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Abstract: Nonlinear mathematical formulations provide an accurate representation of intricate 

phenomena, including turbulence, vortices, and chaotic flow behavior. The solution of nonlinear 

differential equations for narrating flow fields is a challenging task. In this regard, the present article 

offers a solution remedy by conjecturing finite element method (FEM) outcomes with artificial 

intelligence-based neural networks. More precisely, a backward-facing step (BFS) is being treated as 

the study domain. The two corresponding triangular ribs make BFS corrugated, and the inlet has a 

parabolic pattern. We derive the differential system for the flow field within a BFS rooted with a 

circular obstacle. The solution is obtained by using the FEM. The artificial neural networks (ANNs) 

model is created with an input layer containing the viscosity, density, characteristics length, and mean 

inflow velocity, and it has lift coefficient (LC) to be output in the last layer. We choose 67 (70%) values 

for training and the remaining data points are taken for validation and testing as a 14 each. ANN has 10 

neurons in the hidden layer and is trained with the Levenberg-Marquardt algorithm. Mean square 

error and regression analysis are performed to validate the model. It is concluded that the ANN 

design will act as the most accurate forecasting model of hydrodynamic force on circular obstruction 

in BFS for an extensive range, except normal parameters where classical methodologies were unable 

to predict. 
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Nomenclature 

𝑟𝑑 Fluid density 

�⃗�  Velocity field 

p pressure 

�⃗�  Del operator 

𝐷

𝐷𝑡
 Material derivative 

𝑎1 Dynamic viscosity 

�⃗� 𝑓 Body force 

𝑎2 Characteristic length 

𝑎3 Mean flow velocity 

A Reynolds number 

𝑓(𝑥, 𝑦) Horizontal velocity 

𝑔(𝑥, 𝑦) Vertical velocity 

ℎ2 Inlet height 

𝐿𝐹 Lift force 

𝐿𝐶 Lift coefficient 

𝐷𝐹 Drag force 

𝐷𝐶 Drag coefficient 

1. Introduction 

In fluid science, a mathematical formulation is really important. The study of fluid motion, 

which includes both liquid and gas motion, is known as fluid dynamics, and it primarily uses 

mathematical equations and models to describe and forecast fluid behavior. The foundation of fluid 

dynamics is a set of mathematical formulas referred to as the flow equations. The conservation of 

momentum, mass, and energy in a fluid is explained by these equations. The Navier-Stokes equations, 

which are most frequently used to govern fluid flow, are derived from Newton's laws of motion and 

conservation laws. These formulas serve as the foundation for researching a variety of fluid 

phenomena and offer a mathematical depiction of fluid dynamics like Demarco and Dvorkin [1] 

developed mathematical models for the process of metal forming. Badly conditioned matrices were 

produced when those mathematical models were discretized using velocity or u-p interpolated finite 

element formulations with the incompressibility enforced by penalty measures. For the solution of 

flow equations, the application of an iterative solver was covered in this study. Jan [2] provided a 

mathematical overview of the key processes involved in numerically simulating the inviscid flow in 

a sealing gap of a screw compressor. The Euler equations described the mathematical model of 

compressible inviscid flow. The cell-centered finite volume design of the MacCormack method was 

employed for solution. Due to the fact that it combines a variety of components, including gas, 
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liquids, powders, and lumps of granular materials, the ironmaking blast furnace was once thought to 

be among the largest and most complicated industrial reactors. Nogami et al. [3] devised the 

mathematical simulator for this process. Since several flow mechanisms controlled the motions of 

these materials, they employed the multi-fluid treatment. The model's validity was established and it 

was able to accurately replicate the temperature, velocity, and reaction fields in the furnace. Sankar 

and Hemalatha [4] offered a mathematical formulation for blood pulsatile flow via a catheterized 

artery. The power index and yield stress are the two parameters of the Herschel-Bulkley fluid. The 

solution for equations was obtained by the perturbation method. There was a discussion of how the 

non-Newtonian character of blood and catheterization affected the flow field. The yield stress value 

increases, and the plug core region's width does as well. When yield stress increases and other 

parameters remain constant, wall shear stress rises and, in contrast, flow rate and velocity drop. 

Siddiqui et al. [5] investigated pulsatility and the non-Newtonian nature of blood through a 

stenosed artery. The fact that the viscous flow region's thickness varies with axial distance was 

interesting to note. The critical yield stress value at which the behavior of the flow rate transitions 

between the two types was established. In the investigation, the velocity profiles and related 

physiological traits were identified. In this analysis, numerous standard results about the flow of 

Newtonian and Casson fluids were obtained as special examples. Pandey et al. [6] offered a 

theoretical investigation of power law peristaltic flow in three layers with varying viscosities. Low 

Reynolds number and long wavelength approximations were used during the investigation. 

Comparable results were obtained when the intermediate layer's viscosity was maintained constant 

while the outermost layer's viscosity was raised. Nonetheless, understanding how the intermediate 

layer's viscosity affects things makes it easier for them to reach the necessary flow rate without 

upsetting the farthest layer. Increased flow rates are also favored by raising the flow behavior index. 

In order to get beyond the asymptotic nature and inherent mathematical difficulties of direct kinetic 

theories, this characteristic suggested looking for potential other accurate methodologies. Tessarotto 

and Cremaschini [7] looked into the basic mathematical characteristics of the NS phase-space 

dynamical system that underpins INSE and is identified by IKT in this work. Specifically, for the NS 

dynamical system, it was shown that a global existence theorem and correspondence theorem with 

the INSE problem hold. An analytical method was presented by Sumbatyan and Tarasov [8] to 

investigate the elastic wing vibration in non-viscous fluid. They start by creating a simple integral 

equation in two dimensions. After that, a succession expansion was used alongside the short 

coordinate. As a result, the problem is reduced to an endless set of integral equations, which were 

asymptotically examined in relation to the parameter for the big aspect ratio. To evaluate the 

practicality of the suggested approach, a demonstration of optimizing wing thickness was given. A 

mathematical model based on modified memory that describes fluid flow in porous media was 

presented by Obembe et al. [9]. The suggested mathematical model worked well to explain the 

atypical diffusion behavior seen in extremely heterogeneous and disordered porous media, as well as 

in a medium with a fractal shape. An existing discretization method served as the basis for the 

numerical strategy. The findings indicate that a decrease in the anomalous diffusion exponent's 

magnitude leads to an increase in wellbore pressure and pore pressure. Aleem et al. [10] examined a 

magnetized viscous flow field. Two methods, Caputo fractional and Caputo–Fabrizio fractional time 

derivatives, were used to build the fractional model. After transforming the equations into a 

dimensionless system, analytical solutions were obtained using the Laplace transform method. Thet 

observed how the temperature, concentration, and velocity fields were affected by fractional and 
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other flow characteristics. Consequently, they discovered that temperature and velocity had higher 

outputs in the model with the fractional derivative of Caputo-Fabrizio than in the Caputo one. 

Additionally, velocity was seen to have a dual nature for both large and small-time ranges. 

Patel et al. [11] offered mathematical formulation for micropolar fluid flow with pertinent 

physical effects. The system of partial differential equations (PDEs) was reduced to system of 

ordinary differential equations (ODEs) with the aid of appropriate similarity variables and the 

homotopy analysis method (HAM) was then used to solve the ODEs. Both tabular and graphical 

forms were used to discuss the influence of several parameters on flow field. Micropolar lowers the 

fluid velocity whereas mixed convection, buoyancy force, and permeability parameters improve the 

fluid velocity. The temperature was enhanced towards heat generation parameter; however, the 

Prandtl number and unsteadiness parameter showed the opposite trend. Hanafi et al. [12] offer a 

mathematical analysis of a hybrid nanofluid heat transfer capability when employing a cylindrical 

single-jet impingement scheme to transfer heat from a target surface. The influence of coolant types 

on heat transfer performance was examined. Multiple nanofluids with 0–5% volume concentration, 

and pure water were the coolants utilized in the simulation. A thorough presentation and discussion 

of the aspects of the Reynolds number subject to heat transfer performance was given. When 

compared to single-particle nanofluids and pure water the results demonstrated that hybrid 

nanofluids performed the best in terms of heat transfer. In order to improve the heat transfer system, 

Thenmozhi et al. [13] investigated the fluid behavior under a number of particular circumstances. 

Both homogeneous and heterogeneous chemical reactions were examined in this study using the 

Darcy-Forchheimer model. PDEs were used as the basis for the mathematical model. The solutions 

were reported using the shooting method in conjunction with the finite difference scheme. Increased 

fluid velocity and a slight drop in fluid temperature are observed at higher values of the 

microrotation parameter. The fluid's temperature rises while its velocity decreases due to the 

Darcy-Forchheimer parameter. Gholampour et al. [14] used Cine PC-MRI to measure the pulsatile 

blood velocity which was taken into consideration as input data towards mathematical modeling. It 

was determined that the pulsatile deformation of brain tissue subject to time was the inlet velocity in 

cerebrospinal fluid (CSF). Concentration, Navier-Stokes, and continuity were the governing 

equations in each of the three fields. The brain material characteristics were defined using the Darcy 

law which has defined permeability and diffusivity values. The accuracy of the CSF pressure and 

velocity was confirmed using mathematical formulations. To assess the features of the intracranial 

fluid flow, they used Womersley, Reynolds, Peclet and Hartmann numbers. CSF velocity was at its 

highest and CSF pressure was at its lowest during the cardiac cycles mid-systole phase. For the 

hydrocephalus patients and the healthy subjects, CSF pressure maximum and amplitude as well as 

CSF stroke volume were computed and compared. Raza et al. [15] suggested a mathematical model 

to examine how interfacial nanolayers affect the processes of mass and heat transfer in nanofluid 

flow. Additionally, the current study included the uniform transverse magnetic flux. The nonlinear 

equations were reduced to a collection of ODEs through the use of a similarity transformation. For 

this problem, a phase simulation based on thermophoresis and Brownian factors was created. In 

order to achieve the required accuracy, the shooting method was supported by the numerical 

procedure. Using the Casson parameter while considering the impact of thermal conductivity in 

nanolayers produced terrible outcomes. The thermal performance was greatly improved by the 

increase in nanolayer thickness. 

Recently, a non-Newtonian mathematical model called Phan-Thien-Tanner was proposed by 
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Akbar et al. [16] to study the flow inside the human body that is governed by cilia. Cilia work 

together to create a rhythmic motion that travels along the channel wall as a metachronal wave. 

Exact solutions for the cilia-governed flow problem were found by non-dimensionalizing the 

complex problem using the required assumptions. The wavy movements that resulted from the cilias 

rhythmic actions were visible in pressure gradient graphs. Additionally, this ciliated channel flow 

problem also showed a parabolic flow pattern. Several pumping regions were observed in the 

interesting pressure rise graphical solutions and streamlines reveal the trapping phenomenon. Fluid 

circulation in the brain nutrient digestion ovum transit in the reproductive system pathogen removal 

in various tissues and mucus clearance in the respiratory tract all depended heavily on cilia-generated 

peristaltic flow. The micropolar fluid flow in a bounded vessel as a boundary value problem (BVP) 

was proposed by Baranovskii et al. [17]. They considered rotational degrees for a fluids elementary 

volume and had couple of shear stresses. The couple stress fluids governing equations were of order 

four. As a result, they encounter the difficult problem of defining additional velocity endpoint 

conditions that make sense from a mathematical and physical perspective. They presented the 

considered BVP in both weak and strong formulations and examined how they related to one another. 

By using a broader version of the Leray-Schauder fixed-point theorem, they demonstrated the 

existence of a weak solution and its uniqueness subject to extra assumptions about the model data. 

They specifically examined how the built solutions converge to the stationary Navier-Stokes system 

solutions. 

Deepalakshmi et al. [18] provided a mathematical analysis of the peristaltic pumping for Casson 

fluid through the debris-containing ureters inclined tapering wavy walls. Solid particles that were 

uniform and spherical were suspended in the Casson fluid which acts as the base liquid. The 

mathematical equations were utilized to model the motion of particles and fluids. In the transverse 

direction, an evenly distributed magnetic field was applied to the ureter flow. They used long 

wavelengths and a low Reynolds number to compute the flow-anchored equations. Using the Matlab 

software, the precise solutions were obtained in order to ascertain the fluids temperature contour 

pattern and particle velocity. The simulations show how electromagnetic radiation can be used to 

control urology pumping characteristics. A decrease peristaltic pumping rate is typically the result of 

an increase in particle volume fraction. Sanil et al. [19] conducted a new mathematical study on 

temperature dependent peristaltic Ree-Eying fluid flow. The study took into account a non-uniform 

channel with inclination and porous boundaries. Variable fluid properties that depend on temperature 

like changing viscosity and thermal conductivity were taken into account. The energy equations and 

the Navier-Stokes equation control the properties of fluid flow. The porous channel edge was subject 

to convective boundary conditions. The study took into account how chemical reactions affected the 

flow dynamics. A solution for velocity temperature concentration chemical reactions and stream 

functions was obtained by solving the non-linear coupled equations using the regular perturbation 

technique. Graphs were used to visually represent these variations after parametric analysis was 

applied. It was noticed that the velocity profiles decrease as the Ree-Eyring fluid parameter increases. 

Furthermore, there was an inverse relationship between the velocity profile and the velocity slip and 

porous parameters. 

Owning to such mathematical formulation in fluid flow fields we offer mathematical analysis 

for Backward-facing step carrying viscous fluid. One should note that in CFD simulations and wind 

tunnel experiments, the BFS channels [20–22] are widely used to investigate the behavior of flow 

separation and its effect on aerodynamic performance. They aid in the optimization of the design of 
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bluff bodies, such as cars, airplanes, and buildings, for increased aerodynamic efficiency by helping 

to understand the flow characteristics surrounding them [23,24]. Therefore, we consider viscous fluid 

flow with the parabolic pattern at the inlet and obstacle in the BFS channel. The flow is formulated 

mathematically in terms of PDEs and solved by using the finite element method. An AI-based neural 

networks model is constructed for the prediction of lift force faced by circular obstacles in the BFS 

channel. We are assured that the AI-based outcomes will be helpful for researchers to extend the idea 

for narrating the real-life applications of fluid flow around bodies such as, airplanes, buildings, and 

cars to mention just a few. 

2. Problem formulation 

The backward-facing step (BFS) domain is considered in the present study. The inlet height is 

taken at 0.41m and the height of the outlet is taken at 0.61m. The expansion ratio is taken as 0.32m. 

The circular cylinder is taken as the obstacle with a diameter of 0.1m and it is centered in the BFS 

channel at (0.5,0.4)m. The BFS is made corrugated by introducing triangular units at the bottom wall 

of the domain. The height of the triangular units is taken at 0.2m. The length of upstream and 

downstream is carried 0.5m and 1.6m respectively. The incompressible viscous fluid is introduced at 

an inlet. The said problem is two-dimensional and generally accepted fluid flow narrating differential 

systems are: 

𝜕𝑟𝑑

𝜕𝑡
+ �⃗� ⋅ (𝑟𝑑�⃗� ) = 0,         (1) 

𝑟𝑑
𝐷�⃗⃗� 

𝐷𝑡
= −�⃗� 𝑝 + 𝑎1�⃗� 

2�⃗� + 𝑟𝑑�⃗� 𝑓,        (2) 

and the corresponding dimensionless form can be achieved by incorporating: 

�⃗� ∗ = 𝑎2�⃗� ,
𝜕

𝜕𝑡∗ =
𝑎2

𝑎3

𝜕

𝜕𝑡
, 𝑝∗ = 𝑝

1

𝑟𝑑𝑎3
2 ,

�⃗⃗� 

𝑎3
= �⃗� ∗, �⃗� 𝑓

∗
= �⃗� 𝑓

𝑎2

𝑎3
2.     (3) 

Therefore, Eq (2) turns into: 

𝐷�⃗⃗� ∗

𝐷𝑡∗ = −�⃗� ∗𝑝∗ +
𝑎1

𝑟𝑑𝑎2𝑎3
�⃗� ∗

2
�⃗� ∗ + �⃗� 𝑓

∗
,       (4) 

eliminating “*” results 

𝐴
𝐷�⃗⃗� 

𝐷𝑡
= −𝐴�⃗� 𝑝 + �⃗� 2�⃗� + 𝐴�⃗� 𝑓.         (5) 

In our case, the time independent viscous fluid flow is along the x-axis having velocity of ( , )f x y  

while the velocity ( , )g x y  is along the y-axis. Therefore, Eq (5) reduces to the following forms: 

𝜕𝑓(𝑥,𝑦)

𝜕𝑥
+

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
= 0,         (6) 
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𝐴 (𝑓(𝑥, 𝑦)
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
+ 𝑔(𝑥, 𝑦)

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
) = −𝐴

𝜕𝑝(𝑥,𝑦)

𝜕𝑥
+

𝜕2𝑓(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2 ,  (7) 

𝐴 (𝑓(𝑥, 𝑦)
𝜕𝑔(𝑥,𝑦)

𝜕𝑥
+ 𝑔(𝑥, 𝑦)

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
) = −𝐴

𝜕𝑝(𝑥,𝑦)

𝜕𝑦
+

𝜕2𝑔(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝑔(𝑥,𝑦)

𝜕𝑦2 .  (8) 

The viscous fluid is taken at the inlet with a parabolic profile while it exits the BFS channel with 

Neumann conditions. The surface of the circular cylinder, upper and lower walls are taken with 

no-slip conditions. In this regard, the mathematical expressions as follows: 

BFS inlet 

𝑓(𝑥, 𝑦) = 4 ∗ 𝑎(ℎ2 − 𝑦)𝑚𝑎𝑥,       (9) 

BFS outlet 

𝜕𝑓(𝑥,𝑦)

𝜕𝑥
=

𝜕𝑔(𝑥,𝑦)

𝜕𝑥
= 0, 

Obstacles/Side walls 

𝑓(𝑥, 𝑦) = 0, 𝑔(𝑥, 𝑦) = 0. 

The circular cylinder is installed in the BFS channel and striking of fluid flow will result in two 

hydrodynamic forces, namely drag and lift forces. The mathematical expressions as a drag 

coefficient (DC) and lift coefficient (LC) are: 

𝐿𝐶 =
2𝐿𝐹

𝑟𝑑(𝑎3)
2𝑎2

,          (10) 

𝐷𝐶 =
2𝐷𝐹

𝑟𝑑(𝑎3)
2𝑎2

.          (11) 

It is important to note that the drag and lift coefficients offer a dimensionless, normalized way 

to compare and understand the forces being faced by natural and man-made obstacles across various 

flow situations and scales. Therefore, exploring coefficients instead of estimating forces results in 

more efficient modeling, flexibility in applications, and the ability to make predictions and general 

comparisons. 

3. Numerical methodology 

In fluid science, various numerical techniques [25,26] are accessible to find the solutions of 

flow narrating differential systems, such as Hussain et al. [27], who recently used the Keller box 

method to report the solution of a system of flow equations for hybrid fluid flow with suspended 

nanoparticles. 

Somiya and Kumar [28] utilized the bvp4c scheme to report the solution of a differential system 

constructed for the Maxwell flow field subject to a cylindrical surface. Salahuddin et al. [29] 

considered the Runge-Kutta scheme to find the solution of differential equations for the magnetized 

Williamson fluid flow towards a stretched cylinder. Most of the time, researchers used the reduction 

order (PDEs to ODEs) strategy to get the required solution, but for the best appropriate solution of 

Eqs (6)–(9), we adopted the finite element method. 
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The simulation is done with the assistance of Comsol Multiphysics [30,31]. For pressure and 

velocity, linear and quadratic polynomials are used. Further, Newton’s method is carried out for the 

linearization of equations and PARDISO solved is adopted for inward approximation with 

convergence band of 10-6. 

3.1. Meshing of BFS domain 

The developed system of differential system is given as Eqs (6)–(9). For solution purposes used 

finite element method and the meshing of the field is the key step in this direction. The BFS is 

discretized by using hybrid meshing that includes triangular and rectangular elements. At level-1, the 

BFS domain contains 605 domain elements (DEs) and 91 boundary elements (BEs). Table 1 offers 

the complete description of the BFS domain subject to hybrid meshing. At level-6, the BFS domain 

carries 6996 DEs and 358 BEs. The corresponding meshing illustration is given in Figure 1. One can 

see that we have carried a fine meshing around the obstacle for better evaluation of hydrodynamic 

force. 

Table 1. BFS domain discretization. 

Meshing level Domain elements (DEs) Boundary elements (BEs) 

1 605 91 

2 1019 129 

3 1573 161 

4 2976 236 

5 4243 289 

6 6996 358 

7 16578 712 

8 41480 1354 

9 67218 1384 

 

Figure 1. Hybrid meshing at level-6. 
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3.2. Grid independence test 

The grid independence is tested by evaluating the lift coefficient via line integration around a 

circular obstacle. Table 2 is plotted in this regard. One can see that at a level for meshing level-7, 8, 

and 9, the LC seems independent of the choice of number of grid size. Therefore, for simulation 

purposes, we adopted the meshing level-9. 

Table 2. Grid independence test. 

Meshing level DEs BEs LC 

7 16578 712 -0.13805 

8 41480 1354 -0.13802 

9 67218 1384 -0.13802 

3.3. Code validation 

For validation of numerical scheme, we have considered as same configurations as carried out 

by Schafer et al. [32]. Both LC and DC are computed for circular obstacles at Re = 20, see Table 3. 

One can see that we found an excellent match with Schafer et al. [32], which yields the surety of 

present outcomes. 

Table 3. Results comparison with existing literature. 

Meshing level LC DC 

9 
Present values Schafer et al. [32] Present values Schafer et al. [32] 

0.01020 0.010618 5.5810 5.579535 

3.4. Integration of FEM with multilayer perceptron (MLP) networks 

In the present study, our interest is to construct the MLP networks for the prediction of lift 

coefficient subject to circular cylinder being placed in corrugated BFS. In the first step, the numerical 

values of the lift coefficient are obtained by using finite element-based solution. In the second step, 

such numerical values are used to develop MLP networks. In detail, the simulation is done at 

meshing level-9 by adopting the following particular values of flow parameter density (𝑟𝑑 = 1), 

viscosity (𝑎1 = 0.001), characteristic length (𝑎2 = 0.1), and mean inflow velocity and (𝑎3 = 0.2), 

which is equivalent to say A = 20. The lift force is evaluated in terms of lift coefficient (LC) by doing 

line integration around a circular cylinder. Assisting mathematical relation in this regard is given in 

Eq (9). Tables 4–6 are evident in this direction. Particularly, Table 4 offers the LC values for a range 

of A = 60 to 91. Table 5 offers the statistics of LC for the range of A = 92 to 124. Table 6 gives the 

numerical values of LC towards A = 125 to 155. In an absolute sense, we have noticed that for 

advanced values of A, the LC shows inciting values. The lift force faced by the circular obstacle in 

the BFS domain is increasing the function of A.  
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Table 4. LC statistics for 60 ≤ 𝐴 ≤ 91. 

A LC A LC 

60 -0.1821 76 -0.19974 

61 -0.18326 77 -0.20086 

62 -0.18446 78 -0.20201 

63 -0.18559 79 -0.20309 

64 -0.18672 80 -0.20413 

65 -0.1878 81 -0.20539 

66 -0.18882 82 -0.20656 

67 -0.18985 83 -0.20775 

68 -0.1909 84 -0.20909 

69 -0.19189 85 -0.21029 

70 -0.19317 86 -0.21153 

Table 5. LC statistics for 92 ≤ 𝐴 ≤ 124. 

A LC A LC 

92 -0.21926 109 -0.2401 

93 -0.22066 110 -0.24132 

94 -0.22162 111 -0.24267 

95 -0.22295 112 -0.24405 

96 -0.22425 113 -0.24536 

97 -0.2253 114 -0.24666 

98 -0.22659 115 -0.24781 

100 -0.22904 116 -0.24894 

101 -0.23006 117 -0.2494 

102 -0.23118 118 -0.25053 

103 -0.23244 119 -0.25168 

Table 6. LC statistics for 125 ≤ 𝐴 ≤ 155. 

A LC A LC 

125 -0.25683 141 -0.27442 

126 -0.25773 142 -0.27554 

127 -0.25858 143 -0.27654 

128 -0.25957 144 -0.27725 

129 -0.26061 145 -0.27813 

130 -0.26171 146 -0.27922 

131 -0.26301 147 -0.28027 

132 -0.26408 148 -0.28127 

133 -0.26554 149 -0.28207 

134 -0.26651 150 -0.283 
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4. Results and discussion 

The viscous fluid flow is considered in the BFS channel rooted with circular obstacle. The 

parabolic velocity profile is initiated at the inlet. The developed system of non-linear differential 

equations is solved by using FEM. The obtained results are provided as Figure 2. In detail, Figure 2(a) 

offers the velocity distribution of fluid flow in BFS domain rooted with circular cylinder. 

The fluid enters with a parabolic pattern, and after striking with the obstacle, it gets bifurcated 

and travels downstream. The equivalent pressure outcome is given in Figure 2(b). The pressure is 

noticed maximum at the left face of the cylinder. The line graph study of the velocity of the fluid at 

different positions of the channel is given in Figure 2(c). We can see that at x=0.0, the fluid enters 

with a parabolic profile while at x=0.4, the fluid starts bifurcated. At x=0.5, the fluid is completely 

bifurcated around the installed obstacle. At x=0.9, the fluid is reforming the initial pattern. It is 

important to note that obtaining solutions for PDEs by using neural networks, such as 

physics-informed neural networks [33–35] and multilayer perceptron neural networks [36–38], 

gained significant attention. We constructed MLP neural networks to predict LC. It is well known 

that the Reynolds number (A) depends on viscosity, inflow velocity, density, and characteristics 

length. Therefore, for better prediction, we set all these flow parameters as inputs, namely 

𝑟𝑑 , 𝑎1, 𝑎2, and 𝑎3, in the first layer of the ANN model. The LC is considered as an output in the last 

layer while 10 number of neurons are taken in the hidden layer. 

  

(a) (b) 

 

(c) 

Figure 2. (a) Velocity distribution in BFS; (b) pressure distribution in BFS; and (c) line 

graph for the velocity in BFS.  
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The structure of the neural network is given in Figure 3(a). A total of 95 inputs are taken as 

input and 95 sample values are collected for LC as an output. The sample data is randomly 

distributed into three regimes: training, validation, and testing. Here, 67 (70%) values are used in 

training and 14 (15%) used for testing and validation. The Levenberg-Marquardt algorithm [39,40] 

utilizes gradient descent and the Gauss-Newton method. When the weights of models are near 

optimal values, it converges more quickly than traditional gradient-based methods. This can 

significantly reduce practice training time. Therefore, the ANN is trained by the 

Levenberg-Marquardt algorithm and the ultimate outcomes are offered in Figure 3(b) and (c). The 

activation functions used in hidden and output layers are as follows: 

𝜆𝑇(𝜂) =
1

1+𝑒−𝜂,         (12) 

Purelin(𝜂) = 𝜂.         (13) 

The performance of networks is tested by using mean square error (MSE) and coefficient of 

determination (R). The mathematical relation for MSE and R, are given as follows: 

MSE =
1

𝑁
∑ (𝜆Num(𝑖) − 𝜆ANN(𝑖))

𝑁
i =1

2
,       (14) 

𝑅 = √
∑ (𝜆Num(𝑖))

2𝑁
i =1 −∑ (𝜆Num(𝑖)−𝜆ANN(𝑖))

𝑁
i =1

2

∑ (𝜆Num(𝑖))
2𝑁

i =1

.      (15) 

To be specific, Figure 3(b) gives the performance outcome for constructed ANN. We can observe 

that up to epoch 13, the graphical trends for training, validation, and testing approaches the lower 

error, and after epoch 13, all curves represent the asymptotic convergences to 10-8. The best 

validation performance is noticed 7.6924e-09 at epoch 25. The corresponding error histogram is given 

in Figure 3(c), which represents the lower error values. From both figures, we can conclude that 

ANN training is finished successfully. 

The regression for all three stages is reported in Figure 4. For training, validation, and testing, 

the regression values are noticed 9.99996e-01, 9.99997e-01, and 9.99996e-01
,
 respectively. All values 

are approaches to R = 1. The regression value for all stages is also R =1. The values show that the 

forecasted values and original values are strongly correlated. The corresponding performance 

parameters for the constructed ANN model are given in Table 7. The MSE values for each stage are 

up to mark, and hence the created ANN is the best to forecast the values of LC. The graphical 

illustration of EV for each data set of LC is presented in Figure 5(a). It can be observed that the error 

values for each prediction are very low, and the hence prediction made by ANN is trustful. 

The graphical comparative study of predicted values of LC with targeted values of LC is given 

in Figure 5(b). One can see that predicted and targeted values are in great agreement. Therefore, the 

raised neural model is the best AI-based model that holds the capacity to estimate the lift force faced 

by the circular cylinder being installed in the BFS channel. The prediction by ANN can be extended 

to a wide range of Reynolds numbers. 
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(a) 

 

(b) 

 

(c) 

Figure 3. (a) Structure of ANN; (b) performance plot for ANN; and (c) error histogram for ANN. 
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Figure 4. Regression plot for ANN. 

  

(a) (b) 

Figure 5. (a) EV for ANN; and (b) comparative plot for LC. 
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Table 7. ANN performance parameters. 

Stage R MSE 

Training 9.99996e-01 6.88504e-09 

Validation 9.99997e-01 7.69240e-09 

Testing 9.99996e-01 1.123604e-08 

5. Conclusions 

The corrugated backward-facing step (BFS) field is theoretically modeled in the presence of a 

viscous fluid. The circular cylinder is used as an obstacle in BFS. The flow field is analyzed by 

combining the finite element method and artificial intelligence-based MLP networks. The neural 

network model is used to predict the lift coefficient subject to circular obstacle. The main conclusions 

are as follows: 

• The best validation performance for the built ANN model is 7.6924e-09 at epoch 25. 

Particularly for training, validation, and testing, MSE values are 6.88504e-09, 7.69240e-09, and 

1.123604e-08, respectively. 

• For training, validation, and testing, the regression values are 9.99996e-01, 9.99997e-01, and 

9.99996e-01, respectively. As a result, there is a significant correlation between the anticipated 

and target LC values. 

• According to the MSE and R statistics, the constructed neural networks model is the best model 

to forecast LCs across a wide range of Reynolds numbers. 

• In an absolute sense, the lift force experienced by a circular obstacle rooted in a 

backward-facing step field is found to be an increasing function of a higher Reynolds 

number. 
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