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Abstract: In this paper, we investigated the planar dynamical system and new traveling wave solution
of the stochastic Biswas-Milovic equation (BME) with dual-power law nonlinearity and multiplicative
white noise in the Itô sense. First, the stochastic BME with dual-power law nonlinearity and
multiplicative white noise in the Itô sense was transformed into a nonlinear ordinary differential
equation (NLODE) through traveling wave transformation. Second, the dynamical bifurcation
conditions and phase diagrams of the equation considered were obtained through the method of planar
dynamical systems, and the phase portrait of the dynamical system was given. Moreover, taking into
account the periodic disturbances in real-world environments, we extended our analysis to explore
the effects of disturbance terms. Meanwhile, two-dimensional (2D) and three-dimensional (3D) phase
portraits, sensitivity analyses, and the Poincaré section of its perturbed system were plotted through
Maple software. Finally, the new traveling wave solutions of the stochastic BME with dual-power law
nonlinearity and multiplicative white noise in the Itô sense were constructed by using the complete
discrimination system method.
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1. Introduction

The study of the exact solutions and dynamical behavior of nonlinear equations not only helps to
understand the essential properties and algebraic structure of soliton theory [1–3], but also plays an
important role in the rational explanation and practical application of corresponding natural
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phenomena [4–6]. For instance, the Biswas-Milovic equation (BME) has attracted widespread
attention for its ability to describe nonlinear wave dynamics and mode formation in various physical
systems [7–9]. Meanwhile, the stochastic BME is an extended form that incorporates the effects of
random perturbations or noise, providing a more accurate reflection of dynamic behaviors in complex
environments in practical applications [10, 11]. In the field of optics and photonics, the stochastic
BME can be used to describe the propagation behavior of optical pulses in fiber communication
systems [12], especially in the presence of random noise such as thermal noise or phase noise. Within
fluid mechanics, this equation can also be employed to simulate the nonlinear evolution of water
surface waves [13–15], particularly when the waves are influenced by random factors such as
stochastic wind fields or other external random effects.

The addition of multiplicative white noise further enriches the descriptive power of the equation.
Unlike additive noise, which assumes that external random fluctuations uniformly affect the system,
multiplicative noise implies that the strength of randomness depends on the state of the system itself.
This feature is particularly relevant when fluctuations are inherently related to the size of the variables
they affect, thus capturing important aspects of real-world complexity and uncertainty.

In recent years, numerous experts in physics and mathematics have investigated the solutions of the
BME employing a variety of classic and intriguing methods [16–18]. However, there remains limited
analysis concerning the bifurcation and chaotic behavior of the BME [19–21]. Our research work
is significant because we have not only enriched the solutions of the BME applying the polynomial
complete discriminant system method, but also conducted a thorough analysis of the planar dynamical
system applying the planar dynamical system method. The findings we have obtained provide insight
into the chaotic nature of the framework under examination, thereby enhancing our understanding
of the dynamics that underlie it. While our methods demonstrate systematicness, precision, broad
applicability, and deep theoretical underpinnings, they do possess certain limitations, particularly when
addressing high-dimensional problems, which often necessitate the integration of other approaches,
such as numerical simulation methods. Notwithstanding this limitation, current research suggests that
the methods employed in this work are highly reliable, versatile, and effective for a variety of nonlinear
models across different scientific disciplines.

The stochastic BME with dual-power law nonlinearity and multiplicative white noise in the Itô
sense was introduced by Elsayed et al. in [22]. It can be expressed as follows:

i(qm)t + a(qm)xx + (b|q|2n + c|q|4n)qm + mσqm∂W(t)
∂t
= 0, (1.1)

where i2 = −1,
q = q(x, t)

is a complex-valued function related to wave profile, and the independent variables x and t denote the
distance and time, respectively. Meanwhile, m is the maximum intensity parameter, and a, b and c are
real-values constants, where a represents generalized chromatic dispersion, while b and c represent
double-power nonlinearity. Besides, n is the parameter of the power law nonlinearity, W(t) is the
standard Wiener process, and ∂W(t)

∂t is the formal derivative of the Wiener process with respect to time,
which represents multiplicative white noise used to identify the process where the excitation phase
is interrupted. Notably, σ is a positive constant denoting the noise strength coefficient, and the well-
known BME with dual-power law nonlinearity is the case where σ = 0 in Eq (1.1).
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The interaction between double power nonlinearity and multiplicative white noise poses serious
challenges for analysis and numerical research. The purpose of this article is to study the planar
dynamical system and new traveling wave solution of Eq (1.1) in order to reveal the complex network of
stability, bifurcation, and pattern formation under random influence, and to elucidate the mechanisms
driving unpredictable behavior in natural and engineering systems. To the best our knowledge, no
literature has used this method before. Therefore, the research findings of this article contribute to
make a comprehensive and systemic study on the propagation dynamics of Eq (1.1) with different
methods.

This article consists of the several parts as follows: In Section 2, Eq (1.1) is first transformed
into a nonlinear ordinary differential equation (NLODE) with taking traveling wave transformation,
and then a second-order NLODE is obtained by applying the trial method of polynomial for rank
homogeneous equations and the homogeneous equilibrium principle of polynomials. In Section 3, the
dynamical bifurcation conditions and phase diagrams of the equation considered are obtained through
the method of planar dynamical systems. Moreover, the phase portrait of the dynamical system is given.
Meanwhile, two-dimensional (2D) and three-dimensional (3D) phase portrait, sensitivity analyses and
Poincaré section of its perturbation system are plotted by Maple. In Section 4, the optical soliton
solutions of the BME with dual-power law nonlinearity and multiplicative white noise in the Itô sense
are constructed by using the complete discrimination system method. Finally, a brief conclusion is
given in Section 5.

2. Mathematical analysis

To solve Eq (1.1), we consider the solution in the following form:

q(x, t) = Q(ξ) exp i[η(x, t) + σW(t) − σ2t], η(x, t) = −κx + ωt, ξ = x − Vt, (2.1)

where κ, ω, V are nonzero real values, while Q(ξ) and η(x, t) are real-valued functions. More precisely,
Q(ξ) and η(x, t) represent the amplitude and phase components of the soliton, respectively. In Eq (2.1),
ξ is the wave variable, ω is the wave number, κ is the frequency, and V is the velocity of the soliton.

Substituting (2.1) into (1.1), and setting the real and imaginary parts separately equal to zero, we
can obtain

amQQ
′′

+ am(m − 1)Q
′2 − m(ω − σ2 + amκ2)Q2 + bQ2n+2 + cQ4n+2 = 0 (2.2)

and
m(V + 2amκ)Q

′

= 0. (2.3)

From (2.3), we derive the velocity
V = −2amκ.

Remark 2.1. Due to κ, V being nonzero real values and satisfying

V = −2amκ,

the case when a < 0, m > 0, and κ > 0 is our main focus in the following part.
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Next, setting
Q = H

1
2n , n ≥ 1,

we can reduce (2.2) to the following form of integer balance number:

am[2nHH
′′

+ (m − 2n)H
′2] − 4n2m(ω − σ2 + amκ2)H2 + 4n2bH3 + 4n2cH4 = 0. (2.4)

Then, with the trial method [23–25] of polynomial for rank homogeneous equations and the principle
of homogeneous balance, we can get the trial equation as follows:

H
′′

= α0 + α1H + α2H2 + α3H3, (2.5)

where α j( j = 1, 2, 3) are all constants. After that, multiplying both sides of (2.5) by H
′

, integrating
once, and converting the coefficient of (H

′

)2 to integer, we yield

(H
′

)2 = 2α0H + α1H2 +
2α2

3
H3 +

α3

2
H4 + d0, (2.6)

where d0 is an integral constant.
Substituting (2.5) and (2.6) into (2.4), an algebraic equation about H is obtained. By setting the

coefficients to zero, we arrive at

α0 = 0, α1 =
4n2(ω − σ2 + amκ2)

am
, α2 = −

6n2b
am(m + n)

, α3 = −
8n2c

am(m + 2n)
, d0 = 0

in the case of m , n.

Remark 2.2. If m = n, apart from α0 ∈ R differing from the results obtained previously, the values
of the other parameters α1–α3, and d0 are calculated by substituting m = n into the corresponding
coefficient expressions that were established in the case of m , n, that is,

α0 ∈ R, α1 =
4n(ω − σ2 + anκ2)

a
, α2 = −

3b
a
, α3 = −

8c
3a
, d0 = 0.

Remark 2.3. If
m = 2n,

which reduces (2.4) to

H
′′

=
2n
a

(ω − σ2 + 2anκ2)H −
b
a

H2 −
c
a

H3,

that is, the result calculated by substituting m = 2n into the corresponding coefficient expressions in
the case of m , n.

3. Qualitative analysis of Eq (2.5)

In this section, we consider the dynamical behavior of Eq (2.5) in the case of m , n. When m , n,
the Eq (2.5) becomes

H
′′

= α1H + α2H2 + α3H3. (3.1)
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First, we set
dH
dξ
= U.

Second, we convert Eq (3.1) into the two-dimensional Hamiltonian system
dH
dξ = U,

dU
dξ = α1H + α2H2 + α3H3.

(3.2)

The Hamiltonian function is

Γ(H,U) =
1
2

U2 −
α3

4
H4 −

α2

3
H3 −

α1

2
H2 =

d0

2
. (3.3)

Here, d0 = 0, i.e., the value of d0 is fixed and unchanged, which means that (3.3) determines the family
of invariant curves for system (3.2).

Third, we consider the phase diagram branches of Hamiltonian system (3.2). Supposing that

G(H) = (α3H2 + α2H + α1)H,

and assuming that the matrix

M(Hi, 0) =
(

0 1
3α3H2

i + 2α2Hi + α1 0

)
,

where Hi (i ∈ {0, 1, 2, 3, · · · }) is the real root of

G(Hi) = 0.

It is obvious that
det(M(Hi, 0)) = −(3α3H2

i + 2α2Hi + α1).

Further, set
∆ = α2

2 − 4α1α3.

Then, on the basis of the theory of planar dynamical systems, we classify the trajectories near the
equilibrium point and draw the corresponding phase diagram using the Maple software, which are
listed in Figures 1–3. Here, symbols (+,−,+) in these figures denote α1 > 0, α2 < 0, and α3 > 0,
while, (+, 0,+) in these figures denote α1 > 0, α2 = 0, and α3 > 0. The conclusion is

Proposition 3.1. Assume that Ei(Hi, 0) is the equilibrium point of Eq (3.2).

Case I. ∆ < 0.

When α1 > 0, we obtain det(M(0, 0)) < 0, then E0(0, 0) is the saddle point. In addition, the colors
of the branch trajectories are the same, and it indicates that the system (3.2) has a doubly-periodic
function solution (see Figure 1a,b).

When α1 < 0, we obtain det(M(0, 0)) > 0, then E0(0, 0) is the center point. In addition, the closed
curve appears, which indicates the path of the system in phase space during periodic repetitive motion
and the system (3.2) has a family of periodic solutions (see Figure 1c,d).
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(a) (+,0,+) (b) (+,+,+)

(c) (-,0,-) (d) (-,-,-)

Figure 1. The phase portraits of (3.2) for ∆ < 0.

Case II. ∆ > 0.

When α1 > 0, we obtain det(M(0, 0)) < 0, then E0(0, 0) is the saddle point.

When α1 < 0, we obtain det(M(0, 0)) > 0, then E0(0, 0) is the center point.

When α2 < 0, α3 > 0, or α1 < 0, α2 > 0, α3 > 0, or α1 < 0, α2 > 0, α3 < 0, and we obtain

det(M(
−α2 +

√
∆

2α3
, 0)) < 0,

then E1(−α2+
√
∆

2α3
, 0) is the saddle point.

When α2 > 0, α3 < 0, or α1 > 0, α2 > 0, α3 < 0, or α1 > 0, α2 > 0, α3 > 0, and we obtain

det(M(
−α2 +

√
∆

2α3
, 0)) > 0,

then E1(−α2+
√
∆

2α3
, 0) is the center point.

When α2 > 0, α3 > 0, or α1 < 0, α2 < 0, α3 < 0, or α1 < 0, α2 < 0, α3 > 0, and we obtain

det(M(
−α2 −

√
∆

2α3
, 0)) < 0,
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then E2(−α2−
√
∆

2α3
, 0) is the saddle point.

When α2 > 0, α3 < 0, or α1 > 0, α2 < 0, α3 > 0, or α1 > 0, α2 < 0, α3 < 0, and we obtain

det(M(
−α2 −

√
∆

2α3
, 0)) > 0,

then E2(−α2−
√
∆

2α3
, 0) is the center point.

In addition, Figure 2b,c indicates that the system (3.2) has a kink wave, while Figure 2a,d indicates
that the system (3.2) has the homoclinic orbits, the periodic orbits, and the bounded open orbits.

(a) (-,-,+) (b) (-,+,-)

(c) (+,+,-) (d) (+,+,+)

Figure 2. The phase portraits of (3.2) for ∆ > 0.

Case III. ∆ = 0.

When α1 > 0, we obtain det(M(0, 0)) < 0, then E0(0, 0) is the saddle point.
When α1 < 0, we obtain det(M(0, 0)) > 0, then E0(0, 0) is the center point.
When

det(M(−
α2

2α3
, 0)) = 0,

and the Poincaré index of it is equal to zero, then E3(− α2
2α3
, 0) is the cusp point. For instance, E3(1, 0)

in Figure 3a, E3(−2, 0) in Figure 3b, and E3(−1, 0) in Figure 3c.
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(a) (+,-,+) (b) (+,+,+)

(c) (-,-,-) (d) (-,+,-)

Figure 3. The phase portraits of (3.2) for ∆ = 0.

Considering that periodic interference often exists in real environments, here we add periodic
perturbations and small perturbations to system (3.2), respectively,

dH
dξ = U,

dU
dξ = α1H + α2H2 + α3H3 + Υ(ξ),

(3.4)

where
Υ(ξ) = A sin(ιξ)

or
Υ(ξ) = Aeιξ

is the perturbed term, with A and ι being two real constants. In Figures 4–7, we consider the sensitivity
of Eq (3.4) in different initial values and the impact of A, ι on the solution behavior. Setting

a = −1, b = 3, c = −1, n = 1, ω = 4, κ = 1

unchanged, the values of α1–α3 change with the vary value of m and σ. Here, m = 2, σ = 1 correspond
to

α1 = −2, α2 = 3, α3 = −1,
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while, m = 5, σ = 2 correspond to

α1 = 4, α2 = 0.6, α3 = −
8

35
.

Under the condition of changes in parameters, we use 2D trajectories (see Figures 4a–7a), 3D
trajectories(see Figures 4b–7b), sensitivity analyses (see Figures 4c–7c), and Poincaécross-sections
(see Figures 4d–7d) to demonstrate the impact of perturbations on solution behavior sepatately. As
shown in the grahs, chaos behavior, periodic behavior, and quasi periodic behavior are present by
adding perturbation terms. The variation in noise intensity may lead to the transformation of the
system’s chaotic behavior into periodic motion, while minor variations in the intensity and frequency
of external interference may have little impact on the system.

(a) 2D trajectories (b) 3D trajectories

(c) Sensitivity analyses (d) Poincaécross-sections

Figure 4. Chaotic behavior of Eq (3.4) for α1 = −2, α2 = 3, α3 = −1, m = 2, σ = 1, A = 0.6
and ι = 0.8, where Υ(ξ) = A sin(ιξ).
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(a) 2D trajectories (b) 3D trajectories

(c) Sensitivity analyses (d) Poincaécross-sections

Figure 5. Chaotic behavior of Eq (3.4) for α1 = 4, α2 = 0.6, α3 = −
8

35 , m = 5, σ = 2,
A = 0.6 and ι = 0.8, where Υ(ξ) = A sin(ιξ).
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(a) 2D trajectories (b) 3D trajectories

(c) Sensitivity analyses (d) Poincaécross-sections

Figure 6. Chaotic behavior of Eq (3.4) for α1 = −2, α2 = 3, α3 = −1, m = 2, σ = 1, A = 0.7
and ι = 0.6, where Υ(ξ) = A sin(ιξ).
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(a) 2D trajectories (b) 3D trajectories

(c) Sensitivity analyses (d) Poincaécross-sections

Figure 7. Chaotic behavior of Eq (3.4) for α1 = −2, α2 = 3, α3 = −1, m = 2, σ = 1, A = 0.7
and ι = −0.01, where Υ(ξ) = Aeιξ.

4. Traveling wave solutions of Eq (1.1)

In this section, we seek for the new traveling wave solutions of Eq (1.1) by applying the complete
discriminant method.

4.1. The case of m , n

In this scenario, Eq (2.6) becomes

(H
′

)2 = α1H2 +
2α2

3
H3 +

α3

2
H4. (4.1)

With the condition of

(p3H2 + p2H + p1)H , 0,
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by calculation, Eq (4.1) can be rewritten as following using elementary integration:

±(ξ − ξ0) =
∫

dH

H
√

p3H2 + p2H + p1

, (4.2)

where
p3 =

1
2
α3, p2 =

2
3
α2, p1 = α1,

ξ0 is the integral constant.

Remark 4.1. If
(p3H2 + p2H + p1)H = 0,

the solution of Eq (1.1) is

q(x, t) = κ
1

2n exp i[−κx + ωt + σW(t) − σ2t],

where κ is an arbitrary constant.

Setting
F(H) = p3H2 + p2H + p1.

In the rest part, with the complete discriminant system of the second order polynomial, by the root of
F(H), the traveling wave solution of Eq (1.1) has the following implicit solutions for three situations:

Case 1. When
b2(m + 2n) + 4c(ω − σ2 + amκ2)(m + n)2 = 0,

namely,
F(H) = p3(H +

p2

2p3
)2,

also if
8n2c

am(m + 2n)
< 0,

the traveling wave solution of Eq (4.1) is given as

ξ − ξ0 = ±
2p

1
2
3

p2
ln |

H
H + p2

2p3

|, (4.3)

provided
H +

p2

2p3
, 0.

Remark 4.2. If
H +

p2

2p3
= 0,

that is,

H = −
b(m + 2n)
2c(m + n)

,

then the solution of Eq (1.1) is

q(x, t) = [−
b(m + 2n)
2c(m + n)

]
1

2n exp i[−κx + ωt + σW(t) − σ2t].
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Case 2. When
b2(m + 2n) + 4c(ω − σ2 + amκ2)(m + n)2 > 0,

namely,

F(H) = p3(H +
p2

2p3
)2 −

p2
2 − 4p1 p3

4p3
;

(I) If
8n2c

am(m + 2n)
< 0,

there are three forms of solutions to Eq (4.1) as below:

±
√

p3(ξ − ξ0) =
1
√
ϱ1ϱ2

ln
[
√

(−ϱ2)(H − ϱ1) −
√

(−ϱ1)(H − ϱ2)]2

|H|
, (4.4)

±
√

p3(ξ − ξ0) =
1
√
ϱ1ϱ2

ln
[
√
ϱ2(H − ϱ1) −

√
ϱ1(H − ϱ2)]2

|H|
, (4.5)

±
√

p3(ξ − ξ0) =
1

√
−ϱ1ϱ2

arcsin
(−ϱ2)(H − ϱ1) + (−ϱ1)(H − ϱ2)

|H||ϱ1 − ϱ2|
. (4.6)

(II) If
8n2c

am(m + 2n)
> 0,

there are another three forms of solutions to Eq (4.1) as below:

±
√
−p3(ξ − ξ0) =

1
√
−ϱ1ϱ2

ln
[
√

(−ϱ2)(H + ϱ1) −
√
ϱ1(H − ϱ2)]2

|H|
, (4.7)

±
√
−p3(ξ − ξ0) =

1
√
−ϱ1ϱ2

ln
[
√
ϱ2(−H + ϱ1) −

√
(−ϱ1)(H − ϱ2)]2

|H|
, (4.8)

±
√
−p3(ξ − ξ0) =

1
√
ϱ1ϱ2

arcsin
[
√

(−ϱ2)(H + ϱ1) −
√
ϱ1(H − ϱ2)]2

|H|
, (4.9)

where assuming that the internal scores of the radical are all greater than zero in (4.4)–(4.9), and

ϱ1 =
−p2 +

√
p2

2 − 4p1 p3

2p3
, ϱ2 =

−p2 −

√
p2

2 − 4p1 p3

2p3
.

Case 3. When
b2(m + 2n) + 4c(ω − σ2 + amκ2)(m + n)2 < 0,

the equality
F(H) = 0

has no real root; also if
4n2(ω − σ2 + amκ2)

am
> 0,
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the traveling wave solution of Eq (4.1) is given as

±
1
√

p3
(ξ − ξ0) =

1
√

p1
ln |

p2
√

p1
H +

√
p1 −

√
p3H2 + p2H + p1

√
p3H

|, (4.10)

provided p1, p3 > 0.
The new traveling wave solutions of Eq (1.1) constructed above are all implicit solutions in the caes

of m , n.

4.2. The case of m = n

In this scenario, Eq (2.6) becomes

(H
′

)2 = 2α0H +
4n(ω − σ2 + anκ2)

a
H2 −

2b
a

H3 −
4c
3a

H4. (4.11)

If
−

4c
3a
> 0,

i.e., c
a < 0, taking the transformation

Υ = (−
4c
3a

)
1
4 (H +

3b
8c

), ζ = (−
4c
3a

)
1
4 ξ

and inserting into (4.11), we yield

Υ2
ζ = F(Υ) = Υ4 + PΥ2 +GΥ + R,

where

P =
4n(ω − σ2 + anκ2)

a
(−

4c
3a

)−
1
2 ,

G = [2α0 −
9b3 + 48nbc(ω − σ2 + anκ2)

16ac2 ](−
4c
3a

)−
1
4 ,

R =
9b2[9b2 + 64nc(ω − σ2 + anκ2)]

45ac3 −
3bα0

4c
.

If
−

4c
3a
< 0,

i.e., c
a > 0, taking the transformation

Υ = (
4c
3a

)
1
4 (H +

3b
8c

), ζ = (
4c
3a

)
1
4 ξ,

and inserting into (4.11), we yield

Υ2
ζ = −F(Υ) = −(Υ4 + PΥ2 +GΥ + R),
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where

P = −
4n(ω − σ2 + anκ2)

a
(
4c
3a

)−
1
2 ,

G = [
9b3 + 48nbc(ω − σ2 + anκ2)

16ac2 − 2α0](
4c
3a

)−
1
4 ,

R =
3bα0

4c
−

9b2[9b2 + 64nc(ω − σ2 + anκ2)]
45ac3 .

For simplicity and convenience in symbolic representation, we denote ε = 1, if

c
a
< 0,

while, ε = −1, if
c
a
> 0.

Then, (4.11) can be expressed as below by representing the above two situations in a combined manner:

Υ2
ζ = ε(Υ

4 + PΥ2 +GΥ + R). (4.12)

Furthermore, Eq (4.12) can be rewritten as

±(ζ − ζ0) =
∫

dΥ√
ε(Υ4 + PΥ2 +GΥ + R)

, (4.13)

where ζ0 is an integral constant.
As we know, the fourth-order polynomial

F(Υ) = Υ4 + PΥ2 +GΥ + R

has the following complete discrimination system:

D1 = 4,
D2 = −P,

D3 = −2P3 + 8PR − 9G2,

D4 = −P3G2 + 4P4R + 36PG2R − 32P2R2 − 27
4 G4 + 64R3,

E2 = 9P2 − 32PR.

(4.14)

Thus, by applying the complete discriminant method, we have the subsequent new families of
traveling wave solutions for Eq (1.1):

Case 1. The rational functional solutions.

When
D2 = D3 = D4 = 0,

moreover, ε = 1, and Eq (4.12) has the rational functional solutions

Υ = −
1
ζ − ζ0

. (4.15)
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Therefore, the solution of Eq (1.1) is

q1(x, t) = [
1

ξ0 − (− 4c
3a )

1
2 (x − Vt)

−
3b
8c

]
1
2n exp i[−κx + ωt + σW(t) − σ2t]. (4.16)

Setting parameters

a = −4, b = 0, c = 3, n = 2, κ = 1, m = 2, σ = 1, ξ0 = 0,

the real part diagram of solution q1 with and without random term can be intuitively shown in Figure 8.
Then, changing the parameter value m = 3, σ = 2, and other parameters values remain unchanged, the
real part diagram of solution q1 with and without random term can be intuitively shown in Figure 9. As
shown in the grahs, an increase in noise intensity may cause waveform distortion, typically leading to
a reduction in wave stability. Additionally, variations in noise intensity may also modify the statistical
properties of waves, including the distribution of wave height, trough depth, and wave period.

(a) 3D surface without random term (b) 2D surface without random term

(c) 3D surface with random term (d) 2D surface with random term

Figure 8. The solution of Rel(q1) at a = −4, b = 0, c = 3, n = 2, κ = 1,m = 2, σ = 1.
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(a) 3D surface without random term (b) 2D surface without random term

(c) 3D surface with random term (d) 2D surface with random term

Figure 9. The solution of Rel(q1) at a = −4, b = 0, c = 3, n = 2, κ = 1,m = 3, σ = 2.

Case 2. The periodic solutions of triangle function.

When
D2 < 0, D3 = D4 = 0,

moreover, ε = 1, and Eq (4.12) has the periodic solution of the triangle function

Υ = λ2 tan[λ2(ζ − ζ0)] + λ1,

where λ1 and λ2 are two real roots of
F(Υ) = 0

satisfying λ2 > 0.
Therefore, the solution of Eq (1.1) is

q2(x, t) = [(−
4c
3a

)−
1
4 (λ2 tan(λ2(−

4c
3a

)−
1
4 (x−Vt)−ξ0)+λ1)−

3b
8c

]
1

2n exp i[−κx+ωt+σW(t)−σ2t]. (4.17)
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Case 3. The hyperbolic function solutions.

When
D2 > 0, D3 = D4 = 0, E2 > 0.

Moreover, there are two real numbers λ3 and λ4(λ3 > λ4), which satisfy

F(Υ) = (Υ − λ3)2(Υ − λ4)2 = 0.

And then, when ε = 1,

(I) If Υ > λ3 or Υ < λ4, Eq (4.12) has the solution

Υ =
λ4 − λ3

2
[coth

(λ3 − λ4)(ζ − ζ0)
2

− 1] + λ4.

Therefore, the solution of Eq (1.1) is

q3(x, t) =[(−
4c
3a

)−
1
4 (
λ4 − λ3

2
[coth

(λ3 − λ4)((− 4c
3a )−

1
4 (x − Vt) − ξ0)

2
− 1] + λ4) −

3b
8c

]
1
2n

exp i[−κx + ωt + σW(t) − σ2t].
(4.18)

(II) If λ3 < Υ < λ4, Eq (4.12) has the solution

Υ =
λ4 − λ3

2
[tanh

(λ3 − λ4)(ζ − ζ0)
2

− 1] + λ4.

Therefore, the solution of Eq (1.1) is

q4(x, t) =[(−
4c
3a

)−
1
4 (
λ4 − λ3

2
[tanh

(λ3 − λ4)((− 4c
3a )−

1
4 (x − Vt) − ξ0)

2
− 1] + λ4) −

3b
8c

]
1
2n

exp i[−κx + ωt + σW(t) − σ2t].
(4.19)

Case 4. The implicit solutions.

When
D2 > 0, D3 > 0, D4 = 0.

Moreover, there are three real numbers λ5, λ6 and λ7(λ6 > λ7), which satisfy

F(Υ) = (Υ − λ5)2(Υ − λ6)(Υ − λ7) = 0.

Then, when ε = 1, if λ5 > λ6, and Υ > λ6, or λ5 < λ7 and Υ < λ7, Eq (4.12) has the solution:

±(ζ − ζ0) =
1

(λ5 − λ6)(λ5 − λ7)
ln

[
√

(Υ − λ6)(λ5 − λ7) −
√

(Υ − λ7)(λ5 − λ6)]2

|Υ − λ5|
. (4.20)

If λ5 > λ6 and Υ < λ7, or λ5 < λ7 and Υ < λ6, Eq (4.12) has the solution:

±(ζ − ζ0) =
1

(λ5 − λ6)(λ5 − λ7)
ln

[
√

(Υ − λ6)(λ7 − λ5) −
√

(Υ − λ7)(λ6 − λ5)]2

|Υ − λ5|
. (4.21)
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If λ6 > λ5 > λ7, Eq (4.12) has the solution:

±(ζ − ζ0) =
1

(λ6 − λ5)(λ5 − λ7)
arcsin

(Υ − λ6)(λ5 − λ7) + (Υ − λ7)(λ5 − λ6)
|(Υ − λ5)(λ6 − λ7)|

. (4.22)

When ε = −1, if λ5 > λ6 and Υ > λ6, or λ5 < λ7 and Υ < λ7, Eq (4.12) has the solution:

±(ζ − ζ0) =
1

(λ6 − λ5)(λ5 − λ7)
ln

[
√

(−Υ + λ6)(λ5 − λ7) −
√

(Υ − λ7)(λ6 − λ5)]2

|Υ − λ5|
. (4.23)

If λ5 > λ6 and Υ < λ7, or λ5 < λ7 and Υ < λ6, Eq (4.12) has the solution:

±(ζ − ζ0) =
1

(λ6 − λ5)(λ5 − λ7)
ln

[
√

(−Υ + λ6)(λ7 − λ5) −
√

(Υ − λ7)(λ5 − λ6)]2

|Υ − λ5|
. (4.24)

If λ6 > λ5 > λ7, Eq (4.12) has the solution:

±(ζ − ζ0) =
1

(λ5 − λ6)(λ5 − λ7)
arcsin

(−Υ + λ6)(λ5 − λ7) + (Υ − λ7)(λ6 − λ5)
|(Υ − λ5)(λ6 − λ7)|

. (4.25)

Case 5. The the solitary wave solutions.

When
D2D3 < 0, D4 = 0.

Moreover, there are three real numbers λ8–λ10, which satisfy

F(Υ) = (Υ − λ8)2[(Υ − λ9)2 + λ2
10].

If ε = 1, Eq (4.12) has the solitary wave solution

Υ =
[e±
√

(λ8−λ9)2+λ2
10(ζ−ζ0) − µ] +

√
(λ8 − λ9)2 + λ2

10(2 − µ)

[e±
√

(λ8−λ9)2+λ2
10(ζ−ζ0) − µ]2 − 1

, (4.26)

where

µ =
λ8 − 2λ9√

(λ8 − λ9)2 + λ2
10

.

Therefore, the solution of Eq (1.1) is

q5(x, t) =[(−
4c
3a

)−
1
4 (

[e±
√

(λ8−λ9)2+λ2
10((− 4c

3a )−
1
4 (x−Vt)−ξ0) − µ] +

√
(λ8 − λ9)2 + λ2

10(2 − µ)

[e±
√

(λ8−λ9)2+λ2
10((− 4c

3a )−
1
4 (x−Vt)−ξ0) − µ]2 − 1

) −
3b
8c

]
1

2n

exp i[−κx + ωt + σW(t) − σ2t].

(4.27)

Setting parameters a = −4, b = −7.032292869, c = 3,m = n = σ = κ = 1, ω = 6,V = 8, ξ0 = 0, the
real part diagram of solution q5 with and without random term can be intuitively shown in Figure 10.
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(a) 3D surface without random term (b) 2D surface without random term

(c) 3D surface with random term (d) 2D surface with random term

Figure 10. The solution of Rel(q1) at a = −4, b = −7.032292869, c = 3, n = 1, κ = 1,m =
1, σ = 1.

In the rest part, based on the definition of the Jacobian elliptic sine-cosine function, we derived
the Jacobian elliptic function solutions of Eq (1.1) for three cases, designated as Cases 6–8, through
trigonometric transformations.

Case 6. There are four real numbers λ11, λ12, λ13, and λ14(λ11 > λ12 > λ13 > λ14), which satisfy

F(Υ) = (Υ − λ11)(Υ − λ12)(Υ − λ13)(Υ − λ14) = 0.

For D2 > 0,D3 > 0,D4 > 0, when ε = 1, if Υ > λ11 or Υ < λ14, we consider transformation

Υ =
λ12(λ11 − λ14) sin2Ψ − λ11(λ12 − λ14)

(λ11 − λ14) sin2Ψ − (λ12 − λ14)
;

if λ13 < Υ < λ12, we consider transformation

Υ =
λ14(λ12 − λ13) sin2Ψ − λ13(λ12 − λ14)

(λ12 − λ13) sin2Ψ − (λ12 − λ14)
,
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then we can acquire from (4.13) that

ζ − ζ0 =

∫
dΥ

√
(Υ − λ11)(Υ − λ12)(Υ − λ13)(Υ − λ14)

=
2

√
(λ11 − λ13)(λ12 − λ14)

∫
dΨ√

1 − Θ2 sin2Ψ
,

(4.28)

where
Θ2 =

(λ11 − λ14)(λ12 − λ13)
(λ11 − λ13)(λ12 − λ14)

.

Thus, the corresponding solutions of (4.12) are

Υ =
λ12(λ11 − λ14)sn2(

√
(λ11−λ13)(λ12−λ14)

2 (ζ − ζ0),Θ) − λ11(λ12 − λ14)

(λ11 − λ14)sn2(
√

(λ11−λ13)(λ12−λ14)
2 (ζ − ζ0),Θ) − (λ12 − λ14)

, (4.29)

Υ =
λ14(λ12 − λ13)sn2(

√
(λ11−λ13)(λ12−λ14)

2 (ζ − ζ0),Θ) − λ13(λ12 − λ14)

(λ12 − λ13)sn2(
√

(λ11−λ13)(λ12−λ14)
2 (ζ − ζ0),Θ) − (λ12 − λ14)

. (4.30)

Here,

sn
( √(λ11 − λ13)(λ12 − λ14)

2
(ζ − ζ0),Θ

)
= sinΨ.

Therefore, the corresponding solutions of Eq (1.1) are

q6(x, t) =
(
(−

4c
3a

)−
1
4 (
λ12(λ11 − λ14)sn2(

√
(λ11−λ13)(λ12−λ14)

2 ((− 4c
3a )−

1
4 (x − Vt) − ξ0),Θ) − λ11(λ12 − λ14)

(λ11 − λ14)sn2(
√

(λ11−λ13)(λ12−λ14)
2 ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ) − (λ12 − λ14)

)

−
3b
8c

) 1
2n

exp i[−κx + ωt + σW(t) − σ2t], (4.31)

q7(x, t) =
(
(−

4c
3a

)−
1
4 (
λ14(λ12 − λ13)sn2(

√
(λ11−λ13)(λ12−λ14)

2 ((− 4c
3a )−

1
4 (x − Vt) − ξ0),Θ) − λ13(λ12 − λ14)

(λ12 − λ13)sn2(
√

(λ11−λ13)(λ12−λ14)
2 ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ) − (λ12 − λ14)

)

−
3b
8c

) 1
2n

exp i[−κx + ωt + σW(t) − σ2t]. (4.32)

When ε = −1, if λ11 > Υ > λ12, we consider transformation

Υ =
λ13(λ11 − λ12) sin2Ψ − λ12(λ11 − λ13)

(λ11 − λ12) sin2Ψ − (λ11 − λ13)
;

if λ13 > Υ > λ14, we consider transformation

Υ =
λ11(λ13 − λ14) sin2Ψ − λ14(λ13 − λ11)

(λ13 − λ14) sin2Ψ − (λ13 − λ11)
,

similarly, the corresponding solutions of (4.12) are

Υ =
λ13(λ11 − λ12)sn2(

√
(λ11−λ13)(λ12−λ14)

2 (ζ − ζ0),Θ) − λ12(λ11 − λ13)

(λ11 − λ12)sn2(
√

(λ11−λ13)(λ12−λ14)
2 (ζ − ζ0),Θ) − (λ11 − λ13)

, (4.33)
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Υ =
λ11(λ13 − λ14)sn2(

√
(λ11−λ13)(λ12−λ14)

2 (ζ − ζ0),Θ) − λ14(λ13 − λ11)

(λ13 − λ14)sn2(
√

(λ11−λ13)(λ12−λ14)
2 (ζ − ζ0),Θ) − (λ13 − λ11)

, (4.34)

where
Θ2 =

(λ11 − λ12)(λ13 − λ14)
(λ11 − λ13)(λ12 − λ14)

.

Therefore, the corresponding solutions of Eq (1.1) are

q8(x, t) =
(
(−

4c
3a

)−
1
4 (
λ13(λ11 − λ12)sn2(

√
(λ11−λ13)(λ12−λ14)

2 ((− 4c
3a )−

1
4 (x − Vt) − ξ0),Θ) − λ12(λ11 − λ13)

(λ11 − λ12)sn2(
√

(λ11−λ13)(λ12−λ14)
2 ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ) − (λ11 − λ13)

)

−
3b
8c

) 1
2n

exp i[−κx + ωt + σW(t) − σ2t], (4.35)

q9(x, t) =
(
(−

4c
3a

)−
1
4 (
λ11(λ13 − λ14)sn2(

√
(λ11−λ13)(λ12−λ14)

2 ((− 4c
3a )−

1
4 (x − Vt) − ξ0),Θ) − λ14(λ13 − λ11)

(λ13 − λ14)sn2(
√

(λ11−λ13)(λ12−λ14)
2 ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ) − (λ13 − λ11)

)

−
3b
8c

) 1
2n

exp i[−κx + ωt + σW(t) − σ2t]. (4.36)

Case 7. There are four real numbers λ15–λ17, and λ20, which satisfy

F(Υ) = (Υ − λ15)(Υ − λ16)[(Υ − λ17)2 + λ2
18]

and λ15 > λ16, λ17 > 0, λ18 > 0. For
D4 < 0, D2D3 ≥ 0,

applying the transformation

Υ =
π1 cosΨ + π2

π3 cosΨ + π4
,

where

π1 =
1
2

(λ15 + λ16)π3 −
1
2

(λ15 − λ16)π4,

π2 =
1
2

(λ15 + λ16)π4 −
1
2

(λ15 − λ16)π3,

π3 = λ15 − λ17 −
λ18

Z3
, π4 = λ15 − λ17 − λ18Θ1,

E =
λ2

18 + (λ15 − λ17)(λ16 − λ17)
λ18(λ15 − λ16)

, Θ1 = E ±
√

E2 + 1,

then we can acquire from (4.13) by this process:

ζ − ζ0 =

∫
dΥ√

±(Υ − λ15)(W − λ16)[(W − λ17)2 + λ2
18]

=
2ΘΘ1

√
∓2λ18Θ1(λ15 − λ16)

∫
dΨ√

1 − Θ2 sin2Ψ
,

(4.37)
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where
Θ2 =

1
1 + Θ2

1

.

Thus, (4.12) has the elliptic double periodic function solutions as below:

Υ =

π1cn
( √
∓2λ18Θ1(λ15−λ16)

2ΘΘ1
(ζ − ζ0),Θ

)
+ π2

π3cn
( √
∓2λ18Θ1(λ15−λ16)

2ΘΘ1
(ζ − ζ0),Θ

)
+ π4

. (4.38)

Here, “ ∓ ” means that “ − ” corresponding to ε = 1, and “ + ” corresponding to ε = −1,

cn
( √
∓2λ18Θ1(λ15 − λ16)

2ΘΘ1
(ζ − ζ0),Θ

)
= cosΨ.

Therefore, the corresponding solutions of Eq (1.1) are

q10(x, t) =
(
(−

4c
3a

)−
1
4 (
π1cn

( √
∓2λ18Θ1(λ15−λ16)

2ΘΘ1
((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ

)
+ π2

π3cn
( √
∓2λ18Θ1(λ15−λ16)

2ΘΘ1
((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ

)
+ π4

)

−
3b
8c

) 1
2n

exp i[−κx + ωt + σW(t) − σ2t].

(4.39)

Case 8. There are four real numbers λ19–λ22, which satisfy

F(Υ) = [(Υ − λ19)2 + λ2
20][(Υ − λ21)2 + λ2

22]

and λ20 ≥ λ22 > 0. Then, for D4 > 0,D2D3 ≤ 0,
When ε = 1, applying the transformation

Υ =
π5 tanΨ + π6

π7 tanΨ + π8
,

where

π5 = λ19π7 + λ20π8, π6 = λ19π8 − λ20π7, π7 = −λ20 −
λ22

Θ1
, π8 = λ19 − λ21,

E =
(λ19 − λ21)2 + λ2

20 + λ
2
22

2λ20λ22
, Θ1 = E +

√
E2 − 1,

we can acquire from (4.13) that

ζ − ζ0 ==
π2

7 + π
2
8

λ22

√
(π2

7 + π
2
8)(Θ2

1π
2
7 + π

2
8)

∫
dΨ√

1 − Θ2 sin2Ψ
, (4.40)

where

Θ2 =
Θ2

1 − 1
Θ2

1

.
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Thus, Eq (4.12) has the elliptic double periodic function solutions as below:

Υ =

π5sn
(
Ξ(ζ − ζ0),Θ

)
+ π6cn

(
Ξ(ζ − ζ0),Θ

)
π7sn

(
Ξ(ζ − ζ0),Θ

)
+ π8cn

(
Ξ(ζ − ζ0),Θ

) , (4.41)

where

Ξ =
λ22

√
(π2

7 + π
2
8)(Θ2

1π
2
7 + π

2
8)

π2
7 + π

2
8

,

sn
(λ22

√
(π2

7 + π
2
8)(Θ2

1π
2
7 + π

2
8)

π2
7 + π

2
8

(ζ − ζ0),Θ
)
= sinΨ,

cn
(λ22

√
(π2

7 + π
2
8)(Θ2

1π
2
7 + π

2
8)

π2
7 + π

2
8

(ζ − ζ0),Θ
)
= cosΨ.

Therefore, the solution of Eq (1.1) is

q11(x, t) =
(
(−

4c
3a

)−
1
4 (
π5sn

(
Ξ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ

)
+ π6cn

(
Ξ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ

)
π7sn

(
Ξ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ

)
+ π8cn

(
Ξ((− 4c

3a )−
1
4 (x − Vt) − ξ0),Θ

) )

−
3b
8c

) 1
2n

exp i[−κx + ωt + σW(t) − σ2t].

(4.42)

5. Conclusions

In this study, we consider the dynamical behavior and new traveling wave solution of the
stochastic BME with dual-power law nonlinearity and multiplicative white noise in the Itô sense. The
qualitative analysis of the dynamical system of Eq (1.1) and its perturbation system are considered
though the principle of homogeneous balance and the planar dynamical system method. Then, we
draw 2D phase portraits of the dynamical system and easily observe the orbital properties of the
dynamical system. Considering that periodic interference often exists in real environments, we add
the periodic disturbance term to system (3.2), and then the 2D and 3D phase portrait, sensitivity
analyses, and Poincaré section of its perturbation system are plotted by the Maple software.
Moreover, by using the complete discrimination system method, the new traveling wave solutions of
Eq (1.1) are successfully constructed with the effect of the Wiener process implicated. Compared with
existing literature, the research findings of this article contribute to make a comprehensive and
systemic study on the propagation dynamics of the stochastic BME with dual-power law nonlinearity
and multiplicative white noise in the Itó sense Eq (1.1) with different methods. Specifically, we have
not only enriched the solutions of the BME but also conducted a thorough analysis of the planar
dynamical system. The findings we have obtained provide insight into the chaotic nature of the
framework under examination, thereby enhancing our understanding of the dynamics that underlie it.
The research methods employed in this work are highly reliable, versatile, and effective for a variety
of nonlinear models across different scientific disciplines.
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