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1. Introduction

The Goldbach conjecture is one of the most famous problems, and numerous variations have been
derived from it. In the 1950s, Linnik [9, 10] showed that every sufficiently large even integer can be
represented as a sum of two primes and K powers of 2, where K is an absolute constant. In 1975,
Gallagher [2] established an asymptotic formula for the number of such representations. In 1998, the
explicit value of K was first obtained by Liu, Liu, and Wang [11]. They showed that K = 54000 is
acceptable. Afterwards, many mathematicians improved the value of K (see [4, 7, 8, 12, 15, 16, 19]).
The best result so far is due to Pintz and Ruzsa [16], who proved that K = 8 is acceptable.

In 2017, motivated by the works of Linnik [9, 10], Liu [13] studied a Goldbach–Linnik problem
with unequal powers of primes. To be specific, he considered the problem on the representation of the
large even integer N in the form

N = p2
1 + p2

2 + p3
3 + p3

4 + p4
5 + p4

6 + 2v1 + · · · + 2vk , (1.1)

where pi are prime numbers and v j are positive integers. He proved that (1.1) is solvable for k = 41.
Subsequently, the acceptable value of k was successively refined by Lü [14], Zhao [23], and Zhang [20].
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Very recently, based on the work of [21, 22], Zhu [24] further improved the result to k = 17.
On the other hand, in 2023, Huang [5] studied Eq (1.1) in an extended way. He attempted to

simultaneously represent pairs of positive even integers N1 and N2 with N2 < N1 ≪ N2, in the form{
N1 = p2

1 + p2
2 + p3

3 + p3
4 + p4

5 + p4
6 + 2v1 + · · · + 2vk

N2 = p2
7 + p2

8 + p3
9 + p3

10 + p4
11 + p4

12 + 2v1 + · · · + 2vk
. (1.2)

In [5], he proved that the simultaneous equations (1.2) are solvable for k = 105. In 2024, Han, Liu,
and Yue [3] improved the value of k to 36.

In this paper, we shall continue to improve the results of [3] and [24] and establish the following
sharper results:
Theorem 1. For k = 30, the simultaneous equations (1.2) are solvable for every sufficiently large
positive even integers N1 and N2 satisfying N2 < N1 ≪ N2.
Theorem 2. For k = 14, the Eq (1.1) is solvable for every sufficiently large positive even integer N.

2. Notation and outline of the method

In this paper, we assume that N1 and N2 are sufficiently large even integers satisfying N2 < N1 ≪ N2.
We fix a positive constant η satisfying η ≤ 10−100. Let ε be an arbitrarily small positive number, and
the value of ε may change from line to line. The letter p, with or without a subscript, is reserved for a
prime number. As usual, we use e(α) to denote e2πiα, and φ(n) stands for the Euler function. Moreover,
we write

P+i, j =
((1

6
+ η

)
N j

) 1
i

, P−i, j =
((1

6
− η

)
N j

) 1
i

, L =
log(N1/ log N1)

log 2
,

S i, j(α) =
∑

P−i, j≤p≤P+i, j

e(piα) log p, H(α) =
∑

1≤v≤L

e(2vα).

In order to apply the circle method, we set

P j = N
3
20−2ε
j and Q j = N

17
20+ε

j . (2.1)

Then we can define

M = M1 ×M2 =

{
(α1, α2) : α1 ∈ M1, α2 ∈ M2

}
,

m =

[
1

Q1
, 1 +

1
Q1

]
×

[
1

Q2
, 1 +

1
Q2

]
\M, m j =

[
1

Q j
, 1 +

1
Q j

]
\M j, (2.2)

where

M j =
⋃
q≤P j

q⋃
a=1

(a,q)=1

M j(q, a), M j(q, a) =
(
a
q
−

1
qQ j
,

a
q
+

1
qQ j

]
. (2.3)

Now let

R(k,N1,N2) =
∑

(log p1)(log p2) . . . (log p12)
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be the weighted number of solutions of (1.2) in (p1, . . . , p12, v1, . . . , vk) with

P−2,1 ≤ p1, p2 ≤ P+2,1, P
−
3,1 ≤ p3, p4 ≤ P+3,1, P

−
4,1 ≤ p5, p6 ≤ P+4,1,

P−2,2 ≤ p7, p8 ≤ P+2,2, P
−
3,2 ≤ p9, p10 ≤ P+3,2, P

−
4,2 ≤ p11, p12 ≤ P+4,2,

1 ≤ v1, . . . , vk ≤ L.

Then by orthogonality, we have

R(k,N1,N2)

=

∫ 1

0

∫ 1

0

∏
1≤ j≤2

(
S 2

2, j(α j)S 2
3, j(α j)S 2

4, j(α j)e(−α jN j)
)
Hk(α1 + α2)dα1dα2

=


"
M

+

"
m

 ∏
1≤ j≤2

(
S 2

2, j(α j)S 2
3, j(α j)S 2

4, j(α j)e(−α jN j)
)
Hk(α1 + α2)dα1dα2

:= R1(k,N1,N2) + R2(k,N1,N2). (2.4)

For k ≥ 30, we shall prove

R1(k,N1,N2) ≥ 9.946N
7
6
1 N

7
6
2 I2Lk, |R2(k,N1,N2)| ≤ 8.6372N

7
6
1 N

7
6
2 I2Lk, (2.5)

where I is the positive constant defined as (3.4).

3. The lower bound for R1(k,N1,N2)

We first state some auxiliary results. Let

Ck(q, a) =
q∑

m=1
(m,q)=1

e
(
amk

q

)
, B(n, q) =

q∑
a=1

(a,q)=1

C2
2(q, a)C2

3(q, a)C2
4(q, a)e

(
−

an
q

)
,

A(n, q) =
1
φ6(q)

B(n, q), S(n) =
∞∑

q=1

A(n, q),

gk(λ) =
∫ 1

6+η

1
6−η

e(tλ)t
1
k−1dt, J(n) =

∫ ∞

−∞

g2(λ)2g3(λ)2g4(λ)2e(−nλ)dλ.

Lemma 3.1. LetM j be defined as (2.3). Then we have

∫
M j

S 2
2, j(α)S 2

3, j(α)S 2
4, j(α)e(−nα)dα =

S(n)J( n
N j

)N
7
6
j

22 · 32 · 42 + O
(
N

7
6
j L−1

)
,

where S(n) ≫ 1 for n ≡ 0 (mod 2).
Proof. Let

J j(n) =
∑

m1+m2+···+m6=n

( 1
6 −η)N j≤mi≤( 1

6 +η)N j (1≤i≤6)

(m1m2)−
1
2 (m3m4)−

2
3 (m5m6)−

3
4 .
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It follows from [13, Lemma 2.1] that∫
M j

S 2, j(α)2S 3, j(α)2S 4, j(α)2e(−nα)dα =
S(n)J j(n)
22 · 32 · 42 + O

(
N

7
6
j L−1

)
,

and S(n) ≫ 1 for n ≡ 0 (mod 2). Therefore, it suffices to show that

J j(n) = J(
n
N j

)N
7
6
j + O

(
N

7
6
j L−1

)
. (3.1)

Write

uk, j(λ) =
∫ (( 1

6+η)N j)
1
k

(( 1
6−η)N j)

1
k

e(tkλ)dt, vk, j(λ) =
1
k

∑
( 1

6−η)N j≤m≤( 1
6+η)N j

m
1
k−1e(mλ).

Then we can deduce from the orthogonality that

J j(n)
22 · 32 · 42 =

∫ 1
2

− 1
2

v2, j(λ)2v3, j(λ)2v4, j(λ)2e(−nλ)dλ

=

∫
|λ|≤

log N j
N j

v2, j(λ)2v3, j(λ)2v4, j(λ)2e(−nλ)dλ + O


∫ 1

2

log N j
N j

1

λ6N
23
6

j

dλ


=

∫
|λ|≤

log N j
N j

u2, j(λ)2u3, j(λ)2u4, j(λ)2e(−nλ)dλ + O(N
7
6
j log−5 N j), (3.2)

where the elementary estimates

vk, j(λ) ≪ |λ|−1N
1−k

k
j , uk, j(λ) =

1
k

∫ ( 1
6+η)N j

( 1
6−η)N j

e(tλ)t
1
k−1dt = vk, j(λ) + O(1)

are used. Since uk, j(λ) = 1
k N

1
k
j

∫ 1
6+η

1
6−η

e(tN jλ)t
1
k−1dt = 1

k N
1
k
j gk(N jλ). Then we have∫

|λ|≤
log N j

N j

u2, j(λ)2u3, j(λ)2u4, j(λ)2e(−nλ)dλ

=
N

13
6

j

22 · 32 · 42

∫
|λ|≤

log N j
N j

g2(N jλ)2g3(N jλ)2g4(N jλ)2e(−nλ)dλ

=
N

7
6
j

22 · 32 · 42

∫
|λ|≤log N j

g2(λ)2g3(λ)2g4(λ)2e
(
−

n
N j
λ
)
dλ

=
N

7
6
j J

( n
N j

)
22 · 32 · 42 + O

(
N

7
6
j

∫ ∞

log N j

1
λ6 dλ

)
=

N
7
6
j J

( n
N j

)
22 · 32 · 42 + O(N

7
6
j log−5 N j), (3.3)

where the bound gk(λ) ≪ |λ|−1 (see [17, Lemma 4.3]) is used. Now (3.1) follows from (3.2) and (3.3).
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Lemma 3.2. Let

I =
(

−η<ui<η (1≤i≤5)
−η<u1+u2+u3+u4+u5<η

1du1 . . . du5. (3.4)

Suppose that n
N j
= 1 + O( 1

log N j
). Then we have

(i) I ≥
(
η

5

)5

> 0, (ii) J
( n
N j

)
≥

(1
6
+ 2η

)− 23
6

I.

Proof. For (i), it is easy to see that

I ≥
(

−η
10 <ui<

η
10 (1≤i≤5)

−η<u1+u2+u3+u4+u5<η

1du1 . . . du5 =

(
−η
10 <ui<

η
10 (1≤i≤5)

1du1 . . . du5 =

(
η

5

)5

> 0.

For (ii), write t6 = s −
5∑

i=1
ti, then we have

J

( n
N j

)
=

∫ ∞

−∞

g2
2(λ)g2

3(λ)g2
4(λ)e

(
−

n
N j
λ
)
dλ

=

∫ 1
6+η

1
6−η

· · ·

∫ 1
6+η

1
6−η

(t1t2)−
1
2 (t3t4)−

2
3 (t5t6)−

3
4 dt1 . . . dt6

∫ ∞

−∞

e
(
λ
( 6∑

i=1

ti −
n
N j

))
dλ

=

∫ 1+6η

1−6η
ϕ(s)ds

∫ ∞

−∞

e
(
λ
(
s −

n
N j

))
dλ,

where

ϕ(s) =
(

1
6 −η<ti<

1
6 +η (1≤i≤5)

1
6 −η<s−t1−t2−t3−t4−t5<

1
6 +η

(t1t2)−
1
2 (t3t4)−

2
3 t−

3
4

5

(
s −

5∑
i=1

ti

)− 3
4

dt1 . . . dt5.

Note that
∫ R

−R
e(λu)dλ = sin 2πRu

πu . Thus

J

( n
N j

)
= lim

R→∞

∫ 1+6η

1−6η
ϕ(s)

sin 2πR(s − n
N j

)

π(s − n
N j

)
ds. (3.5)

Since ϕ(s) is bounded and 1 − 6η < n
N j
= 1 + O( 1

log N j
) < 1 + 6η. Hence, we can deduce from the

Fourier’s integral theorem (see [1, P.22]) that

lim
R→∞

∫ 1+6η

1−6η
ϕ(s)

sin 2πR(s − n
N j

)

π(s − n
N j

)
ds = ϕ

( n
N j

)
. (3.6)
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For ϕ( n
N j

), by the trivial estimate, we can obtain

ϕ
( n
N j

)
=

(
1
6 −η<ti<

1
6 +η (1≤i≤5)

1
6 −η<

n
N j
−t1−t2−t3−t4−t5<

1
6 +η

(t1t2)−
1
2 (t3t4)−

2
3 t−

3
4

5

( n
N j
−

5∑
i=1

ti

)− 3
4

dt1 . . . dt5

≥

(1
6
+ η

)− 23
6
(

1
6 −η<ti<

1
6 +η (1≤i≤5)

1
6 −η<

n
N j
−t1−t2−t3−t4−t5<

1
6 +η

1dt1 . . . dt5. (3.7)

Let ti = ui +
1
6 , then we have(

1
6 −η<ti<

1
6 +η (1≤i≤5)

1
6 −η<

n
N j
−t1−t2−t3−t4−t5<

1
6 +η

1dt1 . . . dt5 =

(
−η<ui<η (1≤i≤5)

1
6 −η<

n
N j
− 5

6 −u1−u2−u3−u4−u5<
1
6 +η

1du1 . . . du5

=

(
−η<ui<η (1≤i≤5)

1− n
N j
−η<u1+u2+u3+u4+u5<1− n

N j
+η

1du1 . . . du5

= I + R, (3.8)

where I is defined as (3.4) and

R =
(

−η<ui<η (1≤i≤5)
η<u1+u2+u3+u4+u5<1− n

N j
+η

1du1 . . . du5 +

(
−η<ui<η (1≤i≤5)

1− n
N j
−η<u1+u2+u3+u4+u5<−η

1du1 . . . du5.

From the condition 1 − n
N j
= O( 1

log N j
), we can obtain

R ≪
∫ η

−η

du1

∫ η

−η

du2

∫ η

−η

du3

∫ η

−η

(
1 −

n
N j

)
du4 ≪

1
log N j

. (3.9)

Now by combining (3.5)–(3.9), we obtain

J

( n
N j

)
≥

(1
6
+ η

)− 23
6
(
I + O

(
1

log N j

))
≥

(1
6
+ 2η

)− 23
6

I.

Lemma 3.3. Suppose that (a, p) = 1. Then we have

(i) |C j(p, a)| ≤ ( j − 1)p
1
2 + 1, (ii) C3(p, a) = −1, if p ≡ 2 (mod 3).

Proof. It follows easily from [18, Lemma 4.3].
Lemma 3.4. We have

(1 + A(n, 17))
∏
p≥23

(1 + A(n, p)) ≥ 0.9792.
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Proof. For p = 17 or 23 ≤ p ≤ 199, we can directly calculate min
1≤n≤p

(1+A(n, p)) by computer and obtain

that

1 + A(n, 17) ≥ 0.9994659, 1 + A(n, 23) ≥ 0.9999786, . . . , 1 + A(n, 199) ≥ 0.9999972.

Thus

(1 + A(n, 17))
∏

23≤p≤199

(1 + A(n, p)) ≥ 0.994943. (3.10)

For 199 < p ≤ 105, if p ≡ 2 (mod 3) and (a, p) = 1, then we can deduce from Lemma 3.3 (i) and (ii)
that

1 + A(n, p) ≥ 1 −

p−1∑
a=1
|C2

2(p, a)C2
4(p, a)|

(p − 1)6 ≥ 1 −
(
√

p + 1)2(3
√

p + 1)2

(p − 1)5 . (3.11)

If p ≡ 1 (mod 3), then by Lemma 3.3 (i), we have

1 + A(n, p) ≥ 1 −
(
√

p + 1)2(2
√

p + 1)2(3
√

p + 1)2

(p − 1)5 . (3.12)

Combining (3.11) and (3.12), we can deduce from numerical calculation that∏
199<p≤105

(1 + A(n, p))

≥
∏

199<p≤105
p≡1 (mod 3)

(
1 −

(
√

p + 1)2(2
√

p + 1)2(3
√

p + 1)2

(p − 1)5

)

×
∏

199<p≤105
p≡2 (mod 3)

(
1 −

(
√

p + 1)2(3
√

p + 1)2

(p − 1)5

)
≥ 0.98425 × 0.999989 ≥ 0.984239. (3.13)

For p > 105, it follows from [13, Section 3, P.443] that∏
p>105

(1 + A(n, p)) ≥
∏
p>105

(
1 −

1
(p − 1)2

)37

≥ 0.99994. (3.14)

Now we can conclude from (3.10) and (3.13)–(3.14) that

(1 + A(n, 17))
∏
p≥23

(1 + A(n, p)) ≥ 0.994943 × 0.984239 × 0.99994 ≥ 0.9792.

Lemma 3.5. Let

Ξ(N1,N2, k) = {(n1, n2) :
{ n1 = N1 − 2v1 − 2v2 · · · − 2vk

n2 = N2 − 2v1 − 2v2 · · · − 2vk
, 1 ≤ v1, . . . , vk ≤ L},

AIMS Mathematics Volume 10, Issue 2, 4153–4172.
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Ξ(N1, k) = {n : n = N1 − 2v1 − 2v2 · · · − 2vk , 1 ≤ v1, . . . , vk ≤ L}.

Then for N1 ≡ N2 ≡ 0 (mod 2), we have

(i)
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

S(n1)S(n2) ≥ 3.57Lk, if k ≥ 30,

(ii)
∑

n∈Ξ(N1 ,k)
n≡0 (mod 2)

S(n) ≥ 1.91267Lk, if k ≥ 14.

Proof. According to [13, (3.3)], we have

S(n) =
∏
p≥2

(1 + A(n, p)). (3.15)

Set C = 0.9792 and P = {3, 5, 7, 11, 13, 19}. Then by applying Lemma 3.4, we obtain

S(n) ≥ C(1 + A(n, 2))
∏
p∈P

(1 + A(n, p)) = 2C
∏
p∈P

(1 + A(n, p)), (3.16)

where the obvious fact 1+A(n, 2) = 2 for n ≡ 0 (mod 2) is used. Write q =
∏
p∈P

p = 285285, t = N2−N1.

Thus ∑
(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

S(n1)S(n2)

≥ 4C2
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

∏
p∈P

(1 + A(n1, p))(1 + A(n2, p))

= 4C2
∑

1≤ j≤q

∑
(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

n1≡ j (mod q)
n2≡t+ j (mod q)

∏
p∈P

(1 + A(n1, p))(1 + A(n2, p))

= 4C2
∑

1≤ j≤q

∏
p∈P

(1 + A( j, p))(1 + A(t + j, p))
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

n1≡ j (mod q)
n2≡t+ j (mod q)

1. (3.17)

Let S denote the innermost sum in (3.17). Since N1 ≡ N2 ≡ 0 (mod 2), we have

S =
∑

1≤v1 ,...,vk≤L
N1−2v1−···−2vk≡ j (mod q)

N2−2v1−···−2vk≡N2−N1+ j (mod q)

1 =
∑

1≤v1 ,...,vk≤L
2v1+···+2vk≡N1− j (mod q)

1.

Let ρ(q) denote the smallest positive integer ρ such that 2ρ ≡ 1 (mod q). Thus

S =

(
L
ρ(q)
+ O(1)

)k ∑
1≤v1 ,...,vk≤ρ(q)

2v1+···+2vk≡N1− j (mod q)

1
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=

(
L
ρ(q)
+ O(1)

)k 1
q

q∑
r=1

e
(
r( j − N1)

q

)  ∑
1≤v≤ρ(q)

e
(
r2v

q

)
k

. (3.18)

When q = 285285 and k ≥ 30, with the help of a computer, we can verify that ρ(q) = 180 and

q−1∑
r=1

 1
ρ(q)

∣∣∣∣∣ ∑
1≤v≤ρ(q)

e
(r2v

q

)∣∣∣∣∣


k

≤

285284∑
r=1

 1
180

∣∣∣∣∣ ∑
1≤v≤180

e
( r2v

285285

)∣∣∣∣∣
30

≤ 2.37 × 10−6. (3.19)

Therefore, from (3.18) and (3.19), we have

S ≥

(
L
ρ(q)
+ O(1)

)k 1
q

ρk(q) −
q−1∑
r=1

∣∣∣∣∣ ∑
1≤v≤ρ(q)

e
(r2v

q

)∣∣∣∣∣k


≥
Lk

q

1 − q−1∑
r=1

 1
ρ(q)

∣∣∣∣∣ ∑
1≤v≤ρ(q)

e
(r2v

q

)∣∣∣∣∣


k + O(Lk−1)

≥
Lk

q

(
1 − 2.37 × 10−6

)
+ O(Lk−1) ≥ 0.999997

Lk

q
. (3.20)

Inserting (3.20) into (3.17), we obtain∑
(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

S(n1)S(n2)

≥ 4C2 × 0.999997
Lk

q

∑
1≤ j≤q

∏
p∈P

(1 + A( j, p))(1 + A(t + j, p)). (3.21)

Note that q =
∏
p∈P

p, we can deduce from the Chinese remainder theorem that∑
1≤ j≤q

∏
p∈P

(1 + A( j, p))(1 + A( j + t, p))

=
∑

1≤ j1≤3

∑
1≤ j2≤5

∑
1≤ j3≤7

∑
1≤ j4≤11

∑
1≤ j5≤13

∑
1≤ j6≤19

(1 + A( j1, 3))(1 + A( j1 + t, 3))

×(1 + A( j2, 5))(1 + A( j2 + t, 5)) . . . (1 + A( j6, 19))(1 + A( j6 + t, 19))

=
∏
p∈P

 ∑
1≤ j≤p

(1 + A( j, p))(1 + A( j + t, p))


≥

∏
p∈P

min
1≤t≤p

 ∑
1≤ j≤p

(1 + A( j, p))(1 + A( j + t, p))

 . (3.22)

By the numerical calculation, we can obtain∏
p∈P

min
1≤t≤p

 ∑
1≤ j≤p

(1 + A( j, p))(1 + A( j + t, p))

 ≥ 265611.695. (3.23)
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Thus, we can conclude from (3.21)–(3.23) that∑
(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

S(n1)S(n2) ≥ 4C2 × 0.999997 × 265611.695
Lk

q
≥ 3.57Lk. (3.24)

The proof of (ii) is similar. From (3.16)–(3.17), we have∑
n∈Ξ(N1 ,k)

n≡0 (mod 2)

S(n) ≥ 2C
∑

n∈Ξ(N1 ,k)
n≡0 (mod 2)

∏
p∈P

(1 + A(n, p))

= 2C
∑

1≤ j≤q

∏
p∈P

(1 + A( j, p))
∑

n∈Ξ(N1 ,k)
n≡0 (mod 2)
n≡ j (mod q)

1. (3.25)

The innermost sum can be estimated using the same method as in (3.18)–(3.20), except by replacing
k ≥ 30 with k ≥ 14. By numerical calculation, we have

∑
n∈Ξ(N1 ,k)

n≡0 (mod 2)
n≡ j (mod q)

1 ≥
Lk

q

1 − 285284∑
r=1

 1
180

∣∣∣∣∣ ∑
1≤v≤180

e
( r2v

285285

)∣∣∣∣∣
14 + O(Lk−1)

≥
Lk

q
(1 − 0.023347) + O(Lk−1) ≥ 0.976652

Lk

q
. (3.26)

Similar to (3.22), we have∑
1≤ j≤q

∏
p∈P

(
1 + A( j, p)

)
=

∏
p∈P

 ∑
1≤ j≤p

(1 + A( j, p))

 . (3.27)

Moreover, by applying the bound
∑

1≤ j≤p
e(−a j

p ) = 0 for a , 0 (mod p), we can obtain

∑
1≤ j≤p

(1 + A( j, p)) = p +

∑
1≤a≤p−1

C2
2(p, a)C2

3(p, a)C2
4(p, a)

∑
1≤ j≤p

e
(
−

a j
p

)
(p − 1)6

= p. (3.28)

Now by combining (3.25)–(3.28), we can derive that

∑
n∈Ξ(N1 ,k)

n≡0 (mod 2)

S(n) ≥ 2C × 0.976652
Lk

q

∏
p∈P

 ∑
1≤ j≤p

(1 + A( j, p))


≥ 1.91267

Lk

q

∏
p∈P

p = 1.91267Lk.

Proposition 3.1. Suppose that k ≥ 30 and N1 ≡ N2 ≡ 0 (mod 2). Then we have

R1(k,N1,N2) ≥ 9.946I2N
7
6
1 N

7
6
2 Lk. (3.29)

AIMS Mathematics Volume 10, Issue 2, 4153–4172.



4163

Proof. Note that Hk(α1 + α2)e(−N1α1 − α2N2) =
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

e(−n1α1)e(−n2α2), then by Lemma 3.1,

Lemma 3.2 (ii) and Lemma 3.5 (i), we have

R1(k,N1,N2)

=

"
M

∏
1≤ j≤2

S 2
2, j(α j)S 2

3, j(α j)S 2
4, j(α j)Hk(α1 + α2)e(−α1N1 − α2N2)dα1dα2

=
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

∫
M1

S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)e(−n1α1)dα1

×

∫
M2

S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)e(−n2α2)dα2

=
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

S(n1)S(n2)J
( n1

N1

)
J
( n2

N2

) N
7
6
1 N

7
6
2

24 · 34 · 44 + O(N
7
6
1 N

7
6
2 L−1)


≥

( 1
6 + 2η)−

23
3 I2N

7
6
1 N

7
6
2

24 · 34 · 44

∑
(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

S(n1)S(n2) + O(N
7
6
1 N

7
6
2 Lk−1)

≥ 9.946I2N
7
6
1 N

7
6
2 Lk, (3.30)

where the trivial bound
∑

(n1 ,n2)∈Ξ(N1 ,N2 ,k)
n1≡n2≡0 (mod 2)

1 ≪ Lk is used.

4. The upper bound for R2(k,N1,N2)

In this section, we will give the upper bound forR2(k,N1,N2). For this purpose, we need to introduce
a further division of the minor arcs m. Let

E(u) = {(α1, α2) ∈ m : |H(α1 + α2)| ≥ uL} .

Then we have

|R2(k,N1,N2)|

≤

"
m

∣∣∣∣∣ ∏
1≤ j≤2

S 2
2, j(α j)S 2

3, j(α j)S 2
4, j(α j)Hk(α1 + α2)

∣∣∣∣∣dα1dα2

=


"
m\E(u)

+

"
m

⋂
E(u)


∣∣∣∣∣ ∏

1≤ j≤2

S 2
2, j(α j)S 2

3, j(α j)S 2
4, j(α j)Hk(α1 + α2)

∣∣∣∣∣dα1dα2

:= R3(k,N1,N2, u) + R4(k,N1,N2, u). (4.1)

In order to estimate R3(k,N1,N2, u), we define

M
∗
j(q, a) =

(
a
q
−

log N j

N j
,

a
q
+

log N j

N j

]
, M∗j =

⋃
q≤log N j

q⋃
a=1

(a,q)=1

M
∗
j(q, a),
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m
∗
j =

[
1

Q j
, 1 +

1
Q j

]
\M∗j, J

∗ =

∫ ∞

−∞

|g2(λ)2g3(λ)2g4(λ)2|dλ,

A∗(q) =
1
φ6(q)

q∑
a=1

(a,q)=1

|C2
2(q, a)C2

3(q, a)C2
4(q, a)|, S∗ =

∞∑
q=1

A∗(q).

Lemma 4.1. We have

S
∗ ≤ 3.394.

Proof. See [22, Lemma 3.1].
Lemma 4.2. We have∫

M∗j

|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα =
S∗J∗N

7
6
j

22 · 32 · 42 + O(N
7
6
j L−1).

Proof. It follows from the standard major arcs techniques in the Waring-Goldbach problem.
Lemma 4.3. We have ∫ 1

0
|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα ≤

(8 + 2η)S∗J∗N
7
6
j

22 · 32 · 42 .

Proof. Let

J∗j =
∑

m1−m2+m3−m4+m5−m6=0

( 1
6 −η)N j≤mi≤( 1

6 +η)N j (1≤i≤6)

(m1m2)−
1
2 (m3m4)−

2
3 (m5m6)−

3
4 .

Then from [22, Proof of Lemma 4.1, P.417] with k = 4, we have∫ 1

0
|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα ≤

(8 + η)S∗J∗j
22 · 32 · 42 . (4.2)

For J∗j , it follows from the same argument leading to (3.2) and (3.3) that

J∗j
22 · 32 · 42 =

∫ 1
2

− 1
2

∣∣∣∣∣v2, j(λ)2v3, j(λ)2v4, j(λ)2
∣∣∣∣∣dλ

=

∫
|λ|≤

log N j
N j

∣∣∣∣∣u2, j(λ)2u3, j(λ)2u4, j(λ)2
∣∣∣∣∣dλ + O

( N
7
6
j

log5 N j

)

=
J∗N

7
6
j

22 · 32 · 42 + O
( N

7
6
j

log5 N j

)
. (4.3)

Now by substituting (4.3) into (4.2), we obtain

∫ 1

0
|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα ≤

(8 + η)S∗J∗N
7
6
j

22 · 32 · 42 + O
( N

7
6
j

log5 N j

)
≤

(8 + 2η)S∗J∗N
7
6
j

22 · 32 · 42 .
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Lemma 4.4. We have

∫
m∗j

|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα ≤
(7 + 3η)S∗J∗N

7
6
j

22 · 32 · 42 .

Proof. By Lemmas 4.2 and 4.3, we have∫
m∗j

|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα

=

∫ 1

0
|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα −

∫
M∗j

|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα

≤
(8 + 2η) − 1
22 · 32 · 42 S

∗
J
∗N

7
6
j + O(N

7
6
j L−1) ≤

(7 + 3η)S∗J∗N
7
6
j

22 · 32 · 42 .

Lemma 4.5. Let I be defined as (3.4). Then we have

J
∗ ≤

(1
6
− η

)− 23
6

I. (4.4)

Proof. The proof of Lemma 4.5 is similar to that of Lemma 3.2 (ii). Let t6 = t1 − t2 + t3 − t4 + t5 − s,
then we can obtain

J
∗ =

∫ ∞

−∞

|g2
2(λ)g2

3(λ)g2
4(λ)|dλ =

∫ 6η

−6η
ϕ∗(s)ds

∫ ∞

−∞

e(λs)dλ, (4.5)

where

ϕ∗(s) =
(

1
6 −η<ti<

1
6 +η (1≤i≤5)

1
6 −η<t1−t2+t3−t4+t5−s< 1

6 +η

(t1t2)−
1
2 (t3t4)−

2
3 t−

3
4

5 (t1 − t2 + t3 − t4 + t5 − s)−
3
4 dt1 . . . dt5.

Applying the Fourier integral theorem, we can obtain∫ 6η

−6η
ϕ∗(s)ds

∫ ∞

−∞

e(λs)dλ = lim
R→∞

∫ 6η

−6η
ϕ∗(s)

sin 2πRs
πs

ds = ϕ∗(0). (4.6)

Write ti = ui +
1
6 . Thus

ϕ∗(0) =
(

1
6 −η<ti<

1
6 +η (1≤i≤5)

1
6 −η<t1−t2+t3−t4+t5<

1
6 +η

(t1t2)−
1
2 (t3t4)−

2
3 t−

3
4

5 (t1 − t2 + t3 − t4 + t5)−
3
4 dt1 . . . dt5

≤

(1
6
− η

)− 23
6
(

−η<ui<η (1≤i≤5)
−η<u1−u2+u3−u4+u5<η

1du1 . . . du5. (4.7)
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Making the change of variables u2 = −s2, u4 = −s4, we find that(
−η<ui<η (1≤i≤5)

−η<u1−u2+u3−u4+u5<η

1du1du2 . . . du5 =

(
−η<u1 ,s2 ,u3 ,s4 ,u5<η
−η<u1+s2+u3+s4+u5<η

1du1ds2 . . . du5 = I. (4.8)

Now the desired result follows from (4.5)–(4.8).
Proposition 4.1. We have

R3(k,N1,N2, u) ≤ 2021.835ukI2N
7
6
1 N

7
6
2 Lk.

Proof. Note that |H(α1 + α2)| < uL for (α1, α2) ∈ m\E(u). Then we have

R3(k,N1,N2, u) ≤ (uL)k
"
m\E(u)

∏
1≤ j≤2

∣∣∣∣∣S 2
2, j(α j)S 2

3, j(α j)S 2
4, j(α j)

∣∣∣∣∣dα1dα2. (4.9)

It is easy to see that m1 ⊆ m
∗
1,m2

⋃
(M2\M

∗
2) ⊆ m∗2 and m2

⋂
(M2\M

∗
2) = ∅. Hence"

m

1dα1dα2 =

∫
M1

1dα1

∫
m2

1dα2 +

∫
m1

1dα1

∫
m2

1dα2 +

∫
m1

1dα1

∫
M2

1dα2

=

∫ 1

0
1dα1

∫
m2

1dα2 +

∫
m1

1dα1

∫
M2

1dα2

=

∫ 1

0
1dα1

∫
m2

1dα2 +

∫
m1

1dα1

∫
M2\M

∗
2

1dα2 +

∫
m1

1dα1

∫
M∗2

1dα2

≤

∫ 1

0
1dα1

∫
m2

1dα2 +

∫ 1

0
1dα1

∫
M2\M

∗
2

1dα2 +

∫
m∗1

1dα1

∫
M∗2

1dα2

≤

∫ 1

0
1dα1

∫
m∗2

1dα2 +

∫
m∗1

1dα1

∫
M∗2

1dα2. (4.10)

From (4.9)–(4.10) and Lemmas 4.1–4.5, we can obtain

R3(k,N1,N2, u)

≤ (uL)k
∫ 1

0
|S 2

2,1(α1)S 2
3,1(α1)S 2

4,1(α1)|dα1

∫
m∗2

|S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)|dα2

+(uL)k
∫
m∗1

|S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)|dα1

∫
M∗2

|S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)|dα2

≤ (uL)k
( (8 + 2η)(7 + 3η)

24 · 34 · 44 (S∗J∗)2N
7
6
1 N

7
6
2 +

(7 + 3η)(1 + η)
24 · 34 · 44 (S∗J∗)2N

7
6
1 N

7
6
2

)
≤

(1
6
− η

)− 23
3 (63 + 50η)

24 · 34 · 44 × 3.3942ukN
7
6
1 N

7
6
2 I2Lk
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≤ 2021.835ukN
7
6
1 N

7
6
2 I2Lk. (4.11)

Lemma 4.6. We have

(i)
∫
m j

|S 2, j(α)2S 3, j(α)3S 4, j(α)2|dα ≪ N
35
24+ε

j , (ii)
∫ 1

0
|S 2, j(α)2S 4, j(α)4|dα ≪ N1+ε

j ,

(iii)
∫ 1

0
|S 2, j(α)2S 3, j(α)2S 4, j(α)2|dα ≪ N

7
6+ε

j .

Proof. See [24, Lemma 4.5 and Lemma 4.1].
Lemma 4.7. Let

E∗(u) = {α ∈ (0, 1] : |H(α)| ≥ uL} .

Write meas(E∗(u)) for the measure of the set E∗(u). Then we have

meas(E∗(0.83372131685)) ≤ N−
2
3−10−20

1 .

Proof. See [6, Lemma 5 and (3.10)].
Proposition 4.2. Let u = 0.83372131685. Then we have

R4(k,N1,N2, u) ≪ N
7
6
1 N

7
6
2 Lk−1.

Proof. For brevity, we write

F2(α1) =
∫

α2∈m2
|H(α1+α2)|≥uL

∣∣∣∣∣S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)

∣∣∣∣∣dα2,

F1(α2) =
∫

α1∈m1
|H(α1+α2)|≥uL

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)

∣∣∣∣∣dα1.

From the definition of m and E(u), we have

R4(k,N1,N2, u)

≪ Lk


"

(α1 ,α2)∈[0,1]×m2
|H(α1+α2)|≥uL

+

"
(α1 ,α2)∈m1×[0,1]
|H(α1+α2)|≥uL


∣∣∣∣∣ ∏

1≤ j≤2

S 2
2, j(α j)S 2

3, j(α j)S 2
4, j(α j)

∣∣∣∣∣dα1dα2

= Lk
∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)F2(α1)

∣∣∣∣∣dα1

+Lk
∫ 1

0

∣∣∣∣∣S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)F1(α2)

∣∣∣∣∣dα2, (4.12)

where the trivial bound H(α1+α2) ≪ L is used. By applying Hölder’s inequality, Hua’s inequality and
Lemma 4.6 (i), (ii), we can obtain

F2(α1) ≪
(∫ 1

0
|S 2

2,2(α2)S 4
4,2(α2)|dα2

) 1
6
(∫ 1

0
|S 4

2,2(α2)|dα2

) 1
12
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×

(∫
m2

|S 2
2,2(α2)S 3

3,2(α2)S 2
4,2(α2)|dα2

) 2
3
∫ α2∈[0,1]

|H(α1+α2)|≥uL

1dα2


1

12

≪ N
11
9 +ε

2

∫ α2∈[0,1]
|H(α1+α2)|≥uL

1dα2


1
12

. (4.13)

Thus ∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)F2(α1)

∣∣∣∣∣dα1

≪ N
11
9 +ε

2

∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)

∣∣∣∣∣
∫ α2∈[0,1]

|H(α1+α2)|≥uL

1dα2


1

12

dα1

= N
11
9 +ε

2

∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)

∣∣∣∣∣
∫

β∈[α1 ,1+α1]
|H(β)|≥uL

1dβ


1

12

dα1, (4.14)

where we used the integral transformation β = α1 + α2. Note that H(β) is of period one. Hence∫
β∈[α1 ,1+α1]
|H(β)|≥uL

1dβ =
∫

β∈[0,1]
|H(β)|≥uL

1dβ. (4.15)

On substituting (4.15) into (4.14), we obtain∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)F2(α1)

∣∣∣∣∣dα1

≪ N
11
9 +ε

2

∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)

∣∣∣∣∣
∫

β∈[0,1]
|H(β)|≥uL

1dβ


1
12

dα1

≪N
11
9 +ε

2 N−
1

18−10−22

1

∫ 1

0

∣∣∣∣∣S 2
2,1(α1)S 2

3,1(α1)S 2
4,1(α1)

∣∣∣∣∣dα1≪N
11
9 +ε

2 N
10
9 −10−23

1 , (4.16)

where Lemma 4.7 and Lemma 4.6 (iii) are used. In a similar manner, we have∫ 1

0

∣∣∣∣∣S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)F1(α2)

∣∣∣∣∣dα2

≪ N
11
9 +ε

1

∫ 1

0

∣∣∣∣∣S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)

∣∣∣∣∣
∫

β∈[0,1]
|H(β)|≥uL

1dβ


1

12

dα2

≪ N
7
6−10−22+ε

1

∫ 1

0

∣∣∣∣∣S 2
2,2(α2)S 2

3,2(α2)S 2
4,2(α2)

∣∣∣∣∣dα2 ≪ N
7
6−10−23

1 N
7
6+ε

2 . (4.17)

Since N2 < N1 ≪ N2, then we can conclude from (4.12) and (4.16)–(4.17) that

R4(k,N1,N2, u) ≪ LkN
11
9 +ε

2 N
10
9 −10−23

1 + LkN
7
6−10−23

1 N
7
6+ε

2 ≪ N
7
6
1 N

7
6
2 Lk−1.
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Now we turn to give the estimate for |R2(k,N1,N2)|. Suppose that k ≥ 30. Then by combining (4.1)
and Propositions 4.1–4.2 with u = 0.83372131685, we have

|R2(k,N1,N2)| ≤ R3(k,N1,N2, u) + R4(k,N1,N2, u)

≤ 2021.835 × 0.8337213168530I2N
7
6
1 N

7
6
2 Lk + O

(
N

7
6
1 N

7
6
2 Lk−1

)
≤ 8.6372I2N

7
6
1 N

7
6
2 Lk. (4.18)

5. Proof of Theorem 1

When k ≥ 30, by combining Proposition 3.1, (2.4), and (4.18), we can obtain

R(k,N1,N2) ≥ R1(k,N1,N2) − |R2(k,N1,N2)|

≥ (9.946 − 8.6372)I2N
7
6
1 N

7
6
2 Lk

> 1.308I2N
7
6
1 N

7
6
2 Lk > 0, (5.1)

where Lemma 3.2 (i) is used in the last step. Now the proof of Theorem 1 is completed.

6. Proof of Theorem 2

We sketch the proof of Theorem 2, since the idea of the proof is similar to that of Theorem 1. We
only give the changes that are necessary for our Theorem 2. Let

R(k,N1) =
∑

N1=p2
1+p2

2+p3
3+p3

4+p4
5+p4

6+2v1+···+2vk

P−2,1≤p1 ,p2≤P+2,1 , P−3,1≤p3 , p4≤P+3,1 ,

P−4,1≤p5 , p6≤P+4,1 , 1≤v1 ,...,vk≤L

(log p1) . . . (log p6).

Suppose that k ≥ 14 and u = 0.83372131685. Then from the orthogonality, we have

R(k,N1)

=

(∫
M1

+

∫
m1\E∗(u)

+

∫
m1

⋂
E∗(u)

)
S 2,1(α)2S 3,1(α)2S 4,1(α)2H(α)ke(−N1α)dα

:= R1(k,N1) + R2(k,N1, u) + R3(k,N1, u). (6.1)

Applying Lemmas 3.1–3.2 and Lemma 3.5 (ii), we have

R1(k,N1) =
∑

n∈Ξ(N1 ,k)
n≡0 (mod 2)


S(n)J

(
n
N 1

)
N

7
6
1

22 · 32 · 42 + O
(
N

7
6
1 L−1

)
≥

(1
6 + 2η

)− 23
6 IN

7
6
1

22 · 32 · 42

∑
n∈Ξ(N1 ,k)

n≡0 (mod 2)

S(n) + O

N
7
6
1 L−1

∑
n∈Ξ(N1 ,k)

n≡0 (mod 2)

1


≥ 3.192498IN

7
6
1 Lk + O

(
N

7
6
1 Lk−1

)
≥ 3.19249IN

7
6
1 Lk. (6.2)
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Since m1\E
∗(u) ⊂ m∗1, we can deduce from Lemma 4.1 and Lemmas 4.4–4.5 that

R2(k,N1, u) ≤ (uL)k
∫
m1\E∗(u)

|S 2,1(α)2S 3,1(α)2S 4,1(α)2|dα

≤
(7 + 3η)ukLk

22 · 32 · 42 S
∗
J
∗N

7
6
1 ≤ 39.6553ukIN

7
6
1 Lk. (6.3)

Moreover, by Hölder’s inequality, Hua’s inequality, and Lemmas 4.6–4.7, we have

R3(k,N1, u) ≪ Lk

(∫ 1

0
|S 2,1(α)2S 4,1(α)4|dα

) 1
6
(∫ 1

0
|S 4

2,1(α)|dα
) 1

12

×

(∫
m1

|S 2,1(α)2S 3,1(α)3S 4,1(α)2|dα
) 2

3
(∫
E∗(0.83372131685)

1dα
) 1

12

≪ N
1
6+

1
12+

35
36−

1
18−10−22+ε

1 ≪ N
7
6−ε

1 . (6.4)

From (6.1)–(6.4), we can conclude that

R(k,N1) ≥ R1(k,N1) − |R2(k,N1, u)| − |R3(k,N1, u)|

≥ (3.19249 − 39.6553 × 0.8337213168514)IN
7
6
1 Lk + O(N

7
6−ε

1 )

> 0.08IN
7
6
1 Lk.

Now the proof of Theorem 2 is complete.
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