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Abstract: Subsampling techniques have been promoted in massive data and can substantially reduce
the computing time. However, existing subsampling techniques do not consider the case of dirty data,
especially the inaccuracy of covariates due to measurement errors, which will lead to the inconsistent
estimators of regression coefficients. Therefore, to eliminate the influence of measurement errors on
parameter estimators for massive data, this paper combined the corrected score function with the
subsampling technique. The consistency and asymptotic normality of the estimators in the general
subsampling are also derived. In addition, optimal subsampling probabilities are obtained based on
the general subsampling algorithm using the A-optimality and L-optimality criteria and the truncation
method, and then an adaptive two-step algorithm is developed. The effectiveness of the proposed
method is demonstrated through numerical simulations and two real data analyses.
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1. Introduction

The generalized linear model (GLM), a generalization of the linear model with wide applications
in many research areas, was proposed by Nelder and Wedderburn [1] in 1972 for discrete dependent
variables, which cannot be dealt with by the ordinary linear regression model. The GLM allows the
response variable to be nonnormal distributions, including binomial, Poisson, gamma, and inverse
Gaussian distributions, whose means are linked with the predictors by a link function.

Nowadays, with the rapid development of science and technology, massive data is ubiquitous in
many fields, including medicine, industry, and economics. Extracting effective information from
massive data is the core challenge of big data analysis. However, the limited arithmetic power of
computers tends to consume a lot of computing time. In order to deal with this challenge, parallel
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computing and distributed computing are commonly used, and subsampling techniques have emerged
as a result, i.e., a small number of representative samples are extracted from massive data. Imberg
et al. [2] proposed a theory on optimal design in the context of general data subsampling issues. It
includes and extends most existing methods, works out optimality conditions, and offers algorithms
for finding optimal subsampling scheme designs, which introduces a new class of invariant linear
optimality criteria. Chao et al. [3] presented an optimal subsampling approach for modal regression
with big data. The estimators are obtained by means of a two-step algorithm based on the modal
expectation maximization when the bandwidth is not related to the subsample size.

There has been a great deal of research on subsampling algorithms of specific models. Wang
et al. [4] devised a rapid subsampling algorithm to approximate the maximum likelihood estimators
in the context of logistic regression. Based on the previous study, Wang [5] presented an enhanced
estimation method for logistic regression, which has a higher estimation efficiency. In the case
that data are usually distributed in multiple distributed sites for storage, Zuo et al. [6] developed
a distributed subsampling procedure to effectively approximate the maximum likelihood estimators
of logistic regression. Ai et al. [7] focused on the optimal subsampling method under the A-
optimality criteria based on the method developed by Wang [4] for generalized linear models to quickly
approximate maximum likelihood estimators from massive data. Yao and Wang [8] examined optimal
subsampling methods for various models, including logistic regression models, softmax regression
models, generalized linear models, quantile regression models, and quasi-likelihood estimators. Yu
et al. [9] proposed an efficient subsampling procedure for online data streams with a multinomial
logistic model. Yu et al. [10] studied the subsampling technique for the Akaike information criterion
(AIC) and the smoothed AIC model-averaging framework for generalized linear models. Yu et al. [11]
reviewed several subsampling methods for massive datasets from the viewpoint of statistical design.

To the best of our knowledge, all the existing methods above assume that the covariates are
fully observable. However, in practice, this assumption is not realistic, and covariates may be
inaccurately observed owing to measurement errors, which will lead to biases in the estimators
of the regression coefficients. This means that we may incorrectly determine some unimportant
variables as significant, which in turn affects the model selection and interpretation. Therefore, it
is necessary to consider measurement errors. Liang et al. [12], Li and Xue [13], and Liang and Li [14]
investigated the partial linear measurement error models. Stefanski [15] and Nakamura [16] obtained
the corrected score functions of the GLM, such as linear regression, gamma regression, inverse gamma
regression, and Poisson regression. Yang et al. [17] proposed an empirical likelihood method based
on the moment identity of the corrected score function to perform statistical inference for a class of
generalized linear measurement error models. Fuller [18] estimated the variable error model using the
maximum likelihood method and studied statistical inference. Hu and Cui [19] proposed a corrected
error variance method to accurately estimate the error variance, which can effectively reduce the
influence of measurement error and false correlation at the same time. Carroll et al. [20] summarized
the measurement errors in linear regression and described some simple and universally applicable
measurement error analysis methods. Yi et al. [21] presented a regression calibration method, which is
one of the first statistical methods introduced to address measurement errors in the covariates. In
addition, they presented an overview of the conditional score and corrected score approaches for
measurement error correction. Regarding the measurement errors in different situations existing in
actual data, extensive research has been carried out, and a variety of methods have been proposed,

AIMS Mathematics Volume 10, Issue 2, 4412–4440.



4414

see [22–25]. Recently, a class of variable selection procedures has been developed for measurement
error models, see [26, 27]. More recently, Ju et al. [28] studied the optimal subsampling algorithm
and the random perturbation subsampling algorithm for big data linear models with measurement
errors. The aim of this paper is to estimate the parameters using a subsampling algorithm for a class of
generalized linear measurement error models in the massive data analysis.

In this paper, we study a class of the GLM with measurement errors, such as logistic regression
models and Poisson regression models. We combine the corrected score function method with
subsampling techniques to investigate subsampling algorithms. The consistency and asymptotic
normality of the estimators obtained in the general subsampling algorithm are derived. We optimize the
subsampling probabilities based on the design of A-optimality and L-optimality criteria and incorporate
a truncation method in the optimal subsampling probabilities to obtain the optimal estimators. In
addition, we develop an adaptive two-step algorithm and obtain the consistency and asymptotic
normality of the final subsampling estimators. Finally, the effectiveness of the proposed method is
demonstrated through numerical simulations and real data analysis.

The remainder of this paper is organized as follows: Section 2 introduces the corrected score
function under different distributions and derives the general subsampling algorithm and the adaptive
two-step algorithm. Sections 3 and 4 verify the effectiveness of the proposed method by generating
simulated experimental data and two real data sets, respectively. Section 5 provides conclusions.

2. Model and methodology

In the GLM, it is assumed that the conditional distribution of the response variable belongs to the
exponential family

f (y; θ) = exp
{
θy − b(θ)

a(φ)
+ c(y, φ)

}
,

where a(·), b(·), c(·, ·) are known functions, θ is called the natural parameter, and φ is called the
dispersion parameter.

Let {(Xi,Yi)}Ni=1 be independent and identically distributed random samples, µi =

E (Yi | Xi) , V (µi) = Var (Yi | Xi), where the covariate Xi ∈ R
p and the response variable Yi ∈ R, V(·) is

a known variance function. The conditional expectation of Yi given Xi is

g(µi) = XT
i β, (2.1)

where g(·) is the canonical link function, and β =
(
β1, . . . , βp

)T
is a p-dimensional unknown regression

parameter.
In practice, covariates are not always accurately observed, and there are measurement errors that

cannot be ignored. Let Wi be an accurate observation of the covariate Xi. Assuming that the additive
measurement error model is

Wi = Xi + Ui, (2.2)

where Ui ∼ Np(0,Σu), and it is independent of (Xi,Yi). Combining (2.1) and (2.2) yields a generalized
linear model with measurement errors.
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Define the log-likelihood function as `(β; Yi) =
N∑

i=1
log f (Yi;β). If Xi is observable, the score function

for β in (2.1) is
N∑

i=1

ηi (β; Xi,Yi) =

N∑
i=1

∂`(β; Yi)
∂β

=

N∑
i=1

Yi − µi

V(µi)
·
∂µi

∂β
,

and satisfies E[ηi (β; Xi,Yi) | Xi] = 0. However, when there is an error in Xi, directly replacing
Xi with Wi to calculate ηi (β; Xi,Yi) causes a bias, i.e., E[ηi (β; Xi,Yi)] = 0 will not always hold,
hence a correction is needed. We define an unbiased score function η∗i (Σu,β; Wi,Yi) for β satisfying
E[η∗i (Σu,β; Wi,Yi) | Xi] = 0 by the idea of [16]. The maximum likelihood estimator β̂MLE of β is the
solution of the estimating equation

Q(β) :=
N∑

i=1

η∗i (Σu,β; Wi,Yi) = 0. (2.3)

Based on the following moment identities associated with the error model (2.2),

E(Wi | Xi) = Xi,

E(WiWT
i | Xi) = XiXT

i + Σu,

E(exp(WT
i β) | Xi) = exp

(
XT

i β +
1
2
βTΣuβ

)
,

E
[
Wi exp

(
WT

i β
)
| Xi

]
= (Xi + Σuβ) exp

(
XT

i β +
1
2
βTΣuβ

)
,

E
[
Wi exp

(
−WT

i β
)
| Xi

]
= (Xi − Σuβ) exp

[
−XT

i β +
1
2
βTΣuβ

]
,

E
[
Wi exp

(
−2WT

i β
)
| Xi

]
= (Xi − 2Σuβ) exp

[
−2XT

i β + 2βTΣuβ
]
,

then we can construct the unbiased score function for binary logistic measurement error regression
models and Poisson measurement error regression models, which are widely used in practice.
(1) Binary logistic measurement error regression models.

We consider the logistic measurement error regression model
P (Yi = 1 | Xi) =

1

1 + exp
(
−XT

i β
) ,

Wi = Xi + Ui,

with mean µi =
[
1 + exp

(
−XT

i β
)]−1

and variance Var (Yi | Xi) = µi (1 − µi). Followed by Huang and
Wang [29], the corrected score function is

η∗i (Σu,β; Wi,Yi) = WiYi + (Wi + Σuβ) exp
(
−WT

i β −
1
2
βTΣuβ

)
Yi −Wi,

and its first-order derivative is
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Ω∗i (Σu,β; Wi,Yi) =
∂η∗i (Σu,β; Wi,Yi)

∂βT =
[
Σu − (Wi + Σuβ) (Wi + Σuβ)T

]
exp

(
−WT

i β −
1
2
βTΣuβ

)
Yi.

(2) Poisson measurement error regression models.
Let Yi follow the Poisson distribution with mean µi, Var (Yi | Xi) = µi. Consider the log linear

measurement error model  log (µi) = XT
i β,

Wi = Xi + Ui,

then we have the corrected score function

η∗i (Σu,β; Wi,Yi) = WiYi − (Wi − Σuβ) exp
(
WT

i β −
1
2
βTΣuβ

)
,

and its first-order derivative is

Ω∗i (Σu,β; Wi,Yi) =
∂η∗i (Σu,β; Wi,Yi)

∂βT =
[
Σu − (Wi − Σuβ) (Wi − Σuβ)T

]
exp

(
WT

i β −
1
2
βTΣuβ

)
.

2.1. General subsampling algorithm

It is assumed that πi is the probability of sampling the i-th sample (Wi,Yi), i = 1, . . . ,N. Let S be
the set of the subsamples

(
W̃i, Ỹi

)
with corresponding sampling probabilities π̃i, i.e., S =

{(
W̃i, Ỹi, π̃i

)}
with the subsample size r. The general subsampling algorithm is shown in Algorithm 1.

Algorithm 1 General subsampling algorithm.
Step 1. Given the subsampling probabilities πi, i = 1, . . . ,N of all data points.
Step 2. Perform repeated sampling with replacement r times to form the subsample set S ={(

W̃i, Ỹi, π̃i

)}
, where W̃i, Ỹi and π̃i represent the covariate, response variable and subsampling probability

in the subsample, respectively.

Step 3. Based on the subsample set S , solve the weighted estimation equation Q∗(β) to obtain
^

β, where

Q∗(β) :=
1
r

r∑
i=1

1
π̃i
η̃∗i

(
Σu,β; W̃i, Ỹi

)
= 0, (2.4)

where η̃∗i
(
Σu,β; W̃i, Ỹi

)
is the unbiased score function of i-th sample point in the subsample and its first

order derivative is Ω̃∗i
(
Σu,β; W̃i, Ỹi

)
.

To obtain the consistency and asymptotic normality of
^

β, the following assumptions should be
made. For simplicity, denote η∗i (Σu,β; Wi,Yi) and Ω∗i (Σu,β; Wi,Yi) as η∗i (Σu,β) and Ω∗i (Σu,β).

A1: It is assumed that WT
i β is almost necessarily in the interior of a closed set K ∈ Θ, Θ is a natural

parameter space.
A2: The regression parameters are located in the ball Λ =

{
β ∈ Rp : ‖β‖1 ≤ B

}
,βt and β̂MLE are

true parameters and maximum likelihood estimators, which are interior points of Λ , and B is
a constant, where ‖ · ‖1 denotes `1-norm.
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A3: As n → ∞, the observed information matrix MX := 1
N

N∑
i=1
Ω∗i

(
Σu, β̂MLE

)
is a positive definite

matrix in probability.

A4: Assume that for all β ∈ Λ, 1
N

N∑
i=1

∥∥∥η∗
i

(Σu,β)
∥∥∥4

= OP(1), where ‖ · ‖ denotes the Euclidean norm.

A5: Suppose that the full sample covariates have finite 6th-order moments, i.e., E‖W1‖
6
≤ ∞.

A6: For any δ ≥ 0, we assume that

1
N2+δ

N∑
i=1

∥∥∥η∗
i
(Σu, β̂MLE)

∥∥∥2+δ

π1+δ
i

= OP(1),
1

N2+δ

N∑
i=1

∣∣∣Ω∗( j1 j2)
i

(Σu, β̂MLE)
∣∣∣2+δ

π1+δ
i

= OP(1),

where Ω∗( j1 j2)
i

represents the elements of the j1-th row and j2-th column of the matrix Ω∗i .
A7: Assume that η∗i (Σu,β) and Ω∗i (Σu,β) are m(Wi)-Lipschitz continuous. For any β1, β2 ∈ Λ,

there exist functions m1(Wi) and m2(Wi) such that
∥∥∥η∗i (Σu,β1) − η∗i (Σu,β2)

∥∥∥ ≤ m1(Wi) ‖β1 − β2‖,∥∥∥Ω∗i (Σu,β1) −Ω∗i (Σu,β2)
∥∥∥

S
≤ m2(Wi) ‖β1 − β2‖, where ‖A‖S denotes the spectral norm of matrix

A. Further assume that E {m1(Wi)} ≤ ∞ and E {m2(Wi)} ≤ ∞.

Assumptions A1 and A2 are also used in Clémencon et al. [30]. The set Λ in Assumption A2 is
also known as the admissible set and is a prerequisite for consistency estimation for the GLM with full
data [31]. Assumption A3 imposes a condition on the covariates to ensure that the MLE based on the
full dataset is consistent. In order to obtain the Bahadur representation of the subsampling estimators,
Assumptions A4 and A5 are required. Assumption A6 is a moment condition for the subsampling
probability and is also required for the Lindberg-Feller central limit theorem. Assumption A7 adds a
restriction on smoothing, which can be found in [32].

The following theorems show the consistency and asymptotic normality of the subsampling
estimators.

Theorem 2.1. If Assumptions A1–A7 hold, as r → ∞ and N → ∞,
^

β converges to β̂MLE in conditional
probability given FN , and the convergence rate is r

1
2 . That is, for all ε > 0, there exist constants ∆ε

and rε such that

P
(∥∥∥∥∥^β − β̂MLE

∥∥∥∥∥ ≥ r−
1
2 ∆ε | FN

)
< ε, (2.5)

for all r > rε.

Theorem 2.2. If Assumptions A1–A7 hold, as r → ∞ and N → ∞, conditional on FN , the estimator
^

β
obtained from Algorithm 1 satisfies

V−
1
2 (
^

β − β̂MLE)
d
→Np(0, I), (2.6)

where V = M−1
X VCM−1

X = OP(r−1), and

VC =
1

N2r

N∑
i=1

η∗
i
(Σu, β̂MLE)η∗

i

T(Σu, β̂MLE)
πi

.

Remark 1. In order to get the standard error of the corresponding estimator, we estimate the variance-

covariance matrix of
^

β by
V̂ = M̂−1

X V̂CM̂−1
X ,
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where

M̂X =
1

Nr

r∑
i=1

Ω̃∗
i
(Σu, β̂MLE)
π̃i

,

V̂C =
1

N2r2

r∑
i=1

η̃∗
i
(Σu, β̂MLE)η̃∗

i

T(Σu, β̂MLE)

π̃2
i

.

Based on the A-optimality criteria in the optimal design language, the optimal subsampling

probabilities are obtained by minimizing the asymptotic mean square error of
^

β in Theorem 2.2.
However, Σu is usually unknown in practice. Therefore, we need to estimate the covariance matrix

Σu as suggested by [12]. We observe that the consistent, unbiased moment estimator of Σu is

Σ̂u =

N∑
i=1

mi∑
j=1

(
Wi j −Wi

) (
Wi j −Wi

)T

N∑
i=1

(mi − 1)
,

where Wi is the sample mean of the replicates, and mi is the number of repeated measurements of the
i-th individual.

Theorem 2.3. Define gmV
i =

∥∥∥M−1
X η

∗
i (Σu, β̂MLE)

∥∥∥ , i = 1, . . . ,N. The subsampling strategy is mV-
optimal if the subsampling probability is chosen such that

πmV
i =

gmV
i

N∑
j=1

gmV
j

, (2.7)

which is obtained by minimizing tr(V).

Theorem 2.4. Define gmVc
i =

∥∥∥η∗i (Σu, β̂MLE)
∥∥∥ , i = 1, . . . ,N. The subsampling strategy is mVc-optimal

if the subsampling probability is chosen such that

πmVc
i =

gmVc
i

N∑
j=1

gmVc
j

, (2.8)

which is obtained by minimizing tr(VC).

Remark 2. MX and VC are non-negative definite matrices, and V = M−1
X VCM−1

X , then tr(V) =

tr
(
M−1

X VCM−1
X

)
≤ σmax

(
M−2

X

)
tr (VC), where σmax (A) represents the maximum eigenvalue of square

matrix A. As σmax

(
M−2

X

)
does not depend on π, minimizing tr(VC) means minimizing the upper bound

of tr(V). In fact, for two given subsampling probabilities π1 and π2, V (π1) ≤ V (π2) if and only if
VC (π1) ≤ VC (π2). Therefore, minimizing tr(VC) reduces considerable computational time compared
to minimizing tr(V), and tr(VC) does not take into account the structural information of the data.
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2.2. Optimal subsampling algorithm

The optimal subsampling probabilities are defined as
{
π

op
i

}N

i=1
=

{
πmV

i

}N

i=1
or

{
πmVc

i

}N

i=1
. However,

because πop
i depends on β̂MLE, it cannot be used directly in applications. To calculate πop

i , it is necessary
to use a prior estimator β̃0, which is obtained by the prior subsample of size r0.

We know π
op
i is proportional to

∥∥∥η∗i (Σu, β̂MLE)
∥∥∥, however, in actual situations, there may be some

data points that make η∗i (Σu, β̂MLE) = 0, which will never be included in a subsample, and some data
points with η∗i (Σu, β̂MLE) ≈ 0 also have small probabilities of being sampled. If these special data
points are excluded, some sample information will be missed, but if these data points are included, the
variance of the subsampling estimator may increase.

To avoid Eq (2.4) from being inflated by these special data points, this paper adopts a
truncation method, setting a threshold ω for

∥∥∥η∗i (Σu, β̂MLE)
∥∥∥, that is, replacing

∥∥∥η∗i (Σu, β̂MLE)
∥∥∥ with

max
{∥∥∥η∗i (Σu, β̂MLE)

∥∥∥ , ω}
, where ω is a very small positive number, for example, 10−4. In applications,

the choice and design of the truncation weight function, which is a commonly used technique, are
crucial to improving the robustness of the model and optimizing the performance.

We replace β̂MLE in the matrix V with β̃0, denoted as Ṽ, then tr
(
Ṽ
)
≤ tr

(
Ṽω

)
≤ tr

(
Ṽ
)
+ ω2

N2r

N∑
i=1

‖M−1
X ‖

2

π
op
i

.

Therefore, when ω is sufficiently small, tr
(
Ṽω

)
approaches tr

(
Ṽ
)
. The threshold ω is set to make

the subsample estimators more robust without sacrificing excessively estimation efficiency. M̃X =

1
Nr0

r0∑
i=1
Ω∗i (Σu, β̃0) based on the prior subsample can be used to approximate MX. The two-step algorithm

is presented in Algorithm 2.

Algorithm 2 Optimal subsampling algorithm.
Step 1. Extract a prior subsample set S r0 with a subsample size of r0 from the full data, assuming that
the subsampling probabilities of the prior subsample are πUNIF =

{
πi := 1

N

}N

i=1
. We use Algorithm 1 to

obtain a prior estimator β̃0, replace β̂MLE with β̃0 in Eqs (2.7) and (2.8) to get the optimal subsampling
probabilities

{
π

opt
i

}N

i=1
.

Step 2. Use the optimal subsample probabilities
{
π

opt
i

}N

i=1
computed in Step 1 to extract a subsample

size of r with replacement. According to the step in Algorithm 1, combining the subsamples from
Step 1 and solving the estimating Eq (2.4) to get the estimator β̌ based on a subsample of total size
r0 + r.

Remark 3. In Algorithm 2, β̃0 in Step 1 satisfies

Q∗0
β̃0

(β) =
1
r0

r0∑
i=1

η̃∗i (Σu,β)
πUNIF

i

= 0

with the prior subsample set S r0 , and

Mβ̃0
X =

1
Nr0

r0∑
i=1

Ω̃∗i (Σu, β̃0)
πUNIF

i

.

In Step 2, the subsampling probabilities are
{
π

opt
i

}N

i=1
=

{
πmVt

i

}N

i=1
or

{
πmVct

i

}N

i=1
, let
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gmVt
i =


∥∥∥M−1

X η
∗
i (Σu, β̂MLE)

∥∥∥ , if
∥∥∥η∗i (Σu, β̂MLE)

∥∥∥ > ω
ω

∥∥∥M−1
X

∥∥∥ , if
∥∥∥η∗i (Σu, β̂MLE)

∥∥∥ < ω , i = 1, . . . ,N,

gmVct
i = max

{∥∥∥η∗i (Σu, β̂MLE)
∥∥∥ , ω}

,

then

πmVt
i =

gmVt
i

N∑
j=1

gmVt
j

and πmVct
i =

gmVct
i

N∑
j=1

gmVct
j

.

The subsample set is S r0 ∪
{(

W̃i, Ỹi, π̃
opt
i

)
| i = 1, . . . , r

}
with a subsample size of r + r0, and β̌ is the

solution to the corresponding estimating equation

Qtwo−step
β̃0

(β) =
1

r + r0

r+r0∑
i=1

η̃∗i (Σu,β)

π̃
opt
i

=
r

r + r0
Q∗
β̃0

(β) +
r0

r + r0
Q∗0
β̃0

(β) = 0,

where

Q∗
β̃0

(β) =
1
r

r∑
i=1

η̃∗
i
(Σu,β)

π̃
opt
i

.

Theorem 2.5. If Assumptions A1–A7 hold, as r0r−1 → 0, r0 → ∞, r → ∞ and N → ∞, if β̃0 exists,
then the estimator β̌ obtained from Algorithm 2 converges to β̂MLE in conditional probability given FN ,
and its convergence rate is r

1
2 . For all ε > 0, there exist finite ∆ε and rε such that

P
(∥∥∥β̌ − β̂MLE

∥∥∥ ≥ r−
1
2 ∆ε | FN

)
< ε, (2.9)

for all r > rε.

Theorem 2.6. If Assumptions A1–A7 hold, as r0r−1 → 0, r0 → ∞, r → ∞ and N → ∞, conditional on
FN , the estimator β̌ obtained from Algorithm 2 satisfies

V
− 1

2
opt(β̌ − β̂MLE)

d
→Np(0, I), (2.10)

where Vopt = M−1
X Vopt

C M−1
X = OP(r−1), and

Vopt
C =

1
N2r

N∑
i=1

η∗
i
(Σu, β̂MLE)η∗

i

T(Σu, β̂MLE)

π
opt
i

.

Remark 4. We estimate the variance-covariance matrix of β̌ by

V̂opt = M̂−1
X V̂opt

C M̂−1
X ,

where

M̂X =
1

N (r0 + r)

 r0∑
i=1

Ω̃∗
i
(Σu, β̂MLE)
π̃UNIF

i

+

r∑
i=1

Ω̃∗
i
(Σu, β̂MLE)

π̃
opt
i

 ,
V̂opt

C =
1

N2(r0 + r)2

 r0∑
i=1

η̃∗
i
(Σu, β̂MLE)η̃∗

i

T(Σu, β̂MLE)

π̃UNIF2

i

+

r∑
i=1

η̃∗
i
(Σu, β̂MLE)η̃∗

i

T(Σu, β̂MLE)

π̃
opt2
i

 .
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3. Simulation studies

In this section, we perform numerical simulations using synthetic data to evaluate the finite sample
performance of the proposed method in Algorithm 2 (denoted as mV and mVc). For a fair comparison,
we also give the results of the uniform subsampling method and set the size to be the same as that
of Algorithm 2. The estimators of the above three subsampling methods, uniform—the uniform
subsampling, mV—the mV probability subsampling, and mVc—the mVc probability subsampling,
are compared with MLE—the maximum likelihood estimators for full data. In addition, we conduct
simulation experiments using two models: the logistic regression model and the Poisson regression
model.

3.1. Binary logistic measurement error regression model

Set the sample size N = 100000, the true value βt = (0.5,−0.6, 0.5)T, the covariate Xi ∼ N3(0,Σ),
where Σ = 0.5I + 0.511T, I is an identity matrix. The response Yi follows a binomial distribution
with P (Yi = 1 | Xi) =

(
1 + exp(−XT

i βt)
)−1

. We consider the following three cases to generate the
measurement error term Ui.

• Case 1: Ui ∼ N3(0, 0.42I);
• Case 2: Ui ∼ N3(0, 0.52I);
• Case 3: Ui ∼ N3(0, 0.62I).

The subsample size in Step 1 of Algorithm 2 is selected as r0 = 400. The subsample size r is set to
be 500, 1000, 1500, 2000, 2500, and 5000. In order to verify that β̌ can asymptotically approach βt ,

we repeat K = 1000 and calculate MS E = 1
K

K∑
k=1

∥∥∥β̌(k) − βt

∥∥∥2
, where β̌(k) is the parameter estimator of

the subsample generated by the k-th repetition.

The simulation results are shown in Figure 1, which can be seen that both mV and mVc always have
smaller MSEs than uniform subsampling. The MSEs of all the subsampling methods decrease as an
increase of r, which confirms the theoretical results of the consistency of the subsampling methods. As
the variance of the error term increases, the MSEs of uniform, mV, and mVc also increase. The mV is
better than the mVc because the subsampling probabilities of mV take the structural information of the
data into account. A comparison between the corrected and uncorrected methods shows that the MSEs
of the corrected methods are much smaller than those of the uncorrected methods, and the difference
between the corrected and uncorrected methods increases as the error variance increases.

Now, we evaluate the statistical inference performance of the optimal subsampling method for
different r and variances of Ui. The parameter β1 is taken as an example, and a 95% confidence
interval is constructed. Table 1 reports the empirical coverage probabilities and average lengths of three
subsampling methods. It is evident that both mV and mVc have similar performance and consistently
outperform the uniform subsampling method. As r increases, the length of the confidence interval
uniformly decreases.
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 1. MSEs for β̌ with different second step subsample size r and r0 = 400. The
colorful icons and lines represent the corrected subsampling methods. The gray icons and
lines represent the uncorrected subsampling methods.
Table 1. Empirical coverage probabilities and average lengths of confidence intervals for β1

in the logistic regression models with different r and r0 = 500.
uniform mV mVc

Case r Coverage Length Coverage Length Coverage Length
500 0.958 0.565 0.932 0.331 0.942 0.457
1000 0.952 0.453 0.925 0.248 0.954 0.333

Case 1 1500 0.960 0.387 0.920 0.206 0.964 0.274
2000 0.932 0.345 0.907 0.180 0.954 0.237
2500 0.938 0.313 0.910 0.160 0.956 0.211
5000 0.964 0.302 0.908 0.148 0.937 0.202
500 0.956 0.634 0.946 0.602 0.962 0.613
1000 0.946 0.621 0.934 0.586 0.946 0.593

Case 2 1500 0.927 0.597 0.954 0.551 0.962 0.561
2000 0.943 0.543 0.956 0.524 0.921 0.518
2500 0.970 0.475 0.958 0.453 0.944 0.462
5000 0.963 0.438 0.932 0.417 0.947 0.441
500 0.958 0.706 0.956 0.432 0.968 0.550
1000 0.946 0.561 0.972 0.399 0.970 0.409

Case 3 1500 0.944 0.479 0.968 0.321 0.960 0.329
2000 0.936 0.425 0.964 0.265 0.958 0.281
2500 0.926 0.389 0.966 0.249 0.954 0.250
5000 0.915 0.356 0.947 0.220 0.942 0.236

3.2. Poisson measurement error regression model

Let βt = (0.5,−0.6, 0.5)T, the covariate Xi ∼ N3(0,Σ), where Σ = 0.3I + 0.511T, I is an identity
matrix. We consider the following three cases to generate the measurement error term Ui.
• Case 1: Ui ∼ N3(0, 0.32I);
• Case 2: Ui ∼ N3(0, 0.42I);
• Case 3: Ui ∼ N3(0, 0.52I).

We also generate a sample of N = 100000 following Poisson (µi), where µi = exp
(
XT

i βt

)
.

distribution, and summarize the MSEs with the number of simulations K = 1000 in Figure 2. The
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other settings are the same as those in the logistic regression example.
In Figure 2, it can be seen that the MSEs of both the mV and mVc methods are smaller than

those of the uniform subsampling, with the mV method being the optimal. In addition, the corrected
method is obviously effective, which is consistent with Figure 1. Table 2 reports the empirical coverage
probabilities and average lengths of 95% confidence interval of the parameter β3 for three subsampling
methods. The conclusions of Table 2 are consistent with those of Table 1, but the average lengths of
the intervals for Poisson regression are significantly longer than those for logistic regression.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 2. MSEs for β̌ with different second step subsample size r and r0 = 400. The
colorful icons and lines represent the corrected subsampling methods. The gray icons and
lines represent the uncorrected subsampling methods.

Table 2. Empirical coverage probabilities and average lengths of confidence intervals for β3

in the Poisson regression models with different r and r0 = 500.
uniform mV mVc

Case r Coverage Length Coverage Length Coverage Length
500 0.962 0.441 0.962 0.383 0.958 0.399
1000 0.944 0.352 0.964 0.291 0.964 0.304

Case 1 1500 0.932 0.302 0.964 0.241 0.966 0.255
2000 0.952 0.268 0.930 0.210 0.944 0.223
2500 0.946 0.244 0.958 0.188 0.974 0.201
5000 0.952 0.234 0.961 0.173 0.943 0.185
500 0.938 0.127 0.936 0.108 0.948 0.109
1000 0.936 0.102 0.946 0.082 0.934 0.082

Case 2 1500 0.942 0.087 0.934 0.069 0.936 0.068
2000 0.952 0.078 0.956 0.060 0.952 0.059
2500 0.946 0.071 0.932 0.053 0.944 0.053
5000 0.935 0.068 0.965 0.045 0.971 0.047
500 0.940 0.185 0.936 0.153 0.953 0.156
1000 0.950 0.148 0.954 0.113 0.958 0.118

Case 3 1500 0.932 0.127 0.950 0.094 0.958 0.099
2000 0.946 0.113 0.952 0.082 0.960 0.086
2500 0.942 0.103 0.932 0.073 0.950 0.077
5000 0.937 0.096 0.956 0.065 0.964 0.061

In order to explore the influence of different subsample size allocated in the two-step algorithm,
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we calculate the MSEs for r0 at different proportions under the condition that the total subsample size
remains constant. Set the total subsample size r0 + r = 3000, and the result is shown in Figure 3. It
can be seen that the accuracy of the two-step algorithm will initially improve with the increase of r0.
However, when r0 increases to a certain extent, the accuracy of the algorithm begins to decrease. There
are two reasons: (1) if r0 is too small, the estimators in the first step will be biased, and it is difficult to
ensure the accuracy; (2) if r0 are too large, then the performances of mV and mVc are similar to that of
the uniform subsampling. When r0/(r0 + r) is around 0.25, the two-step algorithm performs the best.

(a) logistic (r0 + r = 3000) (b) Poisson (r0 + r = 3000)

Figure 3. MSEs vs proportions of the first step subsample with fixed total subsample size
for logistic and Poisson models with Case 1.

We use the Sys.time() function in R to calculate the running time of three subsampling methods and
full data. We conduct 1000 repetitions, set r0 = 200, and consider different r values in Case 1. The
results are shown in Tables 3 and 4. It is easy to find that the uniform subsampling algorithm requires
the least computation time. Because there is no need to calculate the subsampling probabilities. In
addition, the mV method takes longer than the mVc method, and this result is consistent with the
theoretical analysis in Section 2.

Table 3. Computing time (in seconds) for logistic regression with Case 1 for different r and
fixed r0 = 200.

r
Method 300 500 800 1200 1600 2000
uniform 0.2993 0.3337 0.4985 0.5632 0.8547 0.5083
mV 3.5461 3.6485 3.8623 4.1256 4.4325 5.2365
mVc 3.2852 3.3658 3.5463 3.8562 4.0235 4.4235
Full 45.9075

Table 4. Computing time (in seconds) for Poisson regression with Case 1 for different r and
fixed r0 = 200.

r
Method 300 500 800 1200 1600 2000
uniform 0.4213 0.4868 0.5327 0.5932 0.7147 0.8883
mV 4.6723 4.8963 5.2369 5.6524 6.0128 6.3567
mVc 4.3521 4.6329 4.9658 5.2156 5.7652 5.9635
Full 51.2603
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4. Real data

4.1. Global census dataset

In this section, we apply the proposed method to analyze the 1994 global census data, which
contains 42 countries, from the Machine Learning Database [33]. There are 5 covariates in the data: x1

represents age; x2 represents the population weight value, which is assigned by the Population Division
of the Census Bureau and is related to socioeconomic characteristics; x3 represents the highest level of
education, that is, the highest level of education since primary school; x4 represents capital loss, which
refers to the loss of income from bad investment, which is the difference between the lower selling
price and the higher purchase price of an individual’s investment; x5 represents weekly working hours.
If an individual’s annual income exceeds 50,000 dollars, it is expressed as yi = 1 and yi = 0 otherwise.

To verify the effectiveness of the proposed method, we add the measurement errors to the covariates
x2, x4 and x5 in this dataset, and the covariance matrix of the measurement error is

Σu =


0

0.04
0

0.04
0.04


.

We split the full dataset into a training set of 32561 observations and a test set of 16281 observations
in a 2:1 ratio. We apply the proposed method to the training set and evaluate the classification

performance with the test set. We calculate LEMS E = log
(

1
K

K∑
k=1

∥∥∥β̌(k) − β̂MLE

∥∥∥2
)

based on 1000

bootstrap subsample estimators with r = 500, 1000, 1500, 2200, 2500, and r0 = 500. The corrected
MLE estimators for the training set are β̂err

MLE,0 = −1.6121, β̂err
MLE,1 = 1.1992, β̂err

MLE,2 = 0.0103,
β̂err

MLE,3 = 0.9142, β̂err
MLE,4 = 0.2617, β̂err

MLE,5 = 0.8694.
Table 5 shows the average estimators and the corresponding standard errors based on the proposed

method (r0 = 500, r = 2000). It can be seen that the estimators from three subsampling methods are
close to the estimators from the full data. In general, the mV and mVc subsampling methods produce
small standard errors.

Table 5. Average estimators based on subsamples with measurement error and subsample
size r = 2000. The numbers in parentheses are the standard errors of the average estimators.

uniform mV mVc
Intercept -1.6084(0.069) -1.5998(0.055) -1.3122(0.052)
β̌err

1 1.2879(0.205) 1.1880(0.103) 1.2038(0.097)
β̌err

2 0.0105(0.106) 0.0104(0.059) 0.0111(0.046)
β̌err

3 1.0033(0.201) 0.9217(0.067) 0.9199(0.054)
β̌err

4 0.2636(0.094) 0.2698(0.054) 0.2555(0.063)
β̌err

5 0.9469(0.229) 0.8741(0.083) 0.8628(0.076)

All subsampling methods show that each variable has a positive impact on income, with age, highest
education level, and weekly working hours having significant impacts on income. Interestingly, capital
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losses have a significant positive impact on income because low-income people rarely invest. However,
the population weight value has the smallest impact on income, the reason should be more inclined
to reflect the overall distribution characteristics among groups rather than the specific economic
performance of individuals. Income is a highly volatile variable, and the income gap between different
groups may be large. Even under the same socioeconomic characteristics, the income distribution may
have a large variance. This high variability weakens the overall impact of the population weight on
income.

Fix r0 = 500, Figure 4(a) shows the LEMSEs calculated for the subsample with measurement errors.
We can see that the LEMSEs of the corrected methods are much smaller than those of the uncorrected
methods. As r increases, the LEMSEs become increasingly small. The estimators of the subsampling
methods are consistent and the mV method is the best. Figure 4(b) shows the proportion of responses
in the test set being correctly classified for different subsample sizes. The mV performs slightly better
than the mVc. It can also be seen that the prediction accuracy of the corrected subsampling methods is
slightly greater compared with the correspondingly uncorrected methods.

(a) LEMSE (b) Prediction accuracy

Figure 4. LEMSEs and model prediction accuracy (proportion of correctly classified
models) for the subsample with measurement errors. The colorful icons and lines represent
the corrected subsampling methods. The gray icons and lines represent the uncorrected
subsampling methods.

4.2. Creditcard fraud dataset

This subsection applies the corrected subsampling method to creditcard fraud detection dataset
from Kaggle ∗, and the dependent variable is whether an individual has committed creditcard fraud.
There are 284,807 pieces of data in the dataset, with a total of 492 fraud cases. Since the data
involves sensitive information, the covariates have all been processed by principal component analysis
with a total of 28 principal components. Amount represents the consumption amount, class is the
dependent variable, 1 represents fraud, and 0 means normal. The first four principal components and
the consumption amount are selected as independent variables.

To verify the effectiveness of the proposed method, we add the measurement errors to the covariates,
and the covariance matrix of the measurement error is Σu = 0.16I. We split the dataset into the training

∗https://www.kaggle.com/datasets/creepycrap/creditcard-fraud-dataset
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set and the test set in a 3:1 ratio and summarize the LEMSEs based on the number of simulations
K = 1000 with r = 500, 1000, 1500, 2200, 2500, 5000, and r0 = 500.

The MLE estimators for the training set are β̂err
MLE,0 = −8.8016, β̂err

MLE,1 = −0.6070, β̂err
MLE,2 = 0.0737,

β̂err
MLE,3 = −0.9056, β̂err

MLE,4 = 1.4553, β̂err
MLE,5 = −0.1329. Table 6 shows the average estimators and

the corresponding standard errors (r0 = 500, r = 2000). It can be seen that the estimators from three
subsampling methods are close to the estimators from the full data. In general, the mV and mVc
subsampling methods produce small standard errors. From Figure 5, we can obtain similar results as
in Figure 4.

Table 6. Average estimators based on subsamples with measurement error and subsample
size r = 2000. The numbers in parentheses are the standard errors of the average estimators.

uniform mV mVc
Intercept -8.7934(0.0678) -8.8105(0.0562) -8.8135(0.0543)
β̌err

1 -0.6123(0.341) -0.6047(0.142) -0.6035(0.105)
β̌err

2 0.0712(0.125) 0.0730(0.064) 0.0798(0.088)
β̌err

3 -0.9321(0.245) -0.9087(0.067) -0.9123(0.057)
β̌err

4 1.4618(0.198) 1.4580(0.054) 1.4603(0.075)
β̌err

5 -0.1435(0.531) -0.1347(0.242) -0.1408(0.225)

(a) LEMSE (b) Prediction accuracy

Figure 5. LEMSEs and model prediction accuracy (proportion of correctly classified
models) for the subsample with measurement errors. The colorful icons and lines represent
the corrected subsampling methods. The gray icons and lines represent the uncorrected
subsampling methods.

5. Conclusions

In this paper, we not only combine the corrected score method with the subsampling technique,
but also theoretically derive the consistency and asymptotic normality of the subsampling estimators.
In addition, an adaptive two-step algorithm is developed based on optimal subsampling probabilities
using A-optimality and L-optimality criteria and the truncation method. The theoretical results of
the proposed method are tested with simulated and two real datasets, and the experimental results
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demonstrate the effectiveness and good performance of the proposed method.
This paper merely assumes that the covariates are affected by the measurement error. However, in

practical applications, the response variables can be influenced by measurement errors. The optimal
subsampling probabilities are obtained by minimizing tr(V) or tr(VC) using the design ideas of the
A-optimality and L-optimality criteria. In the future, the other optimality criteria for subsampling can
be considered to develop more efficient algorithms.
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The proofs of the following lemmas and theorems are primarily based on Wang et al. [5], Ai et al. [7]
and Yu et al. [34].
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Lemma 1. If Assumptions A1–A4 and A6 hold, as r → ∞ and N → ∞, conditional on FN , we have

^

MX −MX = OP|FN (r−
1
2 ), (A.1)

1
N

Q∗(β̂MLE) −
1
N

Q(β̂MLE) = OP|FN (r−
1
2 ), (A.2)

1
N

V−
1
2

C Q∗(β̂MLE)
d
→Np(0, I), (A.3)

where
^

MX =
1

Nr

r∑
i=1

Ω̃∗
i
(Σu, β̂MLE)
π̃i

,

and

VC =
1

N2r

N∑
i=1

η∗
i
(Σu, β̂MLE)η∗

i

T(Σu, β̂MLE).

Proof.

E
(^
MX

∣∣∣∣∣FN

)
= E

 1
Nr

r∑
i=1

Ω̃∗i (Σu, β̂MLE)
π̃i

∣∣∣∣∣∣∣FN


=

1
Nr

r∑
i=1

N∑
j=1

π j

Ω∗j(Σu, β̂MLE)

π j

=
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE)

= MX.

By Assumption A6, we have

E
(^M j1 j2

X −M j1 j2
X

)2
∣∣∣∣∣∣∣FN


=E


 1

Nr

r∑
i=1

Ω̃
∗( j1 j2)
i (Σu, β̂MLE)

π̃i
−

1
N

N∑
i=1

Ω
∗( j1 j2)
i (Σu, β̂MLE)

2
∣∣∣∣∣∣∣∣FN


=

1
r

N∑
i=1

πi

Ω∗( j1 j2)
i (Σu, β̂MLE)

Nπi
−M j1 j2

X

2

=
1
r

N∑
i=1

πi

Ω∗( j1 j2)
i (Σu, β̂MLE)

Nπi

2

−
1
r

(
M j1 j2

X

)2

≤
1
r

N∑
i=1

πi

Ω∗( j1 j2)
i (Σu, β̂MLE)

Nπi

2

=OP(r−1).

AIMS Mathematics Volume 10, Issue 2, 4412–4440.



4432

It follows from Chebyshev’s inequality that (A.1) holds.

E
(

1
N

Q∗(β̂MLE)
∣∣∣∣∣FN

)
= E

 1
N

1
r

r∑
i=1

η̃∗i (Σu, β̂MLE)
π̃i

∣∣∣∣∣∣∣FN


=

1
Nr

r∑
i=1

N∑
j=1

π j

η∗j(Σu, β̂MLE)

π j

=
1
N

N∑
i=1

η∗i (Σu, β̂MLE)

= 0.

By Assumption A4, we have

Var
(

1
N

Q∗(β̂MLE)
∣∣∣∣∣FN

)
= Var

 1
N

1
r

r∑
i=1

η̃∗i (Σu, β̂MLE)
π̃i


∣∣∣∣∣∣∣FN


=

1
N2r2

r∑
i=1

N∑
j=1

π j
η∗i (Σu, β̂MLE)η∗Ti (Σu, β̂MLE)

π2
j

=
1

N2r

N∑
i=1

η∗i (Σu, β̂MLE)η∗Ti (Σu, β̂MLE)
πi

= OP(r−1).

Now (A.2) follows from Markov’s Inequality.

Let γ∗i = (Nπi)−1η̃∗
i
(Σu, β̂MLE), then N−1Q∗(β̂MLE) = r−1

r∑
i=1
γ∗i holds. Based on Assumption A6, for

all ε > 0, we have
r∑

i=1

E
{∥∥∥∥r−

1
2γ∗i

∥∥∥∥2
I
(∥∥∥γ∗i ∥∥∥ > r

1
2ε

) ∣∣∣∣∣FN

}
=

1
r

r∑
i=1

E
{∥∥∥γ∗i ∥∥∥2

I
(∥∥∥γ∗i ∥∥∥ > r

1
2ε

) ∣∣∣∣FN

}
≤

1

r
3
2ε

r∑
i=1

E
{∥∥∥γ∗i ∥∥∥3

∣∣∣∣FN

}
=

1

r
1
2ε

1
N3

N∑
i=1

∥∥∥γ∗i ∥∥∥3

π2
i

=OP(r−
1
2 ) = oP(1).

This shows that the Lindeberg-Feller conditions are satisfied in probability. Therefore (A.3) is true. �

Lemma 2. If Assumptions A1–A7 hold, as r → ∞ and N → ∞, conditional on FN , for all sr → 0, we
have

1
Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)
π̃i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE) = oP|FN (1). (A.4)
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Proof. The Eq (A.4) can be written as

1
Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)
π̃i

−
1

Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE)
π̃i

+
1

Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE)
π̃i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE).

Let

τ1 :=
1

Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)
π̃i

−
1

Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE)
π̃i

,

then by Assumption A7, we have

E (‖τ1‖S | FN) =E

 1
Nr

N∑
i=1

1
π̃i

∥∥∥∥Ω̃∗i (Σu, β̂MLE + sr) − Ω̃∗i (Σu, β̂MLE)
∥∥∥∥

S

∣∣∣∣∣∣∣FN


=

1
Nr

r∑
i=1

N∑
j=1

π j
1
π j

∥∥∥Ω∗i (Σu, β̂MLE + sr) −Ω∗i (Σu, β̂MLE)
∥∥∥

S

≤
1
N

N∑
i=1

m2(Wi)‖sr‖

=oP(1).

It follows from Markov’s inequality that τ1 = oP|FN (1).
Let

τ2 :=
1

Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE)
π̃i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE),

then

E

 1
Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE)
π̃i

∣∣∣∣∣∣∣FN

 =
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE).

From the proof of Lemma 1, it follows that

E
(^M j1 j2

X −M j1 j2
X

)2
∣∣∣∣∣∣∣FN

 = OP(r−1) = oP(1).

Therefore τ2 = oP|FN (1), and (A.4) holds
�

Next, we will prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1.
^

β is the solution of Q∗(β) = 1
r

r∑
i=1

1
π̃i
η̃∗

i
(Σu,β) = 0 , then

E
(

1
N

Q∗(β)
∣∣∣∣∣FN

)
=

1
Nr

r∑
i=1

N∑
j=1

π j

η∗j(Σu,β)

π j
=

1
N

N∑
i=1

η∗i (Σu,β) =
1
N

Q(β).

By Assumption A6, we have
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Var
(

1
N

Q∗(β)
∣∣∣∣∣FN

)
= Var

 1
N

1
r

r∑
i=1

η̃∗i (Σu,β)
π̃i

∣∣∣∣∣∣∣FN


=

1
N2r2

r∑
i=1

N∑
j=1

π j
η∗i (Σu,β)η∗Ti (Σu,β)

π2
j

=
1

N2r

N∑
i=1

η∗i (Σu,β)η∗Ti (Σu,β)
πi

= OP(r−1).

Therefore, as r → ∞, N−1Q∗(β) − N−1Q(β) −→ 0 for all β ∈ Λ in conditional probability given FN .

Thus, from Theorem 5.9 in [32], we have
∥∥∥∥∥^β − β̂MLE

∥∥∥∥∥ = oP|FN (1). By Taylor expansion,

1
N

Q∗(
^

β) = 0 =
1
N

Q∗(β̂MLE) +
1

Nr

r∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)
π̃i

(
^

β − β̂MLE).

By Lemma 2, it follows that

1
Nr

N∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)
π̃i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE) = oP|FN (1),

then

0 =
1
N

Q∗(β̂MLE) +
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE)(
^

β − β̂MLE) + oP|FN (1)(
^

β − β̂MLE).

Here is
1
N

Q∗(β̂MLE) + MX(
^

β − β̂MLE) + oP|FN

(∥∥∥∥∥^β − β̂MLE

∥∥∥∥∥) = 0,

we have
^

β − β̂MLE = −M−1
X

{
1
N

Q∗(β̂MLE) + oP|FN

(∥∥∥∥∥^β − β̂MLE

∥∥∥∥∥)}
= −M−1

X V
1
2
CV−

1
2

C
1
N

Q∗(β̂MLE) + M−1
X oP|FN

(∥∥∥∥∥^β − β̂MLE

∥∥∥∥∥)
= OP|FN

(
r−

1
2
)

+ oP|FN

(∥∥∥∥∥^β − β̂MLE

∥∥∥∥∥) .
(A.5)

By Lemma 1 and Assumption A3, M−1
X = OP|FN (1), we have

^

β − β̂MLE = OP|FN

(
r−

1
2

)
. �

Proof of Theorem 2.2. By Lemma 1 and (A.5), as r → ∞, conditional on FN , it holds that

V−
1
2 (
^

β − β̂MLE) = −V−
1
2 M−1

X V
1
2
CV−

1
2

C
1
N

Q∗(β̂MLE) + oP|FN (1) .

By Lemma 1 and Slutsky’s theorem, it follows that

V−
1
2 (
^

β − β̂MLE)
d
→Np(0, I).

�
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Proof of Theorem 2.3. To minimize the asymptotic variance tr(V) of
^

β, the optimization problem is
min tr(V) = min 1

N2r

N∑
i=1

[
1
πi

∥∥∥∥M−1
X η

∗
i

(
Σu, β̂MLE

)∥∥∥∥2]
,

s.t.
N∑

i=1
πi = 1, 0 ≤ πi ≤ 1, i = 1, . . . ,N.

(A.6)

Define gmV
i =

∥∥∥∥M−1
X η

∗
i

(
Σu, β̂MLE

)∥∥∥∥ , i = 1, . . . ,N, it follows from Cauchy’s inequality that

tr(V) =
1

N2r

N∑
i=1

[
1
πi

∥∥∥∥M−1
X η

∗
i

(
Σu, β̂MLE

)∥∥∥∥2
]

=
1

N2r

 N∑
i=1

πi


 N∑

i=1

[
1
πi

∥∥∥∥M−1
X η

∗
i

(
Σu, β̂MLE

)∥∥∥∥2
]

≥
1

N2r

 N∑
i=1

∥∥∥∥M−1
X η

∗
i

(
Σu, β̂MLE

)∥∥∥∥2

=
1

N2r

 N∑
i=1

gmV
i

2

.

The equality sign holds if and only if πi ∝ gmV
i , therefore

πmV
i =

gmV
i

N∑
j=1

gmV
j

is the optimal solution. �

The proof of Theorem 2.4 is similar to Theorem 2.3.

Lemma 3. If Assumptions A1–A4 and A6 hold, as r0 → ∞, r → ∞ and N → ∞, conditional on FN ,
we have

^

M
β̃0

X −MX = OP|FN (r−
1
2 ), (A.7)

M0
X −MX = OP|FN (r0

− 1
2 ), (A.8)

1
N

Q∗
β̃0

(β̂MLE) = OP|FN (r−
1
2 ), (A.9)

1
N

Q∗0
β̃0

(β̂MLE) = OP|FN (r0
− 1

2 ), (A.10)

1
N

Vopt− 1
2

C Q∗
β̃0

(β̂MLE)
d
→Np(0, I), (A.11)

where
^

M
β̃0

X =
1

Nr

r∑
i=1

Ω̃∗
i
(Σu, β̂MLE)

π̃
opt
i

,

M0
X =

1
Nr0

r0∑
i=1

Ω̃∗
i
(Σu, β̂MLE)

π̃UNIF
i

.
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Proof.

E
(
^

M
β̃0

X

∣∣∣∣∣∣FN

)
= Eβ̃0

[
E

(
^

M
β̃0

X

∣∣∣∣∣∣FN , β̃0

)]
= Eβ̃0

E  1
Nr

r∑
i=1

Ω̃∗i (Σu, β̂MLE)

π̃
opt
i

∣∣∣∣∣∣∣FN , β̃0


= Eβ̃0

[
E

(
MX

∣∣∣FN , β̃0

)]
= MX.

By Assumption A6, we have

E

(^Mβ̃0, j1 j2

X −MX
j1 j2

)2
∣∣∣∣∣∣∣FN


=Eβ̃0

E

(^Mβ̃0, j1 j2

X −M j1 j2
X

)2
∣∣∣∣∣∣∣FN , β̃0




=Eβ̃0

1
r

N∑
i=1

π
opt
i

Ω̃∗ j1 j2
i (Σu, β̂MLE)

Nπopt
i

−M j1 j2
X

2
∣∣∣∣∣∣∣∣FN , β̃0


=Eβ̃0

1
r

N∑
i=1

π
opt
i

Ω̃∗ j1 j2
i (Σu, β̂MLE)

Nπopt
i

2

−
1
r

(
M j1 j2

X

)2

∣∣∣∣∣∣∣∣FN , β̃0


≤Eβ̃0

1
r

N∑
i=1

π
opt
i

Ω̃∗ j1 j2
i (Σu, β̂MLE)

Nπopt
i

2
∣∣∣∣∣∣∣∣FN , β̃0


=

1
r

N∑
i=1

(
Ω
∗ j1 j2
i (Σu, β̂MLE)

)2

N2π
opt
i

=OP(r−1).

It follows from Chebyshev’s inequality that (A.7) holds. Similarly, (A.8) also holds.

E
(

1
N

Q∗
β̃0

(β̂MLE)
∣∣∣∣∣FN

)
= Eβ̃0

E  1
N

1
r

r∑
i=1

η̃∗i (Σu, β̂MLE)

π̃
opt
i

∣∣∣∣∣∣∣FN , β̃0

 =
1
N

N∑
i=1

η∗i (Σu, β̂MLE) = 0.

By Assumption A6, we have

Var
(

1
N

Q∗
β̃0

(β̂MLE)
∣∣∣∣∣FN

)
= Eβ̃0

Var

 1
N

1
r

r∑
i=1

η̃∗i (Σu, β̂MLE)

π̃
opt
i


∣∣∣∣∣∣∣FN , β̃0




=
1

N2r

N∑
i=1

η∗i (Σu, β̂MLE)η∗Ti (Σu, β̂MLE)

π
opt
i

= OP(r−1).

Therefore, the (A.9) and (A.10) follow from Markov’s Inequality.
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Let

γ∗
i,β̃0

=
η̃∗

i
(Σu, β̂MLE)

Nπ̃opt
i

,

for all ε > 0, it follows that N−1Q∗
β̃0

(β̂MLE) = r−1
r∑

i=1
γ∗

i,β̃0
,

r∑
i=1

Eβ̃0

{
E

[∥∥∥∥r−
1
2γ∗i,β̃0

∥∥∥∥2
I
(∥∥∥∥γ∗i,β̃0

∥∥∥∥ > r
1
2ε

) ∣∣∣∣∣FN , β̃0

]}
=

1
r

r∑
i=1

Eβ̃0

{
E

[∥∥∥∥γ∗i,β̃0

∥∥∥∥2
I
(∥∥∥∥γ∗i,β̃0

∥∥∥∥ > r
1
2ε

) ∣∣∣∣∣FN , β̃0

]}
≤

1

r
3
2ε

r∑
i=1

Eβ̃0

[
E

(∥∥∥∥γ∗i,β̃0

∥∥∥∥3
∣∣∣∣∣FN , β̃0

)]

=
1

r
1
2ε

1
N3

N∑
i=1

∥∥∥η̃∗
i
(Σu, β̂MLE)

∥∥∥3

π
opt2
i

=OP(r−
1
2 ) = oP(1).

This shows that the Lindeberg-Feller conditions are satisfied in probability. Therefore (A.11) is true.
�

Lemma 4. If Assumptions A1–A7 hold, as r0 → ∞, r → ∞ and N → ∞, for all sr0 → 0 and sr → 0,
conditional on FN , we have

1
Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE + sr0)

π̃
opt
i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE) = oP|FN (1), (A.12)

1
Nr

r∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)

π̃
opt
i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE) = oP|FN (1). (A.13)

Proof. The Eq (A.12) can be written as

1
Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE + sr0)

π̃
opt
i

−
1

Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE)

π̃
opt
i

+
1

Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE)

π̃
opt
i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE).

Let

τ0
1 :=

1
Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE + sr0)

π̃
opt
i

−
1

Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE)

π̃
opt
i

,

then by Assumption A7, we have
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E
(∥∥∥τ0

1

∥∥∥
S

∣∣∣FN

)
=Eβ̃0

E

 1
Nr0

r0∑
i=1

1
π̃

opt
i

∥∥∥∥Ω̃∗i (Σu, β̂MLE + sr0) − Ω̃
∗
i (Σu, β̂MLE)

∥∥∥∥
S

∣∣∣∣∣∣∣FN , β̃0




=
1
N

N∑
i=1

∥∥∥Ω∗i (Σu, β̂MLE + sr0) −Ω
∗
i (Σu, β̂MLE)

∥∥∥
S

≤
1
N

N∑
i=1

m2(Wi)
∥∥∥sr0

∥∥∥
=oP(1).

It follows from Markov’s inequality that τ0
1 = oP|FN (1).

Let

τ0
2 :=

1
Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE)

π̃
opt
i

−
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE),

then

Eβ̃0

E

 1
Nr0

r0∑
i=1

Ω̃∗i

(
Σu, β̂MLE + sr0

)
π̃

opt
i

∣∣∣∣∣∣∣∣FN , β̃0


 =

1
N

N∑
i=1

Ω∗i (Σu, β̂MLE).

By the proof of Lemma 3, it follows that

E

(^Mβ̃0, j1 j2

X −M j1 j2
X

)2
∣∣∣∣∣∣∣FN

 = OP(r0
−1) = oP(1),

we have τ0
2 = oP|FN (1). Therefore (A.12) holds. Similarly, (A.13) is also true. �

Next, we will prove Theorems 2.5 and 2.6.

Proof of Theorem 2.5.

E
(

1
N

Q∗
β̃0

(β)
∣∣∣∣∣FN

)
= Eβ̃0

E  1
N

1
r

r∑
i=1

η̃∗i (Σu,β)

π̃
opt
i

∣∣∣∣∣∣∣FN , β̃0

 =
1
N

N∑
i=1

η∗i (Σu,β) =
1
N

Q(β).

By Assumption A6, we have

Var
(

1
N

Q∗
β̃0

(β)
∣∣∣∣∣FN

)
= Eβ̃0

Var

 1
N

1
r

r∑
i=1

η̃∗i (Σu,β)

π̃
opt
i

∣∣∣∣∣∣∣FN , β̃0


 =

1
N2r

N∑
i=1

η∗i (Σu,β)η∗Ti (Σu,β)

π
opt
i

= OP(r−1).

Hence, as r → ∞, N−1Q∗
β̃0

(β) − N−1Q(β)→ 0 for all β ∈ Λ in conditional probability given FN .

β̌ is the solution of Qtwo−step
β̃0

(β) = 0, we have

0 =
1
N

Qtwo−step
β̃0

(β̌) =
r

r + r0

1
N

Q∗
β̃0

(β̌) +
r0

r + r0

1
N

Q∗0
β̃0

(β̌). (A.14)

By Lemma 4, we have

1
Nr0

r0∑
i=1

Ω̃∗i (Σu, β̂MLE + sr0)

π̃
opt
i

=
1
N

N∑
i=1

Ω∗i (Σu, β̂MLE) + oP|FN (1) = MX + oP|FN (1),
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and

1
Nr

r∑
i=1

Ω̃∗i (Σu, β̂MLE + sr)

π̃
opt
i

= MX + oP|FN (1).

By Taylor expansion, we have

1
N

Q∗
β̃0

(β̌) =
1
N

Q∗
β̃0

(β̂MLE) +
1

Nr

r∑
i=1

Ω∗i (Σu, β̂MLE + sr)

π̃
opt
i

(β̌ − β̂MLE)

=
1
N

Q∗
β̃0

(β̂MLE) + MX(β̂ − β̂MLE) + oP|FN (1)(β̌ − β̂MLE).

(A.15)

Similarly,

1
N

Q∗0
β̃0

(β̌) =
1
N

Q∗0
β̃0

(β̂MLE) + MX(β̌ − β̂MLE) + oP|FN (1)(β̌ − β̂MLE). (A.16)

As r0r−1 → 0,N−1Q∗0
β̃0

(β̂MLE) = OP|FN

(
r−

1
2

0

)
, then

r0

r + r0

1
N

Q∗0
β̃0

(β̂MLE) =
r0

r + r0
OP|FN (r−

1
2

0 ) = oP|FN (r−
1
2 ).

Combining this with (A.14)–(A.16), we have

β̌ − β̂MLE = OP|FN

(
r−

1
2
)

+ oP|FN

(∥∥∥β̌ − β̂MLE

∥∥∥) , (A.17)

which implies that β̌ − β̂MLE = OP|FN

(
r−

1
2

)
. �

Proof of Theorem 2.6. By Lemma 3, 1
N V−

1
2

C Q∗
β̃0

(β̂MLE)
d
→N(0, I), we have

∥∥∥VC − Vopt
C

∥∥∥
S

=

∥∥∥∥∥∥∥ 1
N2r

N∑
i=1

η∗i (Σu, β̂MLE)η∗Ti (Σu, β̂MLE)
π

op
i

−
1

N2r

N∑
i=1

η∗i (Σu, β̂MLE)η∗Ti (Σu, β̂MLE)

π
opt
i

∥∥∥∥∥∥∥
S

≤
1

N2r

N∑
i=1

∥∥∥∥∥∥ 1
π

op
i

−
1
π

opt
i

∥∥∥∥∥∥ ∥∥∥η∗i (Σu, β̂MLE)
∥∥∥2

=
1
r

N∑
i=1

∥∥∥∥∥∥1 −
π

op
i

π
opt
i

∥∥∥∥∥∥
∥∥∥η∗i (Σu, β̂MLE)

∥∥∥2

N2π
op
i

.

Taking πmVc
i as an example, by Assumpion A4, the above equation can be summarized as
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1
r

N∑
i=1

∥∥∥∥∥∥1 −
πmVc

i

πmVct
i

∥∥∥∥∥∥
∥∥∥η∗i (Σu, β̂MLE)

∥∥∥2

N2

N∑
j=1

gmVc
j

gmVc
i

=
1
r

N∑
i=1

∥∥∥∥∥∥1 −
πmVc

i

πmVct
i

∥∥∥∥∥∥
∥∥∥η∗i (Σu, β̂MLE)

∥∥∥2

N2

N∑
j=1

∥∥∥η∗j(Σu, β̂MLE)
∥∥∥∥∥∥η∗i (Σu, β̂MLE)

∥∥∥
≤

1
r

N∑
i=1

∥∥∥∥∥∥1 −
πmVc

i

πmVct
i

∥∥∥∥∥∥
∥∥∥η∗i (Σu, β̂MLE)

∥∥∥
N

N∑
j=1

∥∥∥η∗j(Σu, β̂MLE)
∥∥∥

N

≤
1
r

 1
N

N∑
i=1

∥∥∥∥∥∥1 −
πmVc

i

πmVct
i

∥∥∥∥∥∥
2

1
2
 N∑

i=1

∥∥∥η∗i (Σu, β̂MLE)
∥∥∥2

N


1
2


N∑

j=1

∥∥∥η∗j(Σu, β̂MLE)
∥∥∥

N


=oP|FN

(
r−1

)
.

Therefore
∥∥∥VC − Vopt

C

∥∥∥
S

= oP|FN

(
r−1

)
, and

V−
1
2

opt(β̌ − β̂MLE) = −V−
1
2

optM
−1
X

1
N

Qtwo−step
β̃0

(β̂MLE) + oP|FN (1)

= −V−
1
2

optM
−1
X

[
r

r + r0

1
N

Q∗
β̃0

(β̌) +
r0

r + r0

1
N

Q∗0
β̃0

(β̌)
]

+ oP|FN (1)

= −V−
1
2

optM
−1
X

(
Vopt

C

) 1
2
(
Vopt

C

)− 1
2 1

N
Q∗
β̃0

(β̌) + oP|FN (1),

which implies that

V−
1
2

optM
−1
X

(
Vopt

C

) 1
2
{
V−

1
2

optM
−1
X

(
Vopt

C

) 1
2
}T

= V−
1
2

optM
−1
X

(
Vopt

C

) 1
2
(
Vopt

C

) 1
2 M−1

X V−
1
2

opt = I.

Therefore
V−

1
2

opt(β̌ − β̂MLE)
d
→Np(0, I).

�
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