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Abstract: Effective disease control measures are essential for mitigating epidemic risks. This study
introduces a novel stochastic susceptible-infected-vaccinated-recovered S I V R epidemic model
that incorporates white noise in vaccination dynamics. Unlike traditional deterministic models, our
stochastic framework accounts for the inherent randomness in real-world disease transmission and the
effectiveness of interventions. We rigorously establish the existence and uniqueness of global positive
solutions using Lyapunov functions and derive conditions for disease extinction and persistence
under stochastic perturbations. A key contribution is the introduction of a stochastic reproduction
number R∗0, which refines classical epidemic thresholds by integrating randomness. Through numerical
simulations, we illustrate the impact of stochasticity on disease dynamics, demonstrating that noise
can drive disease extinction even in scenarios where deterministic models predict persistence. This
study provides a more realistic epidemiological framework for optimizing vaccination strategies under
uncertainty, offering significant advances in epidemic modeling and public health policy.
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1. Introduction

Infectious diseases have been a persistent and serious threat to human health, often resulting in
pandemics and outbreaks that profoundly impact society, economics, and politics. A comprehensive
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understanding of disease dynamics is essential for public health authorities and researchers worldwide
to develop effective control strategies. Mathematical models, such as the
susceptible-infected-vaccinated-recovered S I V R model, play a vital role in studying disease
transmission dynamics [1]. These models provide valuable insights into how diseases spread through
populations and how interventions, such as vaccination campaigns or public health measures, can
mitigate their impact.

In recent years, various modifications to the S I V R model have been proposed to better reflect
real-world epidemiological complexities, including time-dependent vaccination rates, waning
immunity, and heterogeneous population structures [2, 3]. In addition,tochastic epidemic models have
gained attention due to their ability to capture randomness in disease transmission [4]. Unlike
deterministic models, stochastic models provide a more realistic framework by accounting for
unpredictable fluctuations in infection rates, intervention effectiveness, and environmental factors [5].
However, many existing models still assume deterministic vaccination strategies, overlooking the
impact of randomness on vaccine availability, public compliance, and external constraints.

To address this limitation, we incorporate stochastic perturbations into the vaccination term of the
S I V R model. Specifically, we incorporate white noise to model random fluctuations in vaccination
rates. This approach aligns with recent advanceshastic epidemiological modeling, where noise-driven
fluctuations significantly influence disease outcomes [6, 7].

The stochastic differential equation (SDE) model introduces random fluctuations in epidemic
dynamics, enhancing realism compared to the deterministic ordinary differential equation (ODE)
model. Unlike the ODE model, the SDE model incorporates stochastic noise, representing real-world
uncertainties in disease transmission and recovery rates. Even if the deterministic model suggests the
persistence of the disease (R0 > 1), stochastic effects can drive the infection to extinction by causing
fluctuations that bring the number of infected individuals to zero. The SDE model also exhibits
mean-reverting behavior, in contrast to the ODE model, which predicts a stable equilibrium.

Our model extends existing stochastic epidemic frameworks by explicitly incorporating random
fluctuations in vaccination and transmission rates. Unlike prior deterministic models [8, 9], which
assume constant vaccination rates, our stochastic approach accounts for variations due to logistical
constraints and behavioral responses. This allows for a more accurate prediction of disease dynamics
under uncertainty [10, 11].

The proposed stochastic S I V R model introduces several key innovations and contributions.
Incorporating white noise into vaccination dynamics to enhance real-world applicability. In addition,
it derives a refined reproduction number R∗0 that accounts for stochastic effects. A Lyapunov-based
proof is provided to establish global stability and persistence conditions. Furthermore, numerical
simulations are performed to illustrate the role of randomness in disease extinction [12].

The stochastic S I V R model was developed to extend the classical S I R model in several
ways. Unlike the S I R model, the S I V R model explicitly accounts for vaccinated individuals.
Stochastic perturbations can reduce the reproduction number R∗0 below 1, facilitating earlier disease
eradication. While the deterministic S I R model predicts smooth transitions, the stochastic
S I V R model introduces fluctuations, making it more applicable to real outbreaks. Additionally,
the stochastic S I V R model captures irregularities in vaccination rates caused by logistical
challenges, which are not considered in the S I R model [12].

By addressing critical gaps in existing literature, our work advances stochastic epidemiology by
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providing a robust framework for evaluating public health interventions under uncertainty. In this
study, we begin with the deterministic S I V R model [13] and systematically extend it into a
stochastic framework by introducing perturbations in key parameters using stochastic noise. This
approach allows us to realistically capture the inherent randomness in vaccination rates and disease
transmission dynamics.

2. Stochastic model formulation

The human host population, denoted by N , is structured into four dynamic compartments:
susceptible (S ), infected (I ), vaccinated (V ), and recovered (R), with the total population N
evolving over time t as:

N = S + I + V + R.

The below deterministic model (2.1) is described by the following parameters [13]:

• A: Recruitment rate of susceptible individuals.
• β: Transmission rate of infections.
• ρ: Fraction of susceptible individuals vaccinated.
• (1 − ρ): Fraction of susceptible individuals not vaccinated.
• δ1: Rate of waning vaccination in vaccinated individuals.
• µ: Natural death rate.
• α: Disease-induced death rate in infected individuals.
• γ: Recovery rate of infected individuals.

dS

dt
= A − βS I − [ρ + (1 − ρ)]S − µS + δ1V ,

dI

dt
= βS I − (µ + α + γ)I ,

dV

dt
= ρS − µV − δ1V ,

dR

dt
= γI − µR.

(2.1)

In the deterministic model (2.1), the basic reproduction number, denoted as R0, represents the average
number of secondary infections generated by a single infected individual in a fully susceptible
population. This metric plays a crucial role in evaluating the potential for an outbreak and devising
effective control measures.

The expression for R0 in the context of the S I V R model is given by [13]:

R0 =
β A

(ρ + µ)(µ + α + γ)
.

To account for real-world uncertainties, we extend the deterministic model by incorporating
stochastic perturbations in the transmission and vaccination processes. These perturbations are
modeled using white noise, which captures fluctuations in vaccine availability, public compliance, and
environmental factors.
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The stochastic S I V R model is formulated as follows:

dS =
(
A − [(1 − ρ) + ρ]S − βS I − µS + δ1V

)
dt

− σ1βS I dB1(t) − σ2S dB2(t),
dI =

(
βS I − (µ + α + γ)I

)
dt + σ1βS I dB1(t) − σ2I dB2(t),

dV = (ρS − µV − δ1V )dt − σ2V dB2(t),
dR = (γI − µR)dt − σ2R dB2(t).

(2.2)

Here, σ1 and σ2 represent the intensity of stochastic perturbations affecting the transmission rate
β → β + σ1dB1(t) and recovery rate γ → γ + σ2dB2(t), respectively. The terms dB1(t) and dB2(t)
denote independent standard Brownian motions.

By incorporating these stochastic perturbations, the model provides a more realistic representation
of disease dynamics, capturing unpredictable variations that occur in real-world epidemiological
settings. This stochastic approach enables better assessment of disease control strategies
under uncertainty.

3. Existence and uniqueness

Theorem 3.1. Let the initial condition be ζ(0) = (S(0),I(0),V(0),R(0)), where S(0), I(0), V(0), and
R(0) are non-negative. Then, the stochastic system given by (2.2) has a unique, global, non-negative
solution (S(t),I(t),V(t),R(t)) for all t ≥ 0. Moreover, this solution remains in the non-negative quadrant
R4

+ with probability 1 almost surely [14–16].

Proof. Since the coefficients of the stochastic differential equations in (2.2) satisfy the Lipschitz
condition, for any given initial value ζ0 =

(
S0,I0,V0,R0

)
∈ R3

+ , there exists a unique local
solution (S(t),I(t),V(t),R(t)) on t ∈ [0, τe), where τe is the explosion time.

To ensure global stability, we must show that τe = ∞. Let a0 ≥ 0 be sufficiently large so that ζ(0)

lies within the interval
[

1
a0
, a0

]
.

For each integer a ≥ a0, we define the following stopping time:

τa = inf
{

t ∈ [0, τe) : min{S(t),I(t),V(t),R(t)} ≤
1
a0

or max{S(t),I(t),V(t),R(t)} ≥ a
}
. (3.1)

Now, the total number of individuals in the system satisfies the inequality:

dN (t) ≤ (A − (1 − ρ) − µN (t))dt. (3.2)

Solving the above equation, we obtain:

N (t) ≤

A−(1−ρ)
µ

, if N (0) ≤ A−(1−ρ)
µ

,

N (0), if N (0) > A−(1−ρ)
µ

.
(3.3)

Thus, the total population remains constrained over time.
Now, suppose that

inf(ϕ) = ∞, (3.4)
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where ϕ denotes the empty set, as usual. By the definition of stopping time, τa is increasing as a→ ∞.
Suppose that

τ∞ = lim
a→∞

τa, where τ∞ ≤ τe a.s. (3.5)

Now, we must show that τ∞ = ∞. Suppose that there exist a pair of constants T > 0 and ε ∈ (0, 1)
such that:

P{τ∞ ≤ T } > ε. (3.6)

Then, there exists an integer a1 ≥ a0 such that:

P{τa ≤ T } > ε, for all a ≥ a1. (3.7)

Finally, we define a C2-functionV : R4
+ → R+, by

V(I +V +S +R) = S +I +V +R− (logS + logI + logV + logR)+S +I +V +R−3. (3.8)

Since log ~ ≤ ~ − 1, for all ~ > 0, V is clearly non-negative. Consider a ≥ a0, T > 0, and use Ito’s
formula on (3.8), we obtain:

dV(S + I + V + R) =
1

2S 2 (dS )2 + (1 −
1
S

)dS +
1

2I 2 (dI )2 + (1 −
1
I

)dI

+
1

2V 2 (dV )2 + (1 −
1
V

)dV +
1

2R2 (dR)2 + (1 −
1
R

)dR

= L dV(S + I + V + R)dt + σ1(I −S )βdB1 + σ2(I −S )βdB2, (3.9)

where L dV(S + I + V + R) : R4
+ → R+ is

L dV(S + I + V + R) = (1 −
1
S

)(A − βS I − [ρ + (1 − ρ)]S − µS + δ1V ) +
1
2
σ2

1β
2I 2

+
1
2
σ2

2 + (1 −
1
I

)(βS I − (µ + α + γ)I ) +
1
2
σ2

1β
2S 2 +

1
2
σ2

2

+ (1 −
1
V

)(ρS − µV − δ1V ) +
1
2
σ2

2 + (1 −
1
R

)(γI − µR) +
1
2
σ2

2

= (A − βS I − [ρ + (1 − ρ)]S − µS + δ1V ) −
A
S

+ βI + 1 + µ

−
δ1V

S
+ (βS I − (µ + α + γ)I ) − (βS − (µ + α + γ)) + (ρS − µV − δ1V )

− ρ
S

V
+ µ + δ1 + γI − µR − γ

I

R
+

1
2
σ2

1β
2I 2 +

1
2
σ2

1β
2S 2 + 2σ2

2

≤ A + δ1V + βI + 1 + µ + βS I + µ + α + γ + ρS + µ + δ1 + γI

+
1
2
σ2

1β
2I 2 +

1
2
σ2

1β
2S 2 + 2σ2

2 := B. (3.10)

Hence consider the following inequalities:

E[V(S (τa ∧ T ),I (τa ∧ T ),V (τa ∧ T ),R(τa ∧ T ))] ≤ V(ζ(0) + E[
∫ τa∧ T

0
Bdt])

≤ V(ζ(0)) +B T . (3.11)
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For all a ≥ a1, let τa ≤ T = Ωa then P(Ωa) ≥ ε, by corresponding to each ω ∈ Ωa, we can find
S (τa, ω),I (τa, ω),V (τa, ω),R(τa, ω) whose value is either a or 1

a , consequently,
V(S (τa),I (τa),V (τa),R(τa)) is not less than (log a + 1

a − 1) or (a − 1 − loga), so

V(S (τa),I (τa),V (τa),R(τa)) ≥ E(log a +
1
a
− 1) ∧ (a − 1 − loga).

Taking into account Eqs (3.6) and (3.11), we have

V(ζ0) +BT ≥ E
[
1Ωω
V

(
S (τa),I (τa),V (τa),R(τa)

)]
≥ ε

[(
log a +

1
a
− 1

)
∧

(
a − 1 − log a

)]
, (3.12)

where 1Ωω
is the indicator function of Ωa. Suppose a→ ∞ leads to a contradiction, then:

∞ > V(ζ(0)) +B T = ∞. (3.13)

Therefore, we must have:
τ∞ = ∞. (3.14)

Hence, the assertion follows. �

3.1. Remark

From Theorem (3.1), it is evident that for any initial condition ζ(0) ∈ R+4, there exists a unique
global solution ζ(t) ∈ R+4 almost surely for model (2.2). This solution satisfies the inequality

dN(t) ≤ (A − (1 − ρ) − µN(t))dt. (3.15)

Solving this inequality yields

N(t) ≤ N(0) −
µ

A − (1 − ρ)
e(−µt). (3.16)

If µ

A−(1−ρ) ≥ N(0), then µ

A−(1−ρ) ≥ N(t) almost surely. Thus, we define

Λ∗ = {(S + I + V + R) | S ≥ 0,I ≥ 0,V ≥ 0,R ≥ 0,
µ

A − (1 − ρ)
≥ N} (3.17)

assuming that ζ(0) ∈ Λ∗ always holds.

4. Extinction and persistence

To determine the conditions for extinction and persistence in the context of model (2.2), we
introduce key concepts that will underpin our main findings. Let 〈z(t)〉 = 1

t

[∫ t

0
z(s)ds

]
denote the time

average of z(t), and define the stochastic basic reproduction number as

R∗0 = R0 −
σ2

2

2(µ + α + γ)
. (4.1)

This modified reproduction number R∗0 incorporates the stochastic effects on disease transmission,
adjusting for the variability introduced by the noise term σ2 affecting the recovery rate γ.
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4.1. Definition

The condition for the model (2.2) to be persistent in mean is [17]

lim
t→∞

inf
{

1
t

[∫ t

0
I(s)ds > 0

]}
a.s. (4.2)

We now prove our main result, showing the condition for which extinction of model (2.2) holds.

Theorem 4.1. Suppose the solution of Eq (2.2) is ζ(t) = (S(t),I(t),V(t),R(t)) with ζ(0) ∈ Ω∗. If α(µ+γ) >
σ2

2β and R∗0 < 1, then limt→∞

( logI(t)

t

)
< 0. Additionally, limt→∞ S(t) =

A−(1−ρ)
µ

, limt→∞I(t) = 0,
limt→∞ V(t) = 0, and limt→∞R(t) = 0.

Proof. Integrating Eq (2.2), we obtain

1
t
(S (t) −S (0)) +

1
t
(I (t) −I (0)) +

1
t
(V (t) − V (0)) +

1
t
(R(t) −R(0))

= A −
1
t

∫ t

0
((ρ + (1 − ρ) + µ)S (s) + βS (s)I (s)) ds

+
1
t

∫ t

0
δ1V (s)ds −

1
t

∫ t

0
(µ + α + γ)I (s)ds

+
1
t

∫ t

0
ρS (s)ds −

1
t

∫ t

0
(µ + δ1)V (s)ds +

1
t

∫ t

0
γI (s)ds

−
1
t

∫ t

0
µR(s)ds +

1
t

∫ t

0
(σ1βS (s)I (s)dB1(s) − σ2S (s)dB2(s))

−
1
t

∫ t

0
σ2I (s)dB2(s) −

1
t

∫ t

0
σ2V (s)dB2(s) −

1
t

∫ t

0
σ2R(s)dB2(s).

(4.3)

Integrating S (s) over [0, t], we obtain∫ t

0
S (s)ds =

A
µ + ρ

−
µ + α + γ

µ + ρ

∫ t

0
I (s)ds −

µ

µ + ρ

∫ t

0
V (s)ds + Θ(t), (4.4)

where

Θ(t) = −
1

µ + ρ

[
S (t) −S (0) +

∫ t

0
σ2S (s)dB2(s)

]
. (4.5)

As Θ(t) → 0 as t → ∞, we can consider the second equation of (2.2) and apply Ito’s formula to it,
yielding

d logI(t) = (βS − (µ + α + γ) −
β2

2
σ2

1S
2 +

σ2
2

2
)dt + σ1βS dB1 − σ2 dB2. (4.6)

Integrating from 0 to t, we have

logI(t) − logI(0)

t
=

1
t

(
β

∫ t

0
S(s)ds − (µ + α + γ)t −

β2

2
σ2

1
1
t

∫ t

0
S 2

(s)ds +
σ2

2

2

)
+

1
t

∫ t

0
σ1βS(s)dB1(s) −

1
t

∫ t

0
σ2dB2(s)
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≤ −

[
(µ + α + γ) +

σ2
2

2

]
(1 − R∗0) −

1
t

∫ t

0
βS(s)ds

+
1
t

∫ t

0
σ1βS(s)dB1(s) −

1
t

∫ t

0
σ2dB2(s), (4.7)

where

Φ(t) =
µ

t(1 + µ − ρ)

∫ t

0
V(u)du −

µ

1 + µ − ρ

∫ t

0
R(u)du −

β2

2
σ2

1
1
t

∫ t

0
S 2

(s)ds

+
1
t

∫ t

0
σ1βS(s)dB1(s) −

1
t

∫ t

0
σ2dB2(s).

By the law of large numbers [18–20] Φ(t) = 0 as t → ∞; therefore;

lim
t→∞

sup
logI(t)

t
≤ −

[
(µ + α + γ) +

σ2
2

2

]
(1 − R∗0) −

1
t

∫ t

0
βS(s)ds < 0. (4.8)

This implies

lim
t→∞

I(t) = 0 a.s. (4.9)

From the third equation of model (2.2), it follows that

V(t) = e−µt

[
V(0) +

∫ t

0
ρeµ(s−t)S(s)ds −

∫ t

0
eµ(s−t)δ1V(s)ds −

∫ t

0
eµ(s−t)σ2V(s)dB2(s)

]
. (4.10)

By applying L’Hopital’s Rule to the above expression [21], we have

lim
t→∞

V(t) = 0. (4.11)

From the fourth equation of model (2.2), it follows that

R(t) = e−µt

[
R(0) +

∫ t

0
I(u)eµ(s−t)du

]
. (4.12)

By applying L’Hopital’s Rule to the above expression, we have

lim
t→∞

R(t) = 0. (4.13)

From (3.2) it follows that

N(t) = e−µt

[
N(0) + eµt

(
A − (1 − ρ)

µ

)]
S(t) + I(t) + V(t) + R(t) =

S(0) + I(0) + V(0) + R(0) + eµt
(

A−(1−ρ)
µ

)
eµt

lim
t→∞

S(t) = lim
t→∞

S(0) + I(0) + V(0) + R(0) + eµt
(

A−(1−ρ)
µ

)
eµt

− I(0) − V(0) −R(0)

lim
t→∞

S(t) =
A − (1 − ρ)

µ
. (4.14)

This concludes the proof. �
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5. Persistence of the disease

In this section, we will investigate conditions for the persistence of the disease.

Theorem 5.1. Assume µ >
(

1
2σ

2
1 ∨

1
2σ

2
2

)
. Let (S(t),I(t),V(t),R(t)) be the solution of the stochastic

model (2.2), with the initial values given by (S(0),I(0),V(0),R(0)) ∈ R4
+. If R∗0 > 1, then

lim
t→∞

∫ t

0
S(s)ds =

A
[ρ + (1 − ρ) + µ] R∗0

a.s,

lim
t→∞

∫ t

0
I(s)ds =

[
α + µ + γ

β(γ + α + µ)
−

1
2
σ2

2

]
(R∗0 − 1) a.s,

lim
t→∞

∫ t

0
V(s)ds =

(µ + δ1 + 1
2σ

2
2)

(δ1 + µ)
(R∗0 − 1) a.s,

lim
t→∞

∫ t

0
R(s)ds =

γ(γ + µ + α + 1
2σ

2
2)

β(µ + α + γ)

 (R∗0 − 1) a.s.

Proof. Given that R∗0 > 1, according to [22, Lemmas 5.1 and 5.2], we establish the following relation:

lim
t→∞

∫ t

0
I(s)ds =

Aβ
ρ+(1−ρ)+µ − (γ + α + µ)

γ+α+µ

ρ+(1−ρ)+µ

(5.1)

=

[
α + µ + γ

β(γ + α + µ)
−

1
2
σ2

2

]
(R∗0 − 1). (5.2)

Utilizing Eq (5.1), we derive:

lim
t→∞

∫ t

0
S(s)ds =

A
ρ + (1 − ρ) + µ

−
γ + α + µ

β
(R∗0 − 1)

=
A

[ρ + (1 − ρ) + µ] R∗0
. (5.3)

The third equation of (2.2) suggests that∫ t

0
V(s)ds =

1
µ + δ1

[
ρ

∫ t

0
S(s)ds − V(t) + V(0) +

∫ t

0
σ2(s)V(s)dB2(s)

]
.

Using Eq (5.3) in the above expression yields

lim
t→∞

∫ t

0
V(s)ds =

(δ1 + µ)(µ + δ1 + 1
2σ

2
2)

(δ1 + µ)
(R∗0 − 1).

Proceeding from the fourth equation of model (2.2), we deduce:

R(t) −R(0)

t
=
γ

t

∫ t

0
I(s)ds −

γ

t

∫ t

0
R(s)ds −

σ2

t

∫ t

0
R(s)dB2(s).

Employing (5.1) implies that

lim
t→∞

∫ t

0
R(s)ds =

[
γ(γ + µ + α)
β(µ + α + γ)

−
1
2
σ2

2

]
(R∗0 − 1). (5.4)

�
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6. Numerical scheme and results

In this section, we present a normal approximation for the stochastic S I V R model (2.2). We
consider the parameter values S(0) = 50, I(0) = 10, V(0) = 20, R(0) = 30, β = 0.05, A = 0.0123,
ρ = 0.24, µ = 0.112, α = 0.3, δ1 = 0.011, and γ = 0.312 from the literature [13] .

For the mathematical analysis, we first describe the corresponding deterministic numerical
model (2.1). The discretization of this model leads to the following numerical scheme [23]:

Sk+1 = Sk + (A − βSkIk − (ρ + (1 − ρ))Sk − µSk + δ1Vk) ∆t

−σ1βSkIk

√
∆ttk −

σ2
1

2
βIkSk((t2k − 1)∆t)

−σ2Sk

√
∆ttk −

σ2
2

2
Sk(t2k − 1)∆t; (6.1)

Ik+1 = Ik − (µ + α + γ)Ik∆t + σ1βSkIk

√
∆ttk

+
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σ2
2
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Ik(t2k − 1)∆t; (6.2)

Vk+1 = Vk + (ρSk − µVk − δ1Vk)∆t − σ2Vk

√
∆ttk −

σ2
2

2
Vk(t2k − 1)∆t; (6.3)

Rk+1 = Rk + (γIk − µRk)∆t − σ2Rk

√
∆ttk −

σ2
2

2
Rk(t2k − 1)∆t. (6.4)

Moving forward, we delve into the graphical depiction of the S I V R model dynamics captured
by (2.2). The following figures portray how the system’s behavior evolves under different stochastic
perturbation strengths, offering insights into the model’s robustness and potential
real-world implications.

The generated Figure 1 illustrates the evolution of the susceptible S , infected I , vaccinated V ,
and recovered R populations under different noise levels σ1. The results demonstrate how stochastic
perturbations influence disease dynamics, leading to either disease persistence or extinction, depending
on the intensity of fluctuations.

For low noise levels σ2 = 0.0, 0.01, the infected population I remains persistent over time,
indicating that the disease does not die out but fluctuates around an endemic state. However, for
higher noise levels σ2 = 0.02, 0.03, fluctuations become more pronounced, and in several instances,
the infected population decreases toward zero, suggesting that stochastic effects can drive the disease
to extinction.

The graphical results further illustrate and confirm these findings. The susceptible population S
increases slightly over time as vaccination and recovery reduce the number of infected individuals.
The infected population I decreases more rapidly when stochastic effects are stronger, illustrating
how noise can drive infection levels toward extinction. Meanwhile, the vaccinated V and recovered
R populations fluctuate but remain relatively stable, highlighting the role of vaccination in mitigating
infection spread. These results highlight the importance of incorporating stochasticity into epidemic
models, as real-world uncertainties in transmission and intervention strategies can lead to substantial
variations in disease outcomes.
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Figure 1. Analysis of disease persistence and extinction.

The Figure 2 illustrates the trajectories of the system in the susceptible-infected (S -I ) plane,
demonstrating how the disease evolves over time under different noise levels σ2. These trajectories
provide valuable insights into the long-term behavior of the epidemic and the role of stochastic
perturbations in shaping disease dynamics.

0 10 20 30 40 50
 (Susceptible)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5


 (I

nf
ec

te
d)

σ=0.0
σ=0.01
σ=0.02
σ=0.03

Figure 2. Phase diagram of (S versus I ).

For low noise levels σ2 = 0.0, 0.01, the infected population I exhibits cyclic behavior, meaning the
disease persists within the system without fading out completely. The trajectory stabilizes over time,
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implying a long-term endemic state, where fluctuations do not lead to disease elimination.
In contrast, for higher noise levels σ2 = 0.02, 0.03, the infected population I gradually declines

towards zero, indicating disease extinction due to the increasing influence of stochastic effects. The
randomness disrupts sustained transmission, causing occasional fluctuations that push infection levels
below the threshold required for persistence, ultimately leading to eradication.

From a biological and public health perspective, these findings highlight the critical role of
stochastic effects in disease dynamics. When stochasticity is weak, natural fluctuations are insufficient
to eliminate the infection, meaning stronger intervention strategies such as vaccination campaigns and
public health measures are required to prevent long-term persistence. However, when stochastic
effects are strong, random fluctuations alone can drive the disease toward extinction, emphasizing the
importance of considering variability in epidemic modeling. These results reinforce the need for
adaptive disease control policies that account for uncertainties in disease transmission and
intervention efficacy.

After perturbation, the path of S(t) in model (2.2) demonstrates noticeable changes as σ1 and σ2

vary from 0.00 to 0.03. Figure 3 illustrates these changes, showing the trajectories of S (t) for
different values of σ1 and σ2. At σ1 = σ2 = 0.00, the path remains close to the unperturbed trajectory,
indicating minimal stochastic influence. As σ1 and σ2 increase, the trajectory exhibits greater
fluctuation, reflecting the increased impact of stochasticity on the system. The perturbed paths diverge
further from the unperturbed trajectory, suggesting that higher levels of noise lead to greater
variability in the susceptible population. This observation underscores the importance of accounting
for stochastic effects when modeling infectious disease dynamics.
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Figure 3. The path S(t) for the model (2.2) at σ1 = σ2 = 0.00, 0.01, 0.02, 0.03.

The evolution of I(t) in model (2.2) exhibits distinct patterns as the levels of stochasticity,
characterized by σ1 and σ2, increase. When both σ1 and σ2 are 0.00, I(t) follows a smooth trajectory,
mirroring the deterministic dynamics of the system. However, as stochastic perturbations are
introduced with σ1 = σ2 = 0.01, 0.02, 0.03, the behavior of I(t) becomes more erratic, displaying
larger fluctuations around the deterministic solution. These fluctuations indicate the impact of
randomness on the infected population’s dynamics, emphasizing the need to consider stochastic
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factors in modeling infectious diseases for more accurate predictions. This trend is visually depicted
in Figure 4.
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Figure 4. The path I(t) for the model (2.2) at σ1 = σ2 = 0.00, 0.01, 0.02, 0.03.

The behavior of the vaccinated population, V(t), in model (2.2) under varying levels of
stochasticity, represented by σ1 and σ2, reveals notable trends. When σ1 and σ2 are both 0.00, V(t)

follows a deterministic trajectory, unaffected by stochastic fluctuations. However, as stochastic
perturbations are introduced with σ1 = σ2 = 0.01, 0.02, 0.03, the behavior of V(t) becomes more
erratic, showing increased variability around the deterministic solution. This increased variability
reflects the impact of randomness on the vaccinated population’s dynamics, highlighting the
importance of incorporating stochastic elements in modeling vaccination strategies for infectious
diseases. This trend is visually illustrated in Figure 5.
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Figure 5. The path V(t) for the model (2.2) at σ1 = σ2 = 0.00, 0.01, 0.02, 0.03.

The dynamics of the recovered population, R(t), in model (2.2) are also influenced by stochastic
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perturbations, as indicated by varying levels of σ1 and σ2. Initially, when both σ1 and σ2 are 0.00,
R(t) follows a smooth, deterministic trajectory. However, as stochasticity is introduced with σ1 = σ2 =

0.01, 0.02, 0.03, the behavior of R(t) becomes more erratic, exhibiting increased fluctuations around the
deterministic solution. These fluctuations underscore the impact of randomness on the dynamics of the
recovered population, suggesting that stochastic factors play a significant role in shaping the long-term
behavior of the system. Figure 6 visually depicts this trend.
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Figure 6. The path R(t) for the model (2.2) at σ1 = σ2 = 0.00, 0.01, 0.02, 0.03.

7. Conclusions

In conclusion, the stochastic S I V R model (2.2) provides valuable insights into the dynamics of
infectious diseases, incorporating both deterministic and stochastic elements. The analysis
demonstrates that stochastic perturbations, represented by σ1 and σ2, have a significant impact on the
long-term trends of the susceptible, infected, vaccinated, and recovered populations. These
perturbations introduce increased variability in the population dynamics, highlighting the importance
of stochasticity in disease transmission and control. The findings underscore the need to consider
stochastic factors in epidemiological models to enhance our understanding and management of
infectious diseases. Future research could focus on refining the model’s parameters and validating its
predictions using empirical data.
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