016 0.0000

TS 0 0 0 100 0 0 0 0.9988 0.0014 0.0000
BF: λ = 1 0 0 0 85 11 2 2 0.9977 0.0025 0.0019
BF: λ = 3 0 0 0 91 9 0 0 0.9985 0.0018 0.0007
BF: λ = 10 0 0 0 98 2 0 0 0.9988 0.0015 0.0001
BF: λ = 20 0 0 0 99 1 0 0 0.9988 0.0015 0.0001
BF: λ = 100 0 0 0 100 0 0 0 0.9988 0.0015 0.0000
MBF: λ = 1 0 0 0 100 0 0 0 0.9988 0.0014 0.0000
MBF: λ = 3 0 0 0 100 0 0 0 0.9988 0.0014 0.0000
MBF: λ = 10 0 0 0 100 0 0 0 0.9988 0.0014 0.0000
MBF: λ = 20 0 0 0 100 0 0 0 0.9988 0.0014 0.0000
MBF: λ = 100 0 0 0 100 0 0 0 0.9988 0.0014 0.0000

(M7) ID 0 0 0 0 2 65 33 1.1164 0.1495 0.0120
K = 7 NOT 0 0 0 100 0 0 0 0.9845 0.0223 0.0052

TS 0 0 0 71 27 2 0 1.0030 0.0424 0.0092
BF: λ = 1 0 0 0 0 2 10 88 0.9691 0.0444 0.0196
BF: λ = 3 0 0 0 19 25 27 29 0.9807 0.0375 0.0122
BF: λ = 10 0 0 0 55 33 9 3 0.9873 0.0365 0.0096
BF: λ = 20 0 0 0 69 25 6 0 0.9891 0.0363 0.0088
BF: λ = 100 0 0 0 91 9 0 0 0.9923 0.0382 0.0078
MBF: λ = 1 0 0 0 59 32 7 2 0.9893 0.0384 0.0097
MBF: λ = 3 0 0 0 80 17 3 0 0.9915 0.0390 0.0088
MBF: λ = 10 0 0 0 90 10 0 0 0.9940 0.0412 0.0082
MBF: λ = 20 0 0 0 91 9 0 0 0.9948 0.0421 0.0083
MBF: λ = 100 0 0 0 100 0 0 0 0.9981 0.0451 0.0085

(M8) ID 0 0 1 37 40 15 7 1.1052 0.1365 0.0933
K = 3 NOT 0 0 0 99 1 0 0 0.9792 0.0222 0.0288

TS 0 0 3 59 29 9 0 1.0112 0.0470 0.0580
BF: λ = 1 0 0 0 34 25 21 20 0.9726 0.0304 0.0363
BF: λ = 3 0 0 0 69 18 11 2 0.9796 0.0239 0.0331
BF: λ = 10 0 0 0 89 9 2 0 0.9826 0.0212 0.0313
BF: λ = 20 0 0 0 93 7 0 0 0.9830 0.0207 0.0313
BF: λ = 100 0 0 0 97 3 0 0 0.9834 0.0204 0.0312
MBF: λ = 1 0 0 0 96 4 0 0 0.9832 0.0206 0.0315
MBF: λ = 3 0 0 0 99 1 0 0 0.9836 0.0202 0.0312
MBF: λ = 10 0 0 0 99 1 0 0 0.9836 0.0202 0.0312
MBF: λ = 20 0 0 1 98 1 0 0 0.9840 0.0206 0.0319
MBF: λ = 100 0 0 3 96 1 0 0 0.9850 0.0221 0.0338
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5.1.1. Cases of type 1 heterogenous variances

We start with type 1 of standard deviations in the noises for the heterogeneous case. A good change-
points detection method is one that has a small Hausdorff distance dH, a small MSE, and can accurately
estimate the number of change-points.
(M1) wave 1: NOT is the most competitive method in terms of the estimation of the number of
change-points, MSE, and Hausdorff distance. MBF with λ = 100 and BF with λ = 100 show
comparable performance to NOT, although they are less attractive when it comes to MSE and the
estimated locations of change-points. ID shows good performance, with comparable results to MBFs
with

λ = 10 and λ = 20.

On the other hand, TS tends to overestimate the number of change-points. In this model, NOT, MBF
with λ = 100 and BF with λ = 100 are the optimal methods in terms of the number of change-points,
MSE, and Hausdorff distance. However, the result of NOT is obtained by selecting a contrast function
that matches the signal characteristics of model M1.
(M2) wave 2: Among the most competitive methods in terms of the estimation of the number of
change-points, MSE, and Hausdorff distance, MBF with λ = 100 and NOT perform the best, followed
by MBF with λ = 20 and BF with λ = 100. ID, TS, BF with λ = 100, and MBF with

λ = 10 and λ = 20

also show relatively similar performance. In this model, NOT and MBF with λ = 100 methods show
the best performance in terms of the number of change points, MSE, and Hausdorff distance. Note that
the result of NOT is obtained by selecting a contrast function that matches the signal characteristics of
model M2.
(M3) mix 1: MBFs with λ values of 3, 10, 20, and 100, as well as the BF with λ = 100, perform
best in terms of the estimation of the number of change-points, MSE, and Hausdorff distance. NOT
has similar performance in terms of the estimation of the number of change-points, though it is less
desirable in terms of MSE and the estimated locations of change-points. Furthermore, ID and TS tend
to overestimate the number of change-points. In this model, MBFs with

λ = 10, 20, 100

are the most competitive methods in terms of the number of change-points, MSE, and Hausdorff
distance.
(M4) mix2: MBFs with

λ = 10, 20, 100

show some of the best performance in terms of estimating the number of change-points, MSE, and
Hausdorff distance. NOT is comparable to MBF with λ = 20 in terms of the estimated number of
change-points, however, it does not perform as well with respect to the estimated locations of change-
points. In contrast, ID fails to provide any useful results, while TS tends to overestimate the number of
change-points. In this model, MBFs with

λ = 20, 100
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are the best methods in terms of the number of change points, MSE, and Hausdorff distance.

(M5) teeth-linear: MBFs with
λ = 3, 10, 20, 100

and BF with λ = 100 demonstrate the best performance across all methods for the estimation of the
number of change-points, MSE and Hausdorff distance. MBF with λ = 1 and BF with λ = 20 also show
good performance. In contrast, ID tends to overestimate the number of change-points significantly,
while both NOT and TS underestimate the number of change-points significantly. In this model, MBFs
with

λ = 10, 20, 100

are the optimal methods in terms of the number of change-points, MSE, and Hausdorff distance.

(M6) linear: All MBF and BF methods with

λ = 20, 100

demonstrate the highest performance across all metrics, including the estimation of the number of
change-points, MSE, and Hausdorff distance. BF with λ = 10 also performs well. In contrast, ID,
NOT, and TS fail to accurately capture the number of changes. Notably, ID and NOT are unable to
detect changes in variance in linear signals with changes in variance. In this model, BF with λ = 100
and all MBF methods show the best performance in terms of the number of change points, MSE, and
Hausdorff distance.

(M7) wave 3: MBF with
λ = 10, 20, 100

and BF with λ = 100 are among the best methods in terms of estimating the number of change-points,
MSE, and Hausdorff distance. Additionally, MBF with λ = 3 performs well. NOT is comparable
to MBF with λ = 3 for estimating the number of change-points, but is less effective for MSE and
the estimation of change-point locations. In contrast, both ID and TS fail to accurately estimate the
number of change-points. In this model, MBFs with

λ = 10, 20, 100

and BF with λ = 100 are the most competitive methods in terms of the number of change-points, MSE,
and Hausdorff distance.

(M8) quad: All MBFs and BFs with
λ = 20, 100

demonstrate superior performance across all methods in terms of the estimation of the number of
change-points, MSE, and Hausdorff distance. BF with λ = 10 also shows good performance. Although
NOT exhibits comparable performance to BF with λ = 10 in terms of the number of change-points
detected, it lags behind in terms of MSE and estimated locations of change-points. Meanwhile, ID
fails to work, and TS tends to overestimate the number of change-points in signals with a quadratic
trend. In this model, MBFs with

λ = 3, 10, 20, 100
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and BF with λ = 100 methods show the best performance in terms of the number of change points,
MSE, and Hausdorff distance.

In summary, the Bayesian method is the best overall when it comes to accurately estimating the
number of change-points, MSE, and dH for the signals considered. For both continuous piecewise-
linear (M1) and discontinuous piecewise-linear (M2) signals, the Bayesian method is always in the
top 10% of the best methods for any aspect of the estimation of the number of change-points, MSE,
and dH. The performance of ID and TS is not good in most of the signals considered, while NOT shows
relatively good performance. It should be noted that the results of NOT are obtained by selecting the
most suitable contrast function for the characteristics of the given signals. However, it is not known
which contrast function is suitable for signals in practical applications. In addition, the NOT method
cannot determine the contrast function for mixed signals with various change trends. In particular, no
estimation of the number of change-points is possible with ID in signals M4, M6, and M7, and NOT
cannot be used in signal M6. Additionally, TS does not work in signals M6 and M7.

5.1.2. Cases of type 2 heterogenous variances

Now we consider the type 2 of standard deviations in the noises for the heterogeneous case.

(M1) wave 1: MBFs with
λ = 20 and λ = 100,

BF with λ = 100, and NOT are among the most competitive methods in terms of the estimation of
the number of change-points, MSE, and Hausdorff distance. MBF with λ = 10 shows comparable
performance to BF with λ = 100. On the contrary, ID tends to overestimate the number of change-
points, while the TS method does not seem to be effective in this regard. In this model, MBFs with
λ = 20, 100 and NOT are the optimal methods in terms of the number of change-points, MSE, and
Hausdorff distance. Note that the result of NOT is obtained by selecting a contrast function that matches
the signal characteristics of model M1.

(M2) wave 2: MBF with λ = 100 and MBF with λ = 10 both perform as well as MBF with λ = 20
in terms of estimating the number of change-points, MSE, and Hausdorff distance. Conversely, ID and
NOT tend to overestimate the number of change-points, while TS fails to provide reliable estimations
at all. In this model, the MBF with λ = 100 method shows the best performance in terms of the number
of change points, MSE, and Hausdorff distance.

(M3) mix 1: All MBFs and BF with λ = 100 demonstrate the highest performance across all methods
in terms of change-point estimation, MSE, and Hausdorff distance. BF with λ = 20 also shows
relatively good results. On the contrary, ID and NOT tend to overestimate the number of
change-points. This indicates that the TS method does not effectively estimate the number of
change-points. In this model, BF with λ = 100 and MBFs with

λ = 10, 20, 100

are the most competitive methods in terms of the number of change-points, MSE, and Hausdorff
distance.

(M4) mix 2: MBFs with
λ = 10, 20, 100
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and a BF with λ = 100 are among the most competitive methods in terms of estimating the number of
change-points, MSE, and Hausdorff distance. MBF with λ = 3 also shows relatively good performance.
On the other hand, NOT tends to overestimate the number of change-points, while ID and TS methods
fail to accurately estimate the number of change-points. In this model, BF with λ = 100 and MBFs
with

λ = 10, 20, 100

methods show the best performance in terms of the number of change points, MSE, and Hausdorff
distance.
(M5) teeth-linear: MBFs with λ values of 10, 20, and 100, and BF with a λ value of 100, show
the best performance across all methods in terms of the estimation of the number of change-points,
MSE and Hausdorff distance. Next, MBF with a λ value of 3 is comparable to the performance of BF
with λ=100. Furthermore, BF with a λ value of 20 and MBF with a λ value of 1 provide relatively
good performance. In contrast, ID tends to considerably overestimate the number of change-points
and NOT tends to considerably underestimate the number of change-points. It is evident that the TS
method does not perform well for estimating the number of change-points. In this model, BF with
λ = 100 and MBFs with

λ = 10, 20, 100

are the best methods in terms of the number of change-points, MSE, and Hausdorff distance.
(M6) linear: All MBFs and BFs with

λ = 20 and λ = 100

exhibit the best performance across all methods in terms of estimating the number of change-points,
minimizing the MSE and minimizing the Hausdorff distance. Meanwhile, BF with λ = 10 exhibits
good performance. In contrast, both ID, NOT and TS methods are unable to detect any change-points
of variances in linear signals where the variances fluctuate. In this model, BF with λ = 100 and all
MBF are the most competitive methods in terms of the number of change points, MSE, and Hausdorff
distance.
(M7) wave 3: The most competitive methods for estimating the number of change-points, MSE, and
Hausdorff distance are the MBF with λ values of 10, 20, and 100. Additionally, MBF with λ = 3 and
BF with λ = 100 perform well. However, NOT tends to overestimate the number of change-points,
and while it shows relatively similar performance to BF with λ = 10 in terms of the number of change-
points estimated, its MSE and estimated location of change-points are not attractive. ID and TS, on the
other hand, struggle to estimate the number of change-points effectively. In this model, MBFs with

λ = 10, 20, 100

methods show the best performance in terms of the number of change-points, MSE, and Hausdorff
distance.
(M8) quad: All MBFs and BFs with

λ = 10, 20, 100

achieved the best performance across all methods in terms of the number of change-points, MSE and
Hausdorff distance estimation. On the other hand, NOT failed to successfully detect the number of
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change-points. Additionally, ID and TS, which are not specifically designed for detecting change-
points in signals containing quadratic trends, also failed to provide satisfactory results. In this model,
BF with λ = 100 and MBFs with

λ = 3, 10, 20, 100

are the best methods in terms of the number of change points, MSE, and Hausdorff distance.
In summary, the Bayesian method stands out overall as the best approach for estimating the number

of change-points, MSE and dH in all models. The ID, NOT, and TS methods generally perform poorly,
that is, existing methods ID, NOT, and TS are not effective for mixed signals. However, in continuous
piecewise-linear (M1) signals, NOT can be one of the top 10% of the best methods when considering
accuracy in any aspect of the estimation of the number of change-points, MSE, and dH, as long as the
most suitable contrast function is selected. Additionally, ID is not performed at all in models M4, M7
and M8, while NOT and TS do not work at all in models M6 and M8.

5.1.3. Case of homogenous variance

Our Bayesian change-point detection methods are designed to work in situations where the
variances between change-point intervals are heterogeneous. To evaluate the performance of our
methods compared to competitors, we will also analyze signals with homogeneous variance.
(M1) wave 1: NOT is the most competitive method in terms of the estimation of the number of change-
points, MSE, and Hausdorff distance. ID and TS exhibit comparable performance to NOT in terms of
the estimation of the number of change-points, while they are slightly less effective in terms of the
estimated locations of change-points and MSE. Among Bayesian methods, MBF with

λ = 10, 20, 100,

and BF with λ = 100 show relatively good performance. In this model, NOT is the optimal method in
terms of the number of change-points, MSE, and Hausdorff distance. Note that the result of NOT is
obtained by selecting a contrast function that matches the signal characteristics of model M1.
(M2) wave 2: ID, NOT, and TS are among the most competitive methods when it comes to estimating
the number of change-points, as evidenced by their low MSE and Hausdorff distance scores. Among
Bayesian methods, BF with λ = 100 and MBF with

λ = 10, 20

have shown relatively good performance. In this model, NOT, ID and TS methods show the best
performance in terms of the number of change points, MSE, and Hausdorff distance. However, the
results of NOT and ID are obtained by selecting a contrast function that matches the signal
characteristics of model M2.
(M3) mix 1: NOT, TS, MBF with

λ = 10, 20, 100

and BF with λ = 100 demonstrate the best performance across all methods in terms of the estimation
of the number of change-points, MSE and Hausdorff distance. However, in terms of the estimated
locations of change-points and MSE, TS, MBF with

λ = 10, 20, 100
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and BF with λ= 100 are slightly less effective than NOT. In this model, NOT, TS, and MBF with
λ=100 are the most competitive methods in terms of the number of change points, MSE, and Hausdorff
distance. However, the result of NOT is obtained by selecting a contrast function that matches the
signal characteristics of model M3.
(M4) mix 2: NOT and MBF with λ = 100 show the best performance across all metrics evaluated,
namely, the estimation of the number of change-points, MSE, and Hausdorff distance. MBF with
λ = 100 performs comparably to NOT when estimating the number of change-points, but shows
slightly lower performance for estimated locations of change-points and MSE. MBF with

λ = 10, 20

and BF with λ = 100 also display favorable results. Conversely, TS tends to overestimate the number
of change-points, while ID fails to adequately estimate the number of change-points. In this model,
NOT and MBF with λ = 100 are the best methods in terms of the number of change points, MSE,
and Hausdorff distance. Note that the result of NOT is obtained by selecting a contrast function that
matches the signal characteristics of model M4.
(M5) teeth-linear: MBFs with

λ = 3, 10, 20

and BF with λ = 100 show the best performance across all methods in terms of the estimation of the
number of change-points, MSE, and Hausdorff distance. MBFs with

λ = 1, 100

and BF with λ = 20 exhibit relatively good performance. NOT performs comparably to BF with
λ = 20 in the estimation of the number of change-points, though it is slightly less accurate in terms of
the estimated locations of change-points. TS tends to overestimate the number of change-points, while
ID fails to produce reliable estimates of the number of change-points. In this model, BF with λ = 100
and MBFs with

λ = 3, 10, 20

are the most competitive methods in terms of the number of change-points, MSE, and Hausdorff
distance.
(M6) linear: All MBFs and BFs with

λ = 10, 20, 100

show the best performance in terms of the estimation of the number of change-points, MSE, and
Hausdorff distance. Additionally, BFs with

λ = 1, 3

also show good performance. In this model, ID, NOT, TS, BFs with

λ = 10, 20, 100

and all MBF are the best methods in terms of the number of change points, MSE, and Hausdorff
distance. However, the results of NOT and ID are obtained by selecting a contrast function that matches
the signal characteristics of model M6.
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(M7) wave 3: MBF with
λ = 100

and NOT are among the most competitive methods when it comes to the estimation of the number of
change-points, MSE, and Hausdorff distance. MBF with

λ = 100

shows comparable performance to NOT in terms of the estimation of the number of change-points,
while its MSE is slightly lower. MBF with

λ = 10, 20

and BF with
λ = 100

also perform well. TS tends to underestimate and is comparable to BF with

λ = 20.

Unfortunately, ID does not perform well and tends to overestimate the number of change-points
considerably. In this model, MBF with

λ = 100

and NOT methods show the best performance in terms of the number of change-points, MSE, and
Hausdorff distance.
(M8) quad: NOT, all MBFs and BFs with

λ = 100

demonstrate the best performance across all methods when it comes to the estimation of the number of
change-points, MSE and Hausdorff distance. However, BFs with

λ = 10, 20

still show satisfactory results. Conversely, both ID and TS do not perform well and tend to overestimate
the number of change-points, even though ID and TS are not suitable for detecting change-points in
signals with a quadratic trend. In this model, NOT, BF with

λ = 100

and MBFs with
λ = 3, 10, 20

are the optimal methods in terms of the number of change points, MSE, and Hausdorff distance.
In summary, Bayesian methods consistently perform among the top 10% of the best methods in

terms of change-point estimation, MSE, and dH, being the best overall except for continuous and
discontinuous piecewise-linear (M1 and M2) signals. NOT provides good performance overall,
especially in model M5, outperforming ID and TS. However, its performance largely depends on the
selection of suitable contrast functions for the specific characteristics of the signals, and it also cannot
determine the contrast function for mixed signals with various change trends and and does not work
well in cases where signals have heterogeneous variances. ID is not even attempted in models M4,
M5, and M7 for change-point estimation.
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5.2. Real examples

Example 1. The Goddard Institute for space studies (GISS) monitors broad global changes around
the world. The GISS Surface Temperature Analysis (GISTEMP) is an estimate of the global surface
temperature changes, which are expressed as temperature anomalies. A temperature anomaly is the
difference between an observed temperature and the average or baseline temperature, which is
normally calculated by taking the mean of thirty or more years of data (from 1951 to 1980 in the
current dataset). A positive anomaly indicates that the observed temperature was higher than the
baseline, whereas a negative anomaly implies that the observed temperature was lower than the
baseline. For further information, please refer to Hansen et al. [61] and Lenssen et al. [62]. The
GISTEMP dataset has been widely explored in the literature of change point analysis, such as in
Ruggieri [32], James and Matteson [63], Baranowski et al. [37], and Mehrizi and Chenouri [40]. The
monthly land-ocean temperature anomalies from January 1880 to December 2020 can be found on the
website https://data.giss.nasa.gov/gistemp. It can be shown that the presence of a linear trend with
varying numbers of change-points is present in the dataset for each method. The estimates of the
piecewise linear signals are found using ID, NOT1, NOT2, and TS methods, as well as Bayesian
methods. The number of change-points and mean square residuals for each method are given in
Table 7.

Table 7. MSR and number of change-points for the GISTEMP dataset.

Methods ID NOT1 NOT2 TS BF(λ = 1)

MSR 0.0111 0.0186 0.0149 0.0093 0.0058

Number of change-points 55 9 13 51 144

Methods BF(λ = 3) BF(λ = 10) BF(λ = 20) BF(λ = 100) MBF(λ = 1)

MSR 0.0085 0.0099 0.0102 0.0137 0.0099

Number of change-points 72 48 44 21 50

Methods MBF(λ = 3) MBF(λ = 10) MBF(λ = 20) MBF(λ = 100)

MSR 0.0135 0.0142 0.0149 0.0161

Number of change-points 24 17 15 10

Table 7 shows that ID, TS, BF with
λ = 10

and MBF with
λ = 1

detect 55, 51, 48, and 50 change-points, respectively, indicating a relatively similar detection rate of
change-points. NOT1, NOT2, MBF with

λ = 20

and MBF with
λ = 100
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detect 9, 13, 15 and 10 change-points, respectively, indicating a similar level of change-point
detection. These results show that ID and TS methods are consistent with the results of simulation
studies that overestimate the number of change-points. Although the analysis is conducted under the
assumption of linear trend for comparison with existing methods, the proposed method does not
require the assumption of a contrast function such as a linear trend. Thus, the proposed method can be
applied to various types of signals, such as mixed signals containing constant, linear, and nonlinear
components, which cannot be solved by ID, TS, and NOT methods.

The estimated locations of the change-points for each method are provided in Table 8.

Table 8. The locations of change-points for the GISTEMP.

Methods Locations

ID 97 110 121 144 157 213 219 250 296 316 376 384 394 424

445 467 542 553 588 625 648 719 800 854 860 921 932 1007

1012 1079 1105 1117 1162 1169 1184 1221 1279 1298 1347 1353 1380 1405

1418 1450 1466 1521 1525 1537 1563 1573 1628 1635 1638 1662 1682

NOT1 85 255 291 422 669 771 850 1157 1627

NOT2 84 115 241 297 406 449 719 856 927 1163 1321 1370 1627

TS 84 109 121 154 216 241 302 348 371 387 394 423 443 455

459 539 555 586 625 719 765 854 888 918 940 1003 1013 1080

1104 1117 1130 1164 1194 1235 1253 1306 1322 1344 1355 1369 1382 1400

1424 1449 1467 1536 1571 1629 1633 1638 1647

BF with λ = 10 14 24 38 50 58 84 109 116 154 158 167 217 241 297

324 371 381 390 406 434 449 680 707 718 745 765 796 856

888 927 1008 1091 1116 1127 1145 1163 1195 1224 1235 1253 1347 1391

1424 1530 1535 1571 1629 1635

BF with λ = 20 14 38 50 58 84 109 116 154 158 167 217 241 297 324

371 381 390 406 434 449 680 718 745 765 856 888 927 1008

1091 1116 1127 1145 1163 1195 1235 1253 1347 1391 1424 1530 1535 1571

1629 1635

BF with λ = 100 84 116 241 297 324 371 381 390 406 434 449 680 718 765

856 888 927 1008 1571 1629 1635

MBF with λ = 10 50 84 116 241 297 324 406 434 449 680 718 796 856 927

1008 1629 1635

MBF with λ = 20 50 84 116 241 279 324 406 434 449 680 718 796 1008 1629 1635

MBF with λ = 100 50 279 324 406 434 718 796 1008 1629 1635
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Example 2. (Samsung stock prices) We consider the daily closing stock prices of Samsung
Electronics Co. from July 2012 to July 2017. Anastasiou and Fryzlewicz [38] studied estimation of
the number of change-points for this data, which is available from https://finance.yahoo.com/quote
/005930.KS/history?p=005930.KS. We examine changes in both continuous piecewise-linear signals
and piecewise-linear signals in the NOT method. The results for the ID, NOT1, NOT2, TS and
Bayesian methods can be compared. Additionally, Table 9 summarizes the number of change-points
and mean square residuals for each method.

Table 9. Mean square residual and number of change-points for the daily closing stock prices
of Samsung Electronics Co.

Methods ID NOT1 NOT2 TrendSegment BF(λ = 1)

MSR 164225.5 677431.3 345964.4 105789.9 67969.1

Number of change-points 90 13 25 86 170

Methods BF(λ = 3) BF(λ = 10) BF(λ = 20) BF(λ = 100) BFM(λ = 1)

MSR 95825.4 129145.9 141981.5 191847.5 118456.65

Number of change-points 115 78 66 48 102

Methods BFM(λ = 3) BFM(λ = 10) BFM(λ = 20) BFM(λ = 100)

MSR 141337.8 182680.45 223614.48 318590.1

Number of change-points 72 54 45 33

From the results of Table 9, the ID, NOT1, NOT2, and TS methods detect 90, 13, 25, and 86
change-points, respectively. MBF with

λ = (10, 20, 100)

and BF with

λ = (10, 20, 100)

detect (54, 45, 33) and (78, 66, 48) change-points, respectively. These methods show different
estimates for the number of change-points, making it difficult to determine which method gives the
most accurate estimate. However, it appears that ID and TS detect too many change-points, while
NOT gives a more accurate estimate of the overall changing trends. Meanwhile, the Bayesian method
tends to provide an intermediate estimate of the number of change-points relative to these
competitors. The locations of change-points for each method are provided in Table 10.

Looking more closely at the time interval (0, 250), ID and TS methods detect 14 and 16 change-
points, respectively, whereas NOT1 and NOT2 detect 2 and 5 change-points, respectively.
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Table 10. The locations of change-points for the stock prices of Samsung Electronics Co.

Methods Locations

ID 8 32 39 69 97 116 134 144 167 179 183 225 228 237

255 257 277 302 305 332 337 351 362 367 374 396 412 426

436 457 465 476 487 502 514 517 573 578 593 603 610 613

628 631 652 668 678 685 703 750 752 779 797 806 808 825

835 862 873 902 921 966 970 985 1000 1019 1023 1036 1038 1052

1067 1070 1080 1096 1116 1120 1128 1131 1141 1151 1166 1169 1184 1188

1197 1222 1231 1237 1243 1249

NOT1 118 228 254 350 390 467 566 683 782 825 886 1023 1079

NOT2 33 69 125 152 232 275 334 372 430 477 516 574 694 781

807 866 911 966 1020 1077 1137 1162 1192 1224 1248

TS 9 19 33 48 69 97 120 126 152 169 181 182 199 232

246 247 256 279 286 302 311 336 350 362 368 378 406 429

435 459 477 485 503 514 517 572 575 594 602 610 619 631

655 673 685 710 720 752 765 775 780 797 807 823 834 848

860 877 895 926 966 979 986 1020 1035 1038 1043 1051 1054 1060

1067 1076 1079 1090 1115 1121 1129 1142 1149 1165 1187 1197 1204 1225

1235 1243

BF with λ = 10 5 34 39 64 69 100 109 135 142 169 181 199 227 232

246 256 264 279 286 290 293 303 311 323 334 354 372 384

395 398 406 430 434 453 460 481 485 503 516 537 548 574

594 629 655 673 680 694 732 761 785 807 814 822 833 866

871 911 926 953 966 1020 1036 1054 1078 1088 1129 1140 1149 1168

1184 1190 1197 1204 1225 1234 1241 1249

BF with λ = 20 5 34 39 69 100 135 142 169 181 199 227 232 246 256

279 286 290 303 311 334 354 372 398 406 430 434 460 481

503 516 537 548 574 594 629 655 673 680 694 732 761 785

807 814 822 833 866 871 911 926 966 1020 1036 1054 1078 1088

1129 1140 1168 1184 1190 1197 1204 1225 1241 1249

BF with λ = 100 5 34 39 69 135 154 169 232 256 286 303 311 334 372

434 460 481 506 516 574 594 629 655 694 732 761 785 807

814 822 866 871 911 926 966 1020 1036 1054 1078 1088 1129 1140

1168 1190 1197 1225 1241 1249

MBF with λ = 10 5 34 39 69 76 109 135 154 169 232 256 274 279 286

290 303 334 359 372 434 460 481 506 516 574 594 629 655

694 761 785 807 814 822 866 871 911 926 966 1020 1036 1054

1078 1088 1137 1140 1168 1184 1190 1197 1204 1225 1241 1249

MBF with λ = 20 5 34 51 69 76 135 154 232 256 274 290 334 359 372

434 460 481 506 516 574 594 629 655 694 761 785 807 814

822 866 871 911 926 966 1020 1036 1088 1137 1140 1168 1190 1197

1204 1241 1249

MBF with λ = 100 5 34 76 135 154 232 256 274 334 372 434 460 481 506

516 574 594 629 655 694 761 785 807 822 866 871 911 926

966 1020 1036 1088 1137
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On the other hand, MBF with
λ = (20, 100)

and BF with
λ = (20, 100)

detect 8 and 13 change-points, respectively. For each method, we can see that NOT methods tend to
detect the point of change at which the feature of change occurs in the overall stream of the signals.
On the other hand, although ID and TS appear to detect detailed changes in the signal, these results
are consistent with simulation studies showing that ID and TS methods overestimate the number of
change-points. The Bayesian methods appear to find changes by integrating and reflecting the findings
of their respective competitors. Therefore, we think that the Bayesian methods give change-points that
better reflect the change of signal compared to the other methods. Moreover, we consider that the
Bayesian methods can provide a variety of fits that give users the flexibility to choose according to
their preferences for the choice of threshold. Although the analysis is conducted under the assumption
of linear trend for comparison with existing methods, the proposed method can be applied to various
types of signals, such as mixed signals containing constant, linear, and nonlinear components, which
cannot be solved by ID, TS, and NOT methods.

6. Conclusions

In this paper, we introduce a nonparametric Bayesian change-point detection method that consists
of two components:

(1) the detection of change-points in the underlying signals based on the piecewise polynomial
model via Bayesian binary segmentation;

(2) the selection of the most suitable order of the polynomial model in the detected segments via
Bayesian model selection.

We provide intrinsic priors to ensure that the BFs and model selection probabilities are
well-defined. Moreover, when the sample size is large, our method based on the BFs with the intrinsic
priors is consistent. Our method is applicable to different types of signals, such as those with or
without continuity constraints at the location of the point of change, signals with heterogeneous
variances, and mixed signals with linearity and beyond. From our numerical results, we demonstrate
that our proposed method has superior performance compared to its competitors in various scenarios
with heterogeneous variances. Our method is also effective in terms of the estimation of the number
of change-points, MSE, and the estimated locations of change-points. Notably, our method is the best
choice when signals are mixed with different types of changes (e.g., constant, linear, quadratic) with
heterogeneous variances, or when signals have discontinuous changes (e.g., signals with jumps). For
the problem of detecting change-points of variances in a signal, our method can be used to identify
change-points in linear signals with heterogeneous variances. This is not a straightforward problem
that can be solved by existing change-point detection methods. The Bayesian change-point detection
relies on a decision criterion λ. Using a small λ value will result in a lower MSE or MSR but a greater
number of change-points; conversely, a large λ value will incur a higher MSE or MSR but a smaller
number of change-points. Empirically, we have found that values of λ around 20 or 100 yield good
results in terms of both MSE/MSR and the number of detected change-points; therefore, we
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recommend these values for most applications. The developed method requires a lot of computing
time because it uses numerical integration. Therefore, future research is needed to find approximate
methods to reduce computing time for practical users. In addition, it has been confirmed that ambient
noise plays an important role in the dynamics of nonlinear systems in various fields. The
perturbations in the natural world are often Gaussian noise. However, many recent experiments have
confirmed that the noise source must be non-Gaussian noise. The study of Bayesian methods for
finding change points and selecting optimal trends in nonlinear models with non-Gaussian noise is
considered an interesting topic in the future and will be the subject of the next research.
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Appendix

Appendix A

Proof of Theorem 1. Consider the model M1,

M1 : Nk+1(Z1β, σ
2Ik+1)Nk+1(Z2β, σ

2Ik+1), πN(θ1) =
c1

σ
,

and the model M2,

M2 : Nk+1(Z1β1, σ
2
1Ik+1)Nk+1(Z2β2, σ

2
2Ik+1), πN(θ2) =

c2

σ1σ2
,

where c1 and c2 are the arbitrary positive constants. For the minimal training sample vectors z1 and z2,
we have

BN
12(z1, z2) =

Nk+1(Z1β, σ
2Ik+1)Nk+1(Z2β, σ

2Ik+1)

c2
∏2

i=1
1
2 |Z

T
i Zi|

−1/2
[
zT
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where
Hi = Zi(ZT

i Zi)−1ZT
i , i = 1, 2.

AIMS Mathematics Volume 10, Issue 3, 4662–4708.

https://dx.doi.org/https://doi.org/10.1214/14-AOS1245
https://dx.doi.org/https://doi.org/10.7287/peerj.preprints.90v3
https://dx.doi.org/https://doi.org/10.2307/2291091
https://dx.doi.org/https://doi.org/10.1198/016214505000000646
https://dx.doi.org/https://doi.org/10.1111/j.1467-9469.2006.00514.x
https://dx.doi.org/https://doi.org/10.1142/9789812565402_0001
https://dx.doi.org/https://doi.org/10.1029/2010RG000345
https://dx.doi.org/https://doi.org/10.1029/2018JD029522
https://dx.doi.org/https://doi.org/10.48550/arXiv.1505.04302


4704

Since

EM2
z1,z2 |θ2

[BN
12(z1, z2)] =

1
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i=1

2
π

σiσ

σ2
i + σ

2
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2 + σ2
i )(ZT

i Zi)−1),

the conditional intrinsic prior of θ2 becomes

πI(θ2|θ1) = πN(θ2)EM2
z1,z2 |θ2
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2
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2
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2)(ZT
i Zi)−1).

Hence, the Theorem 1 is proved. □

Appendix B

Proof of Theorem 2. We first compute the BF for comparing model M2 versus M1 with the intrinsic
prior πI(θ2). Now

f (y|θ1)πN(θ1) =
c1

σ1
Nn(y|Xβ, σ2In). (B.1)

Integrating with respect to β and σ in (B.1) yields

m1(y) =
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2
π−

n−k
2 Γ

(
n − k

2

)
|XT X|−

1
2
[
yT (I −H1)y
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2
, (B.2)

where
H1 = X(XT X)−1XT .

Next we have
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2
i Ini), (B.3)

where
n1 = τ and n2 = n − τ.

Integrating with respect to β1, β2 and β in (B.3), then we get
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where n1 = τ, n2 = n − τ,

W−1
1 =

n1

k + 1
(XT

1 X1)−1,W−1
2 =

n2

k + 1
(XT

2 X2)−1,Σ1∗ = σ
2
1In1 + (σ2

1 + σ
2)X1W−1

1 XT
1 ,

Σ2∗ = σ
2
2In2 + (σ2

2 + σ
2)X2W−1

2 XT
2 ,Σ∗ = XT

1Σ
−1
1∗X1 + XT

2Σ
−1
2∗X2,

H2∗ = yT
1Σ
−1
1∗ y1 + yT

2Σ
−1
2∗ y2 − (XT

1Σ
−1
1∗ y1 + XT

2Σ
−1
2∗ y2)TΣ−1

∗ (XT
1Σ
−1
1∗ y1 + XT

2Σ
−1
2∗ y2).

AIMS Mathematics Volume 10, Issue 3, 4662–4708.



4705

Note that

Σ1∗ = σ
2
[
σ2

1

σ2 In1 +

(
σ2

1

σ2 + 1
)

X1W−1
1 XT

1

]
= σ2Σ1,

Σ2∗ = σ
2
[
σ2

2

σ2 In2 +

(
σ2

2

σ2 + 1
)

X2W−1
2 XT

2

]
= σ2Σ2,

Σ∗ = σ
−2

[
XT

1Σ
−1
1 X1 + XT

2Σ
−1
2 X2

]
= σ−2Σ,

H2∗ = σ
−2

[
yT

1Σ
−1
1 y1 + yT

2Σ
−1
2 y2

−(XT
1Σ
−1
1 y1 + XT

2Σ
−1
2 y2)TΣ−1(XT

1Σ
−1
1 y1 + XT

2Σ
−1
2 y2)

]
= σ−2H2.

Let
ω1 = σ

2
1/σ

2, ω2 = σ
2
2/σ

2 and z = σ2.

Integrating with respect to z in (B.4), then we obtain

m2(y) =
∫ ∞

0

∫ ∞

0

c1

2π2 (2π)−
n−k

2 Γ

(
n − k

2

)
ω
− 1

2
1 ω

− 1
2

2 (1 + ω1)−1(1 + ω2)−1

× |Σ1|
− 1

2 |Σ2|
− 1

2 |Σ|−
1
2

(H2

2

)− n−k
2

dω1dω2, (B.5)

where

|Σ1| = |ω1[In1 +
n1

k + 1
1 + ω1

ω1
X1(XT

1 X1)−1XT
1 ]|

= ωn1
1 |Ik +

n1

k + 1
1 + ω1

ω1
XT

1 X1(XT
1 X1)−1|

= ωn1
1

[
1 +

n1

k + 1
1 + ω1

ω1

]k

,

|Σ2| = ω
n2
2

[
1 +

n2

k + 1
1 + ω2

ω2

]k

,

Σ = XT
1Σ
−1
1 X1 + XT

2Σ
−1
2 X2,

Σ−1
1 =

[
ω1In1 +

n1

k + 1
(1 + ω1)X1(XT

1 X1)−1XT
1

]−1

= ω−1
1

In1 −
n1(1 + ω1)
(k + 1)ω1

(
1 +

n1(1 + ω1)
(k + 1)ω1

)−1

X1(XT
1 X1)−1XT

1

 ,
Σ−1

2 = ω
−1
2

In2 −
n2(1 + ω2)
(k + 1)ω2

(
1 +

n2(1 + ω2)
(k + 1)ω2

)−1

X2(XT
2 X2)−1XT

2

 ,
XT

i Σ
−1
i Xi = ω

−1
i

1 − ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1 XT
i Xi, i = 1, 2,

yT
i Σ
−1
i yi = ω

−1
i

yT
i yi −

ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1

yT
i Xi(XT

i Xi)−1XT
i yi

 , i = 1, 2,
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XT
i Σ
−1
i yi = ω

−1
i

1 − ni(1 + ωi)
(k + 1)ωi

(
1 +

ni(1 + ωi)
(k + 1)ωi

)−1 XT
i yi, i = 1, 2

and

H2 =

2∑
i=1

yT
i Σ
−1
i yi −

 2∑
i=1

XT
i Σ
−1
i yi

T

Σ−1

 2∑
i=1

XT
i Σ
−1
i yi

 .
Hence, the Theorem 2 is proved. □

Appendix C

Proof of Theorem 3. Consider the model Mi,

Mi : Nk+1(Ziαi, σ
2
i Ik+1), πN

i (θi) =
ci

σi
,

and the model Mk,

Mk : Nk+1(Zkβk, σ
2
kIk+1), πN

k (θk) =
ck

σk
,

where ci and ck are an arbitrary positive constants. For the minimal training sample vector z, we have

BN
ik(z) =

Nk+1(Ziαi, σ
2
i I)

ck
2 |Z

T
k Zk|

−1/2 [
zT (I −Hk)z

]−1/2 ,

where
Hk = Zk(ZT

k Zk)−1ZT
k .

Since

EMk
z|θk[B

N
ik(z)] =

1
ck

2
π

σiσk

σ2
k + σ

2
i

Nk(βk|α̃i, (σ2
k + σ

2
i )(ZT

k Zk)−1),

where
α̃i = (α1, · · · , αi, 0, · · · , 0)T

is k × 1 vector, the conditional intrinsic prior of θ2 becomes

πI
k(θk|θi) = π

N
k (θk)E

Mk
z|θk[B

N
ik(z)]

=
2
π

σi

σ2
k + σ

2
i

Nk(βk|α̃i, (σ2
k + σ

2
i )(ZT

k Zk)−1).

In addition, (ZT
k Zk)−1 is n j

k+1 (XT
k Xk)−1 by Girón et al. [59].

Hence, the Theorem 3 is proved. □
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Appendix D

Proof of Theorem 4. We first compute the BF for comparing model Mi versus Mk with the intrinsic
prior πI

k(θk). We put n = n j in our proof. Now

f (y|θi)πN
i (θi) =

ci

σi
Nn(y|Xiαi, σ

2
i In). (D.1)

Integrating with respect to αi and σi in (D.1) yields

mi(y) =
ci

2
(2π)−

n−i
2 Γ

(n − i
2

)
|XT

i Xi|
− 1

2

[
1
2

yT (In −Hi)y
]− n−i

2

, (D.2)

where
Hi = Xi(XT

i Xi)−1XT
i .

Next we have

f (x|θk)πI
k(θk|θi)π

N
k (θi) =

2ci

π

1
σ2

k + σ
2
i

Nn(y|Xkβk, σ
2
kIn)Nk(βk|α̃i,

n
k + 1

(σ2
k + σ

2
i )(XT

k Xk)−1). (D.3)

Integrating with respect to βk and αi in (D.3), then we get

2ci

π

1
σ2

k + σ
2
i

exp{−1
2yTΣAy}

(2π)
n−i
2 |Σ|

1
2 |XT

i Σ
−1Xi|

1
2

, (D.4)

where

Σ = σ2
kIn +

n(σ2
k + σ

2
i )

k + 1
Xk(XT

k Xk)−1XT
k

and
ΣA = Σ

−1 − Σ−1Xi(XT
i Σ
−1Xi)−1XT

i Σ
−1.

Note that

|Σ| = |σ2
k[In +

n
k + 1

(1 + σ2
i /σ

2
k)Xk(XT

k Xk)−1XT
k ]|

= σ2n
k |Ik +

n
k + 1

(1 + σ2
i /σ

2
k)XT

k Xk(XT
k Xk)−1|

= σ2n
k

[
1 +

n
k + 1

(1 + σ2
i /σ

2
k)
]k
,

Σ−1 = σ−2
k

In −

(
1 +

k + 1
n(1 + σ2

i /σ
2
k)

)−1

Xk(XT
k Xk)−1XT

k

 ,
XT

i Σ
−1Xi = σ

−2
k

1 − (
1 +

k + 1
n(1 + σ2

i /σ
2
k)

)−1 XT
i Xi

and

ΣA = σ
−2
k

In −

(
1 +

k + 1
n(1 + σ2

i /σ
2
k)

)−1

Xk(XT
k Xk)−1XT

k −

1 − (
1 +

k + 1
n(1 + σ2

i /σ
2
F)

)−1 Xi(XT
i Xi)−1XT

i

 .
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Let
w = σ2

k and z = σ2
i /σ

2
k .

Integrating with respect to w in (B.4), then we obtain

mk(y) =
∫ ∞

0

ci

2π
(2π)−

n−i
2 Γ

(n − i
2

)
z−

1
2 (1 + z)−1

[
1 +

n
k + 1

(z + 1)
]− k−i

2

× |XT
i Xi|

− 1
2

{
1
2

yT
[
In −Hi + c(z)−1(Hi −Hk)

]
y
}− n−i

2

dz, (D.5)

where
c(z) = 1 +

k + 1
n(1 + z)

, Hi = Xi(XT
i Xi)−1XT

i

and
Hk = Xk(XT

k Xk)−1XT
k .

Hence, the Theorem 4 is proved. □
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