AIMS Mathematics, 10(2): 4268-4285.
AIMS Mathematics DOI: 10.3934/math.2025197

Received: 31 October 2024

Revised: 09 February 2025

Accepted: 25 February 2025

Published: 28 February 2025
http://www.aimspress.com/journal/Math

Research article

A time-stepping BEM for three-dimensional thermoelastic fracture

problems of anisotropic functionally graded materials

Mohamed Abdelsabour Fahmy!* and Ahmad Almutlg?

1 Department of Mathematics, Adham University College, Umm Al-Qura University, Adham 28653,
Makkah, Saudi Arabia
2 Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia

* Correspondence: Email: maselim@uqu.edu.sa; Tel: +966537930306.

Abstract: The primary goal of this study is to create a novel mathematical model based on the time-
stepping boundary element method (BEM) scheme for solving three-dimensional coupled dynamic
thermoelastic fracture issues in anisotropic functionally graded materials (FGMs). The crack tip
opening displacement determines the dynamic stress intensity factor (SIF). The effects of anisotropy,
graded parameters, and angle locations on the SIF were studied for three-dimensional coupled dynamic
thermoelastic fracture situations. The results show that the novel method is exceptionally exact and
efficient at assessing the fracture mechanics of fractured thermoelastic anisotropic FGMs. In addition,
this paper provides a theoretical framework for analyzing a wide range of real engineering applications.
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components
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B(x)  Stress-temperature modulus q Heat flux
q *

I Boundary Known heat flux



4269

At Time step Q Heat sources
U Shear modulus r =lx—-xl
i Normalized shear modulus R = lx—xP|
P Mass density t; Tractions
0ij Stress tensor t; Known tractions
T Time T  Temperature
@(R) Radial basis function (RBF) T Normalized temperature
¢P(R) Fourth-order spline RBF T* Known temperature
Q Domain T, Initial temperature
alk Unknown coefficient T Temperature time derivative
Cij & ¢ Free-term coefficients {T} Nodal temperatures
Cp Specific heat u; Displacement vector
C; jkl (x) Elastic moduli U; Normalized displacement
Citjl,fl Crack-tip elastic moduli u; Known displacements
d, Support domain size at x” U, Initial displacement
E Constant Young’s modulus U;; Volume strain rate
E' FGM Young’s modulus U; Acceleration
F; Body force vector {u} Nodal displacements
k Thermal conductivity v Poisson’s ratio
k Normalized thermal conductivity v, Initial velocity
m Functionally graded parameter X  Field point
N, Boundary nodes number x' Source point
N; Internal nodes number Xg  Cartesian coordinate system
N; = N, + N; total nodes number xP  Application point

1. Introduction

Functionally graded materials (FGMs) are advanced composite materials whose composition and
properties gradually change across the material, usually transitioning between two or more distinct
phases, such as metal and ceramic. Unlike standard homogeneous materials, FGMs provide specialized
qualities that can be optimized for specific purposes, such as increased strength, thermal resistance, or
wear resistance, by altering the material gradient [1,2]. This continual variation in characteristics
enables FGMs to endure complicated situations such as high-temperature gradients or mechanical
pressures, making them excellent for use in aerospace, automotive, and biomedical engineering. FGMs
provide considerable advantages over traditional materials by regulating the spatial distribution of
material phases, particularly in applications that require both mechanical and thermal performance
[3.4].

Anisotropic materials have qualities that vary depending on the direction in which they are
measured, indicating that their behavior changes with different orientations, such as crystals or fiber-
reinforced composites. Orthotropic materials, on the other hand, are a subset of anisotropic materials
with three mutually perpendicular planes of symmetry, implying that their properties are directionally
dependent but in a more defined and simpler manner—commonly seen in materials such as wood or
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certain composites. Isotropic materials, on the other hand, have homogeneous properties in all
directions, implying that their mechanical and thermal responses are equal regardless of the direction
in which they are tested, as in metals and some polymers.

Understanding the differences between different material classes is important in material selection
and structural design, especially when determining how a material will react to stress, strain, or heat
in various applications. Understanding a material’s anisotropy is also important for designing
structures that can withstand complex, directed pressures in fields like aerospace, civil engineering,
and materials research [5,6].

Fracture modes I, II, and III in anisotropic FGMs describe different types of fracture propagation
behaviors under varied loading situations, with each mode determined by the FGMs’ unique features,
which change spatially. Mode I, also known as the opening mode, involves crack faces moving apart
in a direction normal to the crack plane due to tensile stresses. In anisotropic FGMs, this mode is
influenced by the directional dependence of material properties such as stiffness and Poisson’s ratio,
which can result in non-uniform crack tip stress fields [7-9]. Mode I, also known as the sliding mode,
occurs when the crack faces slide past each other in a shear direction parallel to the crack plane [10,11].
In FGMs, the spatial gradient in material properties, particularly the shear modulus, affects the crack’s
resistance to sliding, depending on the material’s variation across the crack front. Mode III, the tearing
or anti-plane shear mode, is distinguished by crack faces moving in a shear direction perpendicular to
the crack plane, with out-of-plane shear stresses; in anisotropic FGMs, the varying properties in the
out-of-plane direction produce different shear resistances that influence the tearing behavior [12,13].
Because FGMs have both anisotropy (directional dependency) and inhomogeneity (gradients in
material properties), cracks usually encounter a combination of all three modes, making fracture
behavior more complex than in isotropic materials [14,15]. In such materials, the stress intensity
factors (SIFs) for each mode must account for these spatial variations, and the crack tip fields are
significantly altered by the heterogeneous nature of the material, resulting in intricate crack
propagation dynamics influenced by both material gradients and directional dependencies [16,17].

Thermoelastic fracture problems in anisotropic FGMs involve the study of crack propagation and
fracture behavior in materials that experience both thermal and mechanical loading, with material
properties varying spatially and directionally. These materials exhibit gradients in thermal conductivity,
elasticity, and other properties, which makes their response to stress and temperature changes more
complex than homogeneous materials. When subjected to thermal gradients, the anisotropic nature of
the FGM results in uneven thermal expansion or contraction, inducing internal stresses that interact
with mechanical loading, influencing crack growth and fracture behavior. Analyzing these problems
requires considering the coupled effects of thermal and mechanical stresses, with crack-tip stress
intensity factors (SIFs) and energy release rates often varying due to the spatially varying material
properties. Understanding these coupled effects is critical for designing reliable components in high-
performance applications like aerospace, turbine engines, and biomedical devices, where FGMs are
subjected to extreme thermal and mechanical conditions [18,19].

The boundary element method (BEM) is a powerful numerical method for resolving thermoelastic
fracture issues in anisotropic FGMs, where material parameters like thermal conductivity, elasticity,
and stiffness vary continuously across the structure. BEM is especially well-suited for these problems
because it reduces the problem’s dimensionality by converting the governing partial differential
equations into integral equations defined only on the domain’s boundary, which is useful when dealing
with FGMs’ complex, spatially varying properties. In thermoelastic fracture problems, BEM can
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account for the combined effects of thermal and mechanical loads because temperature gradients
provide extra stresses that interact with the material’s directional dependence [20,21]. The material’s
anisotropy complicates the fracture analysis since stress intensity factors (SIFs) and energy release
rates are affected by both the gradient and the material’s directional characteristics. By discretizing the
boundary and calculating the resulting integral equations, BEM can accurately predict crack
propagation, stress distribution, and fracture behavior under combined thermal and mechanical loads.
This makes BEM an effective tool for evaluating fracture mechanics in FGMs, especially in high-
performance engineering applications like aerospace, where such materials are subjected to both heat
gradients and mechanical pressures at the same time [22,23].

The radial integration boundary element method (RIBEM) and the radial integration finite
element method (RIFEM) are two numerical techniques that use radial integration to solve boundary
value problems, although they differ greatly in their formulation, application, and computing benefits.
RIBEM, being a boundary-only approach, concentrates on discretizing the problem’s border and
solving only the boundary integral equations, resulting in lower computational cost and complexity as
compared to standard domain-based methods such as the finite element method (FEM). It is especially
useful for issues with infinite or semi-infinite domains, such as acoustics or electromagnetic field
problems, where it is difficult to simulate the interior. RIFEM, on the other hand, incorporates radial
functions into the finite element framework, handling both the domain and the boundary with radial
basis functions (RBFs) and allowing for the modeling of complicated structures that consider both the
interior and outside. While RIFEM allows for greater freedom in modeling inner fields and
complicated geometries, it is computationally more expensive since it needs discretization of both the
domain and the boundary, resulting in bigger system matrices and higher solution costs. Furthermore,
because it focuses primarily on boundary discretization, RIBEM is generally easier to apply than
RIFEM, which, while more versatile, may struggle with issues such as ill-conditioning in the system
of equations or difficulties in capturing boundary effects near singularities. Both methods, however,
seek to give high accuracy and efficiency in situations with irregular geometries, and the decision
between them is mostly determined by the domain size, complexity, and available computer resources
[24,25].

This work presents a time-stepping boundary element method for solving the 3D thermoelastic
fracture problems of anisotropic FGMs. The crack tip opening displacement determines the dynamic
SIF. Numerical findings demonstrate the current technique’s accuracy and efficacy.

2. Formulation of the problem

In the current study, the graded material property has the following exponential function model
[26]

E'(xs) = Ee™s (s =12,3). (1)
The governing equations are [25]

0i;,;(X,7) + b; = pii;(x, 7), (2)

T(x,7) — pc,T(x,1) — BTty (x,7) = 0 ©)
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where T(x,7) = (k(xX)T ;(%, 7)), + Y1)

Subjected to:
T(x19) =To(X),
u(x,79) = 1up(x),
u(x,19) = vy(x), X€EQN
u;(%,7) = u; (x,1), X€ET,
t;(x,1) = 0;;(x, )N =t/ (X, 7),X €I}, r=r,uUrl;
T(x,7)=T"(x,1),x €I}
q(m)=—kaT§:T)=q*(x,r),xer. F=Trrul,
where

0;;(%,7) = Cijra (U, (%, 7) — 6;;()T (%, 7).

. T (x,7) E(x)
In which ¢;(x,7) = 0;;(X, T)n;, (X, 7) = —k gzt and f(x) = 1—)2(17 a.

3. Radial integration boundary element method (RIBEM) implementation
The governing Eqgs (2) and (3) can be written as [25]

Jo wij(G + by — piy)da =0,

k?”“ﬂﬂi+¢—p%T—B%m4dQ=Q
Thus, displacement and temperature integral equations are:
f U0 Mk dI‘—f wjj k Cijransty dT +J W ks Cijrater dﬂ"‘f U k Cijratty dQ
r r Q Q

fT%nmdPifMTMMF+fkﬂEMHJmﬂwm+kaﬁdQ
r r Q Q Q

—ITW%TMLifT%%%“m=O
Q Q

According to [27,28], the third terms of equations (10) and (11) are

(4)
(5)
(6)
(7)
(8)
9)

(10)

(11)

(12)

(13)

(14)

(15)
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Jo i ks X, %) Cijia (XD (X, 1)dQ = —Cjpg (u; (%, 7). (16)
f kT — o (aTa(: X)) dQ = —kT(X, 7). (17)

Therefore, Eqs (10) and (11) yield
c;; (XD (X, 1) = Il puij (%, x)t;(x, 7)dl — f pti (% X)L (x, 7)dl +f u; (x,x)b; dQ

+J o Wi (x, XDl (x,7)dQ — fu](xx) iL;(x,7)dQ

L]kl( ) (18)

* n Bx)
+[ uiy XN ES T (x D) da,

cxNTX, 1) =T(x,x) + J T*(x,x)Y(x,7)dQ
Q

(19)
—f T*(x,x)ﬁ( OTo 4 (x,1)de
Q Ukl( )
where
T(x,x) = —[. T"(x,x)q(x,0)dl - [ T(x,1)q"x,x)dl + [, Vx,x)T(x,7)dQ— [, T"(x, x)lf(c”) T(x,7)dq.

The fundamental solutions can be expressed as [29]

) 81TG]K[ 6ln +rr]f0r2D

" i (20)
16nGK,r [K368;; + 7;7.5] for 3D.

I

-1
K, r{an [K,6;; + 2r;r;] + Ky (nrj — njr,l-)} for 2D,
R (21)
{an [K25U + 3r; rj] + Kz(n = njr,i)} for 3D.

8K, 12
1 1
2—ln— for 2D,
=77 (22)
for 3D.
Antr or
k or for 2D
—— for
«_ )2nron ’
=) k or o ap (23)
dmrzon O oY
and
_KZ Ti
for 2D
y o AT ores
. (24)
8K, r? or oL
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41th r{y krk[]K26” + Br; r]] + ]Kz(ulrj ﬂ,jrli)} for 2D,
Wi = (25)
W{ukrk[ﬂﬁz&j + Br; r]] + ]Kz(,ulr] ﬂ,jr,l-)} for 3D.

ok ar*

= ox on’ (26)
where

i = Cijrai, fi =InCijy, T = kT, k=Ink, K, =1-v, K,=1-2vp,

K, = 3 — 4v. (27)

A meshfree method is produced by using the RIM to convert the several domain integrals that
arise in Eqs (18) and (19) into boundary integrals for evaluation. The unknown function u in RIM can
be roughly determined using the following equations

u(®) = 3, al@P(R) +ax, + af = 9" e (28)
Y, al =0. (29)
Zp aix =0. (30)
In this investigation, the following radial basis function is used
R 2 R 3 R 4
s -11-o(x) +8() -3(7) osms<a, (31)
0 d, <R

To generate the following algebraic equations system in matrix form, collocate x in Eq (28) at all
points of application and combine it with Eqs (29) and (30):

{u} = [¢]{a}. (32)

where

u(x) = " ®)[P]H{u} = PX){u}. (33)

In which {a} = [¢]{u} and @(x) = @" (X)[¢p] "
The following boundary integral equations are obtained by inserting Eq (33) into Eqgs (18) and
(19) and then applying RIM

cij (XN (X', 1) = Lufj(x,x’)tj(x,r)dF—Ltfj(x,x’)ﬁj(x,r)dF

1 or , ar .
+fr“(Q p)()_F (xx)dl"+uk(x T)f “(xx)a jk(x,x)dl" (34)
—uk(x D Jo m a(Q p)a F(x,x")dl + T*(x,7) J: ”‘()1()(’) gr Fj(x,x")dr,

and

AIMS Mathematics Volume 10, Issue 2, 4268—4285.



4275

cxNTX, 1) = —f T*(x,x")q(x,7)dl' —f q*(x,x)T(x,7)dl
r r

or ,
Fp(x,x)dl’

+.f¥a FS(XX)dF‘FTk(XT)jman

rre(x,x")on

—Tk(x,7) Jo = Fk (x,x")dI — u”(x DJo Fk (x,x")dr,

r”‘(xx’) on r”‘(xx’) on

in which

Fl (X X’) _ fr(x XT) ;ﬁj (X, X’)T‘l (X, X’)dT(X),
Flaex,x) = [T W (%, X)), (%, X ) dr (%),

fr(XX) U( X’)—T'Z(X X’)dT'(X)

I
l]k(xx) - k(q)

JT e X)) EQ ) (%, x)dr(x),

F,-‘,*C(x x) = k)

F3(x,x) = XY (x,x")r3(x,x")dr(x),
0

Ff(x,x) = fr(xx ) V(% x)r,(x,x)dr(x),

FEx) = [0 7 (%) 221, (x, X)dr (),

FR(x,x) = OT(X'XP) T*(x,x) % 7, (%, X)dr(x).

where 71 (x,X") = br¥(x,X), 72(%,X) = (074X, X ), 3(X,X ) = P(X, O (X,X).
The radial integrals in Eqs (36)—(43) are evaluated using the following relations:

x; =x;+r;r, R=yr2+2sr+R2, s=rR;, R, =x;—x
The boundary I discretization and numerical integration of Eqgs (34) and (35) produce

Mii + Hyit — Wit — Gt — AT = F,,

CT+H,T-VT - Grq + BirL = F,.
By putting the boundary conditions into Eqs (45) and (46), we obtain [25]

Mii+ Wx — AT = F*,
CT +Vy + Bii = F2.

t qn
If we assumed that x = {ﬁnt } andy = {T } Eqgs (47) and (48) can be represented as
Ny

nr

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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My, + Wstn, + Wigity, = Agi T, = AraTr, = F, (49)
Mzzﬁnu + W21tnt + szﬂnu - AZlan - A221~1nr = F}lu,

{Cllfnq + CioTy + Vllqnq + VigToy + Buaity, = F%q (50)
CZlan + CZZTnT + V21qnq + VZZTTLT + Bzzﬁnu = F%T

Substituting vector t,,, into Eq (49) yields Eq (51) below. Similarly, substituting vector n, into
Eq (50) yields Eq (52) below

Mii+ Wi — AT = F,, (51)

CT + VT + Bii = F,. (52)

where matrices M and W are 3N, X 3N, A is 3N, X N, as well as C and V are N; X N;, and B is
N; X 3N;.

In which total nodes Ny = Nj, boundary nodes + N; internal nodes.

Adding Eqgs (51) and (52) results in the following unified system:

MX+CX+Rx =F. (53)

The Houbolt time-integration technique has various advantages, notably when handling dynamic
problems in structural analysis. One of the primary advantages is its simplicity and ease of
implementation. The Houbolt methodology, being an explicit method, is simple to employ, particularly
for problems requiring high computational efficiency. It also uses less memory than more complex
implicit methods because it only needs the current and prior time-step values to calculate. Furthermore,
Hublot’s approach can manage large time steps in some cases, making it useful for issues in which
high-frequency oscillations or tiny time-step requirements are not crucial. The method is stable for
situations with moderate damping and, because it is conditionally stable, it performs well when a
suitable time step size is chosen, reducing the need for unnecessarily small steps. Furthermore,
Houbolt’s technique is frequently utilized in explicit dynamic analyses, particularly structural
dynamics, and vibration analysis, because it delivers fast answers at minimal processing costs, making
it useful for real-time simulations or large-scale issues. However, it should be noted that its accuracy
can diminish when dealing with stiff systems or when higher-order accuracy is required, making it
better suited to non-stiff or moderately stiff systems.

To solve Eq (53), we use the Houbolt technique with the assumption that acceleration varies
linearly throughout the time interval (¢, t + At). Therefore, we have

_ 2Xp 4 ne—5Xe+4X e pt—Xe—oAt

Xerar = ALZ > (54)
] _ 11X44 218X +9X A —2X¢2a¢
Kirn = < . (55)

To determine the unknowns X;, ¢ for every time-step, substitute Eqs (54) and (55) into Eq (53)
and solve the following algebraic equation

(Rt g1+ 2 €) Xevne = (g M+ €) Xe — (g M1 +52€) X
Atz T eAt ) TR T Az T A )Tt \ae2T T 2ae ) A (56)

AIMS Mathematics Volume 10, Issue 2, 4268—4285.



4277

(Atz M+ C) Xc-2ac + Freac

First, Eq (56) is solved to yield displacements and temperatures for each time step. Differentiating
Eq (33) with respect to x yields the nodal strains at every given time step. The associated stresses are

then calculated with Eq (11).
According to [30], the crack tip stress in FGMs is

o-ij(r: 6) KI (9)+ K[I —11(9)+ KIII —III(e) (57)

and the crack tip displacements in FGMs can be expressed as

u(r,60) = - f [Ki@i(6) + Ky (6) + K" (6)]. (58)

L]kl

where (r, 8) are the polar coordinates, and !, @}, ", i 7}:(8), 6" (6) and 0”1(9) are the same as that

of the homogeneous one.
Therefore, the SIFs for the cracked thermoelastic anisotropic FGMs are [30]

Zcitjirfz T

Ky = 11»1—>o K+1 ;Auz ’ (59)

2ctP

ijkl | T

ko =ty (S [ ) (60)
. Citjilfl n

KIII = lim _AU,3 . 61
r-=0 2 2r

To solve coupled dynamic thermoelastic fracture issues in anisotropic FGMs, computing the crack
tip displacements Au;(t) and substituting them into the Eqs (59)—(61) may obtain the dynamic SIFs
for the cracked thermoelastic anisotropic FGMs. Thus, the current paper provides a theoretical
framework for analyzing a wide range of real engineering applications.

4. Numerical results and discussion

There is no closed-form analytical solution for the nonhomogeneous materials mentioned here,
1.e., FGMs, because finding an analytical solution to the problem is extremely challenging. The
proposed BEM created in this work is suitable for a broad range of dynamic thermoelastic fracture
problems in anisotropic FGMs.

To exhibit the numerical results derived using the proposed technique specified in this paper, the
elasticity tensor, temperature coefficient, and thermal conductivity for homogeneous and functionally
graded materials, respectively, are [31]:

4301 1304 182 0 0
1304 1167 210 0 0
1182 210 736 0 0o 24
=" "0 0 198 -s. GPa
O 0 0 -80 29
2013 701 24 0 0 1473
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1.01 200 0
Bpj =12.00 148 0 [-10°N/Km?
0 0 752

52 0 0
k=0 76 0 |W/Km

Example 1. An anisotropic FGM plate with cracks

Figure 1 shows an anisotropic FGM plate with two parallel cracks, with the following parameters:
T, = 100°C, .l = 24 cm, a = 2 cm, b = 3 cm. The plate’s border is meshed by 60 boundary elements,
with 15 boundary elements meshing each crack.

A
X2

A

A 4

X1

\ 4

Ll

0

2a

F 3
Y

A
h 4

Figure 1. An anisotropic FGM plate with two parallel cracks.

Figure 2 demonstrates that in the functionally graded case, the stress intensity component rises to
its highest value, whereas in the homogenous case, it falls to its lowest. [sotropic materials in the 0 <
t < 0.8 range have smaller sizes and greater stress intensity factor values compared to other
functionally graded materials in the 0.8 < t range. In the homogeneous instance, the isotropic case is
smaller than other materials in the range of 0 < t < 4.

Figure 3 illustrates how the SIF of two crack tips varies over time for different thermoelastic
coupling parameter values ( = 0.0,0.3,0.6), where B = 0.0 represents the uncoupled thermoelastic
scenario. The graph indicates that increasing the thermoelastic coupling parameter lowers the SIF.
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SIF [MPa ym]

Functionally graded

0 0.5 1 1.5 2 25 3 3.5 <

Time [s]

Figure 2. The variation of the SIF over time for different materials in homogeneous and

functionally graded cases.

2 p = 0.0 Uncoupled
B=03 } Courted
ouple:
15 | B=0.6
€
1}
3]
[P
g |
B 05|
17}
0 L
0.5 . : :
0 0.5 1 1.5 2 25 3 3.5 4
Time [s]

Figure 3. Variation of the SIF with time for different coupling parameter values.

Example 2. 3D anisotropic FGM circular thick tube with an elliptical crack
Figure 4 shows a 3D anisotropic FGM circular thick tube with an elliptical crack, with the

following properties: tube length [ = 35 cm, tube inner radius Ry = 10 cm, tube outer radius R, =
15 cm, initial temperature Ty, = 100°C, a = 4 cm, and b = 2 cm. To tackle this issue, the model is

discretized into 360 border elements and 120 internal nodes.
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Figure 4. Considered circular tube model.

4

Anisotropic

D N A N R Orthotropic
_______ Isotropic

Functionally graded R N

25 |

SIF [MPa ym]

Homogeneous

15 r

0 0.5 1 1.5 2 25 3 35 4
Time [s]

Figure 5. Variation of the SIF over time for different materials in homogeneous and

functionally graded cases.

Figure 5 shows that in the functionally graded case, anisotropic materials have higher SIFs
compared to other materials. However, in the homogeneous case, isotropic materials have lower SIFs
compared to other materials in the 0 < t < 1.15 and higher SIFs compared to other materials in the

1.15 < t range until reaching a maximum value.
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SIF [MPa vm]

0 0.5 1 1.5 2 2.5 3 3.5 4.

Figure 6. Variation of the SIF with time for different angle points along the crack front.

Figure 6 depicts how the SIF varies over time for three different angle positions
(6 = 30°,60°,90°) along the crack front. This figure shows that raising the angle decreases the SIF.

45
——— Present
4
————— SBFEM
Exact
35 |
E .
(1]
(=¥
= ,
25 .
@ :
2
15 |
1
0 0.5 1 1.5 2 25 3 3.5 4

Time [s]

Figure 7. Variation of the SIF with time for BEM, SBFEM, and S-XMM-N.

There are no previously published results to substantiate the proposed technique’s findings. Some
literature can be included in the proposed inquiry. As a result, in our study, we analyzed a one-
dimensional specific situation and compared our RIBEM (present) results to Igbal et al.’s scaled
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boundary finite element method (SBFEM) results [32] and Pan’s exact solution results [33].

Figure 7 depicts the variations of SIF with time for current BEM, SBFEM [32], and Exact [33].
These results reveal that the current BEM has great agreement with the SBFEM and Exact,
demonstrating the accuracy and correctness of our proposed technique.

5. Conclusions

The primary goal of this study is to establish a time-stepping boundary element technique (BEM)
for solving three-dimensional coupled dynamic thermoelastic fracture issues in anisotropic
functionally graded materials (FGMs). The crack tip opening displacement determines the dynamic
stress intensity factor (SIF). The effects of anisotropy, graded parameters, and angle locations on the
SIF are studied for three-dimensional coupled dynamic thermoelastic fracture situations. Results show
that the novel method is exceptionally exact and efficient at assessing the fracture mechanics of
fractured thermoelastic anisotropic FGMs. Because FGMs are nonhomogeneous materials, the crack
modes are constantly heterogeneous and difficult; yet the examples show that the developed coupled
thermoelastic RIBEM is well suited for studying the dynamic fracture problems of FGMs in both 2D
and 3D. The modeling processes are basic and can yield accurate results.
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