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Abstract: The primary goal of this study is to create a novel mathematical model based on the time-

stepping boundary element method (BEM) scheme for solving three-dimensional coupled dynamic 

thermoelastic fracture issues in anisotropic functionally graded materials (FGMs). The crack tip 

opening displacement determines the dynamic stress intensity factor (SIF). The effects of anisotropy, 

graded parameters, and angle locations on the SIF were studied for three-dimensional coupled dynamic 

thermoelastic fracture situations. The results show that the novel method is exceptionally exact and 

efficient at assessing the fracture mechanics of fractured thermoelastic anisotropic FGMs. In addition, 

this paper provides a theoretical framework for analyzing a wide range of real engineering applications. 
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Nomenclature: 

𝛼 Thermal expansion coefficient 𝑛𝑗 
Outward unit normal vector 

components 

𝛼𝑖
𝑝
 Unknown coefficient 𝑘 Thermal conductivity 

𝛽(𝒙) Stress-temperature modulus 𝑞 Heat flux 

Γ Boundary 𝑞∗ Known heat flux 
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1. Introduction  

Functionally graded materials (FGMs) are advanced composite materials whose composition and 

properties gradually change across the material, usually transitioning between two or more distinct 

phases, such as metal and ceramic. Unlike standard homogeneous materials, FGMs provide specialized 

qualities that can be optimized for specific purposes, such as increased strength, thermal resistance, or 

wear resistance, by altering the material gradient [1,2]. This continual variation in characteristics 

enables FGMs to endure complicated situations such as high-temperature gradients or mechanical 

pressures, making them excellent for use in aerospace, automotive, and biomedical engineering. FGMs 

provide considerable advantages over traditional materials by regulating the spatial distribution of 

material phases, particularly in applications that require both mechanical and thermal performance 

[3,4]. 

Anisotropic materials have qualities that vary depending on the direction in which they are 

measured, indicating that their behavior changes with different orientations, such as crystals or fiber-

reinforced composites. Orthotropic materials, on the other hand, are a subset of anisotropic materials 

with three mutually perpendicular planes of symmetry, implying that their properties are directionally 

dependent but in a more defined and simpler manner—commonly seen in materials such as wood or 

Δ𝜏 Time step 𝑄 Heat sources 

𝜇 Shear modulus  𝑟 = ∥∥𝒙 − 𝒙′∥∥ 

𝜇̃ Normalized shear modulus ℝ = ∥𝒙 − 𝒙𝑝∥ 

𝜌 Mass density 𝑡𝑖 Tractions 

𝜎𝑖𝑗 Stress tensor 𝑡𝑖
∗ Known tractions 

𝜏 Time 𝑇 Temperature 

𝜑(𝑅) Radial basis function (RBF) 𝑇̃ Normalized temperature 

𝜙𝑝(𝑅) Fourth-order spline RBF 𝑇∗ Known temperature 

Ω Domain 𝑇0 Initial temperature 

𝑎𝑖
𝑘 Unknown coefficient 𝑇̇ Temperature time derivative 

𝑐𝑖𝑗 & 𝑐  Free-term coefficients {𝑇} Nodal temperatures 

𝑐𝑝 Specific heat 𝑢𝑖 Displacement vector 

𝐶𝑖𝑗𝑘𝑙(𝒙) Elastic moduli 𝑢̃𝑖 Normalized displacement 

𝑐𝑖𝑗𝑘𝑙
𝑡𝑖𝑝

 Crack-tip elastic moduli 𝑢𝑖
∗ Known displacements 

𝑑𝑝 Support domain size at 𝑥𝑝 𝒖0 Initial displacement 

𝐸 Constant Young’s modulus 𝑢̇𝑖,𝑖 Volume strain rate 

𝐸′ FGM Young’s modulus 𝑢̈𝑖 Acceleration 

𝐹𝑖 Body force vector {𝑢} Nodal displacements 

𝑘 Thermal conductivity 𝑣 Poisson’s ratio 

𝑘̃ Normalized thermal conductivity 𝒗0 Initial velocity 

𝑚 Functionally graded parameter 𝒙 Field point 

𝑁𝑏 Boundary nodes number 𝒙′ Source point 

𝑁𝑖 Internal nodes number 𝑥𝑠 Cartesian coordinate system 

𝑁𝑡 = 𝑁𝑏 + 𝑁𝑖 total nodes number 𝒙𝑝 Application point 
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certain composites. Isotropic materials, on the other hand, have homogeneous properties in all 

directions, implying that their mechanical and thermal responses are equal regardless of the direction 

in which they are tested, as in metals and some polymers.  

Understanding the differences between different material classes is important in material selection 

and structural design, especially when determining how a material will react to stress, strain, or heat 

in various applications. Understanding a material’s anisotropy is also important for designing 

structures that can withstand complex, directed pressures in fields like aerospace, civil engineering, 

and materials research [5,6]. 

Fracture modes I, II, and III in anisotropic FGMs describe different types of fracture propagation 

behaviors under varied loading situations, with each mode determined by the FGMs’ unique features, 

which change spatially. Mode I, also known as the opening mode, involves crack faces moving apart 

in a direction normal to the crack plane due to tensile stresses. In anisotropic FGMs, this mode is 

influenced by the directional dependence of material properties such as stiffness and Poisson’s ratio, 

which can result in non-uniform crack tip stress fields [7–9]. Mode II, also known as the sliding mode, 

occurs when the crack faces slide past each other in a shear direction parallel to the crack plane [10,11]. 

In FGMs, the spatial gradient in material properties, particularly the shear modulus, affects the crack’s 

resistance to sliding, depending on the material’s variation across the crack front. Mode III, the tearing 

or anti-plane shear mode, is distinguished by crack faces moving in a shear direction perpendicular to 

the crack plane, with out-of-plane shear stresses; in anisotropic FGMs, the varying properties in the 

out-of-plane direction produce different shear resistances that influence the tearing behavior [12,13]. 

Because FGMs have both anisotropy (directional dependency) and inhomogeneity (gradients in 

material properties), cracks usually encounter a combination of all three modes, making fracture 

behavior more complex than in isotropic materials [14,15]. In such materials, the stress intensity 

factors (SIFs) for each mode must account for these spatial variations, and the crack tip fields are 

significantly altered by the heterogeneous nature of the material, resulting in intricate crack 

propagation dynamics influenced by both material gradients and directional dependencies [16,17]. 

Thermoelastic fracture problems in anisotropic FGMs involve the study of crack propagation and 

fracture behavior in materials that experience both thermal and mechanical loading, with material 

properties varying spatially and directionally. These materials exhibit gradients in thermal conductivity, 

elasticity, and other properties, which makes their response to stress and temperature changes more 

complex than homogeneous materials. When subjected to thermal gradients, the anisotropic nature of 

the FGM results in uneven thermal expansion or contraction, inducing internal stresses that interact 

with mechanical loading, influencing crack growth and fracture behavior. Analyzing these problems 

requires considering the coupled effects of thermal and mechanical stresses, with crack-tip stress 

intensity factors (SIFs) and energy release rates often varying due to the spatially varying material 

properties. Understanding these coupled effects is critical for designing reliable components in high-

performance applications like aerospace, turbine engines, and biomedical devices, where FGMs are 

subjected to extreme thermal and mechanical conditions [18,19]. 

The boundary element method (BEM) is a powerful numerical method for resolving thermoelastic 

fracture issues in anisotropic FGMs, where material parameters like thermal conductivity, elasticity, 

and stiffness vary continuously across the structure. BEM is especially well-suited for these problems 

because it reduces the problem’s dimensionality by converting the governing partial differential 

equations into integral equations defined only on the domain’s boundary, which is useful when dealing 

with FGMs’ complex, spatially varying properties. In thermoelastic fracture problems, BEM can 
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account for the combined effects of thermal and mechanical loads because temperature gradients 

provide extra stresses that interact with the material’s directional dependence [20,21]. The material’s 

anisotropy complicates the fracture analysis since stress intensity factors (SIFs) and energy release 

rates are affected by both the gradient and the material’s directional characteristics. By discretizing the 

boundary and calculating the resulting integral equations, BEM can accurately predict crack 

propagation, stress distribution, and fracture behavior under combined thermal and mechanical loads. 

This makes BEM an effective tool for evaluating fracture mechanics in FGMs, especially in high-

performance engineering applications like aerospace, where such materials are subjected to both heat 

gradients and mechanical pressures at the same time [22,23]. 

The radial integration boundary element method (RIBEM) and the radial integration finite 

element method (RIFEM) are two numerical techniques that use radial integration to solve boundary 

value problems, although they differ greatly in their formulation, application, and computing benefits. 

RIBEM, being a boundary-only approach, concentrates on discretizing the problem’s border and 

solving only the boundary integral equations, resulting in lower computational cost and complexity as 

compared to standard domain-based methods such as the finite element method (FEM). It is especially 

useful for issues with infinite or semi-infinite domains, such as acoustics or electromagnetic field 

problems, where it is difficult to simulate the interior. RIFEM, on the other hand, incorporates radial 

functions into the finite element framework, handling both the domain and the boundary with radial 

basis functions (RBFs) and allowing for the modeling of complicated structures that consider both the 

interior and outside. While RIFEM allows for greater freedom in modeling inner fields and 

complicated geometries, it is computationally more expensive since it needs discretization of both the 

domain and the boundary, resulting in bigger system matrices and higher solution costs. Furthermore, 

because it focuses primarily on boundary discretization, RIBEM is generally easier to apply than 

RIFEM, which, while more versatile, may struggle with issues such as ill-conditioning in the system 

of equations or difficulties in capturing boundary effects near singularities. Both methods, however, 

seek to give high accuracy and efficiency in situations with irregular geometries, and the decision 

between them is mostly determined by the domain size, complexity, and available computer resources 

[24,25]. 

This work presents a time-stepping boundary element method for solving the 3D thermoelastic 

fracture problems of anisotropic FGMs. The crack tip opening displacement determines the dynamic 

SIF. Numerical findings demonstrate the current technique’s accuracy and efficacy. 

2. Formulation of the problem 

In the current study, the graded material property has the following exponential function model 

[26] 

𝐸′(x𝑠) = 𝐸𝑒
𝑚x𝑠       (𝑠 = 1,2,3). (1) 

The governing equations are [25] 

𝜎𝑖𝑗,𝑗(x, 𝜏) + 𝑏𝑖 = 𝜌𝑢̈𝑖(x, 𝜏), (2) 

𝑇̅(x, 𝜏) − 𝜌𝑐𝑝𝑇̇(x, 𝜏) − 𝛽(x)𝑇0𝑢̇𝑖,𝑖(x, 𝜏) = 0 (3) 
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where 𝑇̅(x, 𝜏) = (𝑘(x)𝑇,𝑖(x, 𝜏)),𝑖+𝜓(x, 𝜏) 

Subjected to: 

𝑇(x, 𝜏0) = 𝑇0(x),  (4) 

𝑢(x, 𝜏0) = 𝑢0(x),  (5) 

𝑢̇(x, 𝜏0) = 𝑣0(x), x ∈ Ω  (6) 

𝑢𝑖(x, 𝜏) = 𝑢𝑖
∗(x, 𝜏), x ∈ Γ𝑢 (7) 

𝑡𝑖(x, 𝜏) = 𝜎𝑖𝑗(x, 𝜏)𝑛𝑗 = 𝑡𝑖
∗(x, 𝜏), x ∈ Γ𝑡 , Γ = Γ𝑢 ∪ Γ𝑡 (8) 

𝑇(x, 𝜏) = 𝑇∗(x, 𝜏), 𝑥 ∈ Γ𝑇 (9) 

𝑞(x, 𝜏) = −𝑘
∂𝑇(x, 𝜏)

∂𝑛
= 𝑞∗(x, 𝜏), x ∈ Γ𝑞 ,       Γ = Γ𝑇 ∪ Γ𝑞 (10) 

where 

𝜎𝑖𝑗(x, 𝜏) = 𝐶𝑖𝑗𝑘𝑙(x)𝑢𝑘,𝑙(x, 𝜏) − 𝛿𝑖𝑗𝛽(x)𝑇(x, 𝜏). (11) 

In which 𝑡𝑖(x, 𝜏) = 𝜎𝑖𝑗(x, 𝜏)𝑛𝑗 , 𝑞(x, 𝜏) = −𝑘
∂𝑇(x,𝜏)

∂𝑛
 and 𝛽(x) =

𝐸(x)

1−2𝑣
𝛼. 

3. Radial integration boundary element method (RIBEM) implementation 

The governing Eqs (2) and (3) can be written as [25] 

∫  
Ω
 𝑢𝑖𝑗
∗ (𝜎𝑗𝑘,𝑘 + 𝑏𝑗 − 𝜌𝑢̈𝑗)dΩ = 0, (12) 

∫  
Ω
 𝑇∗ [(𝑘𝑇,𝑖),𝑖 +𝜓 − 𝜌𝑐𝑝𝑇̇ − 𝛽𝑇0𝑢̇𝑖,𝑖] dΩ = 0. (13) 

Thus, displacement and temperature integral equations are: 

∫ 
Γ

 𝑢𝑖𝑗
∗ 𝜎𝑗𝑘𝑛𝑘 dΓ − ∫ 

Γ

 𝑢𝑖𝑗,𝑘
∗ 𝐶𝑖𝑗𝑘𝑙𝑛𝑠𝑢𝑟 dΓ + ∫  

Ω

 𝑢𝑖𝑗,𝑘𝑠
∗ 𝐶𝑖𝑗𝑘𝑙𝑢𝑟 dΩ +∫  

Ω

 𝑢𝑖𝑗,𝑘
∗ 𝐶𝑖𝑗𝑘𝑙𝑢𝑟 dΩ 

+∫  
Ω
 𝑢𝑖𝑗,𝑗
∗ 𝛽𝑇 dΩ + ∫  

Ω
 𝑢𝑖𝑗
∗ 𝑏𝑗 dΩ − ∫  

Ω
 𝑢𝑖𝑗
∗ 𝜌𝑢̈𝑗 dΩ = 0. 

(14) 

∫ 
Γ

 𝑇∗𝑘𝑇,𝑖𝑛𝑖 dΓ − ∫ 
Γ

 𝑘𝑇𝑇,𝑖
∗𝑛𝑖 dΓ + ∫  

Ω

 𝑘𝑇𝑇,𝑖𝑖
∗  dΩ +∫  

Ω

 𝑇∗𝜓dΩ+∫  
Ω

 𝑘,𝑖𝑇,𝑖
∗𝑇 dΩ 

−∫  
Ω

 𝑇∗𝜌𝑐𝑝𝑇̇ dΩ −∫  
Ω

 𝑇∗𝛽𝑇0𝑢̇𝑖,𝑖 dΩ = 0.  

(15) 

According to [27,28], the third terms of equations (10) and (11) are 
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∫  
Ω
 𝑢𝑖𝑗,𝑘𝑠
∗ (𝐱′, 𝐱)𝐶𝑖𝑗𝑘𝑙(𝐱′)𝑢𝑟(𝐱′, 𝜏)dΩ = −𝐶𝑖𝑗𝑘𝑙(𝐱)𝑢𝑖(𝐱, 𝜏). (16) 

∫  
Ω
 𝑘𝑇

∂

∂x𝑖
(
∂𝑇∗(𝐱′,𝐱)

∂x𝑖
)dΩ = −𝑘𝑇(𝐱′, 𝜏). (17) 

Therefore, Eqs (10) and (11) yield 

𝑐𝑖𝑗(𝐱′)𝑢̃𝑗(𝐱′, 𝜏) = ∫Γ  𝑢𝑖𝑗
∗ (𝐱, 𝐱′)𝑡𝑗(𝐱, 𝜏)dΓ − ∫Γ  𝑡𝑖𝑗

∗ (𝐱, 𝐱′)𝑢̃𝑗(𝐱, 𝜏)dΓ + ∫Ω  𝑢𝑖𝑗
∗ (𝐱, 𝐱′)𝑏𝑗 dΩ 

+∫
Ω
 𝑊𝑖𝑗(𝐱, 𝐱′)𝑢̃𝑗(𝐱, 𝜏)dΩ − ∫Ω  𝑢𝑖𝑗

∗ (𝐱, 𝐱′)
𝜌

𝐶𝑖𝑗𝑘𝑙(𝐱)
𝑢̈̃𝑗(𝐱, 𝜏)dΩ 

+∫
Ω
 𝑢𝑖𝑗,𝑗
∗ (𝐱, 𝐱′)

𝛽(x)

𝑘(x)
𝑇̃(𝐱, 𝜏)dΩ, 

(18) 

𝑐(𝐱′)𝑇̃(𝐱′, 𝜏) = 𝑇̿(𝐱, 𝐱′) + ∫  
Ω

 𝑇∗(𝐱, 𝐱′)𝜓(𝐱, 𝜏)dΩ 

−∫  
Ω

 𝑇∗(𝐱, 𝐱′)
𝛽(x)𝑇0
𝐶𝑖𝑗𝑘𝑙(x)

𝑢̇̃𝑖,𝑖(𝐱, 𝜏)dΩ. 

(19) 

where 

𝑇̿(𝐱, 𝐱′) = −∫  Γ  𝑇
∗(𝐱, 𝐱′)𝑞(𝐱, 𝜏)dΓ − ∫  Γ   𝑇̃(𝐱, 𝜏)𝑞

∗(𝐱, 𝐱′)dΓ + ∫  Ω  𝑉(𝐱, 𝐱′)𝑇̃(𝐱, 𝜏)dΩ− ∫  Ω  𝑇
∗(𝐱, 𝐱′)

𝜌𝑐𝑝

𝑘(x)
𝑇̇̃(𝐱, 𝜏)dΩ. 

The fundamental solutions can be expressed as [29] 

𝑢𝑖𝑗
∗ =

{
 

 
1

8𝜋𝐺𝕂1
[𝕂3𝛿𝑖𝑗ln 

1

𝑟
+ 𝑟,𝑖𝑟,𝑗]  for 2𝐷,

1

16𝜋𝐺𝕂1𝑟
[𝕂3𝛿𝑖𝑗 + 𝑟,𝑖𝑟,𝑗] for 3𝐷.

 (20) 

𝑡𝑖𝑗
∗ =

{
 

 
−1

4𝜋𝕂1𝑟
{
∂𝑟

∂𝑛
[𝕂2𝛿𝑖𝑗 + 2𝑟,𝑖𝑟,𝑗] + 𝕂2(𝑛𝑖𝑟,𝑗 − 𝑛𝑗𝑟,𝑖)}  for 2𝐷,

−1

8𝜋𝕂1𝑟2
{
∂𝑟

∂𝑛
[𝕂2𝛿𝑖𝑗 + 3𝑟,𝑖𝑟,𝑗] + 𝕂2(𝑛𝑖𝑟,𝑗 − 𝑛𝑗𝑟,𝑖)}  for 3𝐷.

  (21) 

𝑇∗ = {

1

2𝜋
ln 
1

𝑟
for 2𝐷,

1

4𝜋𝑟
for 3𝐷.

  (22) 

𝑞∗ = {

𝑘

2𝜋𝑟

∂𝑟

∂𝑛
for 2𝐷,

𝑘

4𝜋𝑟2
∂𝑟

∂𝑛
for 3𝐷.

  (23) 

and 

𝑢𝑖𝑗,𝑗
∗ =

{
 

 
−𝕂2
4𝜋𝕂1

𝑟,𝑖
𝑟

for 2𝐷,

−𝕂2
8𝜋𝕂1

𝑟,𝑖
𝑟2

for 3𝐷.

 (24) 
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𝑊𝑖𝑗 =

{
 

 
−1

4𝜋𝕂1𝑟
{𝜇̃,𝑘𝑟,𝑘[𝕂2𝛿𝑖𝑗 + 𝛽𝑟,𝑖𝑟,𝑗] + 𝕂2(𝜇̃,𝑖𝑟,𝑗 − 𝜇̃,𝑗𝑟,𝑖)} for 2𝐷,

−1

8𝜋𝕂1𝑟2
{𝜇̃,𝑘𝑟,𝑘[𝕂2𝛿𝑖𝑗 + 𝛽𝑟,𝑖𝑟,𝑗] + 𝕂2(𝜇̃,𝑖𝑟,𝑗 − 𝜇̃,𝑗𝑟,𝑖)}  for 3𝐷.

 (25) 

𝑉 =
∂𝑘̃

∂x𝑖

∂𝑇∗

∂x𝑖
. (26) 

where 

𝑢̃𝑖 = 𝐶𝑖𝑗𝑘𝑙𝑢𝑖 ,             𝜇̃ = ln 𝐶𝑖𝑗𝑘𝑙 ,             𝑇̃ = 𝑘𝑇,            𝑘̃ = ln 𝑘,     𝕂1 = 1 − 𝑣, 𝕂2 = 1 − 2𝑣,

𝕂3 = 3 − 4𝑣.  
(27) 

A meshfree method is produced by using the RIM to convert the several domain integrals that 

arise in Eqs (18) and (19) into boundary integrals for evaluation. The unknown function 𝑢 in RIM can 

be roughly determined using the following equations 

𝑢(𝐱) = ∑  𝑝  𝛼𝑖
𝑝
𝜑𝑝(𝑅) + 𝑎𝑖

𝑘x𝑘 + 𝑎𝑖
0 = 𝝋𝑇(𝐱)𝜶. (28) 

∑  𝑝  𝛼𝑖
𝑝
= 0. (29) 

∑  𝑝  𝛼𝑖
𝑝
x𝑗
𝑝
= 0. (30) 

In this investigation, the following radial basis function is used 

𝜙𝑝(ℝ) = {
1 − 6(

ℝ

𝑑𝑝
)
2

+ 8(
ℝ

𝑑𝑝
)
3

− 3(
ℝ

𝑑𝑝
)
4

0 ≤ ℝ ≤ 𝑑𝑝

0 𝑑𝑝 ≤ ℝ.
, (31) 

To generate the following algebraic equations system in matrix form, collocate x in Eq (28) at all 

points of application and combine it with Eqs (29) and (30): 

{𝑢} = [𝜙]{𝛼}. (32) 

where 

𝑢(𝐱) = 𝝋𝑇(𝐱)[𝜙]−1{𝑢} = Φ(𝐱){𝑢}. (33) 

In which {𝛼} = [𝜙]−1{𝑢} and Φ(𝐱) = 𝝋𝑇(𝐱)[𝜙]−1. 

The following boundary integral equations are obtained by inserting Eq (33) into Eqs (18) and 

(19) and then applying RIM 

𝑐𝑖𝑗(𝐱′)𝑢̃𝑗(𝐱′, 𝜏) = ∫ 
Γ

 𝑢𝑖𝑗
∗ (𝐱, 𝐱′)𝑡𝑗(𝐱, 𝜏)dΓ − ∫ 

Γ

  𝑡𝑖𝑗
∗ (𝐱, 𝐱′)𝑢̃𝑗(𝐱, 𝜏)dΓ                                           

+∫ 
Γ

 
1

𝑟𝛼(𝑄, 𝑝)

∂𝑟

∂𝒏
𝐹𝑖
1(𝐱, 𝐱′)dΓ + 𝑢̃𝑗

𝑘(𝐱, 𝜏)∫ 
Γ

 
1

𝑟𝛼(𝐱, 𝐱′)

∂𝑟

∂𝒏
𝐹𝑖𝑗𝑘
2 (𝐱, 𝐱′)dΓ                

−𝑢̈̃𝑗
𝑘(𝐱, 𝜏) ∫  

Γ
 

1

𝑟𝛼(𝑄,𝑝)

∂𝑟

∂𝒏
𝐹𝑖𝑗𝑘
3 (𝐱, 𝐱′)dΓ + 𝑇̃𝑘(𝐱, 𝜏) ∫  

Γ
 

1

𝑟𝛼(𝐱,𝐱′)

∂𝑟

∂𝒏
𝐹𝑖𝑘
4 (𝐱, 𝐱′)dΓ, 

(34) 

and 
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𝑐(𝐱′)𝑇̃(𝐱′, 𝜏) = −∫ 
Γ

 𝑇∗(𝐱, 𝐱′)𝑞(𝐱, 𝜏)dΓ − ∫ 
Γ

 𝑞∗(𝐱, 𝐱′)𝑇̃(𝐱, 𝜏)dΓ 

+∫ 
Γ

 
1

𝑟𝛼(𝐱, 𝐱′)

∂𝑟

∂𝒏
𝐹5(𝐱, 𝐱′)dΓ + 𝑇̃𝑘(𝐱, 𝜏)∫ 

Γ

 
1

𝑟𝛼(𝐱, 𝐱′)

∂𝑟

∂𝒏
𝐹𝑘
6(𝐱, 𝐱′)dΓ 

−𝑇̇̃𝑘̇(𝐱, 𝜏) ∫  
Γ
 

1

𝑟𝛼(𝐱,𝐱′)

∂𝑟

∂𝒏
𝐹𝑘
7(𝐱, 𝐱′)dΓ − 𝑢̃𝑖,𝑖

𝛽 (𝐱, 𝜏) ∫  
Γ
 

1

𝑟𝛼(𝐱,𝐱′)

∂𝑟

∂𝒏
𝐹𝑘
8(𝐱, 𝐱′)dΓ, 

(35) 

in which 

𝐹𝑖
1(𝐱, 𝐱′) = ∫  

𝑟(𝑥,𝒙′)

0
 𝑢𝑖𝑗
∗ (𝐱, 𝐱′)𝑟1(𝐱, 𝐱′)d𝑟(𝐱), (36) 

𝐹𝑖𝑗𝑘
2 (𝐱, 𝐱′) = ∫  

𝑟(𝑥,𝒙′)

0
 𝑊𝑖𝑗(𝐱, 𝐱′)𝑟2(𝐱, 𝐱′)d𝑟(𝐱), (37) 

𝐹𝑖𝑗𝑘
3 (𝐱, 𝐱′) = ∫  

𝑟(𝐱,x𝑝)

0
 𝑢𝑖𝑗
∗ (𝐱, 𝐱′)

𝜌𝑐𝑝

𝑘(𝑞)
𝑟2(𝐱, 𝐱′)d𝑟(𝐱), (38) 

𝐹𝑖𝑘
4 (𝐱, 𝐱′) = ∫  

𝑟(x,x𝑝)

0
 𝑢𝑖𝑗,𝑗
∗ (𝐱, 𝐱′)

𝛽(x)

𝑘(x)
𝑟2(𝐱, 𝐱′)d𝑟(𝐱), (39) 

𝐹5(𝐱, 𝐱′) = ∫  
𝑟(x,x𝑝)

0
 𝑇∗(𝐱, 𝐱′)𝑟3(𝐱, 𝐱′)d𝑟(𝐱), (40) 

𝐹𝑘
6(𝐱, 𝐱′) = ∫  

𝑟(x,x𝑝)

0
 𝑉(𝐱, 𝐱′)𝑟2(𝐱, 𝐱′)d𝑟(𝐱), (41) 

𝐹𝑘
7(𝐱, 𝐱′) = ∫  

𝑟(x,x𝑝)

0
 𝑇∗(𝐱, 𝐱′)

𝜌𝑐𝑝

𝑘(x)
𝑟2(𝐱, 𝐱′)d𝑟(𝐱), (42) 

𝐹𝑘
8(𝐱, 𝐱′) = ∫  

𝑟(x,x𝑝)

0
 𝑇∗(𝐱, 𝐱′)

𝛽(x)𝑇0

𝜇(x)
𝑟2(𝐱, 𝐱′)d𝑟(𝐱). (43) 

where 𝑟1(𝐱, 𝐱′) = 𝑏𝑗𝑟𝛼(𝐱,𝐱′), 𝑟2(𝐱, 𝐱′) = Φ𝑘(𝐱)𝑟𝑎(𝐱, 𝐱′), 𝑟3(𝐱, 𝐱′) = 𝜓(𝐱, 𝑡)𝑟𝛼(𝐱, 𝐱′). 

The radial integrals in Eqs (36)–(43) are evaluated using the following relations: 

x𝑖 = x𝑖
′ + 𝑟,𝑖𝑟,  ℝ = √𝑟2 + 2𝑠𝑟 + ℝ‾ 2,  𝑠 = 𝑟,𝑖ℝ‾ 𝑖 ,  ℝ‾ 𝑖 = x𝑖

′ − x𝑖
𝐴. (44) 

The boundary Γ discretization and numerical integration of Eqs (34) and (35) produce 

𝑴𝑢̈̃ +𝑯𝑢𝒖̃ −𝑾𝒖̃ − 𝑮𝑢𝒕 − 𝑨𝑻̃ = 𝑭𝑢, (45) 

𝑪𝑻̇̃ + 𝑯𝑇𝑻̃ − 𝑉𝑻̃ − 𝑮𝑇𝒒 + 𝑩𝒖̇̃ = 𝑭𝑇. (46) 

By putting the boundary conditions into Eqs (45) and (46), we obtain [25] 

𝑴𝑢̈̃ + 𝑾̅̅̅𝒙 − 𝑨𝑻̃ = 𝑭̅1, (47) 

𝑪𝑻̇̃ + 𝑽̅𝒚 + 𝑩𝒖̇̃ = 𝑭̅2. (48) 

If we assumed that  𝒙 = {
𝒕𝑛𝑡
𝒖̃𝑛𝑢

} and 𝒚 = {
𝒒𝑛𝑞

𝑻̃𝑛𝑇
˜ }, Eqs (47) and (48) can be represented as 
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{
𝑴12𝒖̈̃𝑛𝑢 + 𝑾̅̅̅11𝑡𝑛𝑡 + 𝑾̅̅̅12𝒖̃𝑛𝑢 −𝔸11𝑻̃𝑛𝑞 −𝔸12𝑻̃𝑛𝑇 = 𝑭̅𝑛𝑡

1

𝑴22𝒖̈̃𝑛𝑢 + 𝑾̅̅̅21𝑡𝑛𝑡 + 𝑾̅̅̅22𝒖̃𝑛𝑢 −𝔸21𝑻̃𝑛𝑞 −𝔸22𝑻̃𝑛𝑇 = 𝑭̅𝑛𝑢
1
, (49) 

{
𝑪11𝑻̇̃𝑛𝑞 + 𝑪12𝑻̇̃𝑛𝑇 + 𝕍̅11𝒒𝑛𝑞 + 𝕍̅12𝑻̃𝑛𝑇 +𝑩12𝒖̇̃𝑛𝑢 = 𝑭̅𝑛𝑞

2

𝑪21𝑻̇𝑛𝑞 + 𝑪22𝑻̇𝑛𝑇 + 𝕍̅21𝒒𝑛𝑞 + 𝕍̅22𝑻̃𝑛𝑇 +𝑩22𝒖̇̃𝑛𝑢 = 𝑭̅𝑛𝑇
2
.  (50) 

Substituting vector 𝑡𝑛𝑡  into Eq (49) yields Eq (51) below. Similarly, substituting vector 𝒒𝑛𝑞  into 

Eq (50) yields Eq (52) below 

𝑴̃𝑢̈̃ + 𝑊̃𝑢̃ − 𝔸̃𝑻̃ = 𝐹̅1, (51) 

𝑪̃𝑻̇̃ + 𝕍̃𝑻̃ + 𝑩̃𝒖̇̃ = 𝐹̅2. (52) 

where matrices 𝑴  and 𝑊  are 3𝑁𝑡 × 3𝑁𝑡 ,  𝔸  is 3𝑁𝑡 × 𝑁𝑡  as well as 𝑪  and 𝕍  are 𝑁𝑡 × 𝑁𝑡,  and 𝑩  is 

𝑁𝑡 × 3𝑁𝑡. 

In which total nodes 𝑁𝑠 = 𝑁𝑏 boundary nodes + 𝑁𝑖  internal nodes. 

Adding Eqs (51) and (52) results in the following unified system: 

𝑴̅𝑿̈ + 𝑪̅𝑿̇ + 𝑲̅𝑋 = 𝑭̅. (53) 

The Houbolt time-integration technique has various advantages, notably when handling dynamic 

problems in structural analysis. One of the primary advantages is its simplicity and ease of 

implementation. The Houbolt methodology, being an explicit method, is simple to employ, particularly 

for problems requiring high computational efficiency. It also uses less memory than more complex 

implicit methods because it only needs the current and prior time-step values to calculate. Furthermore, 

Hublot’s approach can manage large time steps in some cases, making it useful for issues in which 

high-frequency oscillations or tiny time-step requirements are not crucial. The method is stable for 

situations with moderate damping and, because it is conditionally stable, it performs well when a 

suitable time step size is chosen, reducing the need for unnecessarily small steps. Furthermore, 

Houbolt’s technique is frequently utilized in explicit dynamic analyses, particularly structural 

dynamics, and vibration analysis, because it delivers fast answers at minimal processing costs, making 

it useful for real-time simulations or large-scale issues. However, it should be noted that its accuracy 

can diminish when dealing with stiff systems or when higher-order accuracy is required, making it 

better suited to non-stiff or moderately stiff systems. 

To solve Eq (53), we use the Houbolt technique with the assumption that acceleration varies 

linearly throughout the time interval (𝑡, 𝑡 + Δ𝑡). Therefore, we have 

𝑿̈𝑡+Δ𝑡 =
2𝑿𝑡+Δ𝑡−5𝑿𝑡+4𝑿𝑡−Δ𝑡−𝑿𝑡−2Δ𝑡

Δ𝑡2
, (54) 

𝑿̇𝑡+Δ𝑡 =
11𝑿𝑡+Δ𝑡−18𝑿𝑡+9𝑿𝑡−Δ𝑡−2𝑿𝑡−2Δ𝑡

6Δ𝑡
. (55) 

To determine the unknowns 𝑿𝑡+Δ𝑡 for every time-step, substitute Eqs (54) and (55) into Eq (53) 

and solve the following algebraic equation 

(𝑲̅ +
2

Δ𝑡2
𝑴̅ +

11

6Δ𝑡
𝑪̅)𝑿𝑡+Δ𝑡 = (

5

Δ𝑡2
𝑴̅ +

3

Δ𝑡
𝑪̅)𝑿𝑡 − (

4

Δ𝑡2
𝑴̅ +

3

2Δ𝑡
𝑪̅)𝑿𝑡−Δ𝑡 

(56) 
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+(
1

Δ𝑡2
𝑴̅ +

1

3Δ𝑡
𝑪̅)𝑿𝑡−2Δ𝑡 + 𝑭̅𝑡+Δ𝑡. 

First, Eq (56) is solved to yield displacements and temperatures for each time step. Differentiating 

Eq (33) with respect to x yields the nodal strains at every given time step. The associated stresses are 

then calculated with Eq (11). 

According to [30], the crack tip stress in FGMs is  

𝜎𝑖𝑗(𝑟, 𝜃) =
𝐾I

√2𝜋𝑟
𝜎‾𝑖𝑗
I (𝜃) +

𝐾II

√2𝜋𝑟
𝜎‾𝑖𝑗
II(𝜃) +

𝐾III

√2𝜋𝑟
𝜎‾𝑖𝑗
III(𝜃), (57) 

and the crack tip displacements in FGMs can be expressed as 

𝑢𝑖(𝑟, 𝜃) =
1

𝑐𝑖𝑗𝑘𝑙
𝑡𝑖𝑝 √

𝑟

2𝜋
[𝐾I𝑢‾𝑖

I(𝜃) + 𝐾𝐼𝐼𝑢‾ 𝑖
lI(𝜃) + 𝐾III𝑢‾ 𝑖

III(𝜃)]. (58) 

where (𝑟, 𝜃) are the polar coordinates, and 𝑢‾ 𝑖
𝐼 , 𝑢‾ 𝑖

II, 𝑢‾ 𝑖
III, 𝜎‾𝑖𝑗

I (𝜃), 𝜎‾𝑖𝑗
II(𝜃), and 𝜎‾𝑖𝑗

III(𝜃) are the same as that 

of the homogeneous one. 

Therefore, the SIFs for the cracked thermoelastic anisotropic FGMs are [30] 

𝐾I = lim
𝑟→0

 (
2𝑐𝑖𝑗𝑘𝑙

𝑡𝑖𝑝

𝜅+1
√
𝜋

2𝑟
Δ𝑢2), (59) 

𝐾II = lim
𝑟→0

 (
2𝑐𝑖𝑗𝑘𝑙

𝑡𝑖𝑝

𝜅+1
√
𝜋

2𝑟
Δ𝑢1), (60) 

𝐾III = lim
𝑟→0

 (
𝑐𝑖𝑗𝑘𝑙
𝑡𝑖𝑝

2
√
𝜋

2𝑟
Δ𝑢3). (61) 

To solve coupled dynamic thermoelastic fracture issues in anisotropic FGMs, computing the crack 

tip displacements Δ𝑢𝑖(𝑡) and substituting them into the Eqs (59)–(61) may obtain the dynamic SIFs 

for the cracked thermoelastic anisotropic FGMs. Thus, the current paper provides a theoretical 

framework for analyzing a wide range of real engineering applications. 

4. Numerical results and discussion 

There is no closed-form analytical solution for the nonhomogeneous materials mentioned here, 

i.e., FGMs, because finding an analytical solution to the problem is extremely challenging. The 

proposed BEM created in this work is suitable for a broad range of dynamic thermoelastic fracture 

problems in anisotropic FGMs.  

To exhibit the numerical results derived using the proposed technique specified in this paper, the 

elasticity tensor, temperature coefficient, and thermal conductivity for homogeneous and functionally 

graded materials, respectively, are [31]: 

𝐶𝑝𝑗𝑘𝑙 =

[
 
 
 
 
 
430.1 130.4 18.2
130.4 116.7 21.0
18.2 21.0 73.6

0      0   201.3
0      0    70.1
0      0      2.4

0 0 0
0 0 0

201.3 70.1    2.4

19.8 −8.0   0   
−8.0 29.1 0  
 0 0 147.3  ]

 
 
 
 
 

 GPa 
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𝛽𝑝𝑗 = [
1.01 2.00 0
2.00 1.48 0
0 0 7.52

] ∙ 106 𝑁/𝐾𝑚2 

𝑘𝑝𝑗 = [
5.2 0 0
0 7.6 0
0 0 38.3

]𝑊/𝐾𝑚 

𝑘𝑝𝑗 = [
5.2 0 0
0 7.6 0
0 0 38.3

] (3 + cos2 (
𝑥

2
+
𝑦

3
))𝑊/𝐾𝑚 

Example 1. An anisotropic FGM plate with cracks 

Figure 1 shows an anisotropic FGM plate with two parallel cracks, with the following parameters: 

𝑇0 = 100
∘C, 𝑙 = 24 cm, 𝑎 = 2 cm, 𝑏 = 3 cm. The plate’s border is meshed by 60 boundary elements, 

with 15 boundary elements meshing each crack. 

 

Figure 1. An anisotropic FGM plate with two parallel cracks.  

Figure 2 demonstrates that in the functionally graded case, the stress intensity component rises to 

its highest value, whereas in the homogenous case, it falls to its lowest. Isotropic materials in the 0 ≤

𝑡 ≤ 0.8  range have smaller sizes and greater stress intensity factor values compared to other 

functionally graded materials in the 0.8 < 𝑡 range. In the homogeneous instance, the isotropic case is 

smaller than other materials in the range of 0 < 𝑡 < 4. 

Figure 3 illustrates how the SIF of two crack tips varies over time for different thermoelastic 

coupling parameter values (β = 0.0, 0.3, 0.6), where β = 0.0 represents the uncoupled thermoelastic 

scenario. The graph indicates that increasing the thermoelastic coupling parameter lowers the SIF. 
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Figure 2. The variation of the SIF over time for different materials in homogeneous and 

functionally graded cases. 

 

Figure 3. Variation of the SIF with time for different coupling parameter values. 

Example 2. 3D anisotropic FGM circular thick tube with an elliptical crack 

Figure 4 shows a 3D anisotropic FGM circular thick tube with an elliptical crack, with the 

following properties: tube length 𝑙 = 35 cm, tube inner radius 𝑅1 = 10 cm, tube outer radius 𝑅2 =

15 cm,  initial temperature 𝑇0 = 100∘C , 𝑎 = 4 cm , and 𝑏 = 2 cm.  To tackle this issue, the model is 

discretized into 360 border elements and 120 internal nodes. 
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Figure 4. Considered circular tube model.  

 

Figure 5. Variation of the SIF over time for different materials in homogeneous and 

functionally graded cases. 

Figure 5 shows that in the functionally graded case, anisotropic materials have higher SIFs 

compared to other materials. However, in the homogeneous case, isotropic materials have lower SIFs 

compared to other materials in the 𝟎 ≤ 𝒕 ≤ 𝟏. 𝟏𝟓 and higher SIFs compared to other materials in the 

𝟏. 𝟏𝟓 < 𝒕 range until reaching a maximum value. 
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Figure 6. Variation of the SIF with time for different angle points along the crack front. 

Figure 6 depicts how the SIF varies over time for three different angle positions 

(𝜃 = 30∘, 60∘, 90∘) along the crack front. This figure shows that raising the angle decreases the SIF. 

 

Figure 7. Variation of the SIF with time for BEM, SBFEM, and S-XMM-N. 

There are no previously published results to substantiate the proposed technique’s findings. Some 

literature can be included in the proposed inquiry. As a result, in our study, we analyzed a one-

dimensional specific situation and compared our RIBEM (present) results to Iqbal et al.’s scaled 
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boundary finite element method (SBFEM) results [32] and Pan’s exact solution results [33]. 

Figure 7 depicts the variations of SIF with time for current BEM, SBFEM [32], and Exact [33]. 

These results reveal that the current BEM has great agreement with the SBFEM and Exact, 

demonstrating the accuracy and correctness of our proposed technique.  

5. Conclusions 

The primary goal of this study is to establish a time-stepping boundary element technique (BEM) 

for solving three-dimensional coupled dynamic thermoelastic fracture issues in anisotropic 

functionally graded materials (FGMs). The crack tip opening displacement determines the dynamic 

stress intensity factor (SIF). The effects of anisotropy, graded parameters, and angle locations on the 

SIF are studied for three-dimensional coupled dynamic thermoelastic fracture situations. Results show 

that the novel method is exceptionally exact and efficient at assessing the fracture mechanics of 

fractured thermoelastic anisotropic FGMs. Because FGMs are nonhomogeneous materials, the crack 

modes are constantly heterogeneous and difficult; yet the examples show that the developed coupled 

thermoelastic RIBEM is well suited for studying the dynamic fracture problems of FGMs in both 2D 

and 3D. The modeling processes are basic and can yield accurate results. 
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