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1. Introduction

This paper is dedicated to a Kirchhoff-type equation driven by a nonlocal fractional p-Laplacian as
follows: 

M
(
[ψ]p

s,p

)
Ls

pψ(z) = g(z, ψ) in Ω,

ψ > 0 in Ω,

ψ = 0 on RN \Ω,

[ψ]p
s,p ∈ J,

(P)

where s ∈ (0, 1), p ∈ (1,+∞), sp < N, J ⊆ (0,+∞) is an open interval, Ω ⊆ RN (N ≥ 2) is an
open bounded set with Lipschitz boundary ∂Ω, [ψ]p

s,p :=
´
RN

´
RN K(z, y) |ψ(z) − ψ(y)|pdz dy, M is an

increasing Kirchhoff-type function on J, and a function g is nonnegative, which will be introduced
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later. Here, Ls
p is a nonlocal operator defined pointwise as follows:

Ls
pψ(z) = 2

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p−2(ψ(z) − ψ(y))dy for all z ∈ RN ,

where a function K : RN × RN → (0,+∞) fulfills the following assumptions:

(K1) κK ∈ L1(RN × RN), where κ(z, y) = min{|z − y|p, 1};

(K2) There exist positive constants γ0 and γ1 with γ0 ≥ 1 such that γ0 ≤ K(z, y)|z−y|N+sp ≤ γ1 for z , y
and for almost all (z, y) ∈ RN × RN;

(K3) K(y, z) = K(z, y) for all (y, z) ∈ RN × RN .

When K(z, y) = |z−y|−(N+sp),Ls
p becomes the fractional p-Laplacian operator (−∆)s

p defined as follows:

(−∆)s
p ψ(z) = 2 lim

ε↘0

ˆ
RN\Bε(z)

|ψ(z) − ψ(y)|p−2 (ψ(z) − ψ(y))
|z − y|N+sp dy, z ∈ RN ,

where Bε(z) := {z ∈ RN : |z − y| ≤ ε}.
Over the last few decades, fractional Sobolev spaces and their corresponding nonlocal equations

have gained increasing attention because they can be corroborated as models for many physical
phenomena arising from studies of Lévy processes, fractional quantum mechanics, optimization, image
processing, thin obstacle problems, anomalous diffusion in plasma, American options, game theory,
geophysical fluid dynamics, and frame propagation; see [6, 14, 24, 28, 34] for comprehensive studies
and details on these topics.

The study of Kirchhoff-type problems, which was originally proposed by Kirchhoff [18], has a
powerful background in various applications in physics and biology. For this reason, much attention
has recently been given to the investigation of elliptic equations related to Kirchhoff coefficients;
for example, see [15, 16, 25, 26, 29, 32] and the references therein. The authors of [11] discussed in
detail the physical implications underlying the fractional Kirchhoffmodel. Particularly, by considering
a truncation argument and the mountain pass theorem, the existence of nontrivial solutions to a
nonlocal elliptic problem was obtained when an increasing and continuous Kirchhoff term M has
the nondegenerate condition infξ∈[0,+∞) M(ξ) ≥ ξ0 > 0, where ξ0 is a constant; see also [30]
and references therein. However, the existence of at least two different nontrivial solutions to the
fractional p-Laplacian equations of the Schrödinger–Kirchhoff type was demonstrated in [32] when
the nondegenerate continuous Kirchhoff function M fulfills the hypothesis:

(M1) There is δ ∈ [1, N
N−sp ) such that δM(ξ) := δ

´ ξ
0 M(σ)dσ ≥ M(ξ)ξ for any ξ ≥ 0, where 0 < s < 1.

The assumption (M1) contains not only the classical example M(ξ) = 1 + aξδ (a ≥ 0, ξ ≥ 0) but the
nonmonotonic cases. In this regard, nonlinear elliptic equations of Kirchhoff type involving (M1) have
received widely remarkable attention; see [7, 15, 16, 19, 20, 35]. Considering these related papers, the
functionalA : W s,p

K (Ω)→ R associated with the principal part in (P) is given by

A(ψ) =
1
p
M

(ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p dz dy
)
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for any ψ ∈ W s,p
K (Ω), where a solution space W s,p

K (Ω) will be introduced later. Then, in accordance with
the fact that M ∈ C([0,+∞)), it follows thatA ∈ C1(W s,p

K (Ω),R) and its Fréchet derivative is defined as

⟨A′(ψ), ϕ⟩ = M
(
[ψ]p

s,p

) ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p−2(ψ(z) − ψ(y))(ϕ(z) − ϕ(y))dz dy

for any ψ, ϕ ∈ W s,p
K (Ω). Specifically, assumptions M ∈ C([0,∞)) and (M1) play an effective role in

deriving some topological properties of functionals A,A′ and the compactness condition of Palais–
Smale-type for an energy functional related to (P), which are essential in using variational methods
such as Ekeland variational principle, mountain pass theorem, and fountain theorem. But, many
examples are eliminated from the continuity of the nondegenerate Kirchhoff function M in [0,∞).
For example, let the Kirchhoff functions be defined by

M(ξ) = tan ξ for 0 < ξ <
π

2

and
M(ξ) = (δ − ξ)−ℓ for ξ ∈ (−∞, δ), where δ > 0, 0 < ℓ < 1.

These functions cannot be covered by any of the results known to date. Recently, to obtain at most
one positive solution for the non-local problems with discontinuous Kirchhoff functions, Ricceri [33]
discussed a new approach different from those of previous related studies [2, 10, 11, 16, 29, 32]. The
author of [21] recently extended the result of [33] to elliptic equations involving p-Laplacian; see also
the paper [22] for problems involving double-phase operators. The primary tools for getting these
results in [21, 22] are the uniqueness results of the Brézis–Oswald-type problem based on [5] and
the abstract global minimum principle in [33]. Especially, the Dı̀az–Saa-type inequalities in [8, 9]
play an essential role in attaining the uniqueness of a positive solution to equations examined in [21,
22]. In addition, inspired by previous studies [4, 27], the author of [23] determined the existence
and uniqueness of a positive solution to nonlinear the Brézis–Oswald type equations involving the
fractional Laplacian. For its application, the existence of at most one positive solution to Kirchhoff-
type equations driven by the nonlocal fractional Laplacian has been investigated.

The primary aim of this paper is to derive the existence and uniqueness of positive solutions
to the fractional p-Laplacian equations involving discontinuous Kirchhoff-type coefficients. In the
application of the inequalities of Dı̀az–Saa-type in [8, 9], the well-known Hopf boundary lemma is
required to show that the quotient between solutions is contained in the L∞-space. Though, solutions
of fractional-order equations are generally singular at the boundary, making it difficult to work with
their quotient between solutions, as Hopf’s boundary lemma is not maintained. Hence, in distinction
from previous studies [21, 22], the major difficulty of this paper is to derive that Brézis–Oswald-type
problems involving the fractional p-Laplacian admit at most one positive weak solution. Based on
previous studies [4, 17, 27], we overcome this difficulty by taking into account the discrete Picone
inequality in [3, 12]. As far as we are aware, the Brézis–Oswald-type result to nonlinear elliptic
problems with the Kirchhoff coefficient has not been studied much; we only know of one study [2, 23]
in this direction. Recently, Biagi and Vecchi [2] obtained uniqueness results for Brézis–Oswald-
type Laplacian problems with degenerate Kirchhoff functions M in [0,∞) when M is a continuous,
nonnegative and nondecreasing function satisfying M(ξ) > 0 for every ξ > 0. But, our main result
differs from that of [2] because we consider a discontinuous Kirchhoff function M in [0,∞) and solution
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localization. Although our result is based on previous work [23], problem (P) has more complex
nonlinearities than [23] and thus requires a more fastidious analysis to be performed carefully.

The remainder of this paper is organized as follows: In Section 2, we present some essential
preliminary knowledge of our considered function spaces to be utilized in this paper. In Section 3, we
provide the variational framework associated with problem (P), and then, we will derive the existence
and uniqueness results of positive solutions under suitable assumptions.

2. Preliminaries

For the convenience of the reader, in this section we shortly present some practical definitions and
fundamental properties of the fractional Sobolev spaces that will be used in the presnt paper. Let
s ∈ (0, 1) and p ∈ (1,∞) be real numbers, and let p∗s be the fractional critical Sobolev exponent, such
that is

p∗s :=

 N p
N−sp if sp < N,

+∞ if sp ≥ N.

Let Ω ⊂ RN be an bounded open set with a smooth boundary. Let the fractional Sobolev space W s,p(Ω)
be defined as follows:

W s,p(Ω) :=
{
ψ ∈ Lp(Ω) :

ˆ
RN

ˆ
RN

|ψ(z) − ψ(y)|p

|z − y|N+ps dz dy < +∞
}
,

endowed with the norm

||ψ||W s,p(Ω) :=
(
||ψ||

p
Lp(Ω) + |ψ|

p
W s,p(RN )

) 1
p

,

where

||ψ||
p
Lp(Ω) :=

ˆ
Ω

|ψ(z)|p dz and |ψ|
p
W s,p(RN ) :=

ˆ
RN

ˆ
RN

|ψ(z) − ψ(y)|p

|z − y|N+ps dz dy.

Then, W s,p(Ω) is a reflexive and separable Banach space. In addition, the space C∞0 (Ω) is dense in
W s,p(Ω) such that W s,p

0 (Ω) = W s,p(Ω) (see, e.g., [1, 28]).

Lemma 2.1. ( [28] ) Let 0 < s < 1 and 1 < p < +∞. Then, we have the continuous embeddings as
follows:

W s,p(Ω) ↪→ Lr(Ω) for any r ∈ [1, p∗s], if sp < N;
W s,p(Ω) ↪→ Lr(Ω) for every r ∈ [1,∞), if sp = N;

W s,p(Ω) ↪→ C0,ν
b (Ω) for all ν < s − N/p, if sp > N.

Particularly, the embedding W s,p(Ω) ↪→↪→ Lr(Ω) is compact for any r ∈ [1, p∗s).

Let us define the fractional Sobolev space W s,p
K (RN) as follows:

W s,p
K (RN) :=

{
ψ ∈ Lp(RN) :

ˆ
RN

ˆ
RN

K(z, y)|ψ(z) − ψ(y)|p dz dy < +∞
}
,
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where K : RN × RN \ {(0, 0)} → (0,+∞) is a kernel function with the properties (K1)–(K3). By the
condition (K1), the function

(z, y) 7→ K
1
p (z, y)(ψ(z) − ψ(y)) ∈ Lp(RN)

for any ψ ∈ C∞0 (RN). We consider the problem (P) in the closed linear subspace defined by

X :=
{
ψ ∈ W s,p

K (RN) : ψ(z) = 0 a.e. in RN\Ω
}

with respect to the norm

||ψ||X :=
(
||ψ||

p
Lp(Ω) + [ψ]p

s,p

) 1
p

,

where

[ψ]p
s,p :=

ˆ
RN

ˆ
RN

K(z, y)|ψ(z) − ψ(y)|p dz dy.

In what follows, let 0 < s < 1 and 1 < p < +∞ with ps < N and let the kernel function K :
RN × RN \ {(0, 0)} → (0,∞) ensure the assumptions (K1)–(K3).

Lemma 2.2. ( [35] ) If ψ ∈ X, then ψ ∈ W s,p(Ω). Moreover,

||ψ||W s,p(Ω) ≤ max{1, γ
− 1

p

0 }||ψ||X,

where γ0 is given in (K2).

From Lemmas 2.1 and 2.2, we can obtain the following consequence instantly.

Lemma 2.3. ( [35]) For 1 ≤ r ≤ p∗s and for any ψ ∈ X, there exists a constant C0 = C0(s,N, p) > 0
such that

||ψ||
p
Lr(Ω) ≤ C0

ˆ
RN

ˆ
RN

|ψ(z) − ψ(y)|p

|z − y|N+ps dz dy

≤
C0

γ0

ˆ
RN

ˆ
RN

K(z, y)|ψ(z) − ψ(y)|p dz dy,

where γ0 is given in (K2). Consequently, the embedding X ↪→ Lr(Ω) is continuous for any r ∈ [1, p∗s].
In addition, the embedding

X ↪→↪→ Lr(Ω)

is compact for r ∈ (1, p∗s).

3. Variational setting and main result

In this section, we introduce the variational setting corresponding to the problem (P). In addition,
we present some useful auxiliary consequences and Ricceri’s variational principle before delving into
our main result.
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Definition 3.1. We say that ψ ∈ X is called a weak solution of (P) if

M
(
[ψ]p

s,p

)ˆ
RN

ˆ
RN

K(z, y)|ψ(z) − ψ(y)|p−2(ψ(z) − ψ(y))(φ(z) − φ(y)) dz dy

=

ˆ
Ω

g(z, ψ)φ(y) dy

for any φ ∈ X.

Let us define the functionalA : X → R as

A(ψ) :=
ˆ
RN

ˆ
RN

K(z, y)|ψ(z) − ψ(y)|p dz. (3.1)

Then, it is immediate to obtain that the functional A : X → R belongs to a class of C1(X,R), and its
Fréchet derivative is

⟨A′(ψ), φ⟩ = p
ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p−2 (ψ(z) − ψ(y))(φ(z) − φ(y)) dz dy

for any ψ, φ ∈ X; see [32].

Lemma 3.2. The functionalA is convex and weakly lower semicontinuous on X.

Proof. It is trivial that A is convex. Let {wn} be a sequence in X satisfying wn ⇀ w in X as n → ∞.
BecauseA is convex and C1-functional on X, we obtain

A(wn) ≥ ⟨A′(wn),wn − w⟩ +A(w).

Then, it is immediate that

lim inf
n→∞

A(wn) ≥ A(w) + lim inf
n→∞

⟨A′(wn),wn − w⟩

≥ A(w).

Therefore, the conclusion holds. □

Meanwhile, g : Ω × R→ R is assumed to verify the following conditions:

(G1) g satisfies a Carathéodory condition;

(G2) 0 ≤ g(·, ξ) ∈ L∞(Ω) for every ξ ≥ 0, and there is a constant ρ1 > 0 such that

g(z, ξ) ≤ ρ1

(
1 + |ξ|p−1

)
for all ξ ≥ 0 and for almost everywhere z ∈ Ω;

(G3) The function ξ 7→ g(z,ξ)
ξp−1 is strictly decreasing in (0,+∞) for almost all z ∈ Ω;

(G4) limξ→+∞
g(z,ξ)
ξp−1 = 0 and limξ→0+

g(z,ξ)
ξp−1 = +∞, uniformly in z ∈ Ω.
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Under hypothesis (G1), let us define the functional B0 : X → R by

B0(ψ) :=
ˆ
Ω

G(z, ψ(z)) dz

for any ψ ∈ X, where G(z, ξ) =
´ ξ

0 g(z, t)dt. Thus, it is immediate to prove that B0 ∈ C1(X,R), and its
Fréchet derivative is 〈

B′0(ψ),w
〉
=

ˆ
Ω

g(z, ψ)w dz

for any ψ,w ∈ X. Next, we define the functional J : X → R by

J(ψ) =
1
p
A(ψ) − λB0(ψ).

Then, the functional J belongs to C1(X,R), and its Fréchet derivative is

⟨J ′(ψ), φ⟩ =
1
p
⟨A′(ψ), φ⟩ − λ

〈
B′0(ψ), φ

〉
for any ψ, φ ∈ X.

The following is a discrete version of the renowned Picone inequality; see [3, Proposition 4.2]
and [12, Lemma 2.6] for a proof.

Lemma 3.3. (Discrete Picone inequality). Let p ∈ (1,+∞) and let a, b, c, d ∈ [0,+∞), with a, b > 0.
Then,

ϕp(a − b)
[

cp

ap−1 −
dp

bp−1

]
≤ |c − d|p , (3.2)

where ϕp(ξ) = |ξ|p−2 ξ for ξ ∈ R. Moreover, if the equality holds in (3.2), then

a
b
=

c
d
.

We prove a practical lemma that will be very usable hereinafter. For any ε > 0 and ψ j ∈ X, define
the truncation

ψ j,ε := min{ψ j, ε
−1}. (3.3)

Lemma 3.4. Let ψ1, ψ2 ∈ X with ψ1, ψ2 ≥ 0 and set

w :=
ψ

p
2,ε

(ε + ψ1)p−1 − ψ1,ε,

where ψ1,ε, ψ2,ε are as in (3.3). Then, we derive w ∈ X.

Proof. Let ε > 0 be fixed. Because ξ 7→ min{|ξ| , ε−1} is 1-Lipschitz function, we assert∣∣∣ψ j,ε(y) − ψ j,ε(z)
∣∣∣ ≤ ∣∣∣ψ j(y) − ψ j(z)

∣∣∣ for j = 1, 2, (3.4)

which implies that ψ j,ε ∈ X. On account of the Lagrange theorem, we deduce that

|ar − br| ≤ r |a − b|max{ar−1, br−1} (3.5)
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for every r ≥ 0 and for any a, b ≥ 0. Because εp−1 ≤ (ε + ψ1,ε)p−1 and ψ2,ε ≤
1
ε
, by considering (3.4)

and (3.5), we have∣∣∣∣∣∣ ψ
p
2,ε(z)

(ε + ψ1(z))p−1 −
ψ

p
2,ε(y)

(ε + ψ1(y))p−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣ψ
p
2,ε(z) − ψp

2,ε(y)

(ε + ψ1(z)n)p−1 + ψ
p
2,ε(y)

(ε + ψ1(y))p−1 − (ε + ψ1(z))p−1

(ε + ψ1(z))p−1(ε + ψ1(y))p−1

∣∣∣∣∣∣
≤

p
ε2p−2

∣∣∣ψ2,ε(z) − ψ2,ε(y)
∣∣∣ + 1

εp

∣∣∣∣∣∣ (ε + ψ1(y))p−1 − (ε + ψ1(z))p−1

(ε + ψ1(z))p−1(ε + ψ1(y))p−1

∣∣∣∣∣∣
≤

p
ε2p−2

∣∣∣ψ2,ε(z) − ψ2,ε(y)
∣∣∣

+
p − 1
εp max

{
(ε + ψ1(z))p−2, (ε + ψ1(y)n)p−2

} |ψ1(z) − ψ1(y)|
(ε + ψ1(z))p−1(ε + ψ1(y))p−1

≤
p

ε2p−2 |ψ2(z) − ψ2(y)| +
p − 1
ε2p |ψ1(z) − ψ1(y)|

for every p > 1. Hence, the Gagliardo seminorm of w is finite. In addition, one has

ψ
p
2,ε

(ε + ψ1)p−1 =
ψ

p−1
2,ε

(ε + ψ1)p−1ψ2,ε ≤
1

ε2p−2ψ2;

thus,

ˆ
Ω

|w|p dz ≤ 2p−1

ˆ
Ω

∣∣∣∣∣∣ ψ
p
2,ε

(ε + ψ1)p−1

∣∣∣∣∣∣
p

dz +
ˆ
Ω

∣∣∣ψ1,ε

∣∣∣p dz

 ≤ C(ε, p)(||ψ2||Lp(Ω) + ||ψ1||Lp(Ω)) < +∞,

where C(ε, p) > 0. As a result, we arrive that w ∈ X. □

Definition 3.5. Let X be a topological space. A function h : X → R is inf-compact if the set
h−1((−∞, ξ]) is compact for each ξ ∈ R.

Now, we present the uniqueness result of a nontrivial positive solution for the nonlocal fractional p-
Laplacian problem of a Kirchhoff-type. To this end, we employ the abstract global minimum principle
introduced by B. Ricceri [33], which plays a crucial role in obtaining our main result.

Theorem 3.6. Let X be a topological space, and letA : X → R, withA−1(0) , ∅ andB : X → R being
two functions such that, for each γ > 0, the function γA − B is lower semicontinuous, inf-compact,
and has a unique global minimum. Moreover, assume that B has no global maxima in X. Further, let
J ⊆ (0,+∞) be an open interval and M : J → R be an increasing function with M(J) = (0,+∞). There
exists a unique ũ ∈ X such thatA(ũ) ∈ J and

M(A(ũ))A(ũ) − B(ũ) = inf
u∈X

(M(A(ũ))A(u) − B(u)).

If each assumption of Theorem 3.6 is satisfied, we derive our main result. The fundamental idea
of the proof of the uniqueness of positive solutions to problem (P) follows from the paper [4, 27]; see
also [23].
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Theorem 3.7. Assume that an open interval J ⊆ (0,+∞) exists such that M(J) = (0,+∞) and the
restriction of M to J is increasing. Let g : Ω × [0,+∞) → (0,+∞) be a function satisfying conditions
(G1)–(G4) and g(z, 0) = 0 for almost every z ∈ Ω. Then, problem (P) has a unique positive weak
solution w̃, which is the unique global minimum in X of the functional

ψ 7→
1
p

M
(
[w̃]p

s,p

) ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p dz dy −
ˆ
Ω

(ˆ ψ+(z)

0
g(z, t) dt

)
dz,

where ψ+ := max{ψ, 0}

Proof. First, extend g to R, putting g(z, ξ) = 0 for all ξ < 0. To utilize Theorem 3.6, considerA given
in (3.1) and define B by

B(ψ) := p
ˆ
Ω

G(z, ψ+(z)) dz

for any ψ ∈ X. The functional B belongs to a class of C1(X,R) with derivatives given by

⟨B′(ψ),w⟩ = p
ˆ
Ω

g(z, ψ)w(z) dz

for any ψ,w ∈ X. Moreover, owing to the fact that g has subcritical growth, the functional B is
sequentially weakly continuous on X. Fix η > 0. Then, Lemma 3.2 implies the sequentially weakly
lower semicontinuity of functional ηA− B on X. Choose

ϵ ∈

(
0,
η(C0 + γ0)

2C0

)
,

where γ0 and C0 are given in Lemma 2.3. Because limξ→+∞
G(z,ξ)
ξp = 0, there exists a positive real

number Cε > 0 satisfying

G(z, ξ) ≤
ε

p
|ξ|p +

Cε

p
(3.6)

for almost everywhere z ∈ Ω and for any ξ ∈ R. Hence, we obtain

B(ψ) ≤ ε
ˆ
Ω

|ψ(z)|p dz +Cεmeas(Ω),

where meas(Ω) means the Lebesgue measure of Ω on RN . Using this, Lemma 2.3, (3.6) and the
definition of the X-norm, we derive that

ηA(ψ) − B(ψ) ≥ η
ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p dz dy

− ε

ˆ
Ω

|ψ(z)|p dz −Cεmeas(Ω)

≥ η

(
1
2
+

γ0

2C0

)
||ψ||

p
X − ε

ˆ
Ω

|ψ(z)|p dz −Cεmeas(Ω)

≥

(
η(C0 + γ0)

2C0
− ϵ

)
||ψ||

p
X −Cεmeas(Ω)
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for any ψ ∈ X. Thus, owing to the choice of ε, we infer

lim
||u||→+∞

(ηA(u) − B(u)) = +∞.

This, together with the reflexivity of X and the Eberlein–Smulyan theorem, yields that the sequentially
weakly lower semicontinuous functional ηA − B is weakly inf-compact. Now, we claim that it has
a unique global minimum in X. As we know, its critical points are exactly the weak solutions to the
problem  Ls

pψ(z) = 1
η
g(z, ψ) in Ω,

ψ = 0 on ∂Ω,
(3.7)

where ψ ∈ X is said to be a weak solution of problem (3.7) if
ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p−2 (ψ(z) − ψ(y))(ϕ(z) − ϕ(y)) dz dy =
1
η

ˆ
Ω

g(z, ψ)ϕ dz (3.8)

for any ϕ ∈ X.
Let us define the energy functional J : X → R as

J(ψ) :=
1
p

ˆ
RN

ˆ
RN

K(z − y)|ψ(z) − ψ(y)|p dz dy −
1
η

ˆ
RN

G(z, ψ) dz, ψ ∈ X,

and let the modified energy functional J̃ : X → R be defined by

J̃(ψ) :=
1
p

ˆ
RN

ˆ
RN

K(z − y)|ψ(z) − ψ(y)|p dz dy −
1
η

ˆ
RN

G+(z, ψ) dz, ψ ∈ X,

where

G+(z, τ) :=
ˆ τ

0
g+(z, ξ) dξ and g+(z, τ) :=

g(z, τ), τ ≥ 0,
0, τ < 0

for any τ ∈ R and for almost everywhere z ∈ RN . In compliance with Lemma 3.2 and the argument
above, the functional J̃ is also coercive and sequentially weakly lower semicontinuous on X. From
this, there is an element ψ0 ∈ X satisfying

J̃(ψ0) = inf{J̃(ψ) : ψ ∈ X}.

Now, we show that it is possible to assume that ψ0 ≥ 0. To this end, we assume that ψ0 is sign-changing.
Taking Lemma 3.4 into account, we know ψ+0 ∈ X and thus J̃(ψ0) ≤ J̃(ψ+0 ). Because J̃(ψ) = J(ψ)
when ψ(z) ≥ 0 for almost everywhere z ∈ Ω, we assert

J̃(ψ+0 ) = J(ψ+0 )

=
1
p

ˆ
RN

ˆ
RN

K(z, y)
∣∣∣ψ+0 (z) − ψ+0 (y)

∣∣∣p dz dy −
1
η

ˆ
Ω

G(z, ψ+0 ) dz

≤
1
p

ˆ
RN

ˆ
RN

K(z, y) |ψ0(z) − ψ0(y)|p dz dy −
1
η

ˆ
Ω

G(z, ψ+0 ) dz
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= J̃(ψ0).

Therefore, ψ+0 is a nonnegative solution to problem (3.7). For simplicity, let us write directly ψ0 instead
of ψ+0 . Let us claim ψ0 > 0. As ψ0(z) ≥ 0 for almost everywhere z ∈ RN , we know that either ψ0(z) > 0
or ψ0(z) = 0 for almost everywhere z ∈ RN . Indeed, let us assume that ψ0 . 0 in Ω. Then it is
enough to prove that ψ0 . 0 in all connected components of Ω. Assume to the contrary that there
exists a connected component Λ of Ω such that ψ0(z) = 0 for almost everywhere z ∈ Λ. Let us take any
nonnegative function ω ∈ C∞0 (Λ) as a test function in (3.8). Then, since g is a nonnegative function
and ψ0 is a nonnegative solution of (3.7), we have

0 =
ˆ
RN

ˆ
RN

K(z, y) |ψ0(z) − ψ0(y)|p−2 (ψ0(z) − ψ0(y))(ω(z) − ω(y)) dz dy

−
1
η

ˆ
Ω

g(z, ψ0)ω(z) dz

≤

ˆ
RN

ˆ
RN

K(z, y) |ψ0(z) − ψ0(y)|p−2 (ψ0(z) − ψ0(y))(ω(z) − ω(y)) dz dy

= 2
ˆ
Λ

ˆ
Λc

K(z, y) |ψ0(z) − ψ0(y)|p−2 (ψ0(z) − ψ0(y))(ω(z) − ω(y)) dz dy

= −2
ˆ
Λ

ˆ
Λc

K(z, y)(ψ0(z))p−1ω(y) dz dy.

From this, we infer that ψ0(z) = 0 for almost everywhere z ∈ Λc, that is ψ0(z) = 0 for almost everywhere
z ∈ RN . This yields a contradiction to the fact that ψ0(z) , 0 for almost everywhere z ∈ Ω.

Therefore, to show ψ0 > 0, it suffices to prove that J̃(ψ0) < 0. Now, with consideration for
Lemma 2.1 in [13], let us fix any nonnegative function ϱ ∈ X, with ϱ = 0 on ∂Ω, such that

η1

ˆ
Ω

|ϱ(z)|p dz =
ˆ
RN

ˆ
RN

K(z − y) |ϱ(z) − ϱ(y)|p dz dy,

where η1 is a positive eigenvalue that can be characterized as

η1 = min
{ϱ∈X : ||ϱ||Lp(Ω)=1}

ˆ
RN

ˆ
RN

K(z − y) |ϱ(z) − ϱ(y)|p dz dy.

In light of Theorem 3.2 in [13], we assert that ϱ ∈ L∞(RN). Let α0 ∈ L∞(Ω) with α0 > 0 and let
κ0 ∈ (0, ||α0||L∞(Ω)) be fixed. Then, the set

Ωκ0 := {z ∈ Ω : α0(z) ≥ κ0}

has a positive measure. Furthermore, fix K > 0 so that

K >
ηη1
´
Ω
|ϱ(z)|p dz

κ0
´
Ωκ0
|ϱ(z)|p dz

.

From the first condition in (G4), we can choose a constant ξ0 > 0 satisfying

G(z, ξ)
ξp ≥

α0(z)K
p
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for any ξ ∈ (0, ξ0], and for almost everywhere z ∈ Ω. Then, for small enough ε > 0, we get

1
η

ˆ
Ω

G(z, εϱ)
εp dz ≥

K

pη

ˆ
Ω

α0(z) |ϱ(z)|p dz

≥
Kκ0

pη

ˆ
Ωκ0

|ϱ(z)|p dz

>
η1

p

ˆ
Ω

|ϱ(z)|p dz

=
1
p

ˆ
RN

ˆ
RN

K(z − y) |ϱ(z) − ϱ(y)|p dz dy =
1
p

[ϱ]p
s,p. (3.9)

Hence, using (3.9), we conclude that

[ϱ]p
s,p −

p
η

ˆ
RN

G(z, εϱ)
εp dz < 0

for any ε > 0 sufficiently small, which implies J(εϱ) < 0, as required. In consequence, problem (3.7)
has a positive solution for any η > 0. In particular, this also implies that 0 is not a global minimum of
ηA− B.

Next, we prove that problem (3.7) admits at most one positive solution for any η > 0. Let ψ1 and
ψ2 be two weak positive solutions of (3.7). For any ε > 0, we define the truncations ψ j,ε as in (3.3) for
j = 1, 2. Let us define the functions

ω1,ε :=
ψ

p
2,ε

(ε + ψ1)p−1 − ψ1,ε

and

ω2,ε :=
ψ

p
1,ε

(ε + ψ2)p−1 − ψ2,ε.

In accordance with Lemma 3.4, we assert that ω j,ε ∈ X for j = 1, 2. Now, set

ϕp(ξ) := |ξ|p−2 ξ.

Considering the weak formulation (3.8) of ψ j, by choosing ϕ = ω j,ε for j = 1, 2, one has
ˆ
RN

ˆ
RN

K(z, y) ϕp (ψ1(z) − ψ1(y)) (ω1,ε(z) − ω1,ε(y)) dz dy

=
1
η

ˆ
Ω

g(z, ψ1)ω1,ε(z) dz (3.10)

and
ˆ
RN

ˆ
RN

K(z, y) ϕp (ψ2(z) − ψ2(y)) (ω2,ε(z) − ω2,ε(y)) dz dy

=
1
η

ˆ
Ω

g(z, ψ2)ω2,ε(z) dz. (3.11)
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Adding the above two equations (3.10) and (3.11) and utilizing the fact that

ϕp

(
ψ j(z) − ψ j(y)

)
= ϕp

(
(ε + ψ jn)(z) − (ε + ψ j)(y)

)
for j = 1, 2,

we obtain
ˆ
RN

ˆ
RN

K(z, y) ϕp ((ε + ψ1)(z) − (ε + ψ1)(y))
 ψ

p
2,ε

(ε + ψ1)p−1 (z) −
ψ

p
2,ε

(ε + ψ1)p−1 (y)
 dz dy

−

ˆ
RN

ˆ
RN

K(z, y) ϕp (ψ1(z) − ψ1(y)) (ψ1,ε(z) − ψ1,ε(y)) dz dy

+

ˆ
RN

ˆ
RN

K(z, y) ϕp ((ε + ψ2)(z) − (ε + ψ2)(y))
 ψ

p
1,ε

(ε + ψ2)p−1 (z) −
ψ

p
1,ε

(ε + ψ2)p−1 (y)
 dz dy

−

ˆ
RN

ˆ
RN

K(z, y) ϕp (ψ2(z) − ψ2(y)) (ψ2,ε(z) − ψ2,ε(y)) dz dy

=
1
η

ˆ
Ω

g(z, ψ1)
 ψ

p
2,ε

(ε + ψ1)p−1 − ψ1,ε

 + g(z, ψ2)
 ψ

p
1,ε

(ε + ψ2)p−1 − ψ2,ε

 dz
 . (3.12)

Now, according to the fact that ξ → min{|ξ| , ε−1} is 1-Lipschitz function and the discrete Picone
inequality in Lemma 3.3, we derive

ϕp ((ε + ψ1)(z) − (ε + ψ1)(y))
 ψ

p
2,ε

(ε + ψ1)p−1 (z) −
ψ

p
2,ε

(ε + ψ1)p−1 (y)
 ≤ |ψ2(z) − ψ2(y)|p

and

ϕp ((ε + ψ2)(z) − (ε + ψ2)(y))
 ψ

p
1,ε

(ε + ψ2)p−1 (z) −
ψ

p
1,ε

(ε + ψ2)p−1 (y)
 ≤ |ψ1(z) − ψ1(y)|p .

Because ψ j,ε → ψ j as ε→ 0 for j = 1, 2, by taking to the limit in (3.12) and applying the Fatou Lemma
in the first and third terms as well as using the Lebesgue dominated convergence theorem for all the
other terms, one has

ˆ
RN

ˆ
RN

K(z, y) ϕp (ψ1(z) − ψ1(y))

 ψ
p
2

ψ
p−1
1

(z) −
ψ

p
2

ψ
p−1
1

(y)

 dz dy (3.13)

−

ˆ
RN

ˆ
RN

K(z, y) |ψ1(z) − ψ1(y)|p dz dy

+

ˆ
RN

ˆ
RN

K(z, y) ϕp (ψ2(z) − ψ2(y))

 ψ
p
1

ψ
p−1
2

(z) −
ψ

p
1

ψ
p−1
2

(y)

 dz dy

−

ˆ
RN

ˆ
RN

K(z, y) |ψ2(z) − ψ2(y)|p dz dy

≥
1
η

ˆ
Ω

g(z, ψ1)

 ψ
p
2

ψ
p−1
1

− ψ1

 + g(z, ψ2)

 ψ
p
1

ψ
p−1
2

− ψ2

 dz


= −

1
η

ˆ
Ω

g(z, ψ1)

ψ
p−1
1

−
g(z, ψ2)

ψ
p−1
2

 (ψp
1 − ψ

p
2) dz.
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Using Lemma 3.3 on the left-hand side of (3.13), we obtain

ˆ
Ω

g(z, ψ1)

ψ
p−1
1

−
g(z, ψ2)

ψ
p−1
2

 (ψp
1 − ψ

p
2) dz ≥ 0.

Hence, because the function ξ 7→ g(z,ξ)
ξp−1 is decreasing in (0,+∞), we obtain that ψ1 = ψ2. Therefore, we

ensure that problem (3.7) possesses at most one positive solution. As a result, we derive that ηA − B
admits a unique global minimum in X, since otherwise, in consideration of [31, Corollary 1], it would
have at least three critical points. Because 0 is not a global minimum for ηA−B, the global minimum
of this functional is consistent with its only nonzero critical point.

Finally, let us show that B has no global maxima. Assume to the contrary that ψ̂ ∈ X is a global
maximum of B. Obviously, we know B(ψ̂) > 0. Thus, since g is nonnegative, it follows from (G3) that
the set

Γ := {z ∈ Ω : g(z, ψ̂(z)) > 0}

has a positive measure. Let us fix a closed set P ⊂ Γ of positive measures. Let ϱ ∈ X be such that ϱ ≥ 0
and ϱ(z) = 1 for almost everywhere z ∈ P. Then, we obtain

ˆ
Ω

g(z, ψ̂(z))ϱ(z) dz ≥
ˆ
P

g(z, ψ̂(z)) dz > 0,

and so B′(ψ̂) , 0, which is a contradiction.
Hence, each assumption of Theorem 3.6 is satisfied. Therefore, there exists a unique w̃ ∈ X, with

[w̃]p
s,p ∈ J, such that

M
(
[w̃]p

s,p

) ˆ
RN

ˆ
RN

K(z, y) |w̃(z) − w̃(y)|p dz dy − p
ˆ
Ω

G(z, w̃+(z)) dz

= inf
ψ∈X

{
M

(
[w̃]p

s,p

)ˆ
RN

ˆ
RN

K(z, y) |ψ(z) − ψ(y)|p dz dy − p
ˆ
Ω

G(z, ψ+(z)) dz
}
.

Consequently, from what seen above, problem (P) possesses the unique positive weak solution w̃.
□

4. Conclusions

This paper is devoted to deriving the existence and uniqueness of positive solutions to fractional
p-Laplacian problems involving discontinuous Kirchhoff-type functions. The main tools for obtaining
these results are the uniqueness results of the Brézis–Oswald-type based on [5] and the abstract global
minimum principle in [33]. Particularly, based on previous studies [4, 27], we obtain the existence of
at most one positive weak solution to the fractional p-Laplacian equations of the Brézis–Oswald type
by employing the discrete Picone inequality in [3, 12]. But, our condition (G4) can be considered a
special case of that of [2, 27] since the nonlinear term g satisfies the following assumption:

β0(z) = lim
ξ→0+

g(z, ξ)
ξp−1 and β∞(z) = lim

ξ→+∞

g(z, ξ)
ξp−1 .
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Let us define Λ1

(
Ls

p − β0

)
and Λ1

(
Ls

p − β∞
)

as

Λ1

(
Ls

p − β0

)
= inf

ψ∈X

{
[ψ]p

s,p −

ˆ
Ω

β0(z) |ψ(z)|p dz : ||ψ||Lp(Ω) = 1
}

and

Λ1

(
Ls

p − β0

)
= inf

ψ∈X

{
[ψ]p

s,p −

ˆ
Ω

β∞(z) |ψ(z)|p dz : ||ψ||Lp(Ω) = 1
}
.

If Λ1

(
Ls

p − β0

)
< 0 < Λ1

(
Ls

p − β0

)
in place of (G4) holds, then analogous arguments such as

those in [27] implies that problem (3.7) admits at most one positive solution for any η > 0.
Consequently, explicit modifications of the proof of Theorem 3.7 yield the same consequences
concerning problem (P) when Λ1

(
Ls

p − β0

)
< 0 < Λ1

(
Ls

p − β0

)
in place of (G4) is supposed.

Additionally, a new research direction is the investigation of the Brézis–Oswald type fractional
p-Laplacian problems involving Hardy potentials:

M
(
[ψ]p

s,p

)
Ls

pψ(z) = µ |ψ|
p−2ψ

|z|p + λg(z, ψ) in Ω,

ψ > 0 in Ω,

ψ = 0 on RN \Ω,

(4.1)

where p ∈ (1, p∗s), µ ∈ (−∞, µ∗) for a positive constant µ∗. When µ , 0, the classical variational
approach is not applicable because of the appearance of the term µ|ψ|p−2ψ|z|−p. The reason is that
the Hardy inequality ensures that only the embedding W s,p

0 (Ω) ↪→ Lp(Ω, |z|−p) is continuous but not
compact. Hence, the situation with µ , 0 would be much more delicate than the situation in the present
paper because of the lack of compactness. To the best of our belief, there are no results concerning the
localization, existence, and uniqueness of positive solutions to problem (4.1).
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