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1. Introduction

The Goldbach conjecture is one of the most famous problems, and numerous variations have been
derived from it. In the 1950s, Linnik [9, 10] showed that every sufficiently large even integer can be
represented as a sum of two primes and K powers of 2, where K is an absolute constant. In 1975,
Gallagher [2] established an asymptotic formula for the number of such representations. In 1998, the
explicit value of K was first obtained by Liu, Liu, and Wang [11]. They showed that K = 54000 is
acceptable. Afterwards, many mathematicians improved the value of K (see [4,7, 8, 12,15, 16, 19]).
The best result so far is due to Pintz and Ruzsa [16], who proved that K = 8 is acceptable.

In 2017, motivated by the works of Linnik [9, 10], Liu [13] studied a Goldbach—Linnik problem
with unequal powers of primes. To be specific, he considered the problem on the representation of the
large even integer N in the form

N =pi+py+py+pi+ps+pg+ 2"+ +2%, (1.1)

where p; are prime numbers and v; are positive integers. He proved that (1.1) is solvable for k = 41.
Subsequently, the acceptable value of k was successively refined by Lii [14], Zhao [23], and Zhang [20].
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Very recently, based on the work of [21,22], Zhu [24] further improved the result to k = 17.
On the other hand, in 2023, Huang [5] studied Eq (1.1) in an extended way. He attempted to
simultaneously represent pairs of positive even integers N; and N, with N, < N; < N,, in the form

{N1=p?+p§+p§+pi+p‘5‘+p‘6‘+2w+---+2Vk (12)

— 2 24 33 4 4 .
Ny =pi+ps+tpy+tpjy+p)+P,+2" +--+2%

In [5], he proved that the simultaneous equations (1.2) are solvable for k = 105. In 2024, Han, Liu,
and Yue [3] improved the value of k to 36.

In this paper, we shall continue to improve the results of [3] and [24] and establish the following
sharper results:
Theorem 1. For k = 30, the simultaneous equations (1.2) are solvable for every sufficiently large
positive even integers Ni and N, satisfying N, < N < N,.
Theorem 2. For k = 14, the Eq (1.1) is solvable for every sufficiently large positive even integer N.

2. Notation and outline of the method

In this paper, we assume that V; and N, are sufficiently large even integers satisfying N, < N; < N,.
We fix a positive constant 7 satisfying < 107!, Let & be an arbitrarily small positive number, and
the value of £ may change from line to line. The letter p, with or without a subscript, is reserved for a
prime number. As usual, we use e(@) to denote e*™@, and ¢(n) stands for the Euler function. Moreover,
we write

1 i 1 i log(N;/log Ny)
i,j 6 + n J i,j 6 n J 10g2

Si@= Y e(palogp, Ha)= ) ea).

P <p<P}. I<v<L
i,j i,J

In order to apply the circle method, we set

£

22 Uie
Pj = N].ZO and Qj = szo . (21)
Then we can define

M = gﬁ] Xgﬁz = {(Q],Qz) LQy € 9%1,&2 S gﬁz},

1 1 1 1 1 1
m:[—,l+— x[—,1+— VO, m, [—,1+— \ M, (2.2)
Ql Ql QZ Q2 Qj Qj
where
M Uquim( ), M ( )(“ 1“+1] 2.3)
;= (q,a), M(g,a) =|———,—+—|. .
=1 ! qa 90;°q 99,
(a,q)=1
Now let

R(k, N1, No) = > (log pr)(log p2) . . (1og po)
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be the weighted number of solutions of (1.2) in (py, ..., p12,Vi,..., V) With

Py <pi.py <Py, Py < p3,ps < P3Py < ps,ps < Py,
P22 <p7,psg =< Pzz’P32 < P9, P1o < P32,P42 < p11,P12 < P42»
1<v,...,wi <L.
Then by orthogonality, we have
R(k, Ny, N>)

_ f fo ,j(aj)s_%J(aj)sij(aj)e(—aij))H"(al+a2)da1da2

1<j<2

-1

M

R (k, Nl, Ny) + Ry(k, Ny, Ny).

S; (@S5 (@)S] (a)e(-a J-Nj))Hk(al + ay)da day

1<j<2

For k > 30, we shall prove

Ry (k, N1, No) > 9.946NE N PLE, [Ro(k, Ny, No)| < 8.6372N° N 2L,

where [ is the positive constant defined as (3.4).
3. The lower bound for R;(k, N|, N,)

We first state some auxiliary results. Let

q X q
am an
Cilg,a) = E e (_q ) , B(n,q) = E C%(q, a)C%(q, a)Cﬁ(q, a)e( - ?),
m=1 a=1
(m,g)=1 (a,q)=1

An,q) = ——B(n,q), (n) = ZA(n 9,

q=1

6()

L 1 00
gi(d) = f e(tDtx'dt, J(n) = f 82(1)*g3(1)*ga(1)*e(—n)dA.

1
61 -

Lemma 3.1. Let M; be defined as (2.3). Then we have

SIGEIN

f $3.,(@)S3 (@S5 j(@e(-nayda = — Y
Mm;

where S(n) > 1 forn =0 (mod 2).
Proof. Let

_1 _2 _3
Ji(n) = Z (mymy) =2 (m3my) ™3 (msme) ™ *.
my+my+-+mg=n
(G- jemist N (1<is6)

(2.4)

(2.5)
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It follows from [13, Lemma 2.1] that

S(n)J(n) 7o
fm,s2,1(0‘)253,1'(@)254,1(")28(‘”")‘1“ 2.32.42 O(N L )

and S(n) > 1 for n = 0 (mod 2). Therefore, it suffices to show that
T = (5 )N"’ n O(NGL ) G.1)

Write

(L+mN)F 1 1
%th‘ e dn v == Y mie(md).
(L-mN)F koo

(§=MNj<m<(g+mN;

Then we can deduce from the orthogonality that

l

Ji(n)
g e ,(/l) V3 J(/l) V4, ,(/1) e(—nA)da
2 2 2 : 1
= g, Vz,j(/l) V&j(/l) V47j(/1) e(—nA)dA+ O e %) da
= f ) M2,j(/I)ZMS,j(/l)Zl/l4’j(/l)ze(—l’l/l)d/l + O(NjE log*5 N)), (3.2)
<
where the elementary estimates
N (6 +N; ]
Vi) < AN, w () = —f e(t)t~dt = v j(A) + O(1)
k (2-m)N;

1o 1
are used. Since u j(1) = N f ff_? e(tN j/l)ﬁ‘ldt = %N}‘ gx(N;A). Then we have
6

f ey, 12 (D3 (D) uy j(A)*e(-n)dA
U<—

J

13
N?
= 5 2f &N g3 (N ga(N ) e(-n)dA
2 3 '4 Mls%
N©
_J 2 2 2 n
- (A g (VP g (Ve - 2-2)dA
223242 j:l|<logNj ! Nj
7
M [ Lal- 35 oo gy, .
T 02.32.42 J logN/l T 2.32.42 g .

where the bound g;(1) < |A]7! (see [17, Lemma 4.3]) is used. Now (3.1) follows from (3.2) and (3.3).
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Lemma 3.2. Let

I = ff 1du1 ...du5. (34)

—n<uj<n (1<i<5)
—N<u|+up+uz+ug+us<n

Suppose that - = 1 + O( ). Then we have

1
log N;
23

Q) 1> (g)s >0, (i) 3(%) > (% + 2;7)71.

Proof. For (i), it is easy to see that

5
ff \du, .. .dus = ff 1du1...du5:(g)>0.

-n n . -n Ul i
To<ui<7g (<i<5) To <ui<ig (1<i<5)
—7]<u| +u2+u3+u4+u5 <U

5
For (i), write t, = s — ), t;, then we have
i=1

j‘&ummmum4—ﬁaya

f f6 (t12) "% (t314) 3 (1516) Tty .. dtﬁf e(/l(iti_ %))dﬂ
1467 - :
fl_6n d(s)ds [OO e(/l(s - E))d/l

o(s) = ‘f j‘ (i H sty s -

E —n<ti<gz 6 +n (1<i<5)

%—r]<s—11 —1y—t3—igy—15< é +n

R
—_—
Z[=
~—
I

where

5\
Zti) dt; ...dts
i=1

Note that f_ I; e(lu)da = ““f—;”e“ Thus

n . 1+6n sin 2wR(s — ])
(_) = lim » #(s) r— ds. (3.5)

Since ¢(s) is bounded and 1 — 61 < Ni 1+ 0O(
Fourier’s integral theorem (see [1, P.22] ) that

log 7 ) < 1+ 6n. Hence, we can deduce from the

Nij) (3.6)

1+67 sin 27R(s — 1)
lim #(s) —ds = ¢(

R—oo Ji_6p n(s — ﬁj)
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For ¢( Nij), by the trivial estimate, we can obtain

¢(N£J) f f (1112) 2 (t3t4) 51 3(;} _Zsl .

——17</ <z +n (1<i<5)

%—n<N—j—1|—12 13-4 15< +n

> + '7 f f 1dty ..

z —1]<rl< +7 (1<i<5)

1
6717<N—jfr1 —ty—t3—tg— 15<6+7]

Lett; = u; + %, then we have

[of o

z —n<t,< +1 (1<i<5)

1d1/t1 . du5

—n<uj<n (1<i<5)

1 e 5 s —ta—ug—uc<d
g -n< V_’l_tZ 13— I4—t5<é+7] 6NN T U TuRTUR UL US <G HT)
J

<

_ ff ldu, ... dus

—n<uj<n (1<i<5)
1- NL] —n<uy+up+uz+ug+us<l- NLJ +17

= [I+R,

where [ is defined as (3.4) and

R = ff 1dl/t1...dl/t5+ ff 1dl/l1...dl/t5

—n<u;<n (1<i<5) —n<uj<n (1<i<5)
7]<ul+u2+u3+u4+us<lfﬁ+r] lfﬁfrxul+t42+143+u4+u5<777
J J
From the condition 1 — -+ 0(10 N, ), we can obtain

7 7 ] ] n 1
R <« f du1 f dugf du3f (1 — —)du4 < .
-1 -n -n -n N;j log N;

Now by combining (3.5)—(3.9), we obtain

05) = o) ol o

Lemma 3.3. Suppose that (a, p) = 1. Then we have

WICi(p,a)l < (j— l)p% +1, (1) Cs(p,a)=-1, if p=2 (mod 3).

Proof. 1t follows easily from [18, Lemma 4.3].
Lemma 3.4. We have

(1 +An, 17)) 1_[(1 +A(n, p)) > 0.9792.

p>23

(3.7

(3.8)

(3.9)
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Proof. For p =17 or 23 < p < 199, we can directly calculate ]min (1+A(n, p)) by computer and obtain
<n<p

that
1+ A(n, 17) > 0.9994659, 1+ A(n,23) > 0.9999786, ..., 1 + A(n, 199) > 0.9999972.
Thus
(1+A@ A7) [ ] (1 +A@ p) 20994943, (3.10)
23<p<199

For 199 < p < 10°, if p =2 (mod 3) and (g, p) = 1, then we can deduce from Lemma 3.3 (i) and (ii)
that

p-1

Z |C§(p’ a)Ci(pa Cl)l . (\/ﬁ"' 1)2(3\/54_ 1)2

1+A(p) > 1-% > (3.11)
P (p—1)° (p— 17
If p=1 (mod 3), then by Lemma 3.3 (i), we have
+1)2Q2p+ 1)’)GBp+1)?
1+A(n,p)21—(\/1_9 y@vp 3(\/1_9 ). (3.12)
(p-D
Combining (3.11) and (3.12), we can deduce from numerical calculation that
[] a+awmpy
199<p<10°
. r (1_(\/ﬁ+1)2(2\/ﬁ+1)2(3\/1_7+1)2)
- 199<p§|05 (p - 1)5
p=1 (mod 3)
+1)*Bp + 1)?
T (l_wﬁ ’G VP >)
199<p<105 (P_ 1)
p=2 (mod 3)
> 0.98425 x 0.999989 > (0.984239. (3.13)
For p > 10°, it follows from [13, Section 3, P.443] that
1 37
(1+A(n,p) > (1 — ) > (0.99994. (3.14)
[ m = ] {1-57

p>10° p>10°

Now we can conclude from (3.10) and (3.13)—(3.14) that

(1+AMm,17)) l—[(l + A(n, p)) > 0.994943 x 0.984239 x 0.99994 > 0.9792.

p>23
Lemma 3.5. Let

ng=Ny =2 =2"2... - 2%

E(NI’NZak) = {(nl’nZ) . { n, = ]\]2 _ 2V] _ 2"2 e — 2V1<

’lsvla--'akaL}a
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ENp,k)y={n:n=N; =2" =2 ... =2% 1 <v,...,vy < L}.
Then for Ny = N, = 0 (mod 2), we have

(i) Z S(n,)S(ny) > 3.57LF, if k > 30,

(n7,n2)EE(N],Np k)
ny=npy=0 (mod 2)

(i1) Z S(n) > 1.91267LF, if k > 14.

ne=(Ny k)
n=0 (mod 2)

Proof. According to [13, (3.3)], we have

S(m) = | [ +A@, p).

p=2

Set C =0.9792 and P = {3,5,7, 11, 13, 19}. Then by applying Lemma 3.4, we obtain

S(m) = C(1+Am,2) | [(1+A@, p) =2C | |1+ A, p)),

peP peP

(3.15)

(3.16)

where the obvious fact 1+A(n,2) = 2 forn = 0 (mod 2)isused. Write g = [] p = 285285,¢t = N,—N;.

peP
Thus

D Sm)Em)

(n1.19)€E(N1,Np k)
ny=ny=0 (mod 2)

act Y [ ]A+A@, )+ A, p))

(n1,n2)€E(NT,Np k) pe@
n1=np=0 (mod 2)

=4 > > | |a+Ae, pya + Ama, p))

1<j<q (11BN N2 K peP
ny=np=0 (mod 2)
ni=j (mod q)
np=t+j (mod q)

\%

_ 4C221—[(1+A(j,p))(l+A(t+j,P)) Z L.

1<j<q peP (n1,n2)€E(N1,Np.k)
n1=np=0 (mod 2)
ny=j (mod q)
ny=t+j (mod g)

Let S denote the innermost sum in (3.17). Since Ny = N, = 0 (mod 2), we have

S = > 1= > 1.

I<vy,. <L 1<vy . <L
Np=2"1--—2"=j (mod q) 21 ++2"% =N1—j (mod q)
Np—=2"1—.=2"k=Np—Ny+; (mod q)

Let p(g) denote the smallest positive integer p such that 2 = 1 (mod ¢g). Thus

I3 k
= |— +0(1 1
(p(q) * ( )) 1<V|,..Z;;<p(q)

2"1+-+2"%k=N1~j (mod q)

(3.17)
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“I'G (1 - Ny 2\
= [—=— +om)| = “. 3.18
(p(q)+ ()) qze( ) K;@e( q) G19

r=1

When g = 285285 and k > 30, with the help of a computer, we can verify that p(g) = 180 and
_ k
S (rzv)
Sl 3 42
—i\ p(q) q
285284 30
1 2V
> (— (55 )'] <237 % 107, (3.19)
r=1

285285
Therefore, from (3.18) and (3.19), we have

1<v<p(q)

L L 2\ [F
s 2 (Ton+0(”) (p @ - ;ng‘@e( =) ]
o S 2\ .
Sl 2 )
Lk . Lk
> —(1-237x107°)+O0(L*") 2 0.999997—. (3.20)
q q

Inserting (3.20) into (3.17), we obtain
> em)Sn)

(n1,n)€E(N1,Np k)
n1=ny=0 (mod 2)

> 47 % 0.999997% Z ﬂu +AG, p)(1 + A(t + j, p)). (3.21)
1<j<q peP

Note that ¢ = [] p, we can deduce from the Chinese remainder theorem that
pEP

Do |a+aG e +AG+1py

1<j<q peP

= U T T T Y A+ AGHI + A +1,3))

1<1<3 1<p<5 1<j3<7 1<ju<11 1<j5<13 1<s<19

X(1+A@(2,5))A +A(2 +1,5)...(1 + A(je, 19)(1 + A(je + £, 19))

=[] ( DA+ AG P +AG +1, p))]

peP \1<j<p
> [ | min ( D +AG Y1 +AG +1, p))] (3.22)
peP 1<j<p
By the numerical calculation, we can obtain
ﬂ min ( Z (1+AG, p)(1 +AG + 1, p))] > 265611.695. (3.23)
<t
peP 1<j<p

AIMS Mathematics Volume 10, Issue 2, 4153-4172.
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Thus, we can conclude from (3.21)—(3.23) that

k

(n1.19)€E(NT,Np k)
n1=np=0 (mod 2)

The proof of (i) is similar. From (3.16)—(3.17), we have

>oem = 2¢ Y [ ]a+Awpy
nEE(N] k) neENK  peP
n=0 (mod 2) n=0 (mod 2)
=20 ) [|a+aGpy >, 1.
<7< peP o (a2
n=j (mod q)

L
S(n1)S(ny) = 4C* x 0.999997 x 265611.695; > 3.57L".

(3.24)

(3.25)

The innermost sum can be estimated using the same method as in (3.18)—(3.20), except by replacing

k > 30 with k > 14. By numerical calculation, we have

1k 285284 (4
> —[1 - > =
nEE(N] k) q r=1 180

n=0 (mod 2)
n=j (mod q)

W%

<v<180

Lk Lk
— (1 -0.023347) + O(L*") > 0.976652—.
q q

v

Similar to (3.22), we have

Dl Ta+aGp) = ]_I[Z(HA(J;p))).

1<j<q peP peP \1<j<p

Moreover, by applying the bound )} e(—%j) =0 fora # 0 (mod p), we can obtain

1<j<p

S CHp.a)Ci(p.a)Ci(p.a) ¥ (-4

I1<a<p-1 1<j<p

1<Z 6(2822;85)‘)14] +OLh

D +AGp) = p+

1<j<p

(p-1)°

Now by combining (3.25)—(3.28), we can derive that

Z S(n) > 2Cx 09766522 n( Z (1+ A, p))]

neE(N1.k) peP \1<j<p
n=0 (mod 2)

\

l}
191267= [ | p = 1.91267L".
pEP

\%

Proposition 3.1. Suppose that k > 30 and Ny = N, = 0 (mod 2). Then we have

7 1
Ri(k, N1, N>2) > 9.946°NENF L.

AIMS Mathematics Volume 10, Issue 2,
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Proof. Note that H*(a; + an)e(=N,a; — axN,) = > e(—nyay)e(—m,a,), then by Lemma 3.1,

(n1,1n2)€E(N1,Np k)
ny=ny=0 (mod 2)

Lemma 3.2 (ii) and Lemma 3.5 (i), we have

Ri(k, Ny, N>)

= f f l_[S (@S5 (@S] (apH @y + ar)e(—a 1Ny — axNy)deda,

1<j<2

2 2 2
= Z f S2,1(QI)S3,1(QI)S4,1(QI)e(_nla’l)da’l
(n].m3)eE(Ny Nyky ¥ M

ny=ny=0 (mod 2)

X f 83 2(@2)S3,(@2)S 1 r(@2)e(—maaz)dar
Nty

ny, NiN; 6 n6 71
= > |sesm) NG 35 g + OWPNI L
(n].19)EE(N],No k)

ny=ny=0 (mod 2)
» 71
o G2 IENING
- 24.34. 44

S(1)S(my) + O(NS NS L)

(n1,1n2)€E(N],Np k)
n1=np=0 (mod 2)

717
> 9.946I°NPN; L',

where the trivial bound 3 1 < LFis used.
(n1,n2)€E(NT,Np k)
ny=np=0 (mod 2)

4. The upper bound for R,(k, Ny, N;)

(3.30)

In this section, we will give the upper bound for R,(k, Ny, N,). For this purpose, we need to introduce

a further division of the minor arcs m. Let
8(”) = {(a'l,a'z) em: |H(a1 + a’z)l > ML} .
Then we have

[Ra(k, N1, N>)|
= ff 1_[ $3 (af)Sg,j(“j)sij(aj)Hk(al + a2)

1<J<2

-1

m\Ewu) mEwu)
= R3(k,N1,N2,I/l)+R4(k,N1,N2,u).

dalda/z

| ] 83,6283 @S epHt(ar + )

1<j<2

In order to estimate Rs(k, N1, N,, u), we define

dcvlda/z

log N; log N;
wiao=(2 8 ) (g
q N; q g<logN; a1

(a.q)=1

4.1)

AIMS Mathematics Volume 10, Issue 2, 4153-4172.
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) [1 1
m; = —, 1+ =
0; Q;

1
©%(q)

\, I = f 182(1)*g3(D)*ga()*|dA,

q o0
A(q) = == ), ICg,)Ci(g. aCi(g. @), S =) A(g).

=1
(a.q)=1 1

Lemma 4.1. We have

S* < 3.394.
Proof. See [22, Lemma 3.1].
Lemma 4.2. We have
ne lsz’j(a)zs351(a)254,j(a)2|da' = m + O(NjEL_l).

Proof. It follows from the standard major arcs techniques in the Waring-Goldbach problem.
Lemma 4.3. We have

oA}

(8 + 2" J N
22.32. 42

~

1
f IS 2,]'(0/)25 3,j(6¥)25 4,j(6¥)2|d6¥ <
0
Proof. Let

J; = Z (mym) ™ (mymy) ™5 (msme) 3.

my —my+m3z—mgy+ms—mg=0
(LN jsmist N a<is6)

Then from [22, Proof of Lemma 4.1, P.417] with k = 4, we have
: 2 2 2 (8 + n)@*]}f
|Sz’j(a) S3,j(01) S4,j(a/) |dC¥ < W (42)
0 .32.

For Jj, it follows from the same argument leading to (3.2) and (3.3) that

Tt }
72 3; 42 fl V2, /()73 (V4 {(AD)*|dA
-2
N°
= U2 (N2 ()2 J
_ fu 12 ) d/1+0(10g5 N,.)
3 z
J°N7 N? B
- P o) .
22,32,42 IOgSN] ( )

Now by substituting (4.3) into (4.2), we obtain

1 1 7
8 +mMSIN? ( N? ) (8 + 2SI N®
<

J J
22,32,42 22,32_42

1
f 1S 2,183 j(@)*S 4 (@) da < o —
0 log” N;
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Lemma 4.4. We have

7
(7+ 3TN
22.32. 42

f IS 2,j(6¥)25 3,]‘(@)25 4,j(a')2|da' <
Proof. By Lemmas 4.2 and 4.3, we have
f 1S5 /(@)*S 5 j(@)*S 4 j(@)*|da

1
= f IS 2,j(a')25 3,1(0)25 4,j(a’)2|da' - f N 2,j(CY)2S 3,j(@)25 4,j(0)2|d@
0 i

SNEN)

& +2np) -1
S 2y

~

s (43S
YN +OW; L) s ———

Lemma 4.5. Let I be defined as (3.4). Then we have

1R

N (44)
6

Proof. The proof of Lemma 4.5 is similar to that of Lemma 3.2 (ii). Lettg = t; —t +t3 —t4 + t5 — 5,

then we can obtain

6n

3= f 18DV WDIdL= | ¢*(s)ds f e(As)dA, (4.5)

_671

where

¢*(S) = f . f (tltz)_%(l3f4)_%t5_i(l1 —h+tt—1ty+15— S)_%dll ...dts.

%—r]<tl-<%+7] (1<i<5)

%—1}<t1 —ty+i3—ty+t5—s< % +n

Applying the Fourier integral theorem, we can obtain

6 00 6 .
" 5 (5)ds f e(A5)dA = lim " ) S02TRS o 500, (4.6)
oo —00 —6n

—6n TS

Write #; = u; + . Thus

¢"(0)

1 2 -3 3
f- . f (i) 2(1314) 53t ( — o + 13 — 1y + 15)"*dty ... dts
1

6 I<ti< % +n (1<i<5)

%—qql —ty +13—tg+i5< é +n

< (é - 77)_263 ff 1du, ... dus. 4.7)

—n<uj<n (1<i<5)
—I]<Ll1 —u2+u3—u4+u5 <I]
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Making the change of variables u, = —s,, uy = —s4, we find that

ff ldulduz...du5: ff 1dlx£1dS2...dM5:I.

—n<uj<n (1<i<5) —N<UL,5,U3,54,U5<1]
—n<uy—up+uz—ug+us<n —n<uy+sytuz+sgtus<n

Now the desired result follows from (4.5)—(4.8).
Proposition 4.1. We have

7 1
Rs(k, N1, Na,u) < 2021.835u° NSNS L*.

Proof. Note that |H(a; + a,)| < uL for (ay, @) € m\E(u). Then we have

Rk, Ny, N, ) < (uL)' f f []

mEw) 1S/52

83 (@)S3 (@)S3 (@)

It is easy to see that m; € mj, my (J(WHL\M) € m3 and m; (DL \M) = 0. Hence

ff lda/ldaz

m my Ny

1
f ldalflda/z+flda fldag
0 myp my Ny
1
f 1da1f
0

3

IA

1
1daqf1da2+
0

2

1
f 1da1f1da2+f1da1flda2.
0

*
mz

3

IA

From (4.9)—(4.10) and Lemmas 4.1-4.5, we can obtain

R3(k,N1,N2,M)
1
< (uL) f 1831 (@1)S3 1 (@)S ] (aplda; f 1S3,(22)S3,(@2)S 5 5 (@)lda,
0
m;
+(uL)* f 1S3 1(@)S 3, (@S5 (a)lda; f 13 5(@2)8 3 ,(@2)S 3 5 (@)lda
im2
(8+277)(7+377) s 11 (T+3m(+n), .. 11
s @ (SR NN @)
1 3(63+5077) NS A A
< (8— ) mX3.394MN16N261L

daldaz.

flda/lfldcx2+fldalflda/2+flda/1fldaz

lda/2+flda1 f 1da2+f1da1flda2

) my N\ D my B

lda; 1d(¥2+f1d(¥1f1d6¥2

pilse

(4.8)

4.9)

(4.10)
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knre ne 27k
< 20218356 NE NS L,

Lemma 4.6. We have

cee 1 2 2 2 z+8
(111)f 1S2,/(@)"S 3 (@) S 4 j(@)|da < Nj6 .
0
Proof. See [24, Lemma 4.5 and Lemma 4.1].
Lemma 4.7. Let
E'w)={ae0,1]:|H(a)| > uL}.

Write meas(E*(u)) for the measure of the set &' (u). Then we have

10—20

meas(E(0.83372131685)) < N,

Proof. See [6, Lemma 5 and (3.10)].
Proposition 4.2. Let u = 0.83372131685. Then we have

7 1
Ra(k, Ny, Npyu) < NENSL

Proof. For brevity, we write

ddz,
ayemy
|H(ay +ap)|zul

Fa(a) = f ‘S%Z(cms @S2 (@)

Fi(as) = ‘S%,l(al)sé,lml)si,l(al) dan.

apenmy
|[H(a| +ap)lzul

From the definition of m and &E(u), we have

R4(k’ Nla N29 u)
< LF 8% (@))S3 (a))S; (a))|dada
2,jJ3,j]4,j] 16622
(ap.apel0llxmy  (@q.ap)en x[0.1] 1</<2
|H(a| +ap)lzul |H(a| +ap)lzul

S§,1<a1)Si,l(al)Si,l(m)Fz(al)‘dal

1
= ka
0
1
+L"f
0

532(@2)83,(@2)S ;2 (@2) Fi(@)|das,

1

Bie .. &

Q) | 1S2j@)S;(@)’S, (@) lda < N]~24+ ,(ll)f 1S5, /(@)*S 4 (@) |lda < le-+ ,
0

4.11)

(4.12)

where the trivial bound H(a; + @) < Lis used. By applying Holder’s inequality, Hua’s inequality and

Lemma 4.6 (i), (ii), we can obtain

L
2

Fr(a) < (f |S§2(02)S42(C¥2)|d02) (f |S22(a/2)|da/2)
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N"_

% [
x( |S%,z(a2>s§,2<az)Si,2(a2>|da2) [ f 1d6¥2]
m |H(al+a£)\2uL

€1

12
e
< N29+( 1da/2) ) (4.13)
ay€[0,1]
|H(a| +ap)lzul
Thus
1
f55,1(@1)55,1(01)53,1(a/l)Fz(a/l)dal
’ 1
JEREPS 1 2
< N, f S31(@)S3 (@)S5,(ar) oy Jdan| den
0 ‘H({112+(12,)‘ZML
e ! B
= Ny f53,1(041)55,1(01)53‘,1(&1)’ ﬁm ; 1d,6’] day, (4.14)
0 HBL

where we used the integral transformation 8 = @ + a,. Note that H(f3) is of period one. Hence

f 1dg = 1dg. 4.15)
Beloy.l+aq] Bel0.1]

|H(B)|zuL |H(B)|zuL

On substituting (4.15) into (4.14), we obtain

1
Il

Lie :

< N, f
0

1
11 1 —22
5 +€x,—15—10
<N, "N, " f
0

where Lemma 4.7 and Lemma 4.6 (iii) are used. In a similar manner, we have
1
jo‘
e !
< N/
0
1_1024¢ !
< N/
0

Since N, < N; <« N,, then we can conclude from (4.12) and (4.16)—(4.17) that

S§,1<a1)S§,1<a1>Si1<m>F2<a]>‘da1

2
[f 1dﬁ] dm
Bel0.1]

|HB)|zuL

S%,l(all)Sg,l(al)Sil(a'l)

10_10-23
N (4.16)

gte

11
83 1(@)S3 (@)S] (ar)|da; <N,

§32(@2)S3,(@2)S 3 (@) F1(e)|das

1

12
[ f ldﬁ) da,
Bel0,1]

[H(B)|zuL

S%,z(az)s %,2(02)5 421’2(“2)

t-10723  lie

day < NP~ N;. 4.17)

S %2(“2)5 %,2(0/2)5 421,2(02)

10 10—23

U,. 10 1023
Ru(k, Ny, Ny 1) < LN, N7 1

7 14 7.1
+LANTTT NPT < NSNSLF
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Now we turn to give the estimate for |R,(k, Ny, N;)|. Suppose that k£ > 30. Then by combining (4.1)
and Propositions 4.1-4.2 with u = 0.83372131685, we have

|R2(kaN1aN2)| < R?)(k,Nl,NZ’ M)+R4(k,N1,N2,M)
7 1 7 1
2021835 x 083372131685 PN N L+ O (N} Vi 1)

IA

2A76 NTE Tk
8.63721°N? N; LY. (4.18)

IA

5. Proof of Theorem 1

When k > 30, by combining Proposition 3.1, (2.4), and (4.18), we can obtain

\%

R(k, N1, N2) Ri(k, N1, N2) — [Ra(k, Ny, No)|
17
> (9.946 — 8.6372)[*’N{ NS L*
> 1308°N°NSLF > 0, 5.1)
where Lemma 3.2 (1) is used in the last step. Now the proof of Theorem 1 is completed.

6. Proof of Theorem 2

We sketch the proof of Theorem 2, since the idea of the proof is similar to that of Theorem 1. We
only give the changes that are necessary for our Theorem 2. Let

R(k, Ny) = > (log p1). .. (log pe).

Ny =p% +p%+p§ +pi+]7g+pg+2v| 42V

Py SP1pasPy g Py <3, pasPy .

PZ,I <ps5.P¢ SPI,] , 1<y, <L

Suppose that k > 14 and u = 0.83372131685. Then from the orthogonality, we have
Rk, Nv)
- ( [ +f )Sz,1<a>2s3,1(a)2s4,1(a)2H(a)"e(—N1a)da
ny m\&*(u) my (& (u)

= Rilk, Ny) + Ra(k, N1, u) + Ra(k, Ny, ). (6.1)

Applying Lemmas 3.1-3.2 and Lemma 3.5 (i1), we have
7

(i, v

R (k. N1) T

|
+
Q
—_
'—‘20\\1
=
—

ne=(Ny k)
n=0 (mod 2)

23 7
(L +21) ® INT 7
> 622.32.421 > em+o|NLT Y

neE(Ny.k) neE(Ny.k)
n=0 (mod 2) n=0 (mod 2)
> 3.192498IN’L* + O(Nf L“) > 3.19249IN L~ (6.2)
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Since m;\&*(u) C mj, we can deduce from Lemma 4.1 and Lemmas 4.4-4.5 that

Ry(k,Ni,u) < (uL)* 1S2.1(@)*S 3,1 (@)*S 4.1 (@)*|da
m\E*(u)

(7 + 3p)uL¥

7 7
< Sz OV <39.6553WINT L (6.3)

Moreover, by Holder’s inequality, Hua’s inequality, and Lemmas 4.6—4.7, we have

1

S

1 §/
Ry(k, Nj,u) < L (f |Sz,1(a)254,1(a)4|d(¥) (f |S‘2‘,1(C¥)|d@)
0 0

1

¥

x( |S2,1(a)zs3,1(a)3s4,1(a>2|da)‘ ( fg

*(0.83372131685)

lda)

+h+P L _10724¢ £

< NI% 2736 T < ng_ ) (6.4)
From (6.1)—(6.4), we can conclude that

R(k, Ny)

\%

Ri(k, Ny) = [Ra(k, Ni, w)| — [Rs(k, N1, w)

7 1_¢
> (3.19249 — 39.6553 x 0.83372131685')INSL* + O(N{ ™)
> 0.08INLX,

\

Now the proof of Theorem 2 is complete.
Use of Generative-Al tools declaration
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