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1. Introduction

The presence of singularities and degeneracies in elliptic equations introduces significant challenges
in analyzing the behavior of solutions. These singularities, especially near the origin or boundary, can
profoundly affect the properties of the operator, making solutions more sensitive to changes in the
domain. For instance, when 1 < p < N, it is known that ũ/|y| ∈ Lp(RN) if ũ ∈ W1,p(RN), or ũ/|y| ∈
Lp(Ω) when ũ ∈ W1,p(Ω), where Ω is a bounded domain ( see Lemma 2.1 in [12] for further details).
In this context, the solution under consideration is ũ, and such behavior leads to the development of
Hardy-type inequalities, which are crucial for controlling the singularities of solutions near critical
points, particularly when the equation includes singular potential terms (see, e.g., [1, 12, 17, 18, 20]).

Furthermore, the presence of an indefinite weight in the source term creates several challenges,
mainly because it can change sign or behave irregularly. This complicates the application of standard
methods for proving the existence of solutions, such as ensuring the necessary properties of the energy
functional. The irregular behavior of the weight also makes it difficult to use common mathematical
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tools like Sobolev embeddings and variational methods. To overcome these difficulties, this manuscript
employs a more flexible approach based on critical point theory [4], which allows establishing the
existence of solutions despite the complexities introduced by the indefinite weight.

Finally, the degeneracy of differential operators, such as p-Laplacian or p(x)-Laplacian, when
coupled with a weight function ω(x) inside the divergence, introduces additional complexity to the
problem. The presence of ω(x), whether it is singular or merely bounded, requires a shift in the
selection of appropriate functional spaces. Traditional Sobolev spaces like W1,p(Ω) or W1,p(x)(Ω) may
no longer be adequate in such cases. To properly handle the singularities or degeneracies, it becomes
necessary to consider alternative Sobolev spaces, such as W1,p(x)(ω,Ω) (see section 2 for the definition
of W1,p(ω,Ω)) , which are specifically designed to accommodate the weight function (see [6] for
further details). The most recent contribution to the study of the p Laplacian in a bounded domain and
in the whole space can be found in respectively in [5] and [3], furthermore, the degenerate
p-Laplacian operator combined with a Hardy potential can be found in [16].

This paper tackles the challenges posed by degeneracy, Hardy-type singularities, and sign-changing
source terms, which are common in applied mathematical models, by examining a class of weighted
quasilinear elliptic Dirichlet problem involving a variable exponent p(x) and an indefinite source term.
The main objective is to prove the existence of three weak solutions, using a critical point theorem
introduced by Bonanno and Moranno in [4] while accounting for the complexities introduced by the
operator’s degeneracy and the singularities in the equation.

This manuscript explores the multiplicity of weak solutions to a weighted elliptic equations of the
form: −∆p(x),a(x,u)u +

b(x)|u|q−2u
|x|q = λk(x)|u|s(x)−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where λ is a positive parameter, 1 < q < N, and Ω ⊂ RN (with N ≥ 2) is a bounded open subset with
smooth boundary ∂Ω. The function u is a solution to a weighted quasilinear elliptic equation involving
a variable exponent p(x) ∈ C+(Ω)( see, the beginning of Section 2) and the nonlinear source term of
the form k(x)|u|s(x)−2u which involves a weight function k(x) and may exhibit singularities on Ω and
can change sign, belongs to a nonstandard Lebesgue space Lγ(x)(Ω).

The operator ∆p(x),a(x,u)u represents a nonlinear generalization of the classical Laplacian, defined by:

∆p(x),a(x,u)u = div
(
a(x, u)|∇u|p(x)−2∇u

)
,

here a(x, u) denotes a Carathéodory function satisfying the inequality:

a1ω(x) ≤ a(x, u) ≤ a2ω(x),

with a1, a2 are two positive constants, the function ω(x) is assumed to belongs to the local Lebesgue
space L1

loc(Ω), and it satisfies additional growth conditions, such as ω−h(x) ∈ L1(Ω), where h(x) satisfies
certain bounds related to the variable exponent p(x). Specifically, we assume that

(ω) ω−h(x) ∈ L1(Ω), for h(x) ∈ C(Ω) and h(x) ∈
(

N
p(x)

,+∞

)
∩

[
1

p(x) − 1
,+∞

)
.
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The nonlinearity in the equation involves the functions k(x) and s(x), which are assumed to satisfy
the following inequality for almost every x ∈ Ω

(k) 1 < s(x) < ph(x) < N < γ(x),

where ph(x) =
h(x)p(x)
h(x)+1 .

2. Backgrounds and preliminary results

Set, S(Ω), the space that contains all measurable functions in Ω and

C+(Ω) = {p(x)|p(x) ∈ C(Ω), p(x) > 1, ∀x ∈ Ω},

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x).

For τ > 0, and p(x) ∈ C+(Ω), we use the following notations

τp̂ = max{τp− , τp+

}, τp̌ = min{τp− , τp+

}.

In the sequel, we define the space Lp(x)(ω,Ω) as follows

Lp(x)(ω,Ω) =

{
u ∈ S(Ω) |

∫
Ω

ω(x)|u(x)|p(x) dx < ∞
}
,

where p(x) is a variable exponent, and ω(x) is a weight function. The space is endowed with a
Luxemburg-type norm, given by:

‖u‖Lp(x)(ω,Ω) = inf
{
ν > 0 |

∫
Ω

ω(x)
∣∣∣∣∣u(x)
ν

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Next, we define the corresponding variable exponent Sobolev space, which incorporates the variable
exponent p(x) in the functional setting.

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm
‖u‖W1,p(x)(Ω) = ‖∇u‖p(x) + ‖u‖p(x),

where ‖∇u‖p(x) = ‖|∇u|‖p(x), |∇u| = (
N∑

i=1

∣∣∣ ∂u
∂xi

∣∣∣2)
1
2 ,∇u =

(
∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xN

)
is the gradient of u at

(x1, x2, ..., xN).
Denote, by

W1,p(x)(ω,Ω) = {u ∈ Lp(x)(Ω) : ω
1

p(x) |∇u| ∈ Lp(x)(Ω)}

the weighted Sobolev space and by W1,p(x)
0 (ω,Ω) as the closure of C∞0 (Ω) in the space W1,p(x)(ω,Ω)

endowed with the norm

‖u‖ = inf
{
ν > 0 :

∫
Ω

ω(x)
∣∣∣∇u(x)

ν

∣∣∣p(x)
dx ≤ 1

}
.
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Lemma 2.1. [8] If p1(x), p2(x) ∈ C+(Ω) such that p1(x) ≤ p2(x) a.e. x ∈ Ω, then there exists the
continuous embedding W1,p2(x)(Ω) ↪→ W1,p1(x)(Ω).

Proposition 2.1 ( [9]) For p(x) ∈ C+(Ω), u, un ∈ Lp(x)(Ω), one has

min
{
‖u‖p−

p(x), ‖u‖
p+

p(x)
}
≤

∫
Ω

|u(x)|p(x)dx ≤ max
{
‖u‖p−

p(x), ‖u‖
p+

p(x)
}
.

Let 0 < d(x) ∈ S (Ω), and define the space

Lp(x)(d,Ω) := Lp(x)
d(x)(Ω) =

{
u ∈ S (Ω) |

∫
Ω

d(x)|u(x)|p(x) dx < ∞
}
,

where p(x) is a variable exponent, and d(x) is a weight function. The space is equipped with a
Luxemburg-type norm, defined by

‖u‖Lp(x)
d(x) (Ω) = ‖u‖(p(x),d(x)) := inf

{
ν > 0 |

∫
Ω

d(x)
∣∣∣∣∣u(x)
ν

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Proposition 2.2 ( [10]) If p ∈ C+(Ω). Then

min
{
‖u‖p−

(p(x),d(x)), ‖u‖
p+

(p(x),d(x))

}
≤

∫
Ω

d(x)|u(x)|p(x)dx ≤ max
{
‖u‖p−

(p(x),d(x)), ‖u‖
p+

(p(x),d(x))

}
for every u ∈ Lp(x)

d(x)(Ω) and for a.e. x ∈ Ω.
Combining Proposition 2.1 with Proposition 2.2, one has

Lemma 2.2. Let
ρω(u) =

∫
Ω

ω(x)
∣∣∣∇u(x)

∣∣∣p(x)
dx.

For p ∈ C+(Ω), u ∈ W1,p(x)(ω,Ω), we have

min
{
‖u‖p− , ‖u‖p+}

≤ ρω(u) ≤ max
{
‖u‖p− , ‖u‖p+ }

.

From Proposition 2.4 of [20], if (ω) holds, W1,p(x)(ω,Ω) is a reflexive separable Banach space.
From Theorem 2.11 of [15], if (ω) holds, the following embedding

W1,p(x)(ω,Ω) ↪→ W1,ph(x)(Ω) (2.1)

is continuous, where

ph(x) =
p(x)h(x)
h(x) + 1

< p(x).

Combining (2.1) with Proposition 2.7 and Proposition 2.8 in [11], we get the following embedding

W1,p(x)(ω,Ω) ↪→ Lr(x)(Ω)

is continuous, where

1 ≤ r(x) ≤ p∗h(x) =
N ph(x)

N − ph(x)
=

N p(x)h(x)
Nh(x) + N − p(x)h(x)

.
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Furthermore, the following embedding

W1,p(x)(ω,Ω) ↪→↪→ Lt(x)(Ω)

is compact, when 1 ≤ t(x) < p∗h(x).
In what follows, and for any p(x) ∈ C+(Ω), let us denote by p′(x) := p(x)

p(x)−1 , the conjugate exponent
of p(x).

Remark 2.1. Under Condition (k), one has

• 1 < β(x) < p∗h(x) for almost every x ∈ Ω, where β(x) := γ(x)s(x)
γ(x)−s(x) , consequently

W1,p(x)(ω,Ω) ↪→↪→ Lβ(x)(Ω)

is compact.
• 1 < α(x) < p∗h(x) for almost every x ∈ Ω, where α(x) = γ′(x)s(x), consequently

W1,p(x)(ω,Ω) ↪→↪→ Lα(x)(Ω)

is compact.

Lemma 2.3 (Hölder type inequality [2,11]). Let p1, p2, t ≥ 1 three functions that belong in S(Ω) such
that

1
t(x)

=
1

p1(x)
+

1
p2(x)

, for almost every x ∈ Ω.

If f ∈ Lp1(x)(Ω) and g ∈ Lp2(x)(Ω), then f g ∈ Lt(x)(Ω), moreover

‖ f g‖t(x) ≤ 2‖ f ‖p1(x)‖g‖p2(x).

Similarly, if 1
t(x) + 1

p1(x) + 1
p2(x) = 1, for a.e. x ∈ Ω, then∫

Ω

| f (x)g(x)h(x)|dx ≤ 3‖ f ‖t(x)‖g‖p1(x)‖h‖p2(x).

Lemma 2.4 ( [7]). Let r1(x) and r2(x) be measurable functions such that r1(x) ∈ L∞(Ω), and 1 ≤
r1(x)r2(x) ≤ ∞, for a.e. x ∈ Ω. Let w ∈ Lr2(x)(Ω), w , 0. Then

‖w‖ř1
r1(x)r2(x) ≤ ‖|w|

p(x)‖r2(x) ≤ ‖w‖
p̂
r1(x)r2(x).

Let’s define the functional Iλ : W1,p(x)
0 (ω,Ω)→ R as

Iλ(u) := L(u) − λM(u),

where

L(u) :=
∫

Ω

a(x, u)
p(x)

|∇u|p(x)dx +
1
q

∫
Ω

b(x)|u|q

|x|q
dx, (2.2)

and

M(u) :=
∫

Ω

1
s(x)

k(x)|u|s(x)dx. (2.3)
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It is noted that, based on Remark 2.1 and Lemma 2.4, the aforementioned functionals are both well-
defined and continuously Gâteaux differentiable (see [14] for further details). The Gâteaux derivatives
are as follows

〈L′(u), v〉 =

∫
Ω

a(x, u)|∇u|p(x)−2∇u · ∇v dx +

∫
Ω

b(x)|u|q−2uv
|x|q

dx,

and

〈M′(u), v〉 =

∫
Ω

k(x)|u|s(x)−2uv dx.

Furthermore,M′(u) is compact in the dual space (W1,p(x)
0 (ω,Ω))∗ (see [14]).

u ∈ W1,p(x)
0 (ω,Ω) is said to be a weak solution of the problem (1.1) if, the following holds for every

v ∈ W1,p(x)
0 (ω,Ω).

〈I′λ(u), v〉 = 〈L′(u), v〉 − λ〈M′(u), v〉 = 0.

Lemma 2.5. L′ is a strictly monotone coercive functional that belongs in (W1,p(x)
0 (ω,Ω))∗.

Proof. For any u ∈ W1,p(x)
0 (ω,Ω) \ {0}, by Lemma 2.2, one has

L′(u)(u) =

∫
Ω

a(x, u)|∇u|p(x)−2∇u∇udx +

∫
Ω

b(x)|u|q−2u2

|x|q
dx

≥ a1ρω(u)

≥ a1 ·min{‖u‖p+

, ‖u‖p−},

thus

lim
‖u‖→∞

L′(u)(u)
‖u‖

≥ a1 · lim
‖u‖→∞

min{‖u‖p+

, ‖u‖p−}

‖u‖
= +∞,

then L′ is coercive in view of p(x) ∈ C+(Ω).
According to (2.2) of [13], for all x, y ∈ RN , there is a positive constant Cp such that

〈|x|p−2x − |y|p−2y, x − y〉 ≥ Cp|x − y|p, if p ≥ 2,

and

〈|x|p−2x − |y|p−2y, x − y〉 ≥
Cp|x − y|2

(|x| + |y|)2−p , if 1 < p < 2, and (x, y) , (0, 0),

where 〈., .〉 is the usual inner product in RN . Thus, for any u, v ∈ X satisfying u , v, by standard
arguments we can obtain

〈L′(u) − L′(v), u − v〉 =

∫
Ω

a(x, u)(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v)(∇u − ∇v)dx

+

∫
Ω

b(x)
|x|q

(|u|q−2u − |v|q−2v)(u − v))dx

> 0,

hence, one has L′ is strictly monotone in W1,p(x)
0 (ω,Ω). �
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Lemma 2.6. The functional L′ is a mapping of (S +)-type, i.e. if un ⇀ u in W1,p(x)
0 (ω,Ω), and

limn→∞〈L
′(un) − L′(u), un − u)〉 ≤ 0, then un → u in W1,p(x)

0 (ω,Ω).

Proof. Let un ⇀ u in W1,p(x)
0 (ω,Ω), and limn→∞〈L

′(un) − L′(u), un − u〉 ≤ 0.
Noting that L′ is strictly monotone in W1,p(x)

0 (ω,Ω), we have

lim
n→∞
〈L′(un) − L′(u), un − u〉 = 0,

while

〈L′(un) − L′(u), un − u〉 =

∫
Ω

a(x, u)(|∇un|
p(x)−2∇un − |∇u|p(x)−2∇u)(∇un − ∇u)dx

+

∫
Ω

(b(x)|un|
q−2

|x|q
un(un − u) −

b(x)|u|q−2

|x|q
u(un − u)

)
dx,

thus we get

limn→∞

∫
Ω

a(x, u)(|∇un|
p(x)−2∇un − |∇u|p(x)−2∇u)(∇un − ∇u)dx ≤ 0.

Further, by (1.2) one has

limn→∞

∫
Ω

ω(x)(|∇un|
p(x)−2∇un − |∇u|p(x)−2∇u)(∇un − ∇u)dx ≤ 0,

then un → u in W1,p(x)
0 (ω,Ω) via Lemma 3.2 in [19]. �

Lemma 2.7. L′ is an homeomorphism.

Proof. The strict monotonicity ofL′ implies that it is injective. SinceL′ is coercive, it is also surjective,
and hence L′ has an inverse mapping.

Next, we show that the inverse mapping (L′)−1 is continuous.
Let f̃n, f̃ ∈ (W1,p(x)

0 (ω,Ω))∗ such that f̃n → f̃ . We aim to prove that (L′)−1( f̃n)→ (L′)−1( f̃ ).
Indeed, let (L′)−1( f̃n) = un and (L′)−1( f̃ ) = u, so that L′(un) = f̃n and L′(u) = f̃ . By the coercivity

of L′, the sequence un is bounded. Without loss of generality, assume un ⇀ u0, which implies

lim
n→∞

(
L′(un) − L′(u), un − u0

)
= lim

n→∞

(
f̃n − f̃ , un − u0

)
= 0.

Thus, un → u0 because L′ is of (S +)-type, which ensures that L′(un) → L′(u0). Combining this
with L′(un) → L′(u), we deduce that L′(u) = L′(u0). Since L′ is injective, it follows that u = u0, and
hence un → u. Therefore, we have (L′)−1( f̃n)→ (L′)−1( f̃ ), proving that (L′)−1 is continuous.

�

The following critical point theorems constitute the principal tools used to obtain our result.

Theorem 2.1 ( [4, Theorem 3.6]). Let X be a reflexive real Banach space and assume the following

• L : X → R be a coercive functional that is continuously Gateaux differentiable and weakly lower
semicontinuous in the sequential sense
• The Gateaux derivative of L has a continuous inverse on the dual space X∗.
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• M : X → R is a continuously Gateaux differentiable functional whith a compact Gateaux
derivative.

Furthermore, suppose that

(a0) inf
X
L = L(0) = 0 andM(0) = 0.

There exist a positive constant d and a point v ∈ X such that d < L(v), and the following conditions
are satisfied:

(a1)
supL(x)<dM(x)

d
<
M(v)
L(v)

,

(a2) For each λ ∈ Λd :=
(
L(v)
M(v)

,
d

supL(x)≤dM(x)

)
, the functional Iλ := L − λM is coercive.

Then, for any λ ∈ Λd, L − λM has at least three distinct critical points in X.

3. Main results

In this section, a theorem about the existence of at least three weak solutions to the problem (1.1) is
obtained.

Recall the Hardy inequality (refer to Lemma 2.1 in [12] for more details), which asserts that for
1 < t < N, the following inequality holds:∫

Ω

|u(x)|t

|x|t
dx ≤

1
H

∫
Ω

|∇u|t dx, ∀u ∈ W1,t
0 (Ω),

where the optimal constantH is given by:

H =

(N − t
t

)t

.

By combining this with Lemma 2.1 and using the fact that 1 < q < ph(x) < N, we deduce the
continuous embeddings

W1,p(x)
0 (ω,Ω) ↪→ W1,ph(x)

0 (Ω) ↪→ W1,q
0 (Ω),

which leads to the inequality∫
Ω

|u(x)|q

|x|q
dx ≤

1
H

∫
Ω

|∇u|q dx, ∀u ∈ W1,p(x)
0 (ω,Ω),

whereH =
(

N−q
q

)q
.

We are now ready to present our primary result. To this end, we define

D̃(x) := sup
{
D̃ > 0 | B(x, D̃) ⊆ Ω

}
AIMS Mathematics Volume 10, Issue 2, 4492–4503.
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for each x ∈ Ω, here B(x, D̃) denotes a ball centered at x with radius D̃. It is clear that there exists a
point x0 ∈ Ω such that B(x0,R) ⊆ Ω, where

R = sup
x∈Ω
D̃(x).

In the remainder, assume that k(x), fulfill this requirement

k(x) :=


≤ 0, for x ∈ Ω \ B(x0,R),
≥ k0, for x ∈ B(x0, R

2 ),
> 0, for x ∈ B(x0,R) \ B(x0, R

2 ),

where k0 is a positive constant, the symbol m̃ will represent the constant

m̃ =
π

N
2

N
2 Γ

(
N
2

) ,
with Γ denoting the Gamma function.

Theorem 3.1. Assume that p− > s+, and, there exist two positive constants d and δ > 0, such that

1
p+

(2δ
R

)p̌
‖w‖L1(B) = d,

and

Aδ :=

1
p−

(
2δ
R

)p̂
‖ω‖L1(B) +

(
2δ
R

)q
‖b‖∞
qH m̃

(
RN −

(
R
2

)N
)

1
s+ k0δšm̃

(
R
2

)N < Bd :=
d

cŝ
γ′ s‖k‖γ(x)

s−
[(

p+d
) 1

p̌ ]ŝ
,

then for any λ ∈]Aδ, Bd[, problem (1.1) has at least three weak solutions.

Proof. It is worth noting that the functional L and M associated with problem (1.1) and defined in
(2.2) and (2.3), satisfy the regularity assumptions outlined in Theorem 2.1. We will now establish the
fulfillment of conditions (a1) and (a2). To this end, let’s consider

1
p+

(2δ
R

)p̌
‖ω‖L1(B) = d

and consider vd ∈ X such that

vδ(x) :=


0 x ∈ Ω\B

(
x0,R

)
2δ
R

(
R −

∣∣∣x − x0
∣∣∣) x ∈ B := B

(
x0,R

)
\B

(
x0, R

2

)
,

δ x ∈ B
(
x0, R

2

)
.

Then, by the definition of L , we have

1
p+

(2δ
R

) p̌
‖ω‖L1(B)

< L(vδ)

≤
1
p−

(2δ
R

) p̂
‖ω‖L1(B) +

(2δ
R

)q ‖b‖∞
qH

m̃
(
RN −

(R
2

)N)
AIMS Mathematics Volume 10, Issue 2, 4492–4503.
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Therefore, L(vδ) > d. However, it is important to consider the following

M (vδ) ≥
∫

B(x0,
R
2 )

k(x)
s(x)
|vδ|γ(x) dx ≥

1
s+

k0δ
šm̃

(R
2

)N

(3.1)

In addition, for each u ∈ L−1(] −∞, d]), we have

1
p+
‖u‖ p̌ ≤ d. (3.2)

therefore,

‖u‖ ≤
(
p+L(u)

) 1
p̌
<

(
p+d

) 1
p̌
.

Furthermore, we can deduce using Lemmas 2.3, 2.4 and Remark 2.1 the following

M(u) ≤
1
s−
‖k‖γ(x)‖|u|s(x)‖γ′(x) ≤

1
s−
‖k‖s(x)(cγ′s‖u‖)ŝ, (3.3)

where cγ′s is the constant from the continuous embedding of W1,p(x)
0 (ω,Ω) into W1,γ′(x)s(x)(Ω).

This leads to the following result

sup
L(u)<d

M(u) ≤
cŝ
γ′s‖k‖γ(x)

s−
[(

p+d
) 1

p̌ ]ŝ
,

and
1
d

sup
L(u)<d

M(u) <
1
λ
.

Furthermore, we can establish the coerciveness of Iλ for any positive value of λ by employing
inequality (3.3) once more. This yields the following result

M(u) ≤
cŝ
γ′s‖k‖γ(x)

s−
‖u‖ŝ.

When ‖u‖ is great enough, the following can be inferred

L(u) − λM(u) ≥
1
p+
‖u‖p− − λ

cŝ
γ′s‖k‖γ(x)

s−
‖u‖ŝ.

By considering the fact that p− > s+, we can reach the desired conclusion. In conclusion,
considering the aforementioned fact that

Λ̄d := (Aδ, Bd) ⊆
(
L (vδ)
M (vδ)

,
d

supL(u)<dM(u)

)
,

since all assumptions of Theorem 2.1 are fulfilled, it can be deduced that for any λ ∈ Λ̄d, the function
L − λM possesses at least three critical points that belong in X := W1,p

0 (ω,Ω). Consequently these
critical points are exactly weak solutions of problem (1.1). �
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