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Abstract: This paper aimed to study the influence of herd immigration in prey species on the stability
of the prey–predator interaction, in which prey immigration is modeled as a herd movement for
defensive purposes. A stochastic version of the model was formulated to incorporate the influence of
random noises. Positivity and boundedness are discussed for both deterministic and stochastic models,
which validate the model biologically. For the deterministic model, the local asymptotic stability of
the feasible equilibrium points is discussed, and the Hopf bifurcation is exhibited with respect to an
immigration factor. Using a suitable Lyapunov function, sufficient conditions for global asymptotic
stability are established for deterministic and stochastic models. Numerical simulations are carried out
to verify and clarify our analytical findings. It is demonstrated that increasing prey herd immigration
rates stabilizes the systems. Numerical simulations of the stochastic system reveal that population
density fluctuations grow more consistently as prey herd immigration increases; these simulations also
exhibit diverse dynamics, including quasi-steady states and quasi-limit cycles. It is concluded that
the immigration of prey herds improves the survival of both species in deterministic and stochastic
systems. Thus, it may be beneficial for prey to immigrate in groups to support unstable systems.
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1. Introduction

Interactions between species have attracted considerable attention in applied mathematics and
mathematical ecology. The basic rule between living food and its eater has been understood and
analyzed for nearly a century. Alfred James Lotka [1] and Vito Volterra [2] independently formulated
the first model to describe the predation process between prey and predator, which was called the
Lotka–Volterra model. A modified version of this model incorporates Verhulst or logistic growth to
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take into account limited resources and also to avoid structural instability [3]. In order to understand
and regulate predator–prey interactions, functional and numerical responses were defined, which
represent a predator’s feeding rate and the changes in predator density with prey consumption. They
form the central structure of predator–prey models. A prominent family of functional responses is
Holling’s [4–6] predator–prey theory, which is heavily based on Holling’s Type II functional and
numerical responses; see, for example, [7–9]. Although it would be pointless to attempt to create a
generic model or a set of generic models that can be applied to all populations in different
environments [10]. There is a continuous effort by ecological, biological, and mathematical
researchers to discover how models can be used to analyze and forecast natural phenomena.

Dynamical systems in many natural environments cannot be predicted with deterministic laws,
especially when ecological systems are viewed from the perspective of variability rather than
equilibrium dynamics. Therefore, random noises are useful tools to describe the fluctuations that arise
in these environments. Recently, the effect of random noise on predators’ and prey’s dynamic
behaviors was investigated in several studies; see, for instance, [11–13].

By adding external stimuli that mimic real-life effects in nature, predator-prey models have been
developed and studied to make them more realistic and have received special attention in recent years,
such as the effect of prey refuges [14–16], the influence of the fear effect [17–20], the Allee effect
[21–23], and immigration. Immigration is one of the most significant factors that impact prey and
predator interactions. Recent studies have focused on “small immigration” or “constant immigration”
concepts, which assume that species’ immigration to the environment is limited. It plays a crucial role
in the dynamics of these models and especially in their stability, as shown in limited recent research
articles [24, 25] in this context.

A social gathering of various creatures of the same most commonly known as a herd or pack. When
a species exhibits herd behavior, its members act socially and collectively, and each one adopts a
behavior that is consistent with the majority of the other members of the species (e.g., at a particular
time, all of them are moving in the same direction). Herd behavior can occur for a variety of reasons.
Various prey species can utilize herding as a defense mechanism against predators (a large aggregation
of prey may deter predators from initiating an attack) [26]. The most significant contributions to this
field were those of Ajraldi et al. [26] and Braza [27], who presented novel approaches to modeling this
phenomenon. Subsequently, some recent studies have applied this behavior to model predator–prey
interactions in terms of functional and numerical responses [28, 29]. The density of prey, predator, or
both populations in functional and numerical responses is expressed by the square root.

In empirical predator–prey systems, stability has been observed in the interaction between spiders
(prey) and spider wasps (predators) [5]. Stability plays a pivotal role in the study of qualitative
behavior. Asymptotic stability is most commonly used in deterministic prey and predator models to
find conditions for stability, which, mathematically, means stability and is locally attractive.
Therefore, asymptotic stability will be investigated in deterministic and stochastic models in this
research.

In recent years, some researchers have discussed the effects of immigration and herd behavior
separately on prey and predator dynamics. To the best of our knowledge, herd immigration has not
been taken into account in the literature on prey–predator models. In this study, and in contrast to the
literature, we introduce a novel idea by incorporating the herd immigration factor into the
prey–predator systems. Our model assumes that prey immigrate in herds for defensive reasons. The
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purpose of this paper is to investigate how herd immigration in prey species affects the stability of
prey–predator interactions. A stochastic version of the model is formulated to consider the effect of
random noise. The present study aimed mainly to investigate the boundedness and asymptotic
stability of deterministic and stochastic prey–predator models with herd immigration of the prey. The
boundedness of these models validates them biologically. The asymptotic stability addresses a
significant issue, so specific conditions of deterministic and stochastic models with herd immigration
of the prey are analytically obtained, and they are numerically verified and illustrated. The article is
organized as follows. In the following section, we introduce the deterministic model, and the
positivity and boundedness of its solutions are established. The stability results for the equilibrium
points and Hopf bifurcations of the deterministic model are provided in Section 3. In Section 4, the
stochastic version of the model is presented. For the stochastic model, the existence and uniqueness of
global positive solutions are discussed in Section 5. The conditions of global stability of the
coexistence equilibrium point are derived for deterministic and stochastic models in Section 6.
Numerical simulations are utilized to verify our theoretical results in Section 7. Section 8 contains a
general conclusion of the article.

2. The deterministic model

We introduce a non-dimensional Holling Type II prey–predator model with prey herd immigration
as follows: 

dN
dt
= rN

(
1 −

N
k

)
−

αNP
1 + αhN

+ µ
√

N,

dP
dt
= −δP +

αβNP
1 + αhN

, (2.1)

subject to
N(0) = N0 ≥ 0, P(0) = P0 ≥ 0.

The density of the prey population at time t is N(t), and that of the predator population is P(t); r is
the growth rate of prey, k is the system’s carrying capacity, α is the catching rate of prey by a predator,
δ is the rate of natural death of the predator population, β is the efficiency of converting consumed prey
into the predator’s birth population, and µ represents the immigration factor. The new term in model
(2.1) is µ

√
N, which represents the herd immigration of the prey population. For biological meaning,

all parameters are considered to have positive values, and 0 ≤ µ ≤ 1.

Theorem 2.1. System (2.1) with the initial conditions has all solutions in the interval [0,∞) and N(t) ≥
0, P(t) ≥ 0 ∀ t ≥ 0.

Proof. Since the equations of system (2.1) are continuous and locally Lipschitzian functions, if ∃
tmax ≥ 0 and tmax ≤ ∞, then the system (2.1) has a unique solution (N(t), P(t)) on the interval [0, tmax)
with the initial conditions. Through the equations of system (2.1) with the initial conditions, we can
conclude the following:

N(t) = N(0) exp

∫ t

0

r (
1 −

N(η)
K

)
−

αP(η)
1 + αhN(η)

+
µ√
N(η)

 dη

 ≥ 0,
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P(t) = P(0) exp
(∫ t

0

[
−δ +

αβN(η)(η)
1 + αhN(η)

]
dη

)
≥ 0.

Therefore, we have the solutions of N(t) ≥ 0 and P(t) ≥ 0 ∀ t ≥ 0. □

Theorem 2.2. In system (2.1), all solutions that initiate in R2
+ are ultimately bounded in the region

ω =

{
(N, P) ∈ R2

+ : 0 ≤ F ≤ γ

ρ
+ ϵ

}
, where 0 < ρ < δ, where F(t) = N (t) + 1

β
P (t) > 0 and ρ > 0.

Proof. For system (2.1), consider (N(t), P(t)) to be any solution. Let F(t) ∈ C1(R+ → R+) as F(t) =
N (t) + 1

β
P (t) > 0 and let ρ > 0 be a constant.

The derivative of F with respect to time (t) is

dF
dt
=

dN
dt
+

1
β

dP
dt
, (2.2)

dF
dt
+ ρF = rN

(
1 −

N
K

)
−

αNP
1 + hαN

+ µ
√

N −
δ

β
P +

αNP
1 + hαN

+ ρN +
ρP
β
, (2.3)

dF
dt
+ ρF = rN −

rN2

K
+ µ
√

N + ρN −
1
β

(δ − ρ)P. (2.4)

The term µ
√

N + (r + ρ)N − rN2

K has a maximum value, since the second derivative is negative; we
can say γ. Now we select 0 < ρ < δ. Then (2.4) implies the following:

dF
dt
+ ρF ≤ γ. (2.5)

Thus,
F (t) ≤

γ

ρ
+ F (0) e−ρt.

lim
t→∞

sup F ≤ γ

ρ
. As a result, all the solutions of (2.1) are contained within

ω =

{
(N, P) ∈ R2

+ : 0 ≤ F ≤
γ

ρ
+ ϵ

}
. (2.6)

Thus, the solution of system (2.1) is bounded. □

3. Equilibrium points and local stability

The system (2.1) has three non-negative equilibrium solutions:

• The two populations are extinct or have a trivial equilibrium point, E0(N = 0, P = 0).

• There are only prey species, and predator species are extinct,

Ẽ1(Ñ, (P̃)) =

Ñ =
1
3

2K +
3√2K2r2

3
√

27µ2K2r4 − K3r6 + 3
√

3
√

27µ4K4r8 − 4µ2K5r10

+

3√2
3
√

27µ2K2r4 − K3r6 + 3
√

3
√

27µ4K4r8 − 4µ2K5r10

K2r2 , P̃ = 0

 .
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• The two populations coexist, E2 = Ê2 = (N̂ = δ
αβ−δhα , P̂ =

r
α
− rδ

Kα2(β−δh) +
µ
√
δ
√
β−hδ
√
δ

).

Lemma 3.1. The trivial equilibrium point E0(N = 0, P = 0) and the predator-free equilibrium point
E1(N = Ñ, P̃ = 0) exist without any conditions. The coexistence or interior point exists if the following
conditions are satisfied:

β > δh, (3.1)

and
r
α
+
µ
√
δ
√
β − hδ
√
δ

>
rδ

Kα2(β − δh)
. (3.2)

By considering the Jacobian matrix, we can determine the local stability of these equilibrium points
as follows:

J =
r − 2rN

K −
αP

(1+αhN)2 +
µ

2
√

N
−αN

1+αhN
αβP

(1+αhN)2 −δ + αβN
1+αhN

 .
3.1. Trivial equilibrium point

The Jacobian matrix is indeterminate at E0(N = 0, P = 0). Local stability cannot be studied directly
using the usual method at this equilibrium point; we follow Braza’s way [27]. Because N(t) is bounded
∀ t ≥ 0, the system (2.1) becomes 

dN
dt
≈ rN

(
1 −

N
K

)
−

αNP
1 + αhN

,

dP
dt
= −δP +

αβNP
1 + αhX

. (3.3)

Theorem 3.2. The trivial equilibrium point E0(N = 0, P = 0) is a saddle point.

Proof. The Jacobian matrix of the trivial equilibrium point E0(N = 0, P = 0) is

J(E0) =
[
r 0
0 −δ

]
. (3.4)

From the matrix (3.4), the eigenvalues are λ1 = r and λ2 = −δ, so the trivial equilibrium point
E0(N = 0, P = 0) is a saddle point. □

3.2. Predator-free equilibrium point

Through the following theorem, we examine the local stability of the predator-free equilibrium point
E1(N = Ñ, P̃ = 0):

Theorem 3.3. The predator-free equilibrium point Ẽ1(N = Ñ, P̃ = 0) is locally asymptotically stable
provided the following conditions hold:

2rÑ
K

> r +
µ

2
√

Ñ
, (3.5)

δ >
αβÑ

1 + αhÑ
. (3.6)
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Proof. The Jacobian matrix of the predator-free equilibrium point Ẽ1(N = Ñ, P̃ = 0) is

J(Ẽ1) =

r − 2rÑ
k +

µ

2
√

Ñ
−αÑ

1+αhÑ

0 −δ + αβÑ
1+αhÑ

 . (3.7)

From the matrix (3.7), the eigenvalues are λ1 = r − 2rÑ
k +

µ

2
√

Ñ
and λ2 = −δ +

αβÑ
1+αhÑ . Consequently,

the predator-free equilibrium point Ẽ1(N = Ñ, P = 0) is locally asymptotically stable, provided the
conditions (3.5) and (3.6) hold. □

3.3. Coexistence equilibrium point

Using the following theorem, we investigate the local stability of the coexistence equilibrium point
E2 = Ê2 = (N = N̂, P = P̂).

Theorem 3.4. The coexistence equilibrium point E2 = Ê2 = (N = N̂ > 0, P = P̂ > 0) is locally
asymptotically stable under the following condition:

r +
µ

2
√

N̂
<

2rN̂
K
+

αP̂
(1 + αhN̂)2

. (3.8)

Proof. The Jacobian matrix of the coexistence equilibrium point E2 = Ê2 = (N = N̂, P = P̂) is

J(E2) =

r −
2rN̂
K −

αP̂
(1+αhN̂)2 +

µ

2
√

N̂

−αN̂
1+αhN̂

αβP̂
(1+αhN̂)2 −δ + αβN̂

1+αhN̂

 . (3.9)

From the matrix (3.9)

J(E2) =
[
h11 h12

h21 h22

]
where

h11 = r −
2rN̂
K
−

αP̂
(1 + αhN̂)2

+
µ

2
√

N̂
,

h12 =
−αN̂

(1 + αhN̂)2
,

h21 =
−αN̂

1 + αhN̂
,

h22 = −δ +
αβN̂

1 + αhN̂
,

and the characteristic equation of J(E2) is

λ2 − trJ(E2)λ + detJ(E2) = 0.

Since h12 < 0, h21 > 0, and h22 = 0, at the coexistence equilibrium point Ê2 = (N = N̂, P = P̂),∣∣∣∣J (
N̂, P̂

)∣∣∣∣ > 0 and Trace
(
J
(
N̂, P̂

) )
< 0, if h11 < 0. Thus, the coexistence equilibrium point Ê2 = (N =

N̂, P = P̂) is locally asymptotically stable under the condition (3.8). □

Corollary 3.4.1. The coexistence equilibrium point E2 = (N̂, P̂) destabilizes if the condition (3.8 is
violated.
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3.4. Hopf bifurcation

Hopf bifurcations occur when a system loses its stability and a periodic solution appears. A Hopf
bifurcation of the coexistence equilibrium point is discussed in this section. The parameter µ is selected
as the bifurcation parameter for studying the Hopf bifurcation.

Theorem 3.5. System (2.1) has a Hopf bifurcation around the coexistence equilibrium point

(EcII(N̂, P̂)) at the threshold µ = µH, where µH =
4rN̂
√

N̂
K − 2r

√
N̂ − 2α

√
N̂P̂

(1+hαN̂)2 + 2δ
√

N̂ + 2αβ
√

N̂N̂
1+hαN̂

.

Proof. The equilibrium point E2(N̂, P̂) will be in an unstable case if µ > µH; then µ > µH is the critical
value where the stability of E2(N̂, P̂) changes.

Assume that λ = R(µ)+ T (µ)i represents an eigenvalue of the Jacobian matrix J((N̂, P̂); µH)). Thus,
λ is a purely imaginary number. When µ = µH, a Hopf bifurcation occurs. We test these conditions by
substituting m for mH; we can obtain
Trace(J((N̂, P̂); µH)) = 0, Det(J((N̂, P̂); µH)) > 0 and d(trace(J((N̂,P̂);µH)))

dµ = 1√
N̂
, 0.

Thus, a Hopf bifurcation occurs at the point µ = µH. □

4. The stochastic model

There are many factors that can affect the environment randomly. There is an urgent need to model
these using random models, especially in volatile environments. This section presents the stochastic
formulation of system (2.1) to account for the impact of environmental noise as follows:

dN =
(
rN

(
1 −

N
K

)
−

αNP
1 + αhN

+ µ
√

N
)

dt + ξ1NdW1,

dP =
(
−δP +

αβNP
1 + αhN

)
dt + ξ2PdW2, (4.1)

subject to
N(0) = N0 ≥ 0, P(0) = P0 ≥ 0,

where ξ1 and ξ2 indicate the strength noise parameters, while dW1 and dW2 represent standard Wiener
processes. The general form of Itô’s stochastic differential equation is shown as follows:

dZt = ψ(Zt, t)dt + ζ(Zt, t)dW,

Zt(0) = Z0,∀t ≥ t0,

(4.2)

where ψ : [(0,T ) × R+]2 → R and σ : [(0,T ) × R+]2 → R.
The differential operator L of Eq. (4.2) is defined by the following formula [30]:
L = ∂

∂t +
∑n

i=1 ψ (Z(t), t) ∂
∂Zi
+ 1

2

∑n
i, j=1 [ζ (Z(t), t) , ζ (Z(t), t)T ]i j

∂2

∂Zi∂Z j
.

If L acts on a function V ∈ C2, 1(Rn
+, R+), then

LV (Z(t), t) = Vt (Z(t), t) + VZ (Z(t), t)ψ (Z(t), t) + 1
2 trace

[
ζT (Z(t), t) VZZ (Z(t), t) ζ (Z(t), t)

]
,

where Vt =
∂V
∂t , VZ = ( ∂V

∂Z1
, ∂V
∂Z2
, . . . , ∂V

∂Zn
), VZZ = ( ∂2V

∂Zi∂Z j
)
n×n

. By Itô’s formula, we can obtain
dV (Z(t), t) = LV (Z(t), t) dt + VZ (Z(t), t) ζ (Z(t), t) dW(t).
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5. Properties of the solution

This section establishes the existence and uniqueness of global positive solutions, as well as proving
the stochastic boundedness of the system (4.1), which aligns with biological feasibility.

5.1. The existence and uniqueness of global positive solutions

The system (4.1) can be written as follows:
dN = N

r (
1 −

N
K

)
−

αP
1 + αhN

+
µ
√

N
N

 dt + ξ1NdW1,

dP = P
(
−δ +

αβN
1 + αhN

)
dt + ξ2PdW2. (5.1)

Theorem 5.1. Given any initial value (N0, P0) ∈ R2
+, there is a unique global positive solution

(N(t), P(t)) ∈ R2
+ of the stochastic model (4.1) almost surely for all t ≥ 0 with a probability of one.

Proof. Set s(t) = ln N(t), q(t) = ln P(t). We then get the following equations:
ds(t) =

(
r −

res

k
−

αeq

1 + αhes −
µ
√

es

es −
ξ2

1

2

)
dt + ξ1dW1,

dq(t) =
(
−δ +

αβes

1 + αhes −
ξ2

2

2

)
dt + ξ2dW2, (5.2)

where s(0) = ln N(0), q(0) = ln P(0). We know that the system (4.1) has a unique local solution
(s(t), q(t)) on t ∈ [0, τe) since its coefficients satisfy the local Lipschitz condition. Here, τe is the
explosion time, which indicates that limt→τe |s(t)| = ∞ or limt→τe |q(t)| = ∞. By applying Itô’s formula,
the system (4.1) has a unique local solution that (N(t) = es(t), P(t) = eq(t)) ∈ R2

+ with any initial
condition N0 > 0, P0 > 0. To show that the solution is global, we need to prove that τe = ∞ almost
surely. Consider k0 > 0 to be large enough for (N0, P0) ∈ Ek0 = [ 1

k0
, k0] × [ 1

k0
, k0]. Assuming that

k > k0, the stopping time is defined as follows:

τk = inf
{
t ∈ [0, τe) : min{N(t), P(t)} ≤

1
k

or max{N(t), P(t)} ≥ k
}
,

where inf ϕ = ∞, and ϕ is the empty set.
Let limk→∞ τk = ∞, in which case τ∞ ≤ τe a.s. by supposing τ∞ = ∞ a.s. Instead, if τ∞ , ∞, T > 0

and ϵ ∈ (0, 1) exist such that P(τ∞ ≤ T ) > ϵ. Consequently, there exists a constant k ≥ k0 such that
P(τk ≤ T ) ≥ ϵ for all k ≥ k1.

Next, define a C2- function V : R2
+ → R+, V(N, P) = (N − 1 − ln N) + (P − 1 − ln P).

On the basis of Itô’s formula, one can conclude that

dV =
rN −

rN2

k
−

αNP
1 + αhN

+ µ
√

N − r +
rN
k
+

αP
1 + αhN

−
µ
√

N
N
− δP +

αβNP
1 + αhN

−δP +
αβNP

1 + αhN
+ δ −

αβN
1 + αhN

+
ξ2

1

2
+
ξ2

2

2

)
dt + ξ1(N − 1)dW1 + ξ2(P − 1)dW2,
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dV ≤
(
rN + µ

√
N − r +

rN
k
+

αP
1 + αhN

+
αβNP

1 + αhN
+ δ

+
ξ2

1

2
+
ξ2

2

2

)
dt + ξ1(N − 1)dW1 + ξ2(P − 1)dW2.

Based on Lemma 4.1 of Dalal et al. [31], for ui ∈ R+,

ui ≤ 2(ui + 1 − ln ui) − (4 − 2 ln 2) ≤ 2(ui + 1 − ln ui),

Due to this, we have the following inequalities:

(r+
r
k

)N+µ
√

N+(
α

1 + αhN
+

αβN
1 + αhN

)P−r+δ+
ξ2

1

2
+
ξ2

2

2
≤ (r+

r
k

)N+µ
√

N+(α+
β

h
)P−r+δ+

ξ2
1

2
+
ξ2

2

2
,

which is

(r +
r
k

)N + µ
√

N + (α+
β

h
)P ≤ 2(r +

r
k

)(N + 1− ln N)+ 2µ(
√

N + 1− ln
√

N)+ 2(α+
β

h
)(P+ 1− ln P).

Let A3 = max{A1, 2A2}, where A1 = r + δ + ξ2
1
2 +

ξ2
2
2 , A2 = max{r + r

k , α +
β

h }. Thus,

dV ≤ A3(1 + V(N, P))dt + xi1(N − 1)dW1 + ξ2(P − 1)dW2.

On the basis of the stopping time τk and because T > 0 is a constant, as defined in [30], integrating
both sides will yield the following expectation:

EV(N(τk ∧ T ), P(τk ∧ T )) ≤ V(N(0), P(0)) + E
∫ τk∧T

0
A3[1 + V(N, P)] ds,

≤ V(N(0), P(0)) + A3T + A3

∫ τk∧T

0
EV(N, P) ds,

≤ V(N(0), P(0)) + A3T + eA3T = Q0.

As a result, we obtain V(N(τk ∧ T ), P(τk ∧ T )) ≥ (k − 1 − ln k) ∧ (1
k − 1 − ln 1

k ). Therefore, it can be
deduced that

Q0 ≥ E[1Ωt(θ)V(N(τk ∧ T ), P(τk ∧ T ))] ≥ ε([k − 1 − ln k ∧
1
k
− 1 − ln

1
k

]),

where 1Ωt(θ) is an indicator function. In this case, the hypothesis is contradicted. Thus, the proof is
complete. □
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5.2. Stochastic boundedness

Theorem 5.2. If it is given any initial value (N0, P0) ∈ R2
+, then the solutions of system (4.1) are

stochastically ultimately bounded.

Proof. We define the Lyapunov functions g1 = etN i and g2 = etPi, respectively, for i ∈ (0, 1). Using
Itô’s formula, we calculate

dg1(N) = etN idt + et

[
iN idN +

1
2

N(N − 1)N(i − 2)(dN)2
]
,

= etN idt+ietN i

r − rN
k
−

αP
1 + αhN

+
µ
√

N
N

 dt+ietξ1dW1+
1
2

N(N−1)etN i

r − rN
k
−

αP
1 + αhN

+
µ
√

N
N

2

dt,

and

dg2(P) = etPidt + et

[
iPidP +

1
2

P(P − 1)P(i − 2)(dP)2
]
,

= etPidt + ietPi
(
−δ +

αβN
1 + αhN

)
dt + ietξ2dW2 +

1
2

P(P − 1)etPi
(
−δ +

αβN
1 + αhN

)2

dt.

Thus,

Lg1 = etN idt + ietN i

r − rN
k
−

αP
1 + αhN

+
µ
√

N
N

 + 1
2

N(N − 1)etN i

r − rN
k
−

αP
1 + αhN

+
µ
√

N
N

 ,
= etN i + ietN i

r − rN
k
−

αP
1 + αhN

+
µ
√

N
N

 + 1
2

N(N − 1)etN i

r − rN
k
−

αP
1 + αhN

+
µ
√

N
N

 ,
From Theorem 2.2, we get

≤ etM1(i), (5.3)

and

Lg2 = etPidt + ietPi
(
−δ +

αβN
1 + αhN

)
+

1
2

P(P − 1)etPi
(
−δ +

αβN
1 + αhN

)2

.

We can conclude that
≤ etM2(i). (5.4)

In this case, limt→∞ supEN i ≤ M1(i) ≤ +∞ and limt→∞ supEPi ≤ M2(i) ≤ +∞. Furthermore,
H(t) = (N(t), P(t)) ∈ R2

+, so note that

|H(t)|i ≤ (2 max{N2(t), P2(t)}).

Now, we set i = 1
2 , C1 > 0 exists, such that

lim
t→∞
E|H(t)|

1
2 ≤ C1.

For any ϵ > 0, set C2 =
C2

1
ϵ2 . Then, by Chebyshev’s inequality,

P{|H(t)| > C2} ≤
E|H(t)|

1
2

C
1
2
2

.
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Consequently,

lim
t→∞

supP{|H(t)| > C2} ≤
C1

C
1
2
2

= ϵ.

This completes the proof. □

6. The global asymptotic stability of the coexistence equilibrium point

Many researchers in biological and mathematical fields are interested in the long-term behavior of
species. We focus our attention on this important point, which expresses the coexistence of prey with
their predators. We prove the global stability of the stochastic model as follows:

Theorem 6.1. If, recalling condition (3.8), the following condition holds(√
K +

√
N̂
)
+

α2h
(1 + hαN̂)(1 + hαK)

(| ζN̂ − P̂K |) <
r
K

(
K − N̂

)2
−

1
2

N̂ξ2
1 −

1
2β

P̂ξ2
2, (6.1)

then, the coexistence equilibrium point is globally asymptotically stable almost surely with probability
one, i.e., for any initial condition (N0, P0) ∈ R2

+, the solution of model (4.1) has the property

lim
t→∞

sup N(t) = N̂, lim
t→∞

sup P(t) = P̂,

a.s.

Proof. Consider the Lyapunov functions

V(N, P) =
(
N − N̂ − N̂ ln (

N
N̂

)
)
+C

(
N − P̂ − P̂ ln (

P
P̂

)
)
,

where C is a positive constant that will be determined later.
We apply Itô’s formula, so we get

LV(N, P) =
[
1 −

N̂
N

]
dN +

1
2

N̂
N2 (dN)2 +C

([
1 −

P̂
P

]
dP +

1
2

P̂
P2 (dP)2

)
,

=
(
N − N̂

) [(
r
(
1 −

N
K

)
−

αP
1 + hαN

+
µ
√

N

)
dt + ξ1dW1

]
+

1
2

N̂ξ2
1dt

+
(
P − P̂

) [(
−δ +

αβN
1 + αhN

)
dt + ξ2dW2

]
+

1
2

P̂ξ2
2dt,

=
(
N − N̂

) −rN
K
−

αP
1 + hαN

−
rN̂
K
+

αP̂
1 + hαN̂

+
µ
√

N
−

µ√
N̂

 dt + ξ1dW1

 + 1
2

N̂ξ2
1dt

+
(
P − P̂

) [( αβN
1 + αhN

−
αβN̂

1 + αhN̂

)
dt + ξ2dW2

]
+

1
2

P̂ξ2
2dt,
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=
(
N − N̂

) −rN
K
−

αP(1 + hαN̂)
(1 + hαN)(1 + hαN̂)

−
rN̂
K
+

αP̂(1 + hαN)
(1 + hαN)(1 + hαN̂)

+
µ
√

N
−

µ√
N̂
+

1
2

N̂ξ2
1

 dtξ1dW1


+C

(
P − P̂

) [(αβN(1 + hαN̂)
1 + αhN

−
αβN̂(1 + hαN)

1 + αhN̂
+

1
2

P̂ξ2
2

)
dt + ξ2dW2

]
,

=

[
−

r
K

(
N − N̂

)2
−

α

(1 + hαN̂)(1 + hαN)

(
N − N̂

) (
P − P̂

)
+

α2h
(1 + hαN̂)(1 + hαN)

(PN̂ − P̂N)

+
µ
(
N − N̂

)(√
N −

√
N̂
) + Cαβ

(1 + hαN̂)(1 + hαN)

(
N − N̂

) (
P − P̂

)
+

1
2

N̂ξ2
1 +

1
2

P̂ξ2
2

 dt

+ ξ1

(
N − N̂

)
dW1 + ξ2

(
P − P̂

)
dW2.

Now, we have

dV = L(V)dt + ξ1

(
N − N̂

)
dW1 + ξ2

(
P − P̂

)
dW2,

where

L(V) = −
r
K

(
N − N̂

)2
−

α

(1 + hαN̂)(1 + hαN)

(
N − N̂

) (
P − P̂

)
+

α2h
(1 + hαN̂)(1 + hαN)

(PN̂ − P̂N)

+
µ
(
N − N̂

)(√
N −

√
N̂
) + Cαβ

(1 + hαN̂)(1 + hαN)

(
N − N̂

) (
P − P̂

)
+

1
2

N̂ξ2
1 +C

1
2

P̂ξ2
2dt

+ ξ1

(
N − N̂

)
dW1 +Cξ2

(
P − P̂

)
dW2,

≤ −
r
K

(
N − N̂

)2
−

α

(1 + hαN̂)(1 + hαN)

(
N − N̂

) (
P − P̂

)
+

α2h
(1 + hαN̂)(1 + hαN)

(| PN̂ − P̂N |)

+
µ
(
N − N̂

)(√
N −

√
N̂
) + Cαβ

(1 + hαN̂)(1 + hαN)

(
N − N̂

) (
P − P̂

)
+

1
2

N̂ξ2
1 +C

1
2

P̂ξ2
2dt

+ ξ1

(
N − N̂

)
dW1 +Cξ2

(
P − P̂

)
dW2.

If we choose C = 1
β
, we have

≤ −
r
K

(
K − N̂

)2
+

α2h
(1 + hαN̂)(1 + hαK)

(| ζN̂ − P̂K |) +
µ
(
K − N̂

)(√
K −

√
N̂
) + 1

2
N̂ξ2

1 +
1

2β
P̂ξ2

2.

If
(√

K +
√

N̂
)
+ α2h

(1+hαN̂)(1+hαK)
(| ζN̂ − P̂K |) < r

K

(
K − N̂

)2
− 1

2 N̂ξ2
1 −

1
2β P̂ξ2

2, then L(V)<0 along all
trajectories. As a result, the proof is completed. □
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Remark. Random noises contribute to the destabilization of the model (4.1), and this is indicated by
the condition (6.1). This is consistent with ecological explanations for the existence of random noises.

Through Theorem (6.1), we can conclude the global stability of the deterministic model (2.1) after
removing the stochastic terms as follows:

Theorem 6.2. If, recalling (3.8), the following condition holds(√
K +

√
N̂
)
+

α2h
(1 + hαN̂)(1 + hαK)

(| ζN̂ − P̂K |) <
r
K

(
K − N̂

)2
, (6.2)

then, the coexistence equilibrium point of the corresponding deterministic model (2.1) is globally
asymptotically stable.

Proof. This proof is similar to that of Theorem 6.1 and has been omitted. □

7. Numerical simulations

To illustrate our results obtained in the previous sections, some numerical simulations are performed
in this section. In both deterministic and stochastic versions of the model, steady-state and periodic
dynamics are presented. In addition, the effects of herd immigration on the dynamics of both systems
(2.1) and (4.1) are presented in this section. Moreover, different dynamics of the models are shown
in the stochastic model. For all figures in this section, two kinds of figures are presented to depict the
dynamic behaviors of all cases considered, which are (a) time series subfigures that show the density
of prey and predator populations as time progresses and (b) phase portrait trajectory subfigures that
explain the general shape of the dynamic behaviors. We select the parameters and initial conditions
of the systems (2.1) and (4.1) as r = 1, k = 4, α = 1.5, h = 0.5, δ = 0.65, β = 1, N(0) = 0.6,
and P(0) = 0.3. However, the parameters of the immigration factor and the strength of the noise are
changed.

7.1. Numerical simulation of the deterministic model

For the system (2.1) (i.e., the deterministic model), when increasing the immigration factor
parameter, changes in the dynamic behaviors are observed, as seen in Figures 1–3. Figure 1a
illustrates that the density of populations fluctuates regularly with time, and Figure 1b demonstrates
that the dynamic behavior is periodic and that it starts from the initial values and spirals out to form a
large limit cycle, and the trajectory paths approach the axes. Figure 2a shows that the density of
populations oscillates regularly with time but the oscillations are smaller than the oscillations in
Figure 1a, so the dynamic behavior in this case is a limit cycle as shown in Figure 2b, but the limit
cycle becomes smaller and the trajectories are further away from the axes than in Figure 1b. Figure 3a
shows that the density of populations oscillates with time, but then stabilizes at the equilibrium point
(N̂ ≈ 0.642, P̂ ≈ 1.938). In this case, the dynamic behavior is in a steady state, as shown in Figure 3b.
From Figures 1–3, we note that herd immigration plays an important role in stabilizing the
deterministic system. This satisfies condition (6.2) of Theorem 6.2.
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Figure 1. Dynamics of the system (2.1) when µ = 0: (a) Time series; (b) phase portrait
trajectories.
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Figure 2. Dynamics of the system (2.1) when µ = 0.4: (a) Time series; (b) phase portrait
trajectories.
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Figure 3. Dynamics of the system (2.1) when µ = 0.9: (a) Time series; (b) phase portrait
trajectories.
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7.2. Numerical simulation of the stochastic model

Starting from the fourth figure, random noises are taken into account with the variation in the
strength of these effects, which is represented by the model (4.1). When we assume small random
noise strength values ξ1 = 0.1 and ξ2 = 0.1, Figure 4a illustrates a strong similarity to Figure 3a,
with a slight fluctuation in the population density. Figure 4b reveals that the dynamic behavior is
steady state, as in Figure 3b. When we increase the values of the random noise strength to ξ1 = 0.5
and ξ2 = 0.5, the density of the populations oscillates in a slightly irregular shape, as demonstrated in
Figure 5a; the dynamic behavior is a quasi-steady state as depicted in Figure 5b. This is consistent with
the condition (6.1) of Theorem 6.1. Under the assumption that the values of random noise strength are
more than in the previous case, namely ξ1 = 1.0 and ξ2 = 1.0, Figure 6a indicates that the density of the
populations oscillates more irregularly than in the previous case (i.e., Figure 5a), and Figure 6b shows
that the dynamic behavior is a quasi-limit cycle. However, when we assume that the values of random
noise strength are higher than in the previous cases, the density of the populations fluctuates more
irregularly than in the previous cases, as illustrated in Figure 7a; the dynamic behavior is a quasi-limit
cycle, as shown in Figure 7b. This is consistent with Corollary 3.4.1. As in the deterministic system,
herd immigration stabilizes the stochastic system. This is explained from a biological point of view
by the fact that the herd immigration benefits prey species as a defense mechanism against predators
that are reluctant to attack them, so this leads to reduced predation [26, 32]; this can help stabilize
unstable systems. In deterministic and stochastic systems, it is concluded that prey herd immigration
enhances the survival of both species, whether through stabilizing the dynamic behaviors or reducing
the fluctuations in the densities and making them more regular.
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Figure 4. Dynamics of the system (4.1) when µ = 0.9, ξ1 = 0.1 and ξ2 = 0.1: (a) Time
series; (b) phase portrait trajectories.
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Figure 5. Dynamics of the system (4.1) when µ = 0.9, ξ1 = 0.5 and ξ2 = 0.5: (a) Time
series; (b) phase portrait trajectories.
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Figure 6. Dynamics of the system (4.1) when µ = 0.9, ξ1 = 1.0 and ξ2 = 1.0: (a) Time
series; (b) phase portrait trajectories.
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Figure 7. Dynamics of the system (4.1) when µ = 0.9, ξ1 = 1.9 and ξ2 = 1.9: (a) Time
series; (b) phase portrait trajectories.
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Table 1. Summary comparison of the main results for deterministic and stochastic models.

Theoretical side
The property Deterministic model Stochastic model
Positivity Satisfied (Thm. 2.1) Satisfied (Thm. 5.1)
Boundedness Satisfied (Thm. 2.2) Satisfied (Thm. 5.2)
Global asymptotic stability Satisfied (Thm. 6.1) Satisfied (Thm. 6.2)
Numerical side
Dynamical behavior with the herd immigration parameter (µ) and random noise parameters (ξ1 and ξ2)
The values of parameters Deterministic model Stochastic model
µ = 0, ξ1 = 0, and ξ2 = 0 Limit cycle with a large cycle

(Figure 1)
Limit cycle with a large cycle
(Figure 1)

µ = 0.4, ξ1 = 0, and ξ2 = 0 Limit cycle with a small cycle
(Figure 2)

Limit cycle with a small cycle
(Figure 2)

µ = 0.9, ξ1 = 0, and ξ2 = 0 Steady state (Figure 3) Steady state (Figure 3)
µ = 0.9, ξ1 = 0.1, and ξ2 =

0.1
Not applicable Steady-state (Figure 4)

µ = 0.9, ξ1 = 0.5, and ξ2 =

0.5
Not applicable Quasi-steady state (Figure 5)

µ = 0.9, ξ1 = 0.9, and ξ2 =

0.9
Not applicable Quasi-limit cycle (Figure 6)

µ = 0.9, ξ1 = 1.9, and ξ2 =

1.9
Not applicable Quasi-limit cycle (Figure 7)

8. Conclusions

In recent years, some mathematicians have used the immigration factor in prey–predator systems
to study its effects on dynamic behaviors. This factor stabilizes these systems, as shown, for instance
in [25,33]. In prey–predator systems, herd behavior is considered a protective factor because individual
members behave as a group. Separately, immigration and herd behavior have recently attracted some
researchers due to their significance and effect on dynamic behaviors. This work proposes integrating
the immigration factor and herd behavior to form a more realistic prey–predator model. In this system,
the solutions remain positive forever and are ultimately bounded under specific conditions. Thus, the
system behaves biologically well. The local asymptotic stability of equilibrium points is examined.

In addition, a stochastic version of this model has been formulated to take into account the
influence of random noise. Using a suitable Lyapunov function, we obtained the conditions of the
global asymptotic stability of the coexistence equilibrium point for stochastic and deterministic
models (Theorems 6.1 and 6.2, respectively). Numerical simulations were used to explain the
theoretical findings. The Table 1 shows a summary comparison of the main results for deterministic
and stochastic models. Figure 8 presents an overall framework diagram that shows the significance
and relationships of the models, theorems, and simulations. The numerical results showed that prey
herd immigration has a positive role in stabilizing the systems. In a stochastic system, the numerical
simulations show that the fluctuations in the density of populations become more regular with
increased herd immigration; also, these simulations display rich dynamics, such as quasi-steady states
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and quasi-limit cycles. Stabilizing the dynamic behaviors, making them more regular, and reducing
density fluctuations enhance the survival of both species. This assumption plays an important role in
boosting species’ survival in environments where species’ are vulnerable to extinction.

From an ecological standpoint, the effects of prey immigration on prey–predator systems may be
explained by the support of these systems, known as the rescue phenomenon [34–36]; however, this
study suggests that supporting unstable systems can be achieved through the immigration of prey in
the form of herds.

Proposed models with herd immigration

Deterministic model Stochastic model

Positivity and boundednessLocal stability and Hopf bifurcation

Global asymptotic stability of a coexistence
equilibrium point

Verification by numerical simulations

Model 2.1 Model 4.1

Thms. 2.1 and 2.2 Thms. 5.1 and 5.2

Thms. 3.2, 3.3, 3.4, and 3.5 and Cor. 3.4.1

Thms. 6.1 and 6.2

Figs. 1-7

Figure 8. Framework diagram showing the significance and relationships of the models,
theorems, and simulations.
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