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Abstract: To optimize the control of a queuing system with multiple classes of customers and multiple
servers, we introduce a novel joint scheduling–control policy that includes customer admission control,
service scheduling control, and service rate control. In this policy, any server can serve any class of
customers; the service rate control for a server is a unique feature of this policy and is determined
by the overall state of the system, not the state of a server or the class of customers it serves. Given
the inherent complexity of the system′s equations and the difficulty of solving them directly, we apply
diffusion approximation theory and consider the Halfin–Whitt heavy traffic regime. This approach
yields a formally weak limit of the joint scheduling–control problem. This limit problem, which
we call the diffusion control problem (DCP), is a stochastic differential equation (SDE). Next, we
present the corresponding Hamilton–Jacobi–Bellman (HJB) equation and prove the existence and
uniqueness of the solution to this equation. This solution is the optimal Markov policy for the diffusion
control problem, and we use this solution to devise a policy for the original joint scheduling–control
problem and prove its asymptotic optimality. We designed several experiments to compare the system′s
performance and value functions under different control policies. Our designed joint scheduling–
control policy has significant advantages in reducing the system′s cost and improving service efficiency.
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1. Introduction

We consider a stochastic service system consisting of n servers and m classes of impatient customers
and introduce a novel joint scheduling–control policy with three parts: customer admission control,
service scheduling control, and service rate control (see Figure 1 and Section 2 for a detailed
illustration).
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Figure 1. A parallel server queue model with multiclass jobs under a joint scheduling–
control policy.

Let k = 1, 2, · · · ,m; in this case, Un
k (·) represents the customer admission control process in

Figure 1, and ξn
k (·) represents the service scheduling control process. Let ξn = (ξn

1, ξ
n
2 · · · ξ

n
m); thus,

Hn
k

(
ξn(·)

)
represents the service rate control process. The arrivals of each customer class in the system

follow a renewal process, represented by λn
k in Figure 1. Any server can offer service to any customer,

and the corresponding service rate depends on the overall state of the system, not only on the individual
customer or the individual server, which is a unique feature of our proposed policy. Note that the vector
ξn is used in the rate control process Hn

k (·) for each type of service, not some component ξn
k .

Our joint scheduling–control policy has three parts, which are dynamically adjusted to each other
and combined with a cost function to optimize our system. For example, if too many customers of
a certain type arrive, we can either stop letting them in (customer admission control), schedule a few
more service stations to work for such customers (service scheduling control), or increase the service
rate for such customers (service rate control). These three approaches can be used simultaneously, or
one or two of them can be chosen in combination, which has to be chosen in conjunction with the cost
function to optimize the system.

Our service discipline is not first in–first out (FIFO) but a priority model and is inclusive of both
non-preemptive and preemptive resume policies (i.e., policies that either prevent or allow the service to
be interrupted and the customer to return to the queue without completing the service). For example, if
the cost of losing or waiting for a certain type of customer is particularly large, the service in progress
can be interrupted so that this type of customer can be served quickly and the waiting time can be
reduced.

Incoming customers are impatient, with random waiting times that they tolerate, shown as θn
k in

Figure 1. These waiting times are independent and identically distributed (i.i.d.) and are independent
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of the arrival and service processes. Customers face two situations in the system: being served or being
in suspension. A customer departs if his or her service is completed, and abandons the queue if he or
she has spent too much time waiting.

Of course, these added control components increase the cost, and the ultimate goal of this paper is
to obtain an asymptotically optimal joint scheduling–control policy to show that the added control
cost is worthwhile and that the total cost decreases. Our costs are linear or nonlinear expected
cumulative discount functions of appropriately normalized performance metrics. Our costs include
fixed components, such as the depreciation of equipment and basic salaries of personnel, as well as
some dynamic components, such as the cost of idle servers, the cost of customer abandonment, the
cost of customer queuing, the cost of customer access control, the cost of server scheduling control,
and the cost of server rate control. Of course, in practice, they can be added or subtracted accordingly.

In contrast to the control policies proposed in existing studies (see, e.g., Bell and Williams [1],
Harrison [2], Krichagina and Taksar [3], Kumar [4], Kushner and Chen [5], Martins et al. [6],
Plambeck et al. [7], Van Mieghem [8], Weerasinghe [9] and Atar et al. [10]), our joint scheduling–
control policy is designed more intelligently via a non-negative vector function of queue states and their
corresponding ratios. This problem is new to the literature concerning the design of joint scheduling
and control policies.

Given the inherent complexity of the system′s equations and the difficulty of solving them directly,
we apply diffusion approximation theory and consider the Halfin–Whitt heavy traffic regime (see, e.g.,
Halfin and Whitt [11] and Jagerman [12]). This approach yields a formally weak limit of the joint
scheduling control problem. This limit problem, which we call the diffusion control problem (DCP),
is a stochastic differential equation (SDE). Next, we present the corresponding Hamilton–Jacobi–
Bellman (HJB) equation and prove the existence and uniqueness of the solution to this equation. This
solution is the optimal Markov policy for the diffusion control problem (cf. [13]), and we use this
solution to devise a policy for the original joint scheduling control problem and prove its asymptotic
optimality.

The effectiveness of the designed joint scheduling–control policy is illustrated by numerical
examples, as shown in Figure 2. Compared with other policies, our designed joint scheduling–control
policy has the lowest cost, as shown by the leftmost blue rectangle in Figure 2. The results show
that our designed joint scheduling–control policy has significant advantages in reducing the system′s
cost and improving service efficiency. The results of this numerical simulation not only confirm the
rationality and practicality of the previous theoretical analysis but also provide a valuable reference for
practical applications. A more detailed description of these numerical simulations and comparisons is
presented in Section 3.

Therefore, determining how to establish the relationship between the physically optimal model
and the limit diffusion-based optimal control system is the key to proving the asymptotic optimality
of our designed policy. In doing so, we extend several techniques developed in Weerasinghe [9] to
broaden our goal from a single customer class to multiple customer classes and from rate control alone
to integrated server scheduling and rate control. This study also extends the standalone problem of
scheduling (see, e.g., Arapostathis et al. [14,15] and Atar et al. [10]) to the joint scheduling and control
problem developed in this paper. Additionally, instead of employing joint server scheduling and rate
control methods, we consider related studies on joint admission and rate control, which can be found
in Kocağa [16].
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Figure 2. Cost comparison for different polices.

Dynamic scheduling and control for parallel server queues in the Halfin–Whitt regime have
attracted interest in both academic studies and real-world applications (see, e.g., Sze [17], Arapostathis
et al. [14, 15], Armony et al. [18], Atar et al. [10], Dai [19], Garnett et al. [20]), Kocağa [16], and
Weerasinghe [9, 21]). Practical applications include modern telephone call centers, high-performance
computer systems, cloud computing, and even quantum computing-based future communication
systems and internet applications (see, e.g., Dai [22–24]).

More precisely, the aim of designing the policy is to choose a suitable number of servers while
balancing the system′s inputs and outputs by considering a sequence of parallel server queues, which
is diffusively scaled by the number n of servers. Furthermore, the traffic intensity associated with
each n tends toward unity as n increases. Scheduling involves allocating servers to customers, and
the associated rate control is conducted by introducing a vector of state-dependent feedback control
functions involving rate perturbations. When the server is interpreted as a quantum qubit, this server
number is the number of qubits required to build a quantum computer (see the recent breakthrough
reported in Dai [19]). Our research is widely applied and up-to-date and can provide valuable
references for practical operation.

This paper is organized as follows. In Subsections 2.1 and 2.2, we establish the mathematical
equations of the stochastic model, specify the necessary assumptions, and perform the relevant
scaling of the equations. In Subsection 2.3, we present the cost function of the original queueing
system. To facilitate numerical simulation, a linear version is presented, and we prove that any
cost function satisfying Assumption 3 can be used. The diffusion control problem is described in
Subsection 2.4, and the corresponding HJB equation is described in Subsection 4.1. We present the
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main theorem (Theorem 2) of this paper in Subsection 2.5, which shows the asymptotic optimality of
the joint scheduling control policy that we design. In Section 3, we use several experiments to compare
the system′s performance and value functions under different control policies. Section 4 presents the
proof of the theorem, Subsection 4.1 presents the proof of the existence and uniqueness of the solutions
of the HJB equation, Subsection 4.2 presents the proof of asymptotic boundedness. Finally, we present
the proof of Theorem 2 at the end of this paper in Subsection 4.3.

2. System model and main theorem

The study in this section is based on the model of parallel server queues that is presented in Figure 1
and explained in the introduction of this paper. First, defineM = {1, 2, · · · ,m} for an integer m ∈ N =
{1, 2, · · · }, and let

Sm =

{
x ∈ Rm

+ ;
m∑

k=1

xk = 1
}
, (2.1)

where Rm
+ = [0,∞)m. Furthermore, all related m-dimensional vector stochastic processes are assumed

to be in the Skorohod topological space D(Rm) of right-continuous functions with left limits and to
have the Skorohod topology (see, e.g., Ethier and Kurtz [25]). In addition, we use “⇒” to represent the
weak convergence of the processes in this space.

2.1. The queueing system under a joint scheduling–control policy

In this subsection, we specify mathematical expressions for the queuing state, the service state, the
arrival process, the service process, and the abandonment process. In this way, we outline a basic form
of the system. Importantly, our design of the service rate, which depends on the overall state of the
system and not on a single customer or a single server, is a unique feature of our policy.

For each n ∈ N, sequences of stochastic processes in the QED (both Quality and Efficiency driven)
regime, all the related processes indexed by n are assumed to be defined in a complete probability
space (Ω,F, P) that may depend on n, where n denotes the number of servers. We also need to assume
that the expectation of P is denoted by E and that t ≥ 0 (appearing below) represents the time. At time
t ≥ 0, for each k ∈ M, the number of customers of class k queuing in buffer k is denoted by Φn

k(t),
which has the corresponding vector-form expression

Φn(t) = (Φn
1(t),Φn

2(t), · · · ,Φn
m(t))′. (2.2)

The prime symbol used in (2.2) denotes the transpose of a vector. Similarly, Ψn
k(t) represents the

number of customers of class k being served at time t, which has the corresponding vector-form
expression

Ψn(t) = (Ψn
1(t),Ψn

2(t), · · · ,Ψn
m(t))′. (2.3)

Clearly, the processes in (2.2)-(2.3) are integer-valued vector processes, and

Φn(t), Ψn(t) ∈ Rm
+ ,

∑
k∈M

Ψn
k(t) ≤ n for each t ≥ 0. (2.4)
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Let Φn(0) and Ψn(0) represent the corresponding initial values. Here, we assume that they are
predetermined. Let Xn

k (t) represent the total number of customers of class k in the system at time
t, and let Xn(t) denote the corresponding vector form. Thus, we have

Xn(t) = Φn(t) + Ψn(t). (2.5)

The service times of class k customers for each k ∈ M are assumed to be exponentially distributed
with the rate function µn

k(·, ·), and each server is assumed to obey a work-conserving rule (i.e., a no-
idling rule). Furthermore, the rate µn

k(·, ·) is designed to be more realistic and efficient than in previous
works, as follows. We first use the queue state to design the server scheduling policy, i.e., to determine
the number of different classes of customers to be served simultaneously by n servers, based on the
proportion of customers in different classes of queues at time t. This step can be expressed as

Ψn
k(t) = nξn

k
(
Xn

t
)
, (2.6)

where ξn
k (·) : Rm

+ −→ R+ is the proportion of customers in class k to all customers in the system. Since
Ψn

k(t) must be an integer, we specify (2.6) as follows:

nξn
k
(
Xn

t
)
=


[ nXn

k (t)∑m
i=1 Xn

i (t)

]
, k = 1, 2, · · · ,m − 1,

n −
∑m−1

i=1 nξn
i
(
Xn

t
)
, k = m.

(2.7)

In what follows, we use ξn(Xn
t ) =

(
ξn

1(Xn
t ), · · · , ξn

m(Xn
t )
)′
∈ Sm to denote the corresponding m-

dimensional ratio vector. Thus, the non-negative rate function µn
k(·, ·) can be given as µn

k(ξn(Xn
t ), Xn

t )
for time t. Hence, if we use S n

k(·) to denote the standard Poisson process, at time t, the total number of
class k customers completing the service can be expressed as

S n
k

(∫ t

0
µn

k
(
ξn(Xn

s ), Xn
s
)
· Ψn

k(s)ds
)
. (2.8)

The server rate control and server scheduling control in our joint scheduling–control policy are
contained in µn

k(ξn(Xn
t ), Xn

t ). In addition, we denote customer admission control as Ln
k(t), k ∈ M. Their

exact form will be given in Assumption 2 in Section 2.2.
The arrival processes {An

k , k ∈ M} are assumed to be mutually independent renewal processes. This
assumption is common in the literature (see, e.g., Atar et al. [10]) and is realistic. It can be described
as follows. For each k ∈ M, let {τ̂k( j), j ∈ N} be a strictly positive i.i.d. sequence of random variables
with the mean E[τ̂k(1)] = 1 and a squared coefficient of variation

C2
τ,k =

Var(τ̂k(1))
(E[τ̂k(1)])2 ∈ [0,∞).

Furthermore, we assume that there is a constant N ≥ 2 such that E(τ̂k(1))N < ∞. We can then define

τ̃n
k( j) =

1
λn

k

τ̂n
k( j), (2.9)

where λn
k > 0 is the arrival rate of customers of class k. The notation in (2.9) is interpreted as follows:

τ̃n
k(1) represents the first arrival time of class k customers, and τ̃n

k(a) for each a ∈ {2, 3, ...} represents
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the amount of time between the (a − 1)th and the ath arrival of the kth customer. With the convention
that

∑0
1 = 0, we define the number of arrivals of class k customers up to time t as follows:

An
k(t) = sup

{
a ≥ 0 :

a∑
j=1

τ̃n
k( j) ≤ t

}
, k ∈ M, t ≥ 0. (2.10)

In addition, we assume that the rate at which class-k customers abandon their queue is a constant
denoted by θn

k ∈ [0,∞). Let {Rn
k , k ∈ M} be standard Poisson processes independent of each other and

of the process {An
k , S n

k , k ∈ M}. Then, the number of abandonments of queue k up to time t is given by

Rn
k

(
θn

k

∫ t

0
Φn

k(s)ds
)
, k ∈ M, t ≥ 0. (2.11)

To cover both non-preemptive and preemptive resume policies (i.e., policies that either prevent or allow
the service to be interrupted and the customer to return to the queue without completing the service),
we introduce the corresponding process Dn

k for each k ∈ M. This process has three properties: (i)
Initially, it takes the value of zero, i.e., Dn

k(0) = 0; (ii) it increases by 1 when a customer of class k is
allocated to a server; and (iii) it decreases by 1 when a customer of class k returns to the queue. We
can then model the associated dynamic queueing system asΦn

k(t) = Φn
k(0) + An

k(t) − Dn
k(t) − Rn

k

(
Ẽn

k (t)
)
− Ln

k(t),

Ψn
k(t) = Ψn

k(0) + Dn
k(t) − S n

k

(
En

k (t)
)
,

k ∈ M, t ≥ 0, (2.12)

where

En
k (t) =

∫ t

0
µn

k
(
ξn(Xn

s ), Xn
s
)
· Ψn

k(s)ds,

Ẽn
k (t) = θn

k

∫ t

0
Φn

k(s)ds.

Furthermore, an induced filtration F n = {F n
t , t ≥ 0} with the corresponding sigma algebra F n

t is
given by

F n
t = σ{A

n
k(s), S n

k
(
En

k (s)
)
,Rn

k
(
Ẽn

k (s)
)
,Φn

k(s),Ψn
k(s), Xn

k (s) : s ≤ t, k ∈ M}. (2.13)

It is obvious that Xn
k (t) is adapted to filtration F n and that F n

t is the information available at time t. In
addition, let τn

k(t) be the first arrival time in queue k that is not earlier than time t, i.e.,

τn
k(t) = inf{a ≥ t : An

k(a) − An
k(a−) > 0}, k ∈ M. (2.14)

We can then introduce the corresponding information field as follows:

Gn
t = σ{An

k
(
τn

k(t) + a
)
− An

k
(
τn

k(t)
)
, (2.15)

S n
k
(
En

k (t) + a
)
− S n

k
(
En

k (t)
)
,Rn

k
(
Ẽn

k (t) + a
)
− Rn

k
(
Ẽn

k (t)
)

: a ≥ 0, k ∈ M}.

On the basis of this notation, we introduce the concept of an admissible policy.
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Definition 1. For each k and t, a joint scheduling–control policy is admissible if the following three
properties hold:

(1) F n
t is independent of Gn

t ;
(2) S n

k

(
En

k (t) + a
)
− S n

k

(
En

k (t)
)

is equal in law to S n
k(a);

(3) Rn
k

(
Ẽn

k (t) + a
)
− Rn

k

(
Ẽn

k (t)
)

is equal in law to Rn
k(a).

2.2. Scaling under the QED regime

We first make the following heavy- traffic assumption (cf. [11,20,26,27]) for our subsequent study.

Assumption 1. There are constants λ0
k ∈ (0,∞), µ0

k ∈ (0,∞), and λ̄k ∈ (0,∞) for each k ∈ M such that

m∑
k=1

λ0
k

µk
0 = 1,

and, as n→ ∞,

λn
k

n
−→ λ0

k , n1/2(n−1λn
k − λ

0
k) −→ λ̄k.

Second, for all t ≥ 0, we introduce the related scaling processes as follows. Let Ân
k(·) be the process

obtained by diffusion scaling and centering of An
k(·), which takes the form

Ân
k(t) =

An
k(t) − λn

kt
√

n
. (2.16)

Furthermore, let Φ̄n
k and Ψ̄n

k be fluid-scaled processes defined by

Φ̄n
k(t) =

Φn
k(t)
n

and Ψ̄n
k(t) =

Ψn
k(t)
n

. (2.17)

Now, let

γ0
k =

λ0
k

µ0
k

and γ0 = (γ0
1, γ

0
2, · · · , γ

0
m)′. (2.18)

We can then introduce the corresponding diffusion-scaled processes as

Φ̂n
k(t) =

Φn
k(t)
√

n
and Ψ̂n

k(t) =
Ψn

k(t) − nγ0
k

√
n

. (2.19)

In addition, there are diffusion-scaled processes as follows:

D̂n
k(t) =

Dn
k(t) − nλ0

kt
√

n
, (2.20)

Ŝ n
k(t) =

S n
k(nt) − nt
√

n
, (2.21)
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R̂n
k(t) =

Rn
k(nt) − nt
√

n
. (2.22)

We then define

X̂n
k (t) ≜ Φ̂n

k(t) + Ψ̂n
k(t) =

Xn
k (t) − γ0

kn
√

n
, (2.23)

and
X̂n(t) = (X̂n

1(t), X̂n
2(t), · · · , X̂n

m(t))′. (2.24)

Next, we define

ξ̂n
k
(
X̂n

t
)
= ξn

k
(√

nX̂n
t + nγ0), (2.25)

where ξ̂n
k (·) : Rm −→ R+ can be approximated as the ratio of k class customers among all customers in

the system of X̂n(t). Let ξ̂n(X̂n
t ) =

(
ξ̂n

1(X̂n
t ), · · · , ξ̂n

m(X̂n
t )
)′. From (2.25), we can obtain

m∑
k=1

ξ̂n
k
(
X̂n

t
)
= 1, ξ̂n

k
(
X̂n

t
)
= ξn

k (Xn
t ). (2.26)

We can then denote Ψ̂n
k(t) for each k ∈ M as

Ψ̂n
k(t) =

Ψn
k(t) − nγ0

k
√

n
=

nξn
k

(
Xn

t
)
− nγ0

k
√

n
=
√

n
[
ξ̂n

k
(
X̂n

t
)
− γ0

k
]
. (2.27)

Remark 1. Note that Xn(t) ∈ Rm
+ , but X̂n(t) ∈ Rm. The reason is that, in some cases, for a fixed k̃ ∈ M,

Φn
k̃
(t) = 0, and Ψn

k̃
(t) < nγ0

k̃
, we have Φ̂n

k̃
(t) = 0 and Ψ̂n

k̃
(t) < 0. Consequently, X̂n

k̃
(t) < 0, and so

X̂n(t) ∈ Rm.

With the notation above, (2.12) can be rewritten as follows:Φ̂n
k(t) = Φ̂n

k(0) + Ân
k(t) − D̂n

k(t) − R̂n
k

( ¯̃En
k (t)

)
− ˆ̃En

k (t) + n1/2(n−1λn
k − λ

0
k)t − Ln

k(t),

Ψ̂n
k(t) = Ψ̂n

k(0) + D̂n
k(t) − Ŝ n

k

(
1
n En

k (t)
)
+
√

nλ0
kt − 1

√
n En

k (t),
(2.28)

where

¯̃En
k (t) = θn

k

∫ t

0
Φ̄n

k(s)ds,

ˆ̃En
k (t) = θn

k

∫ t

0
Φ̂n

k(s)ds.

Assumption 2. For each k ∈ M, there are non-negative bounded functions Un
k (·) : Rm −→ R+ that

satisfy Un
k (·) = 0 when ξn

k (Xn
t ) = 0 such that

Ln
k(t) = µ0

kUn
k
(Xn

t − nγ0

√
n

)
(2.29)
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and there are non-negative bounded functions Hn
k (·) : Sm −→ R+ that satisfy Hn

k (·) = 0 when ξn
k (Xn

t ) = 0
such that

µn
k
(
ξn(Xn

t ), Xn
t
)
=

µ0
k[1 + Hn

k

(
ξn(Xn

t )
)

√
nξn

k (Xn
t ) ], ξn

k (Xn
t ) > 0,

µ0
k , ξn

k (Xn
t ) = 0,

(2.30)

where µ0
k > 0 for all k ∈ M are constants called the basic service rates defined in Assumption 1 (cf.

Weerasinghe [9]); ξ̂n
k (·), defined in (2.25), represents the server scheduling control; Un

k (·) represents
customer admission control; and Hn

k (·) represents the server rate control.

Remark 2. A typical example of the rate control law for µn
k(·, ·) in (2.8) can be designed by generalizing

the discussion in Weerasinghe [9] for the single-class case to our multiclass case. The function µn
k(·) :

Rm −→ R+ can take the following basic form:

µn
k(x) =

µ0
k

[
1 + 1

√
nUn

k

(
x
√

n

)]
, x ∈ Rm

+ ,

µ0
k , otherwise.

(2.31)

Here µ0
k for all k ∈ M is called the basic service rates.

Remark 3. Based on Assumption 2, (2.6), and (2.26), 1
√

n En
k (t) in (2.28) can be written as

1
√

n
En

k (t) =
1
√

n

∫ t

0
µn

k
(
ξn(Xn

s ), Xn
s
)
· Ψn

k(s)ds (2.32)

=
1
√

n

∫ t

0
µ0

k[1 +
Hn

k

(
ξ̂n( Xn

t −nγ0
√

n )
)

√
nξn

k (Xn
t )

] · nξn
k
(
Xn

s
)
ds

=
√

nµ0
k

∫ t

0
ξn

k
(
Xn

s
)
ds + µ0

k

∫ t

0
Hn

k

(
ξ̂n(X̂n

s
))

ds

=
√

nµ0
k

∫ t

0
ξ̂n

k
(
X̂n

s
)
ds + µ0

k

∫ t

0
Hn

k

(
ξ̂n(X̂n

s
))

ds.

(2.33)

According to the notation introduced in Assumptions 1 and 2, from (2.28), we can obtain

X̂n
k (t) = xn

k + σkŴn
k (t) + λ̂n

kt − θn
k

∫ t

0
X̂n

k (s)ds (2.34)

−
√

n(µ0
k − θ

n
k)

∫ t

0
ξ̂n

k
(
X̂n

s
)
ds − µ0

k

∫ t

0
Un

k

(
X̂n

s

)
ds − µ0

k

∫ t

0
Hn

k

(
ξ̂n(X̂n

s
))

ds,

where

σkŴn
k (t) = Ân

k(t) − Ŝ n
k

(
1
n

En
k (t)

)
− R̂n

k

( ¯̃En
k (t)

)
,

σk = (λkC2
τ,k + λk)1/2,

λ̂n
k = n−1/2λn

k − n1/2γ0
kθ

n
k ,

xn
k = X̂n

k (0).
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Remark 4. Now, we show that (2.34) includes the case of ξn
k (Xn

t ) = 0.
First, when ξn

k (Xn
t ) = 0, we have Ψn

k(t) = 0, Ψ̂n
k(t) = −

√
nγ0

k , ξ̂n
k

(
X̂n

t
)
= 0, En

k (t) = 0, and
Ŝ n

k

(
1
n En

k (t)
)
= 0. Substituting these values into (2.28), we obtain

X̂n
k (t) = xn

k + Ân
k(t) − R̂n

k

( ¯̃En
k (t)

)
+ n−1/2λn

kt − θn
k

∫ t

0
Φ̂n

k(s)ds (2.35)

= xn
k + Ân

k(t) − R̂n
k

( ¯̃En
k (t)

)
+ n−1/2λn

kt − θn
k

∫ t

0
[X̂n

k (s) − Ψ̂n
k(s)]ds

= xn
k + Ân

k(t) − R̂n
k

( ¯̃En
k (t)

)
+ n−1/2λn

kt − θn
k

∫ t

0
X̂n

k (s)ds

+θn
k

∫ t

0

√
n(0 − γ0

k)ds

= xn
k + Ân

k(t) − R̂n
k

( ¯̃En
k (t)

)
+ n−1/2λn

kt − θn
k

∫ t

0
X̂n

k (s)ds −
√

nθn
kγ

0
k t.

Second, when ξn
k (Xn

t ) = 0, (2.34) can be written as

X̂n
k (t) = xn

k + Ân
k(t) − R̂n

k

( ¯̃En
k (t)

)
(2.36)

+(n−1/2λn
k − n1/2γ0

kθ
n
k)t − θn

k

∫ t

0
X̂n

k (s)ds.

The two equations above have the same form, verifying that (2.34) includes the case of ξn
k (Xn

t ) = 0.

The corresponding vector form of (2.34) can be written as

X̂n(t) = xn + σŴn(t) +
∫ t

0
bn(X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
ds, (2.37)

where xn = (xn
1, · · · , x

n
m)′, σ = diag(σk, k ∈ M) (here, “diag” means “diagonal matrix”), Ŵn(t) =

(Ŵn
1 (t), ..., Ŵn

m(t))′, and

bn(X̂n,Un, ξ̂n,Hn) = λ̂n − θnX̂n (2.38)
−
√

n(µ0 − θn)ξ̂n(X̂n) − µ0Un(X̂n) − µ0Hn(ξ̂n(X̂n)
)
.

Furthermore, the terms used in (2.39) have the following expressions:

λ̂n = (λ̂n
1, · · · , λ̂

n
m)′,

θn = diag(θn
k , k ∈ M),

µ0 = diag(µ0
k , k ∈ M),

ξ̂n(X̂n) = (
ξ̂n

1
(
X̂n), · · · , ξ̂n

m
(
X̂n))′ ,

Un(X̂n) = (
Un

1
(
X̂n), · · · ,Un

m
(
X̂n))′ ,

Hn(ξ̂n(X̂n)
)
=

(
Hn

1
(
ξ̂n(X̂n)

)
, · · · ,Hn

m
(
ξ̂n(X̂n)

))′
.

At this point, our system′s equations are fully developed. In this section, we scale the system equations,
present some necessary heavy traffic assumptions, and, most importantly, present the specific form of
the control function µn

k

(
ξn(Xn

t ), Xn
t
)
. Next, we provide the cost and value functions so that our original

physical model is fully described.
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2.3. Cost and value functions

Let
(
xn, X̂n,Un, ξ̂n,Hn)

n≥1 be as described in Section 2.2; the corresponding cost function can be
defined as

Jn(xn, X̂n,Un, ξ̂n,Hn) = E
∫ ∞

0
e−αtC

(
X̂n

t ,U
n
t , ξ̂

n
t ,H

n
t

)
dt, (2.39)

where C : Rm × Rm × Rm × Sm 7→ R+ is a non-negative continuous function as follows:

C
(
X̂n

t ,U
n
t , ξ̂

n
t ,H

n
t

)
= cn +

m∑
k=1

pn
k X̂n

k (t) +
m∑

k=1

sn
k ξ̂

n
k (t) +

m∑
k=1

qn
kUn

k (t) +
m∑

k=1

hn
kHn

k (t), (2.40)

where cn, pn
k , sn

k , qn
k , and hn

k are constants. This equation can be interpreted as follows. At time t,

the number of idle servers can be represented by n −
m∑

k=1

Ψn
k(t); subsequently, the idle server cost can

be represented by −
m∑

k=1

c1
kΨ̂

n
k(t), where c1

k is a constant. The abandonment cost can be represented

by
m∑

k=1

c2
kθ

n
kΦ̂

n
k(t), where c2

k is a constant and θn
k is the rate at which class k customers abandon their

queue, as defined in Section 2.1. The delay cost can be represented by
m∑

k=1

c3
kΦ̂

n
k(t), where c3

k is a

constant. These three costs can be unified in the form of
m∑

k=1

pn
k X̂n

k (t), which we call the queuing cost.

m∑
k=1

sn
k ξ̂

n
k (t) represents the corresponding server scheduling costs,

m∑
k=1

qn
kUn

k (t) represents the costs of

customer admission control, and
m∑

k=1

hn
kHn

k (t) represents the costs of server rate control. Fixed costs,

such as equipment depreciation and the basic salary of personnel, can also be considered; here, they
are denoted by cn, which is a constant.

Many cost factors need to be considered in practical applications. We provide a few typical
examples here. The cost factors to be considered can be increased or decreased according to the
specific situation. We will show later that any cost function can be used as long as it satisfies the
following assumption.

Assumption 3. We assume that function C satisfies the following:

(1) There is δ ∈ (0, 1), and for any compact G ⊂ Rm, there is c0 depending only on G such that

|C(x,U, ξ̂,H) −C(y,U, ξ̂,H)| ≤ c0∥x − y∥δ, (2.41)

holds for (U, ξ̂,H) ∈ Rm × Rm × Sm and x, y ∈ G.
(2) Constants c1 > 0 and kC ≥ 0 exist such that

C(x,U, ξ̂,H) ≤ c1(1 + ∥x∥kC ), (2.42)

where ∥x∥ =
m∑

k=1

|xk|, (U, ξ̂,H) ∈ Rm × Rm × Sm, and x ∈ Rm.
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Definition 2. Let Dn be the collection of all such admissible (X̂n,Un, ξ̂n,Hn); the value function Vn is
defined by

Vn = inf Jn(xn, X̂n,Un, ξ̂n,Hn), (2.43)

where the infimum is taken over all available processes (X̂n,Un, ξ̂n,Hn) in Dn .

2.4. The diffusion control problem

In this section, we present a diffusion control problem that can be regarded as a limiting form of
the stochastic model described in Section 2.2. The use of the Brownian system as a heavy traffic
approximation of a queuing system has been a long-standing idea, and the reader is referred to [3]
and [28] for a list of comprehensive references.

Let us define a complete probability space,
(
Ω, F, P

)
, where the expectation with respect to P is

denoted by E; in this space, all the stochastic processes below are defined. First, we make two
assumptions to facilitate obtaining the corresponding diffusion control problem from the previously
established joint scheduling–control problem.

Assumption 4. As n → ∞, for each k ∈ M, there are constants θ0
k ∈ [0,∞), ck ∈ [0,∞) and λk ∈ R

such that
λ̂n

k → λk, θn
k → θ0

k ,
√

n(µ0
k − θ

n
k)→ ck.

Assumption 5. As n→ ∞, for each k ∈ M, t ≥ 0, there are constants ϕk ∈ [0,∞), ψk ∈ R such that

Φ̂n
k(0)→ ϕk, Ψ̂n

k(0)→ ψk,

where

Φ̂n
k(0) =

Φn
k(0)
√

n
, Ψ̂n

k(0) =
Ψn

k(0) − γ0
kn

√
n

,

and
∑
M ψk ≤ 0.

Next, let xk = ϕk + ψk; thus, we consider a controlled state process Xk(t), which is a weak solution
to the following equation:

Xk(t) = xk + σkWk(t) + λkt − θ0
k

∫ t

0
Xk(s)ds (2.44)

−ck

∫ t

0
ξk

(
Xs

)
ds − µ0

k

∫ t

0
Uk

(
Xs

)
− µ0

k

∫ t

0
Hk

(
ξ(Xs)

)
ds,

where Uk(·) : Rm −→ R+, Hk(·) : Sm −→ R+, ξk(·) : Rm −→ R+,
∑m

k=1 ξk(·) = 1 and

Wk(t) = σ−1
k Ak(t),

Xs =
(
X1(s), · · · , Xm(s)

)
′,

ξ(Xs) =
(
ξ1(Xs), · · · , ξm(Xs)

)
′.

Now, we can obtain

X(t) = x + σW(t) +
∫ t

0
b
(
Xs,Us, ξs,Hs

)
ds, (2.45)
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where x = (x1, · · · , xm)′, σ = diag(σk, k ∈ M), W(t) = (W1(t), · · · ,Wm(t))′, and

b(X,U, ξ,H) = λ − θ0X − cξ
(
X
)
− µ0U

(
X
)
− µ0H

(
ξ(X)

)
. (2.46)

Furthermore, the terms used in (2.46) have the following expressions:

λ = (λ1, · · · , λm)′,
θ0 = diag(θ0

k , k ∈ M),
c = diag(ck, k ∈ M),

ξ
(
X
)
=

(
ξ1

(
X
)
, · · · , ξm

(
X
))′
,

U
(
X
)
=

(
U1

(
X
)
, · · · ,Um

(
X
))′
,

H
(
X
)
=

(
H1

(
ξ(X)

)
, · · · ,Hm

(
ξ(X)

))′
.

Assumption 6. To ensure that Xk(·) in (2.44) does not explode, we assume that there exists a constant
M ≥ 0 such that

0 ≤ Uk(·) ≤ M, (2.47)
0 ≤ Hk(·) ≤ M, (2.48)

where k ∈ M.

Now, we introduce the following cost function for the state Eq (2.45):

J
(
x, X,U, ξ,H

)
= Eπ

x

∫ ∞

0
e−αtC

(
Xt,Ut, ξt,Ht

)
dt, (2.49)

where C : Rm × Rm × Rm × Sm 7→ R+ is a non-negative continuous function as follows:

C (Xt,Ut, ξt,Ht) = c +
m∑

k=1

pkXk(t) +
m∑

k=1

skξk(t) +
m∑

k=1

qkUk(t) +
m∑

k=1

hkHk(t), (2.50)

where c, pk, sk, qk, and hk are constants.
In Section 3, we present several numerical examples in which the cost functions refer to (2.50).

The costs presented here are not used in every example. We provide this form to facilitate some of
the numerical simulations given in Section 3. Practical applications can be modified to suit a given
situation, and we will show later that any cost function that satisfies Assumption 3 is usable.

Definition 3. Given an initial state x, we call

π =
(
Ω, F, (Ft), P,U, ξ,H,W

)
an admissible control system if

(1)
(
Ω, F, (Ft), P

)
is a complete filtered probability space;

(2) (U, ξ,H) ∈ Rm × Rm × Sm is an F-measurable, (Ft)-progressively measurable process;
(3) W is standard m-dimensional (Ft)-Brownian motion.
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Definition 4. Let D be the set of all such admissible (X,U, ξ,H). The value function for the control
problem is defined as follows:

V(x) = inf
π∈Π

J
(
x, X,U, ξ,H

)
, (2.51)

where the infimum is taken over all available processes (X,U, ξ,H) in D.

Theorem 1. Let the system equation be (2.45) and the cost function be (2.49); then, there is a Markov
control policy that is optimal for all x ∈ Rm.

Theorem 1 is an integral part of Theorem 3, which states that the value function V is the unique
solution of the corresponding HJB equation. For this reason, Theorem 1 holds without proof as long as
Theorem 3 is proved later. We present Theorem 1 here to facilitate the construction of an asymptotically
optimal policy for our original joint scheduling–control problem in the next subsection.

2.5. An asymptotically optimal ioint scheduling–control policy

In this section, we present an asymptotically optimal control policy for the original problem, which
is defined by the optimal Markov control policy described in Theorem 1.

To state this result, we need to introduce a Markov control policy, namely η̃ =
(
Ũn, ξ̃n, H̃n), where

Ũn = U∗, ξ̃n = T (ξ∗), H̃n = H∗, T is a measurable map that guarantees that the components of Ψn(t)
are integer-valued, and η∗ = (U∗, ξ∗,H∗) is the optimal Markov control policy described in Theorem 1.
Let Ψn,∗ = nξ∗ and Ψ̃n = nξ̃n = nT (ξ∗), and define

Ψ̃n
k =


[Ψn,∗

k ], k = 1, 2, · · · ,m − 1,

Ψn,∗
k +

m−1∑
i=1

(
Ψn,∗

i − [Ψn,∗
i ]

)
, k = m.

(2.52)

Clearly,
m∑

k=1

Ψn,∗
i =

m∑
k=1

Ψ̃n
k = n and Ψ̃n

k ∈ Z+. Moreover, ∥ Ψ̃n − Ψn,∗ ∥≤ 2m.

Now, for a given initial condition xn and a stochastic sequence system, we write

Vn = lim inf
n→∞

Jn(xn, X̂n,Un, ξ̂n,Hn), (2.53)

where Jn is defined in (2.39) and represents the cost function for the joint scheduling–control problem.

Theorem 2. Let
(
xn, X̂n,Un, ξ̂n,Hn)

n≥1 be any sequence of the stochastic system described in
Section 2.2, let

(
Jn(xn, X̂n,Un, ξ̂n,Hn)

)
n≥1 be the associated cost function defined in (2.39) that satisfies

Assumption 3, and let Xn
k ≥ Ψ̃

n
k(k ∈ M). We thus obtain

lim
n→∞

E
∫ ∞

0
e−αtC

(
X̂n(t), Ũn(t), ξ̃n(t), H̃n(t)

)
dt ≤ Vn.

Theorem 2 is the main theorem of this paper, which states the asymptotic optimality of the joint
scheduling–control policy η̃ =

(
Ũn, ξ̃n, H̃n) by using the optimal Markov policy η∗ = (U∗, ξ∗,H∗).

Since the proof of this theorem is complicated and requires the assistance of lemmas, it is presented in
Section 4.
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3. Numerical simulations for a two-class model

In this section, we present several comparative experiments to compare the system′s performance
and value functions under different control policies. The results show that our designed joint
scheduling–control policy has significant advantages in reducing the system′s cost and improving
service efficiency. This numerical simulation not only confirms the rationality and practicality of the
previous theoretical analysis but also provides a valuable reference for practical applications.

The diffusion control problem is a stochastic differential equation, which can be regarded as the
limiting case of our original problem. U, ξ, and H in (2.46) can be regarded as the customer
admission control function, the server scheduling control function, and the server rate control function,
respectively, in the diffusion control problem. Therefore, in this section, we provide a specific example
of the diffusion control problem and some corresponding examples to illustrate the superiority of our
model.

Example 1 (Two-class model with our joint scheduling–control policy). For a numerical example, we
refer to (2.44) and (2.45) in Section 2.4, with m = 2, and consider a system of our joint scheduling–
control policy with two customer classes as follows:

dx1 = [λ1 − θ
0
1 x1 − c1ξ1(x1, x2)

−µ0
1U1(x1, x2) − µ0

1H1
(
ξ1(x1, x2), ξ2(x1, x2)

)
]dt + σ1dW1,

dx2 = [λ2 − θ
0
2 x2 − c2ξ2(x1, x2)

−µ0
2U2(x1, x2) − µ0

2H2
(
ξ1(x1, x2), ξ2(x1, x2)

)
]dt + σ2dW2,

(3.1)

as well as the following parameter values:

λ1 = 1.00, θ0
1 = 0.01, c1 = 0.98, µ0

1 = 1.00, σ1 = 1.00,

λ2 = 0.50, θ0
2 = 0.02, c2 = 1.96, µ0

2 = 2.00, σ2 = 0.80,

where λk, k = 1, 2 can be regarded as the arrival rate of customers of class k, θk, k = 1, 2 can be
regarded as the abandon rate of customers of class k, ck, k = 1, 2 can be regarded as the server
scheduling control rate of customers of class k, µ0

k , k = 1, 2 can be regarded as the basic service rates
defined in Assumption 1, and σk, k = 1, 2 can be regarded as the diffusion coefficient defined in (2.34).

Now, we refer to Eq (2.50) to define the relevant cost function of this model as follows:

C12
(
Xt,Ut, ξt,Ht

)
= 1 + p1x1 + p2x2 + s1ξ1(x1, x2) + s2ξ2(x1, x2)
+h1H1

(
ξ1(x1, x2), ξ2(x1, x2)

)
+ h2H2

(
ξ1(x1, x2), ξ2(x1, x2)

)
+q1U1(x1, x2) + q2U2(x1, x2), (3.2)

with the parameter values

p1 = 0.50, s1 = 0.25, q1 = 0.25, h1 = 0.25,

p2 = 1.00, s2 = 1.00, q2 = 1.00, h2 = 1.00.

The constant 1 in (3.2) represents the fixed costs, such as equipment depreciation and the basic salary
of personnel; pkxk, k = 1, 2 represents the queuing costs; skξk, k = 1, 2 represents the corresponding
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server scheduling costs; qkUk, k = 1, 2 represents the costs of customer admission control; and
hkHk, k = 1, 2 represents the costs of server rate control.

To facilitate calculation, we refer to Eq (2.51) in Section 2.4 and define a deformation of the value
function as follows:

V12 = min
∫ 1

0
C12

(
Xt,Ut, ξt,Ht

)
dt. (3.3)

Through the HJB equation, we obtain an optimal policy, i.e., the server scheduling control function,
the customer admission control function, and the server rate control function, as follows:

ξ1(x1, x2) = x1/(x1 + x2), ξ2(x1, x2) = x2/(x1 + x2),

U1(x1, x2) = arctan(x1/x2), U2(x1, x2) = arctan(x2/x1),

H1
(
ξ1(x1, x2), ξ2(x1, x2)

)
= ex1−x2/x1+x2 , H2

(
ξ1(x1, x2), ξ2(x1, x2)

)
= ex2−x1/x1+x2 .

Given that x1(0) = 2 and x2(0) = 3, we use the Euler–Maruyama (EM) method, which is a standard
numerical tool for solving SDEs. With MATLAB (cf. [29], [30], [31]), we obtain V12 = 4.0850. The
plot of this two-class model (Figure 3) shows that the sizes of the two customer classes are more
balanced because of customer admission control, server scheduling control, and server rate control.
Cases in which the number of one type of customer is large and the number of the other type is small
are relatively rare. Additionally, the numbers of both classes of customers decline in the later period.
The plot of the cost function C12 = C12

(
Xt,Ut, ξt,Ht

)
(Figure 4) shows that the cost function of this

two-class model increases rapidly in the initial stage but then continues to decline. These two figures
tentatively illustrate that the joint scheduling–control policy we have devised is effective.

Figure 3. Two-class model with our joint scheduling–control policy.
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Figure 4. Cost function of the two-class model with our joint scheduling–control policy.

Below, we present five other models (i.e., without control policy, with customer admission control
only, with server scheduling control only, with customer admission control and server scheduling
control, and with server scheduling control and server rate control) to illustrate the superiority of our
joint scheduling–control policy.

Example 2 (Two-class model without control policy). We present a system without any control as
follows: dx3 = [λ1 − θ

0
1 x3]dt + σ1dW1,

dx4 = [λ2 − θ
0
2 x4]dt + σ2dW2.

(3.4)

We use the following parameter values:

λ1 = 1.00, θ0
1 = 0.01, σ1 = 1.00,

λ2 = 0.50, θ0
2 = 0.02, σ2 = 0.80.

Given x3(0) = 2 and x4(0) = 3, we can obtain an operational image of this system (Figure 5), where the
total trend of the number of customers in both categories is increasing. This trend shows that without
the control function, the system is very inefficient, and customers will increasingly accumulate.
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Figure 5. Two-class model without a control policy.

Next, we define the corresponding cost function of this example as follows:

C34
(
Xt

)
= 1 + p1x3 + p2x4, (3.5)

where p1 = 0.50 and p2 = 1.00; the plot of the cost function C34 = C34
(
Xt

)
(Figure 6) shows that the

cost of this model continues to increase, which is not desirable.

The value function is

V34 = min
∫ 1

0
C34

(
Xt

)
dt = 4.9069. (3.6)

A comparison of Figures 3 and 5 reveals that the sizes of the two classes of customers in the model of
our joint scheduling–control policy are more balanced because of customer admission control, server
scheduling control, and server rate control. Cases in which the number of one type of customer is
large and the number of the other type is small are relatively rare, as shown in Figure 3. In Figure 3,
the numbers of both classes of customers decline in the later period, while in Figure 5, the decline is
not obvious. A comparison of Figures 4 and 6 reveals that the cost function of our model increases
rapidly in the initial stage but then continues to decline. However, the cost function in Figure 6 does
not decline significantly after increasing to a certain extent. The size of the value function is more
convincing: V12 = 4.0850, V34 = 4.9069. We compare the value functions of the five examples in
Figure 2.
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Figure 6. Cost function of the two-class model without a control policy.

Example 3 (Two-class model with customer admission control only). We present a system with
customer admission control only as follows:dx5 = [λ1 − θ

0
1 x5 − µ

0
1U1(x5, x6)]dt + σ1dW1,

dx6 = [λ2 − θ
0
2 x6 − µ

0
2U2(x5, x6)]dt + σ2dW2,

(3.7)

with the parameter values

λ1 = 1.00, θ0
1 = 0.01, µ0

1 = 1.00, σ1 = 1.00,

λ2 = 0.50, θ0
2 = 0.02, µ0

2 = 2.00, σ2 = 0.80.

We define the customer admission control functions U1 and U2 in the same way as before; we
assume that x5(0) = 2 and x6(0) = 3 are given.

We define the relevant cost function of this example as follows:

C56
(
Xt,Ut

)
= 1 + p1x5 + p2x6 + q1U1(x5, x6) + q2U2(x5, x6), (3.8)

where p1 = 0.50, p2 = 1.00, q1 = 0.25, and q2 = 1.00.
The value function is

V56 = min
∫ 1

0
C56

(
Xt,Ut

)
dt = 5.7043. (3.9)

Moreover, as seen from the system’s operating diagram (Figure 7) and the image of the cost
function (Figure 8), this model is clearly not as effective as the one that uses our joint scheduling–
control policy.
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Figure 7. Two-class model with customer admission control only.

Figure 8. Cost function of the two-class model with customer admission control only.

Example 4 (Two-class model with server scheduling control only). We present a system with server
scheduling control only as follows:dx7 = [λ1 − θ

0
1 x7 − c1ξ1(x7, x8)]dt + σ1dW1,

dx8 = [λ2 − θ
0
2 x8 − c2ξ2(x7, x8)]dt + σ2dW2,

(3.10)

with the parameter values

λ1 = 1.00, θ0
1 = 0.01, c1 = 0.98, σ1 = 1.00,
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λ2 = 0.50, θ0
2 = 0.02, c2 = 1.96, σ2 = 0.80.

We define the server scheduling control functions ξ1 and ξ2 as previously described and assume that
x7(0) = 2 and x8(0) = 3 are given.

Now, we define the relevant cost function of this model as follows:

C78
(
Xt, ξt

)
= 1 + p1x7 + p2x8 + s1ξ1(x7, x8) + s2ξ2(x7, x8), (3.11)

with p1 = 0.50, p2 = 1.00, s1 = 0.25, and s2 = 1.00.

The value function is

V78 = min
∫ 1

0
C78

(
Xt, ξt

)
dt = 5.5537. (3.12)

Moreover, as seen from the system’s operating diagram (Figure 9) and the image of the cost
function (Figure 10), this model is clearly not as effective as the one that uses our joint scheduling–
control policy.

Figure 9. Two-class model with server scheduling control only.
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Figure 10. Cost function of the two-class model with server scheduling control only.

Example 5 (Two-class model with customer admission and server scheduling control). We present a
system with customer admission control and server scheduling control as follows:dx1 = [λ1 − θ

0
1 x9 − c1ξ1(x9, x10) − µ0

1U1(x9, x10)]dt + σ1dW1,

dx2 = [λ2 − θ
0
2 x10 − c2ξ2(x9, x10) − µ0

2U2(x9, x10)]dt + σ2dW2,
(3.13)

with the parameter values

λ1 = 1.00, θ0
1 = 0.01, c1 = 0.98, µ0

1 = 1.00, σ1 = 1.00,

λ2 = 0.50, θ0
2 = 0.02, c2 = 1.96, µ0

2 = 2.00, σ2 = 0.80.

We define the server allocation functions ξ1, ξ2, U1, and U2 as previously described and take x9(0) = 2
and x10(0) = 3 as given.

Now, we define the relevant cost function of this model as follows:

C910
(
Xt, ξt,Ut

)
= 1 + p1x9 + p2x10 + s1ξ1(x9, x10) (3.14)
+s2ξ2(x9, x10) + q1U1(x9, x10) + q2U2(x9, x10),

with p1 = 0.50, p2 = 1.00, s1 = 0.25, s2 = 1.00, q1 = 0.25, and q2 = 1.00.
The value function is

V910 = min
∫ 1

0
C910

(
Xt, ξt,Ut

)
dt = 5.1434. (3.15)

Moreover, as seen from the system’s operating diagram (Figure 11) and the image of the cost
function (Figure 12), this model is clearly not as effective as the one that uses our joint scheduling–
control policy.
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Figure 11. Two-class model with customer admission and server scheduling control.

Figure 12. Cost function of the two-class model with customer admission and server
scheduling control.

Example 6 (Two-class model with server scheduling and server rate control). We present a system with
server scheduling control and server rate control as follows:dx1 = [λ1 − θ

0
1 x11 − c1ξ1(x11, x12) − µ0

1H1
(
ξ1(x11, x12), ξ2(x11, x12)

)
]dt + σ1dW1,

dx2 = [λ2 − θ
0
2 x12 − c2ξ2(x11, x12) − µ0

2H2
(
ξ1(x11, x12), ξ2(x11, x12)

)
]dt + σ2dW2,

(3.16)

with the parameter values

λ1 = 1.00, θ0
1 = 0.01, c1 = 0.98, µ0

1 = 1.00, σ1 = 1.00,
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λ2 = 0.50, θ0
2 = 0.02, c2 = 1.96, µ0

2 = 2.00, σ2 = 0.80.

We define the server allocation functions ξ1, ξ2, H1, and H2 as previously described and take x11(0) = 2
and x12(0) = 3 as given.

We define the relevant cost function of this model as follows:

C1112
(
Xt, ξt,Ht

)
= 1 + p1x11 + p2x12 + s1ξ1(x11, x12) + s2ξ2(x11, x12) (3.17)
+h1H1

(
ξ1(x11, x12), ξ2(x11, x12)

)
+h2H2

(
ξ1(x11, x12), ξ2(x11, x12)

)
,

with p1 = 0.50, p2 = 1.00, s1 = 0.25, s2 = 1.00, h1 = 0.25, and h2 = 1.00.

The value function is

V1112 = min
∫ 1

0
C1112

(
Xt, ξt,Ht

)
dt = 4.9074. (3.18)

Moreover, as seen from the system’s operating diagram (Figure 13) and the image of the cost
function (Figure 14), this model is clearly not as effective as the one that uses our joint scheduling–
control policy.

Figure 13. Two-class model with server scheduling and server rate control.
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Figure 14. Cost function of the two-class model with server scheduling and server rate
control.

Compared with other policies, our designed joint scheduling–control policy has the lowest cost,
as shown by the leftmost blue rectangle in Figure 2. The results show that our designed joint
scheduling–control policy has significant advantages in reducing the system′s costs and improving
service efficiency. This numerical simulation not only confirms the rationality and practicality of the
previous theoretical analysis but also provides a valuable reference for practical applications.

4. Proof of the main theorem

In this section, we analyze in depth the existence and uniqueness of the solution of the HJB equation
for the diffusion control problem presented in Section 2.4, which provides a solid theoretical foundation
for designing an asymptotically optimal control policy for the original problem. Then, the asymptotic
optimality of the joint scheduling control policy for multiclass parallel queuing models is proved in
detail through the proof of several lemmas.

4.1. The HJB equation

We prove the existence of a unique solution to the corresponding Hamilton–Jacobi–Bellman (HJB)
equation, which is the optimal Markov control policy for the diffusion control problem. Theorem 3,
which is proven in this section, is a complete version of Theorem 1 in Section 2.4. Thus, proving
Theorem 3 effectively proves Theorem 1.

First, we introduceH : Rm × Rm 7→ R as follows:

H(x, h) = inf
(U,ξ,H)∈Rm×Rm×Sm

{b(x,U, ξ,H) · h +C(x,U, ξ,H)}, (4.1)

where b(x,U, ξ,H), defined in (2.46), is the corresponding vector form of bk(x,U, ξ,H) and
C(x,U, ξ,H) is defined in (2.49). The corresponding HJB equation (cf. [13]) can generally be written
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in the following form:
1
2

m∑
k=1

σ2
k
∂2 f
∂x2

k

+H
(
x,▽ f (x)

)
− α f = 0, (4.2)

where σk is defined in (2.44) and α is defined in (2.49).

Remark 5. The system equation is

X(t) = x + σW(t) +
∫ t

0
b
(
Xs,Us, ξs,Hs

)
ds. (4.3)

The cost function is

J
(
x, X,U, ξ,H

)
= Eπ

x

∫ ∞

0
e−αtC

(
Xt,Ut, ξt,Ht

)
dt. (4.4)

We define

(L·)(x) =
∂·

∂t
(x) +

m∑
k=1

bk(X,U, ξ,H)
∂·

∂xk
+

1
2

m∑
k=1

σ2
k
∂2·

∂x2
k

.

The HJB equation for V(x) = inf
(U,ξ,H)∈Rm×Rm×Sm

J
(
x, X,U, ξ,H

)
is

0 = inf
(U,ξ,H)∈Rm×Rm×Sm

{C(X,U, ξ,H) + (LV)(x)}

= inf
(U,ξ,H)∈Rm×Rm×Sm

{C(X,U, ξ,H) +
∂V
∂t

(x) +
m∑

k=1

bk(X,U, ξ,H)
∂V
∂xk
+

1
2

m∑
k=1

σ2
k
∂2V
∂x2

k

}

=
1
2

m∑
k=1

σ2
k
∂2V
∂x2

k

+ inf
(U,ξ,H)∈Rm×Rm×Sm

{

m∑
k=1

bk(X,U, ξ,H)
∂V
∂xk
+C

(
X,U, ξ,H)} − αV.

Theorem 3. There exists a classical solution f ∈ C2(Rm) to the HJB equation (4.2), and we have the
following:
(i) Constants c > 0 and k > 0 exist such that

| f | ≤ c(1 + ∥x∥k), x ∈ Rm.

(ii) The solution f is unique, and
f = V,

i.e., there is an optimal Markov control policy for all x ∈ Rm.

Before this theorem is proven, we need to introduce several lemmas.

Lemma 1. The HamiltonianH(x, h), which is defined in (4.1), is Hölder continuous with the exponent
δ, where δ is defined in Assumption 3.

Proof. For ε > 0, ∀y ∈ Rm, ∀h1 ∈ R
m, by the infimum definition ofH(x, h), (U0, ξ0,H0) ∈ Rm×Rm×Sm

exists such that
H(y, h1) ≥ b(y,U0, ξ0,H0)h1 +C(y,U0, ξ0,H0) − ε. (4.5)
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Additionally, with the infimum definition of H(x, h), for ∀x ∈ Rm, ∀h2 ∈ R
m, and for the same

(U0, ξ0,H0) ∈ Rm × Rm × Sm in (4.5), we can obtain

H(x, h2) ≤ b(x,U0, ξ0,H0)h2 +C(x,U0, ξ0,H0).

According to the above two inequalities, we can derive the following:

H(x, h2) −H(y, h1) ≤ b(x,U0, ξ0,H0)h2 − b(y,U0, ξ0,H0)h1

+C(x,U0, ξ0,H0) −C(y,U0, ξ0,H0) + ε
= b(x,U0, ξ0,H0)h2 − b(y,U0, ξ0,H0)h2

+ b(y,U0, ξ0,H0)h2 − b(y,U0, ξ0,H0)h1

+C(x,U0, ξ0,H0) −C(y,U0, ξ0,H0) + ε
≤ c∥h2∥∥x − y∥ + c∥h2 − h1∥ + c∥x − y∥δ + ε,

where the last inequalities use the Lipschitz property of b and the Hölder property of C. Since ε > 0 is
arbitrary,H(x, h) is Hölder continuous with the exponent δ. □

Lemma 2. For any x ∈ Rm and an admissible system π, with X as the controlled process associated
with x and π, we have

Eπ
x ∥ X(t) ∥N≤ cN(1+ ∥ x ∥N), t ≥ 0, (4.6)

where N ∈ N and the constants cN are independent of π, x, and t.

Proof. Equation (2.44) can be written as follows:

Xk(t) = xk + σkWk(t) +
∫ t

0
[−θ0

k Xk(s) − ckξk
(
Xs

)
− µ0

kUk
(
Xs) − µ0

kHk
(
ξ(Xs)

)
+ λk]ds. (4.7)

Next, for all t ≥ 0, by Theorem 5.2.5 of [32], we define a process X̃k as the unique solution to the
equation

X̃k(t) = xk + σkWk(t) +
∫ t

0
[−θ0

k X̃k(s) − ckI[Xk(s)<0] − 2µ0
k MI[Xk(s)<0] + λk]ds. (4.8)

Letting X̃ =
(
X̃1, · · · , X̃m

)
′, we have

X̃(t) = x + σW(t) +
∫ t

0
b̃(s, X̃)ds, (4.9)

where
b̃(s, X̃) = −θ0X̃(s) − cI[X(s)<0] − 2µ0

k MI[X(s)<0] + λ

and M ≥ 0 is as given in Assumption 6. Additionally,

λ = (λ1, · · · , λm)′, θ0 = diag(θ0
k , k ∈ M), c = diag(ck, k ∈ M),

σ = diag(σk, k ∈ M), I[X(s)<0] =
(
I[X1(s)<0], · · · , I[Xm(s)<0]

)′ .
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In this case, a constant K ≥ 0 exists such that

∥ b̃(t, x) − b̃(t, y) ∥ + ∥ σ − σ ∥≤ K ∥ x − y ∥,

∥ b̃(t, x) ∥2 + ∥ σ ∥2≤ K2(1+ ∥ x ∥2),

for every 0 ≤ t < ∞ and x ∈ Rm, y ∈ Rm. That is, the coefficients b̃, σ satisfy the global Lipschitz and
linear growth conditions.

For every T > 0, according to Theorem 5.2.9 of [32], a positive constant cK,T depending only on K
and T exists such that

Eπ
x ∥ X̃(t) ∥2≤ C(1+ ∥ x ∥2)ecK,T t, 0 ≤ t ≤ T. (4.10)

Since X̃k is Gaussian, we have

Eπ
x ∥ X̃(t) ∥N≤ cN(1+ ∥ x ∥N), t ≥ 0. (4.11)

Next, we aim to show that |Xk(t)| ≤ 2|X̃k(t)|, so we introduce Yk(t) = Xk(t) − X̃k(t); we then have

Yk(t) = −
∫ t

0
[θ0

kYk(t) + ckŨ1
k (s) + µ0

kŨ2
k (s) + µ0

kŨ3
k (s)]ds, t ≥ 0. (4.12)

The process Ũ1
k is given by

Ũ1
k (t) =

ξk
(
Xt

)
, Xk(t) ≥ 0,

ξk
(
Xt

)
− 1, Xk(t) < 0.

(4.13)

The process Ũ2
k is given by

Ũ2
k (t) =

Uk
(
Xt

)
, Xk(t) ≥ 0,

Uk
(
Xt

)
− M, Xk(t) < 0.

(4.14)

The process Ũ3
k is given by

Ũ3
k (t) =

Hk
(
ξ(Xt)

)
, Xk(t) ≥ 0,

Hk
(
ξ(Xt)

)
− M, Xk(t) < 0,

(4.15)

where M is defined in Assumption 6. Next, we introduce a non-negative, differentiable function F on
R such that 

F′(x) < 0, x ∈ (−∞,−K),
F(x) = 0, x ∈ (−K, K ),
F′(x) > 0, x ∈ ( K, ∞ ),

(4.16)

where K = |X̃k(t)|.
We then have

F
(
Yk(t)

)
= −

∫ t

0
F′

(
Yk(s)

)[
θ0

kYk(t) + ckŨ1
k (s) + µ0

kŨ2
k (s) + µ0

kŨ3
k (s)

]
ds, t ≥ 0.
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If Yk(t) < −K, then Xk(t) < X̃k(t) − |X̃k(t)| ≤ 0. Using(4.13)–(4.15), we have [θ0
kYk(t) + ckŨ1

k (s) +
µ0

kŨ2
k (s) + µ0

kŨ3
k (s)] ≤ 0. Consequently,

F′
(
Yk(s)

)[
θ0

kYk(t) + ckŨ1
k (s) + µ0

kŨ2
k (s) + µ0

kŨ3
k (s)

]
≥ 0.

If Yk(t) > K, then Xk(t) > X̃k(t)+ |X̃k(t)| ≥ 0.Using (4.13)–(4.15), we have [θ0
kYk(t)+ckŨ1

k (s)+µ0
kŨ2

k (s)+
µ0

kŨ3
k (s)] ≥ 0. Consequently,

F′
(
Yk(s)

)[
θ0

kYk(t) + ckŨ1
k (s) + µ0

kŨ2
k (s) + µ0

kŨ3
k (s)] ≥ 0.

If |Yk(t)| ≤ K, we have F′
(
Yk(t)

)
= 0.

By combining these facts, we obtain F
(
Yk(t)

)
≤ 0, so F(x) = 0 only on [−K,K], which yields

|Yk(t)| ≤ K. Consequently,
|Xk(t)| ≤ 2|X̃k(t)|.

Using (4.11), it follows that Eπ
x ∥ X(t) ∥N≤ cN(1+ ∥ x ∥N). □

Proof of Theorem 3. We first use a standard truncation idea (cf. [33]), which enables us to study a
sequence of quasilinear Partial Differential Equations (PDEs) with a Dirichlet boundary condition.

Fix i ∈ N, and let B(0, i) = {x : ∥ x ∥ ≤ i}. Then, a policy π and an initial condition X(0) = x ∈ B(0, i)
are fixed. In addition, set T π

i = inf{t ≥ 0 : X(t) ∈ ∂B(0, i)}. Next, we consider the diffusion process X,
which satisfies (2.45) and terminates at the boundary of B(0, i).

Let

Ji(x, X,U, ξ,H) = Eπ
x

∫ Tπ
i

0
e−αtC(Xt,Ut, ξt,Ht)dt. (4.17)

Let Di be the set of all such admissible (X,U, ξ,H); the value functionVi is defined as

Vi = infJi(x, X,U, ξ,H), (4.18)

where the infimum is taken over all the available processes (X,U, ξ,H) in Di.
Assuming that f (x) = 0, x ∈ ∂B(0, i) and using Theorem 8.3 of [34] and Lemma 1 (for details,

see [26]), we find thatVi(x) is the unique bounded solution in C2(Rm) of

1
2

m∑
k=1

σ2
k
∂2 f
∂x2

k

+H
(
x,▽ f (x)

)
− α f = 0, (4.19)

whereH(x, h) is defined in (4.1).
First, we prove that the function V(x) satisfies the growth condition. In fact, from the polynomial

condition on C(Xt,Ut, ξt,Ht) in Assumption 3, using Fubini’s theorem, we can obtain

V(x) ≤ c
∫ ∞

0
Eπ

x
[
∥ X(t) ∥kC

]
dt,

where c is a constant that is independent of i, and kC is defined in Assumption 3. Now, we appeal to
Lemma 2; thus, we can obtain V(x) ≤ c(1 + ∥x∥kC ) for all x ∈ Rm. Note thatVi ≤ V(x), which implies
a uniform bound onVi.
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We then fix j > 0 and set B(0, j) = {x : ∥ x ∥ ≤ j}; let ∆σ denote the second-order operator in
the HJB equation with the weights σ2

i . Similar to Step 2 in the proof of Theorem 1 in [26], we can
see that the families {Vi}, {∇Vi}, and {∆σVi} are equicontinuous and bounded. Therefore, according
to the Arzela–Ascoli Theorem (cf. [35]), convergent subsequences of {Vi}, {∇Vi}, and {∆σVi} exist.
For brevity, we also denote these convergent subsequences with the subscript i. Then, there is a V(x),
which satisfiesVi → V , ∇Vi → ∇V , and ∆σVi → ∆σV uniformly on B(0, j).

The improved smoothness of V(x) is then obtained with the standard PDE arguments (cf. [34]).
Vi adheres to the Hamilton–Jacobi–Bellman (HJB) equation, complete with its specified boundary
conditions, and converges uniformly to V within the ball B(0, j). Utilizing Lemma 1, it is feasible
to transfer these limits through the modified version of the HJB equation (4.19), thereby confirming
that V(x) is in accordance with the original HJB equation V(x) on B(0, j). Given that the choice of
j is unrestricted, it follows that it is compliant with the original HJB equation across the entire space
Rm. Furthermore, the definitions of Vi and V(x) indicate that the principle of monotonic convergence
dictates

Vi ↑ V(x) = inf Eπ
x

∫ ∞

0
e−αtC (Xt,Ut, ξt,Ht) dt. (4.20)

Thus, the proposed limit V(x) is the value function of the diffusion control problem, implying that the
value function V(x) is a classical solution to the HJB equation (4.2).

The uniqueness of V(x) and the existence of optimal Markov control policies for the problem remain
to be shown. Let f̃ (x) ∈ C2(Rm) be any solution to the HJB equation (4.2), and fix a policy π ∈ Π,
assuming that f̃ (x) satisfies the growth condition. Now, by applying the Itô formula to e−αt f̃ (Xt), we
can obtain the following (for details, see Theorem 5.1 of [13]):

f̃ (x) ≤ J(x, X,U, ξ,H) + lim inf
t→∞

e−αtEπ
x f̃ (Xt).

Consequently, when f̃ (x) ≤ c(1 + ∥x∥k), the last term on the right-hand side of the inequality above
converges to zero. Thus, f̃ (x) ≤ J(x, X,U, ξ,H), and because π is arbitrary, we have f̃ (x) ≤ V(x).

Let

f̃i(x) =

 f̃ (x), x ∈ B(0, i),
0, x < B(0, i).

(4.21)

This result is obviously a solution to Eq (4.19). By repeating our treatment of Vi, we can obtain
f̃i(x) → V(x). Hence, f̃ (x) = V(x) on Rm; i.e., V(x) is the unique solution of the HJB equation (4.2),
and there is a Markov control policy that is optimal for all x ∈ Rm. □

4.2. Asymptotic bound

In this section, we show that the value function V of the diffusion control problem is an asymptotic
lower bound for the value function Vn of the original problem.

Theorem 4. Let
(
xn, X̂n,Un, ξ̂n,Hn)

n≥1 be any sequence of the stochastic system, and let the associated
cost function be

(
Jn(xn, X̂n,Un, ξ̂n,Hn))

n≥1
, as described in Section 2.3, and let Vn be as defined

in (2.53) in Section 2.5. Assuming that xn → x, V is the value function of the diffusion control problem
given in Section 2.4.

We then have
Vn ≥ V(x).
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Before proving this theorem, we need to introduce several lemmas.

Lemma 3. Assuming that for xn → x, the processes X̂n described in Theorem 4 are applied, and we
have

E ∥ X̂n(t) ∥N≤ cN(1+ ∥ x ∥N)(1 + tN), t ≥ 0, (4.22)

where N ∈ N and the constants cN are independent of n, x, and t.

Proof. Analogous to the proof of Lemma 2, we can obtain

|X̂n
k (t)| ≤ 2|Zn

k (t)|,

where

Zn
k (t) = xn

k + σkŴn
k (t) +

∫ t

0

(
−µ0

kZn
k (s) + Ĩ

)
ds. (4.23)

Ĩ = λ̂n
k−
√

n(µ0
k−θ

n
k)I[X̂n

k (s)<0]−2µ0
k MI[X̂n

k (s)<0], and M ≥ 0 is the bound of Un
k (·) and Hn

k (·) onR. Analogous
to proving Proposition 4 in [10], we obtain

∥ X̂n(t) ∥≤ c
[
∥ xn ∥ + ∥ Ŵn(t) ∥ +

∫ t

0
∥ Zn(s) ∥ ds+ ∥ Zn(t) ∥ +t

]
,

where Zn(t) = (Zn
1 ,Z

n
1 , · · · ,Z

n
m)′ and c is independent of n and t. Solving for Zn

k (t) in (4.23), we obtain

Zn
k (t) = xn

ke−αt + σkŴn
k (t) + Ĩt − µ0

k

∫ t

0

(
σkŴn

k (t) + Ĩt
)

e−µ
0
k (t−s)ds. (4.24)

Therefore,

∥ X̂n(t) ∥≤ c
[
1 + t2+ ∥ xn ∥ + ∥ Ŵn(t) ∥ +

∫ t

0
∥ Ŵn(s) ∥ ds +

∫ t

0

∫ s

0
∥ Ŵn(v) ∥ dvds

]
. (4.25)

By

σkŴn
k (t) = Ân

k(t) − Ŝ n
k
(1
n

En
k (t)

)
− R̂n

k

( ¯̃En
k (t)

)
,

and letting an(s) = max
k

[n−1θn
k(X0,n

k + An
k(s))], we can obtain

∥ Ŵn(t) ∥≤∥ Ân(t) ∥ + sup
s≤t
∥ Ŝ n(s) ∥ + sup

s≤an(t)
∥ R̂n(s) ∥ . (4.26)

Given Lemma 2 of [10], under the assumption in the definition of {An
k , k ∈ M} that there is a constant

N ≥ 2 such that E(τ̂k(1))N < ∞, then by the definition of Ân(t), we can obtain

E(∥ Ân(t) ∥)N ≤ c(1 + tN/2),

where c is independent of n and t.
For the (disjunctive) martingale Ŝ n, we apply Burkholder’s inequality (see [36], p. 175). Letting

αn
k(t) be a Poisson random variable with the parameter 2nµ0

kt, we can obtain

E sup
s≤t
|Ŝ n

k(s)|N ≤ cE([Ŝ n
k](s))N/2 (4.27)
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= c(2n)−N/2E(αn
k(t))N/2

≤ c(2n)−N/2(2nµ0
kt)N/2 ≤ ctN/2,

where c is independent of n and t, and [Ŝ n
k] denotes the quadratic variation processes associated with Ŝ n

k .
Similarly, we can obtain E sup

s≤t
|R̂n

k(t)|N ≤ ctN/2. By the independence of An and Rn, we can obtain

E sup
s≤an(t)

|R̂n
k(t)|N = E

{
E

[
sup

s≤an(t)
|R̂n

k(t)|N
∣∣∣an(t)

]}
≤ cE(an(t))N/2 ≤ c(1 + tN),

where c is independent of n and t.
By applying Minkowski’s inequality to (4.26), we can obtain

E ∥ Ŵn(t) ∥N≤ c(1 + tN),

where N and c do not depend on n or t.
According to (4.25), this lemma follows. □

Lemma 4. As n→ ∞, the following results hold for each k ∈ M:

Ân
k =⇒ Ak, Ŝ n

k =⇒ S k,

R̂n
k =⇒ Rk, Φ̄n

k =⇒ 0,

where Ak is a Brownian motion with zero drift, the variance matrices λkC2
τ,k, S k,Rk are standard

Brownian motions; and Ak, S k,Rk are independent of each other.

Proof. Applying Theorem 17.3 in [37] to Ân
k , it directly follows that Ân

k =⇒ Ak, where Ak is a Brownian
motion with zero drift and the variance matrices λkC2

τ,k. Additionally, applying this theorem to Ŝ n
k and

R̂n
k , we can find that Ŝ n

k =⇒ S k and R̂n
k =⇒ Rk, where S k,Rk, are standard Brownian motions. According

to Lemma 3, we obtain

∥ X̂n(t) ∥≤ c
[
∥ xn ∥ + ∥ Ŵn(t) ∥ +

∫ t

0
∥ Zn(s) ∥ ds+ ∥ Zn(t) ∥ +t

]
.

Because
σkŴn

k (t) = Ân
k(t) − Ŝ n

k
(1
n

En
k (t)

)
− R̂n

k

( ¯̃En
k (t)

)
.

the previous results, we can obtain Ŵn
√

n =⇒ 0. It is easy to show that xn
√

n =⇒ 0. By Gronwall’s lemma,

for any t, we can obtain
sup
s≤t
∥ Zn(t) ∥
√

n → 0 in the distribution. Therefore, Zn(t)
√

n =⇒ 0. Consequently,

X̂n
√

n = X̄n − γ0 =⇒ 0, where X̄n = Xn

n = Φ̄
n + Ψ̄n. Note that

m∑
1

Φ̄n
k =

( m∑
1

X̄n
k − 1

)+. Then, by

Assumption 1, we have
∑m

k=1 λ
0
k \ µk

0 = 1. Because γ0
k = λ0

k/µ
0
k , we can obtain

m∑
1

Φ̄n
k =⇒ 0. Since

Φ̄n
k ≥ 0, Φ̄n

k =⇒ 0. □

AIMS Mathematics Volume 10, Issue 2, 4226–4267.



4259

Lemma 5. Write

B̂n(t) =
∫ t

0
bn

(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s

)
ds, (4.28)

Ĉn(t) =
∫ t

0
e−αsC

(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s

)
ds. (4.29)

Then, the sequence (X̂n, Ŵn, B̂n, Ĉn) is tight in the space (D(Rm))4.

Proof. By Lemma 4 and a time change lemma (cf. [37]), we can see that

Ŝ n
k
(1
n

En
k (t)

)
⇒ 0, R̂n

k

( ¯̃En
k (t)

)
⇒ 0.

Because

σkŴn
k (t) = Ân

k(t) − Ŝ n
k
(1
n

En
k (t)

)
− R̂n

k

( ¯̃En
k (t)

)
,

it follows that
Ŵn(t)⇒ σ−1σA = A = W,

where A = (A1, · · · , Am) and Ak, k ∈ M are as described in Lemma 4. They are tight because Ŵn is
relatively compact, and from Theorem 16.10 of [37], we can obtain the following:
(i) For each m,

lim
a→∞

lim sup
n

P[∥Ŵn∥m ≥ a] = 0. (4.30)

(ii) For 1 ≤ i ≤ v, let [ti−1, ti) be decompositions of [0,m) such that ti − ti−1 > δ and let ω
′

m(x, δ) =
inf max1≤i≤v ω(x, [ti−1, ti)); the infimum extends over all decompositions [ti−1, ti). For each m and ε,

lim
δ

lim sup
n

P[ω
′

m(Ŵn, δ) ≥ ε] = 0. (4.31)

Since

X̂n(t) = xn + σŴn(t) +
∫ t

0
bn(X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
ds,

noting that the Lipschitz property holds uniformly for the functions X̂n
s → bn(X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)

in
X̂n,Un, ξ̂n,Hn and n, we can obtain

∥ X̂n(t) ∥≤∥ xn ∥ + ∥ Ŵn(t) ∥ +c
∫ t

0
(1+ ∥ X̂n(s) ∥)ds.

Analogous to the proof of Lemma 4 in [10], we have the tightness of X̂n. Now, by Theorem 16.10
of [37], it is easy to obtain (cf. [10]) the tightness of B̂n and Ĉn. □

Lemma 6. Denote (X,W, B,C) as a limit point of (X̂n, Ŵn, B̂n, Ĉn) along a subsequence. In this case,
X, B and C have continuous sample paths, and B has the sample paths of bounded variation over finite
time intervals. Denote (Ft) as the filtration generated by (X,W, B); in that case, W is an (Ft)-standard
Brownian motion.
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Proof. Analogous to the proof of Lemma 6 in [10], this lemma is easy to obtain. Since B̂n and Ĉn have
continuous sample paths, by [25], we can see that processes B and C have continuous sample paths.
By Lemma 5, we have Ŵn(t) ⇒ W, so X = x + σW + B since X̂n(t) = xn + σŴn(t) + B̂n. We write
B̂n = B̂n,+ − B̂n,−, where B̂n,+

k (t) =
∫ t

0

(
B̂n

k(s)
)+ds and B̂n,−

k (t) =
∫ t

0

(
B̂n

k(s)
)−ds. By the definition of bn in

Section 2.2, we have

B̂n,+(t) ∨ B̂n,−(t) ≤ c
∫ t

0

(
1+ ∥ X̂n

s ∥
)
ds,(

B̂n,+(t) − B̂n,+(s)
)
∨

(
B̂n,−(t) −

(
B̂n,−(s)

)
≤ c | t − s |

(
1+ ∥ X̂n ∥t

)
ds,

where c is independent of t, n. Thus, the tightness of
(
B̂n,+, B̂n,−) follows from the tightness of X̂n.

Since B̂n,+ and B̂n,− have continuous sample paths, let
(
B+, B−

)
denote any subsequential limit point in

(D(Rm))2. We can see that B+ and B− have continuous sample paths; therefore, B = B+ − B−. Since B+

and B− have nondecreasing sample paths and t is arbitrary, B has sample paths of bounded variation
over finite time intervals.

By Lemma 5, we have Ŵn(t) ⇒ W, where W is a standard Brownian motion. By the definitions of
W and (Ft), W is adapted to (Ft). Next, we show that Ft is independent of σ{Wt+a − Wt : a > 0} for
each t. In fact, we fix a t ≥ 0 and let

∆Ŝ n
k = Ŝ n

k
(1
n

En
k (t)

)
− Ŝ n

k
(1
n

En
k (t + a)

)
, ∆R̂n

k = Ŝ n
k
(1
n

Ẽn
k (t)

)
− Ŝ n

k
(1
n

Ẽn
k (t + a)

)
,

where a ≥ 0, En
k (t) and Ẽn

k (t) are as defined in Section 2.1. In addition, we have

σk
(
Ŵn

k (t + a) − Ŵn
k (t)

)
= Ân

k(t + a) − Ân
k(t) − ∆Ŝ n

k − ∆R̂n
k .

We then, let
σkα

n
k = An

k
(
τn

k(t) + a
)
− An

k
(
τn

k(t)
)
− ∆Ŝ n

k − ∆R̂n
k ,

βn
k = Ân

k(t + a) − Ân
k(t) − An

k
(
τn

k(t) + a
)
+ An

k
(
τn

k(t)
)
,

where τn
k(t) = inf{a ≥ t : An

k(a) − An
k(a−) > 0}. We then have

σk
(
Ŵn

k (t + a) − Ŵn
k (t)

)
= σkα

n
k + β

n
k .

Let Yn = (X̂n
s , Ŵ

n
s , B̂

n
s), Y = (Xs,Ws, Bs), 0 ≤ s ≤ t, F : (Rm)3 → Rm, and G : Rm → Rm. By the

definitions of F n
t and Gn

t , we can conclude that Yn and αn are measurable on F n
t and Gn

t , respectively.
By Definition (1), we can obtain

E[F(Yn)G(αn)] = E[F(Yn)]E[G(αn)].

According to the random change of the time lemma (cf. [37]), τn
k(t) converges in distribution to 0,

and thus, Ân
k converges in distribution to a continuous process. Thus, we can see that βn

k converges in
distribution to 0. Therefore, αn

k converges in distribution to Wt+a − Wt. According to the continuous
mapping theorem, Yn = (X̂n, Ŵn, B̂n)⇒ Y = (X,W, B), we can obtain

E[F(Y)G(Wt+a −Wt)] = E[F(Y)]E[G(Wt+a −Wt)].

Since a, s are arbitrary, according to the Dynkin class theorem, Ft is independent of σ{Wt+a −Wt : a >
0}. Thus, W is a (Ft)- Brownian motion because t is arbitrary. □
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Proof of Theorem 4. Let f be the solution of the HJB equation (4.2) described in Theorem 3.
From (4.1), we can obtain

Γn
t = b

(
X̂n

t ,U
n
t , ξ̂

n
t ,H

n
t
)
· ∇ f (X̂n

t ) +C
(
X̂n

t ,U
n
t , ξ̂

n
t ,H

n
t
)
−H

(
X̂n

t ,▽ f (X̂n
t )
)
≥ 0. (4.32)

Moreover, we have∫ t

0
e−αsΓn

sds =
∫ t

0
e−αs∇ f (X̂n

s )dB̂n(s) −
∫ t

0
e−αsH

(
X̂n

s ,▽ f (X̂n
s )
)
ds + Ĉn(t)

+

∫ t

0
e−αs{b

(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
− bn(X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
}∇ f (X̂n

s )ds ≥ 0. (4.33)

By the definitions of b(X,U, ξ,H) and bn(X̂n,Un, ξ̂n,Hn) and Assumption 6, we have

∥b
(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
− bn(X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
∥ ≤ εn(1 + ∥X̂n

s ∥),

where εn → 0. Therefore, by Lemma 3 and the continuous mapping theorem, we have∫ t

0
e−αs{b

(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
− bn(X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s
)
}∇ f (X̂n

s )ds⇒ 0. (4.34)

We set (X,W, B,C) as a weak limit point of (X̂n, Ŵn, B̂n, Ĉn), and set (Ft) as the filtration generated
by (X,W, B). Since Xt = x + σWt + Bt, by Lemma 6, W is an (Ft)-standard Brownian motion and B
has the sample paths of bounded variation over finite time intervals. Therefore, for n → ∞, we apply
Lemma 5 of [10] with Un = e−αs∇ f (X̂n

s ), Vn = B̂n, and decompose B̂n = Mn + Nn into Mn = 0 and
Nn = B̂n. We thus obtain ∫ t

0
e−αs∇ f (X̂n

s )dB̂n(s)⇒
∫ t

0
e−αs∇ f (Xs)dB(s). (4.35)

Using the continuity of Xs 7→ H
(
Xs,▽ f (Xs)

)
, we can obtain∫ t

0
e−αs∇ f (Xs)dB(s) −

∫ t

0
e−αsH

(
Xs,▽ f (Xs)

)
ds +C(t) ≥ 0. (4.36)

Applying Itô’s formula to f , we can obtain

e−αt f (Xt) = f (x)+
∫ t

0
e−αs∇ f (Xs) ·σdW(s)+

∫ t

0
e−αs∇ f (Xs)dB(s)−

∫ t

0
e−αsH

(
Xs,▽ f (Xs)

)
ds. (4.37)

Combining (4.36) and (4.37), we have

e−αt f (Xt) ≥ f (x) +
∫ t

0
e−αs∇ f (Xs) · σdW(s) −C(t). (4.38)

For t ≥ 0 and N ∈ N, by Theorem 3(i) and Lemma 3, we can obtain

E f (X̂n
t ) ≤ c(1 + tN).
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Because for each t, f (X̂n
t ) converges in distribution to f (Xt), and f (Xt) is uniformly integrable, we can

obtain
E f (Xt) ≤ c(1 + tN).

We then have
EC(t) ≥ f (x) − ε(t),

where ε(t)→ 0 as t → ∞. By Lemma 3 and Assumption 3, for a fixed δ > 0, there is a T large enough
to satisfy ∫ ∞

T
e−αsC

(
X̂n(s),Un(s), ξ̂n(s),Hn(s)

)
ds ≤ δ.

Hence,
Vn ≥ EC(T ) − δ ≥ f (x) − ε(T ) − δ.

When T → ∞ and δ→ 0, we have
Vn ≥ V(x).

□

4.3. Proof of Theorem 2

First, for a given initial condition xn and a sequence stochastic system, write

V
n
= lim sup

n→∞
Jn(xn, X̂n,Un, ξ̂n,Hn).

Before proving Theorem 2, we need to introduce a lemma.

Lemma 7. Let
(
xn, X̂n,Un, ξ̂n,Hn)

n≥1 be any sequence of the stochastic system; the associated cost
functions

(
Jn(xn, X̂n,Un, ξ̂n,Hn)

)
n≥1 are described in Section 2.3. Assume that xn → x, V is the value

function given in Section 2.4, and
∫ t

0
e−αsΓn

sds ⇒ 0 holds, where Γn
t is described as in (4.32). We then

have
V

n
≥ V(x).

Proof. First, as in the proof of Theorem 4, (4.32)–(4.35), and (4.37) hold for this case. By∫ t

0
e−αsΓn

sds⇒ 0, we can obtain the following equation instead of (4.36):∫ t

0
e−αs∇ f (Xs)dB(s) −

∫ t

0
e−αsH

(
Xs,▽ f (Xs)

)
ds +C(t) = 0. (4.39)

Combining (4.37) and (4.39), we have

0 ≤ e−αt f (Xt) = f (x) +
∫ t

0
e−αs∇ f (Xs) · σdW(s) −C(t). (4.40)

We then have
EC(t) ≤ f (x), ∀t. (4.41)

By Assumption 3 and Lemma 3, for all n and ∀δ > 0, there is a T such that

E
∫ ∞

T
e−αsC

(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s

)
ds ≤ δ. (4.42)
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Since Ĉn ⇒ C and C have continuous sample paths, Ĉn
T converges in distribution to CT . We thus obtain

the following equation on the basis of Jensen’s inequality, Assumption 3 and Lemma 3.

E(Ĉn
T )1+ ε

kC ≤ cE
∫ T

0
e−α(1+ ε

kC
)s(1+ ∥ X̂n

s ∥
kC+ε)ds ≤ c,

where c is independent of n, and kC is defined in Assumption 3. For n ∈ N, Ĉn
T is uniformly integrable,

and as n→ ∞, we have EĈn
T → ECT . By (4.41) and (4.42), we have

lim sup
n→∞

E
∫ ∞

0
e−αsC

(
X̂n

s ,U
n
s , ξ̂

n
s ,H

n
s

)
ds ≤ f (x) + δ. (4.43)

As δ→ 0, we have
V

n
≤ V(x).

□

Proof of Theorem 2. First,
(
xn, X̂n, Ũn, ξ̃n, H̃n)

n≥1 satisfy the conditions in Theorem 4; i.e.,

lim inf
n→∞

Jn(xn, X̂n, Ũn, ξ̃n, H̃n) ≥ V(x). (4.44)

Next, we show that
(
xn, X̂n, Ũn, ξ̃n, H̃n)

n≥1 satisfy the conditions of Lemma 7. Let Ωn denote the event
in which Xn

k ≥ Ψ̃
n
k holds. According to Assumption 3 of C(X,U, ξ,H) in Section 2.3, C(X,U, ξ,H) is

uniformly continuous on compact spaces. Let gM(ϵ) be satisfied with the limit

lim
ϵ↓0

gM(ϵ) = 0 ∀M,

and let | C
(
X̂n

t , Ũ
n
t , ξ̃

n
t , H̃

n
t
)
− C

(
X̂n

t ,U
∗
t , ξ
∗
t ,H

∗
t
)
|≤ gM(ϵ) when ∥ Ũn

t ∥, ∥ U∗t ∥, ∥ ξ̃
n
t ∥, ∥ ξ

∗
t ∥, ∥ H̃n

t ∥, ∥

H∗t ∥≤ M, and ∥ ξ̃n
t −ξ

∗
t ∥≤ ϵ. Following holds for the event Ωn,M = Ωn∩{∥ X̂n

t ∥
∗
T + ∥ Φ̂

n
t ∥
∗
T + ∥ Ψ̂

n
t ∥
∗
T≤

M}, where ∥ Xt ∥
∗
T= sup0≤t≤T ∥ Xt ∥:

| Γn
t |= |

(
b
(
X̂n

t , Ũ
n
t , ξ̃

n
t , H̃

n
t
)
− b

(
X̂n

t ,U
∗
t , ξ
∗
t ,H

∗
t
))
· ∇ f (X̂n

t )

+C
(
X̂n

t , Ũ
n
t , ξ̃

n
t , H̃

n
t
)
−C

(
X̂n

t ,U
∗
t , ξ
∗
t ,H

∗
t
)
|

≤c ∥ ξ̃n
t − ξ

∗
t ∥ · ∥ ∇ f (X̂n

t ) ∥ +gM(
∥ ξ̃n

t − ξ
∗
t ∥

)
.

By ∥ Ψ̃n − Ψn,∗ ∥≤ 2m, we can obtain ∥ ξ̃n
t − ξ

∗
t ∥≤ 2m

n . Therefore, for Ωn,M and for some δn → 0,
we have | Γn

t |
∗
T≤ δn. limn→∞ P(Ωn) = 1, which follows from the convergence X̂n

√
n = X̄n − γ0 =⇒ 0 in

Lemma 3. By the tightness of X̂n and Φ̂n
t ∈ R

m
+ , we have

lim
M→∞

lim inf
n→∞

P
(
Ωn,M)

= 1. (4.45)

Therefore, | Γn
t |

∗
T converges to zero in the distribution. Since T is arbitrary, Γn

t ⇒ 0, so(
xn, X̂n, Ũn, ξ̃n, H̃n)

n≥1 satisfies the conditions of Lemma 7. We then

lim sup
n→∞

Jn(xn, X̂n, Ũn, ξ̃n, H̃n) ≤ V(x). (4.46)

Combining (4.44) and (4.46), we have

lim
n→∞

Jn(xn, X̂n, Ũn, ξ̃n, H̃n) = V(x) ≤ Vn(x). (4.47)

□
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5. Conclusions

The present study introduces and evaluates a novel joint scheduling–control policy for managing
multiclass customer flows in parallel server queues under heavy traffic conditions. Our approach,
which is based on in the principles of customer admission control, service scheduling control, and
service rate control, provides a comprehensive strategy to optimize queuing systems where the traffic
intensity parameter is close to unity.

Our research makes the following contributions to the literature:

(1) Innovative policy formulation: This paper presents a unique joint scheduling–control policy that
considers the overall system state rather than isolated customer or server conditions, leading to
more holistic and efficient queuing management.

(2) Theoretical validation: This paper demonstrates the asymptotic optimality of the proposed policy
within the Halfin–Whitt heavy traffic regime, ensuring that the additional control components are
not only justified but also reduce the total system cost.

(3) Numerical simulations: This paper provides empirical evidence from comparative experiments
that illustrate the superior performance of our policy over other control strategies in terms of
reducing system′s costs and improving service efficiency.

The results of our study have practical implications for various real-world applications,
including (but not limited to) modern call centers, high-performance computing systems, cloud
computing services, and emerging quantum computing platforms. The newly developed policy can
serve as a valuable tool for operators and managers aiming to enhance service quality while maintaining
high server utilization rates.

Our work also opens avenues for further research. The joint scheduling–control policy could be
extended to more complex systems with additional constraints or different customer behavior patterns.
Moreover, the integration of machine learning techniques to dynamically adjust control parameters in
real time could be an exciting direction for future exploration.

In conclusion, our study presents a significant advancement in the field of queuing theory and
control, offering a robust policy that promises to improve operational efficiency in multiclass server
environments. We are confident that our findings will not only benefit academic researchers but also
inform the decision-making of practitioners in related industries.
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