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1. Introduction

This paper is dedicated to a Kirchhoff-type equation driven by a nonlocal fractional p-Laplacian as
follows:

M(W12,) L) = gzy) in Q,

v >0 in Q, P)
W =0 on RM\Q,
W15, € J.

where s € (0,1), p € (1,+0), sp < N, J C (0, +0c0) is an open interval, Q € RY (N > 2) is an
open bounded set with Lipschitz boundary Q, [y15, := [ov Jev Kz, ) W(2) — y()IPdzdy, M is an
increasing Kirchhoff-type function on J, and a function g is nonnegative, which will be introduced
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later. Here, £, is a nonlocal operator defined pointwise as follows:

Ly@ =2 /

K@Y W@ -y @@ - y())dy forall z e RY,
R

where a function K : R¥ x R¥ — (0, +o0) fulfills the following assumptions:
(K1) kK € L'(RN x R"), where «(z, y) = min{|z — y|”, 1};

(K2) There exist positive constants y, and y; with yy > 1 such that yg < K(z, y)|lz—y/N*? <y, forz # y
and for almost all (z,y) € RV x RY;

(K3) K(y,2) = K(z,y) forall (y,z) € RV x RY,

When K(z,y) = |z—y| NP, L; becomes the fractional p-Laplacian operator (—A)IS, defined as follows:

A D) = 21im W@~y W@~y o)
)4

N
, zZ€RY,
N0 JrM\B,(7) |z — y|N+sp

where B.(2) ;= {z € R : |z —y| < &}.

Over the last few decades, fractional Sobolev spaces and their corresponding nonlocal equations
have gained increasing attention because they can be corroborated as models for many physical
phenomena arising from studies of Lévy processes, fractional quantum mechanics, optimization, image
processing, thin obstacle problems, anomalous diffusion in plasma, American options, game theory,
geophysical fluid dynamics, and frame propagation; see [6, 14,24, 28, 34] for comprehensive studies
and details on these topics.

The study of Kirchhoff-type problems, which was originally proposed by Kirchhoff [18], has a
powerful background in various applications in physics and biology. For this reason, much attention
has recently been given to the investigation of elliptic equations related to Kirchhoff coefficients;
for example, see [15, 16, 25, 26, 29, 32] and the references therein. The authors of [11] discussed in
detail the physical implications underlying the fractional Kirchhoff model. Particularly, by considering
a truncation argument and the mountain pass theorem, the existence of nontrivial solutions to a
nonlocal elliptic problem was obtained when an increasing and continuous Kirchhoff term M has
the nondegenerate condition infgeo00) M(€E) > & > 0, where & is a constant; see also [30]
and references therein. However, the existence of at least two different nontrivial solutions to the
fractional p-Laplacian equations of the Schrodinger—Kirchhoff type was demonstrated in [32] when
the nondegenerate continuous Kirchhoff function M fulfills the hypothesis:

(M1) Thereis ¢ € [1, N_L) such that SM(¢) := 5f0§ M(o)do > M(&)é forany € > 0, where 0 < s < 1.

sp

The assumption (M1) contains not only the classical example M(£) = 1 + a&® (a > 0,& > 0) but the
nonmonotonic cases. In this regard, nonlinear elliptic equations of Kirchhoff type involving (M1) have
received widely remarkable attention; see [7, 15, 16, 19, 20, 35]. Considering these related papers, the
functional A : Wg"(Q) — R associated with the principal part in (P) is given by

1
ﬂ(l//)=—M(/ / K(Z,y)ll//(z)—l//@)l”dzdy)
p RN JRV
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for any y € W."(Q), where a solution space W”(Q) will be introduced later. Then, in accordance with
the fact that M € C([0, +c0)), it follows that A € C'(W"(Q), R) and its Fréchet derivative is defined as

(A W), ¢) = M(W1,) /R ) /R K@)~y WE) ~ vONGE) - )z dy

for any ¥, ¢ € W7 (Q). Specifically, assumptions M € C([0, o)) and (M1) play an effective role in
deriving some topological properties of functionals A, A" and the compactness condition of Palais—
Smale-type for an energy functional related to (P), which are essential in using variational methods
such as Ekeland variational principle, mountain pass theorem, and fountain theorem. But, many
examples are eliminated from the continuity of the nondegenerate Kirchhoff function M in [0, o).
For example, let the Kirchhoff functions be defined by

M) =tané for 0<§<g

and
ME) =G-8 for £e€(-c0,8), where 6§>0,0<¢<1.

These functions cannot be covered by any of the results known to date. Recently, to obtain at most
one positive solution for the non-local problems with discontinuous Kirchhoff functions, Ricceri [33]
discussed a new approach different from those of previous related studies [2, 10, 11, 16,29, 32]. The
author of [21] recently extended the result of [33] to elliptic equations involving p-Laplacian; see also
the paper [22] for problems involving double-phase operators. The primary tools for getting these
results in [21, 22] are the uniqueness results of the Brézis—Oswald-type problem based on [5] and
the abstract global minimum principle in [33]. Especially, the Diaz—Saa-type inequalities in [8, 9]
play an essential role in attaining the uniqueness of a positive solution to equations examined in [21,
22]. In addition, inspired by previous studies [4,27], the author of [23] determined the existence
and uniqueness of a positive solution to nonlinear the Brézis—Oswald type equations involving the
fractional Laplacian. For its application, the existence of at most one positive solution to Kirchhoft-
type equations driven by the nonlocal fractional Laplacian has been investigated.

The primary aim of this paper is to derive the existence and uniqueness of positive solutions
to the fractional p-Laplacian equations involving discontinuous Kirchhoff-type coefficients. In the
application of the inequalities of Diaz—Saa-type in [8, 9], the well-known Hopf boundary lemma is
required to show that the quotient between solutions is contained in the L*-space. Though, solutions
of fractional-order equations are generally singular at the boundary, making it difficult to work with
their quotient between solutions, as Hopf’s boundary lemma is not maintained. Hence, in distinction
from previous studies [21,22], the major difficulty of this paper is to derive that Brézis—Oswald-type
problems involving the fractional p-Laplacian admit at most one positive weak solution. Based on
previous studies [4, 17,27], we overcome this difficulty by taking into account the discrete Picone
inequality in [3, 12]. As far as we are aware, the Brézis—Oswald-type result to nonlinear elliptic
problems with the Kirchhoff coefficient has not been studied much; we only know of one study [2,23]
in this direction. Recently, Biagi and Vecchi [2] obtained uniqueness results for Brézis—Oswald-
type Laplacian problems with degenerate Kirchhoff functions M in [0, co) when M is a continuous,
nonnegative and nondecreasing function satisfying M(¢) > O for every € > 0. But, our main result
differs from that of [2] because we consider a discontinuous Kirchhoff function M in [0, c0) and solution
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localization. Although our result is based on previous work [23], problem (P) has more complex
nonlinearities than [23] and thus requires a more fastidious analysis to be performed carefully.

The remainder of this paper is organized as follows: In Section 2, we present some essential
preliminary knowledge of our considered function spaces to be utilized in this paper. In Section 3, we
provide the variational framework associated with problem (P), and then, we will derive the existence
and uniqueness results of positive solutions under suitable assumptions.

2. Preliminaries

For the convenience of the reader, in this section we shortly present some practical definitions and
fundamental properties of the fractional Sobolev spaces that will be used in the presnt paper. Let
s € (0,1) and p € (1, 00) be real numbers, and let p; be the fractional critical Sobolev exponent, such
that is

e {NNTPP if sp < N,
’ +oo0 if sp > N.

Let Q ¢ R" be an bounded open set with a smooth boundary. Let the fractional Sobolev space W*”(Q)
be defined as follows:

WS(Q) 1= {w € L/(Q) : / / W@ = VDI 4 4y < +oo},
RN JRN

|Z _ y|N+ps

endowed with the norm

P
Whweoiar = (W1 + W)

where

[y (z) — yI”
p — p . —
|wILP(Q) T /Qlw(z)vj dZ and |l//|WS,])(RN) T \/RN RN |Z—y|N+pS dZdy.

Then, W*P(Q) is a reflexive and separable Banach space. In addition, the space C;’(€2) is dense in
W*P(Q) such that Wé’p(Q) = W*P(Q) (see, e.g., [1,28]).

Lemma 2.1. ([28] ) Let 0 < s < 1 and 1 < p < +oco. Then, we have the continuous embeddings as
Sfollows:

WP(Q) — L'(Q) forany rell,pi], if sp<N;
WP(Q) — L'(Q) forevery re[l,00), if sp=N;
W (Q) — CY'(Q) forall v <s—N/p, if sp> N.

Particularly, the embedding W*P(Q) —< L'(Q) is compact for any r € [1, p?).

Let us define the fractional Sobolev space W,S(’p (RY) as follows:

W ®RY) = {@0 € L'RY) : / K(z ) (2) =yl dzdy < +°°},
RN JRN
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where K : RN x RV \ {(0,0)} — (0, +0) is a kernel function with the properties (K1)—(%3). By the
condition (1), the function

(z.y) = K7 (2, )W (@) - ¥(y)) € LP(RY)

for any y € C3°(R"Y). We consider the problem (P) in the closed linear subspace defined by
= {y € W' ®Y) : y(z) = 0 ae. in RN\

with respect to the norm
1

Wl = (W00 + 12,)

where

vl :=/ / Kz (@) -y’ dzdy.
RN JRN

In what follows, let 0 < s < 1 and 1 < p < 400 with ps < N and let the kernel function K :
RY x RN\ {(0,0)} — (0, o) ensure the assumptions (K1)—(K3).

Lemma 2.2. ([35]) If Y € X, then ¢ € W5P(Q). Moreover,
_1
[Uwsr) < max{l,y," Hlx,
where 7y, is given in (K2).

From Lemmas 2.1 and 2.2, we can obtain the following consequence instantly.

Lemma 2.3. ( [35]) For 1 < r < p} and for any € X, there exists a constant Cy = Cy(s,N,p) > 0

such that
W (z) — )P
. C ——— " dzd
W’IL(Q) O/RN /RN |Z— |N+pS Z
<G / / Ky - o) dzdy,
Yo JrN JRN

where vy, is given in (K2). Consequently, the embedding X — L' (Q) is continuous for any r € [1, p%].
In addition, the embedding
X > L'(Q)

is compact for r € (1, p?).
3. Variational setting and main result

In this section, we introduce the variational setting corresponding to the problem (P). In addition,
we present some useful auxiliary consequences and Ricceri’s variational principle before delving into

our main result.
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Definition 3.1. We say that € X is called a weak solution of (P) if

M ([t/f]i’,p) /R ., /R . Kz )W) — yOIP W (2) — y0))(@(2) — ¢(v) dz dy
= /Q gz, v)p(y) dy

forany ¢ € X.

Let us define the functional A : X — R as
AW) = / / Kz, )y (z) = y(y)If dz. 3.1
RN JRN

Then, it is immediate to obtain that the functional A : X — R belongs to a class of C '(X,R), and its
Fréchet derivative is

(AW, ey =p / / K(zy) (@) = yO)I'? (@) = g 0)(e(2) — ¢(y) dz dy
RN JRN
for any ¥, ¢ € X; see [32].

Lemma 3.2. The functional A is convex and weakly lower semicontinuous on X.

Proof. 1t is trivial that A is convex. Let {w,} be a sequence in X satisfying w, — win X as n — oo.
Because A is convex and C'-functional on X, we obtain

Awy) = (A (W), w, —w) + A(w).
Then, it is immediate that
linm_> glf Aw,) = Aw) + li’rg glf (A (W), w,, — w)
> A(w).

Therefore, the conclusion holds. O
Meanwhile, g : Q2 X R — R is assumed to verify the following conditions:
(G1) g satisfies a Carathéodory condition;

(G2) 0 < g(-,é) € L>(Q) for every ¢ > 0, and there is a constant p; > 0 such that

8@ &) <pi(1+1&")

for all ¢ > 0 and for almost everywhere z € Q;

(G3) The function ¢ — g;,ff) is strictly decreasing in (0, +o0) for almost all z € Q;

(G4) limg_, 40 52 = 0 and lim ¢+ £52 = +oo, uniformly in z € Q.
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Under hypothesis (G1), let us define the functional B, : X — R by
Bo(y) := / G(z,¥(2)) dz
Q

for any ¥ € X, where G(z,¢) = fof g(z, t)dt. Thus, it is immediate to prove that B, € C'(X,R), and its
Fréchet derivative is

(By(y),w) = / gz, Y)wdz
Q

for any ¢, w € X. Next, we define the functional J : X — R by
1
JW) = ;ﬂ(l//) — ABo(Y).
Then, the functional J belongs to C!'(X,R), and its Fréchet derivative is

1
T W), ) = P (A W), 0) — A(By(¥), ) forany y,p € X.

The following is a discrete version of the renowned Picone inequality; see [3, Proposition 4.2]
and [12, Lemma 2.6] for a proof.

Lemma 3.3. (Discrete Picone inequality). Let p € (1,+c0) and let a,b,c,d € [0, +00), with a,b > 0.

Then,
c? dar »
¢p(a - b) [F - F < |C - dl . (32)
where ¢,(&) = P72 £ for & € R. Moreover, if the equality holds in (3.2), then
a_¢
b d

We prove a practical lemma that will be very usable hereinafter. For any £ > 0 and ¢; € X, define
the truncation

Wje := minfy;, 7). (3.3)
Lemma 3.4. Let Y, Y, € X with ¥ri,, > 0 and set
8

wi= W —Yle

where Yy ¢, > . are as in (3.3). Then, we derive w € X.

Proof. Let & > 0 be fixed. Because & — min{|£|, 7'} is 1-Lipschitz function, we assert

[7:0) = @] < i) - vi@)| for j=1,2, (3.4)
which implies that ¢;, € X. On account of the Lagrange theorem, we deduce that

la" — b'| < rla — blmax{a" ', b} (3.5)
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for every r > 0 and for any a,b > 0. Because €' < (¢ + ¢1,)""" and Y, < 1, by considering (3.4)
and (3.5), we have

20 PO
e+ i@ (e+y(y)r!
Uy, =¥5.0) L (i) = (8 + g (@)
= -t %,g(y) ] 1
(& + Y1 (2)n)? (& + Y1) (e + ()

p 1 [(e+y i) = (e+ Y1)
< m |¢’2,s(Z) - l/’2,s(y)| t (& + Y1) (& + Y1 (y))r-!

= % |¢12,8(Z) - l//28(y)|

[r1(z) — ()l

p—1 -2 -2
——max {(8 +Y1(2)" 7 (e + ()’ } (e + Y1 ()P (e + ¢ (y))P!

+

2p 5 Wa(2) = YY) + 2 |l//1(Z) Y1)l

for every p > 1. Hence, the Gagliardo seminorm of w is finite. In addition, one has

5,8 _ wg;l lp < 1 .
Erogr  rgyr S

thus,
p p
1 2 p
/ w|? dz < 2P~ (/ A=l dz + /Q |lﬁ1,g dZ) < C(&, )2l + Wilw@) < +00,
where C(g, p) > 0. As a result, we arrive that w € X. O

Definition 3.5. Let X be a topological space. A function h : X — R is inf-compact if the set
h™ (=00, &]) is compact for each & € R.

Now, we present the uniqueness result of a nontrivial positive solution for the nonlocal fractional p-
Laplacian problem of a Kirchhoff-type. To this end, we employ the abstract global minimum principle
introduced by B. Ricceri [33], which plays a crucial role in obtaining our main result.

Theorem 3.6. Let X be a topological space, and let A : X — R, with A1(0) # 0 and B : X — R being
two functions such that, for each y > 0, the function yA — B is lower semicontinuous, inf-compact,
and has a unique global minimum. Moreover, assume that B has no global maxima in X. Further, let
J € (0, +00) be an open interval and M : J — R be an increasing function with M(J) = (0, +o0). There
exists a unique it € X such that A(it) € J and

M(A@)A@) — B(@) = inf(M(A@)Aw) - B(u)).
If each assumption of Theorem 3.6 is satisfied, we derive our main result. The fundamental idea
of the proof of the uniqueness of positive solutions to problem (P) follows from the paper [4,27]; see

also [23].
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Theorem 3.7. Assume that an open interval J C (0, +00) exists such that M(J) = (0, +o0) and the
restriction of M to J is increasing. Let g : Q X [0, +00) — (0, +00) be a function satisfying conditions
(G1)—~(G4) and g(z,0) = O for almost every z € Q. Then, problem (P) has a unique positive weak
solution w, which is the unique global minimum in X of the functional

| N Y@
v m(iwn,) [ keywo-vor sa- [ ([ sena)d,
p RN JRN Q Jo

where y* := max{y, 0}

Proof. First, extend g to R, putting g(z,&) = 0 for all £ < 0. To utilize Theorem 3.6, consider A given
in (3.1) and define B by

BW) =p /Q G(z, ¢ (2)) dz

for any ¢ € X. The functional B belongs to a class of C!'(X, R) with derivatives given by

(B'W),w)=p /Q 8z, yyw(z) dz

for any y,w € X. Moreover, owing to the fact that g has subcritical growth, the functional B is
sequentially weakly continuous on X. Fix n > 0. Then, Lemma 3.2 implies the sequentially weakly
lower semicontinuity of functional n.A — B on X. Choose

ee (o, n(Co + o) ’
2Cy

Gzd)

where vy and Cy are given in Lemma 2.3. Because limg_, .« o

number C, > 0 satisfying

= 0, there exists a positive real

C.

Gz, &) < S jep + (3.6)
p P

for almost everywhere z € Q and for any £ € R. Hence, we obtain

BW)<e / ()| dz + C,meas(L),
Q

where meas(Q) means the Lebesgue measure of Q on RY. Using this, Lemma 2.3, (3.6) and the
definition of the X-norm, we derive that

nAW) - BW) > / / K(zo9) 0(2) — w)P” dz dy
RN RN
e / WP dz - Comeas(Q)
Q

2 77(% + zy—coo) lly — S/Q ()" dz — C,meas(€2)

S (U(Co ) _

> 2C. ) lyly — C.meas(Q)
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for any ¢ € X. Thus, owing to the choice of &, we infer

| Ilir£1 (nAW) — Bu)) = +oo.

This, together with the reflexivity of X and the Eberlein—Smulyan theorem, yields that the sequentially
weakly lower semicontinuous functional nA — B is weakly inf-compact. Now, we claim that it has
a unique global minimum in X. As we know, its critical points are exactly the weak solutions to the
problem

{£W@=$@Mim1 a7

=0 on 0Q,

where ¢ € X is said to be a weak solution of problem (3.7) if

1
/ / K(z,y) 4(2) = g (4(2) = y)($(2) = $()) dzdy = " /Q 8z )¢ dz (3.8)
RN JRN

for any ¢ € X.
Let us define the energy functional J : X — R as

1 1
gw=- [ [ Ke-ywe-vowdda- [ cend. vex
P JrN JRN nJry
and let the modified energy functional J : X > R be defined by

~ 1 1
JW) := —/ / K@ - W) —yOWI’ dzdy - —/ G'(z.¥)dz, yeX,
P Jry JrN n Jry

where
g(z,7), 120,

G'(z,7) :=/ g (z,é€)d¢é and g7 (z,7) :={
0 0, <0

for any 7 € R and for almost everywhere z € RY. In compliance with Lemma 3.2 and the argument
above, the functional 7 is also coercive and sequentially weakly lower semicontinuous on X. From
this, there is an element ¢ € X satisfying

T o) = inf{T W) : ¥ € X).

Now, we show that it is possible to assume that o > 0. To this end, we assume that i is sign-changing.
Taking Lemma 3.4 into account, we know y; € X and thus J (o) < J (). Because J () = T W)
when /(z) > 0 for almost everywhere z € Q, we assert

JW) = T W)
1 1
_1 / / Ky [0 — w0 dedy - ~ / Gy ds
D Jry JrN nJa

1 1
<1 / / Kz y) Wo(@) — woO)P dzdy — ~ / G(e.u) dz
D JrN JrN nJao
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= T (o).

Therefore, i is a nonnegative solution to problem (3.7). For simplicity, let us write directly i instead
of . Let us claim iy > 0. As ¢(z) > O for almost everywhere z € RY, we know that either y(z) > 0
or Yo(z) = 0 for almost everywhere z € R". Indeed, let us assume that y, £ 0 in Q. Then it is
enough to prove that ¥y # O in all connected components of €. Assume to the contrary that there
exists a connected component A of Q such that ¢(z) = 0 for almost everywhere z € A. Let us take any
nonnegative function w € C7(A) as a test function in (3.8). Then, since g is a nonnegative function
and ¥ 1s a nonnegative solution of (3.7), we have

0= / / K(z,) o(2) = Yo" (o(2) — bo()(w(2) — w(y)) dzdy
RN JRN
1
- = / 8z, ¥o)w(z) dz
nJo
< /R N /R i K(z,9) Wo(2) = oI (Wo(2) — ho)(w(z) — w(y)) dz dy
=2 / / K(z,9) Wo(2) — wo)IP? Wo(2) — voM)(w(z) — w(y)) dzdy
A JAC

=-2 / / K(z,y)Wo(@)" w(y) dzdy.
A c

From this, we infer that y/((z) = 0 for almost everywhere z € A°, thatis ¥y(z) = 0 for almost everywhere
z € RY. This yields a contradiction to the fact that y(z) # 0 ) for almost everywhere z € Q.

Therefore, to show ¢y > 0, it suffices to prove that J(¢¥y) < 0. Now, with consideration for
Lemma 2.1 in [13], let us fix any nonnegative function o € X, with o = 0 on 0Q, such that

m / o)1 dz = / / K —) lo@) — o0 dzdy,
Q RN JRN

where 7; 1s a positive eigenvalue that can be characterized as

{0eX :lolrr)=1}

ni = _min / / K(z-y) lo(2) — o)’ dzdy.
RN JRN

In light of Theorem 3.2 in [13], we assert that o € L(RY). Let ap € L¥(Q) with ap > 0 and let
ko € (0, |apl~)) be fixed. Then, the set

Q, =1{z€Q: a(z) > Ko}
has a positive measure. Furthermore, fix & > 0 so that

[, lo@)I" dz
ko Jo,, @I dz’

From the first condition in (G4), we can choose a constant &, > 0 satisfying

G(z,6) S ap()K
Egoop
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for any ¢ € (0, &], and for almost everywhere z € Q. Then, for small enough € > 0, we get

%/a“@@zﬁ/QWW@W&
Q pn Jao

n epb
KK,
z—{/mwwﬁ
pm Jo,

>@/E@V&
P Ja

1 1
= —/ / K(z=y)lo(z) — oI dzdy = —[0]f . (3.9)
P JrN JRN p

Hence, using (3.9), we conclude that

ol - 13/ G(z, €0) dz <0
ToonJry &P

for any £ > 0 sufficiently small, which implies J (o) < 0, as required. In consequence, problem (3.7)
has a positive solution for any 7 > 0. In particular, this also implies that O is not a global minimum of
nA- 8.

Next, we prove that problem (3.7) admits at most one positive solution for any n > 0. Let ¢, and
> be two weak positive solutions of (3.7). For any £ > 0, we define the truncations ;. as in (3.3) for
Jj = 1,2. Let us define the functions

p

w i 2,e (//
le =7——————5— "
T (e + )P N
and
)4
l.e
Wyeg = ———— — Wr .
T (e )t V2e

In accordance with Lemma 3.4, we assert that w;, € X for j = 1,2. Now, set
$p(&) == |12 &
Considering the weak formulation (3.8) of ¢;, by choosing ¢ = w;, for j = 1,2, one has
[ | Ke» o010 - 000 @1 - 000 dzds
RN JRN
1
== / 8z, ¥1)w1£(2) dz (3.10)
nJa
and
/N /NK(Z, V) @y (W2(2) — Y2 () (W2,6(2) — wa(y)) dzdy
RY JR

1
= - / 8(z, Y2)wr£(2) dz. (3.11)
nJo
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Adding the above two equations (3.10) and (3.11) and utilizing the fact that

¢, (V1@ —¥,) = ¢y (e +¥m@) - (6 +y () for j=1,2,

we obtain
//K()((+)()(+))) Vo (2) - Vo )| dzd
. zY)¢p (& +¥1)(@) — (e + Y1)y @ +¢,)plz (8+¢])p_1(y zdy
—/ / K(z,y) ¢, W1(2) = 1) W1,(2) — ¥1:(y) dzdy
RN
P p
/R X RNK(Z ) p (& +42)(2) ~ (8+l//2)()’))(( +¢/),,1(Z) 7 +w2),,1(y)) dzdy
—/N K(z,y) ¢p W2(2) = ¥ () W2,6(2) — 2. (y)) dz dy
1R p ,7017
U(/[g(z lﬁl)[w %018] +8(z, lﬁz)(w 'ﬁzs)l ) (3.12)

Now, according to the fact that & — min{|€|, &'} is 1-Lipschitz function and the discrete Picone
inequality in Lemma 3.3, we derive
P P

lf/st

O ) 2 o

¢ ((e+ Y1) - (e + 1/11)(\/))(

and
p p

. v,
B (& +12)(D) = (& + Y)() ((8 rAEiC R P (y)] < 1@~ O

Because Y, — yjas € — Ofor j = 1,2, by taking to the limit in (3.12) and applying the Fatou Lemma

in the first and third terms as well as using the Lebesgue dominated convergence theorem for all the
other terms, one has

[ [ ke, <w1<z)—w1<y>>( - (y)] dzdy (3.13)
RN JRN :,l/ I/
—/ / K(z,y) W (2 =y dzdy
RN JRN
oo
+ / / K(z,ymp(wz(z)—w@))[—()——(y)] dzdy
RN JRN Wz Wz

_ / / Ky) 0a@) — baO)P dzdy
RN RN

1 p p
(/ 8(z, lﬁl)( i lﬁl)"‘g(z '#2)( Vi lﬂz] ]
o % lﬁz

g(Z’ Wl) g(Za wZ)
:_E/Q( lp[;—l - l,bg_l J(l//f—(ﬂg)dZ
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Using Lemma 3.3 on the left-hand side of (3.13), we obtain

/ [g(z, v _ g iﬁlz)) W — gDz 0
al ¢y vy
Hence, because the function & — ic(jf) is decreasing in (0, +o0), we obtain that ¢y = y,. Therefore, we
ensure that problem (3.7) possesses at most one positive solution. As a result, we derive that nA — 8
admits a unique global minimum in X, since otherwise, in consideration of [31, Corollary 1], it would
have at least three critical points. Because 0 is not a global minimum for nA — B, the global minimum
of this functional is consistent with its only nonzero critical point.

Finally, let us show that B has no global maxima. Assume to the contrary that ;/l/\ € X is a global
maximum of B. Obviously, we know B(’z/;) > (. Thus, since g is nonnegative, it follows from (G3) that
the set

[i={zeQ:g( () >0}

has a positive measure. Let us fix a closed set  C I' of positive measures. Let o € X be such thato > 0
and o(z) = 1 for almost everywhere z € . Then, we obtain

/ 8z ¥(2))o(z) dz > /P gz ¥(2) dz > 0,
Q

and so B'(l/ﬁ\) # 0, which is a contradiction.
Hence, each assumption of Theorem 3.6 is satisfied. Therefore, there exists a unique w € X, with
[w]s, € J, such that

M(w7,) K(z,y) W@ - W)l dzdy - p | Gz w'(2))dz
b RN JRN Q
= inf {M (6v17,) /R ., /R K@y W@ —yO dzdy - p /Q G(z.y"(2) dz} :

Consequently, from what seen above, problem (P) possesses the unique positive weak solution w.

4. Conclusions

This paper is devoted to deriving the existence and uniqueness of positive solutions to fractional
p-Laplacian problems involving discontinuous Kirchhoff-type functions. The main tools for obtaining
these results are the uniqueness results of the Brézis—Oswald-type based on [5] and the abstract global
minimum principle in [33]. Particularly, based on previous studies [4,27], we obtain the existence of
at most one positive weak solution to the fractional p-Laplacian equations of the Brézis—Oswald type
by employing the discrete Picone inequality in [3, 12]. But, our condition (G4) can be considered a
special case of that of [2,27] since the nonlinear term g satisfies the following assumption:
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Let us define A, (Lf, —ﬁo) and A, (LI", —,800) as

A1 (£, - o) = inf {[w]{:,,, - /Q B QWP dz : Wl = 1}

and

A (£ = o) = inf {[w]f:,,, - /Q B@ W@ dz : W) = 1}.

If Aq (.E; —,80) <0 < N (L; - ,80) in place of (G4) holds, then analogous arguments such as
those in [27] implies that problem (3.7) admits at most one positive solution for any n > O.
Consequently, explicit modifications of the proof of Theorem 3.7 yield the same consequences
concerning problem (P) when A ([j; - ﬂo) <0< A (L; - ,80) in place of (G4) is supposed.

Additionally, a new research direction is the investigation of the Brézis—Oswald type fractional
p-Laplacian problems involving Hardy potentials:

M([w1,) L) = ot + Agzy) in Q
v >0 in Q, 4.1
v =0 on RM\Q,

where p € (1,p}), u € (—oo,u*) for a positive constant u*. When u # 0, the classical variational
approach is not applicable because of the appearance of the term uly|’~2yz|?. The reason is that
the Hardy inequality ensures that only the embedding W(‘;’p () — LP(Q,|z|7P) is continuous but not
compact. Hence, the situation with ¢ # 0 would be much more delicate than the situation in the present
paper because of the lack of compactness. To the best of our belief, there are no results concerning the
localization, existence, and uniqueness of positive solutions to problem (4.1).
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