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Abstract: This work comprehensively analyzed the monkeypox virus utilizing a deterministic
mathematical model within a constant proportional-Caputo derivative framework. The suggested
model considered the interplay of human and rodent populations by incorporating certain realistic
vaccination parameters. Our study was a testament to the thoroughness of this work. We explored
the uniqueness result using Banach’s contraction principle. The solution’s positivity and boundedness
were studied in detail, as were the basic reproduction number and the stability analysis of the system’s
equilibrium conditions. We performed a variety of Ulam’s stability analyses to guarantee the solution
existed. Additionally, we implemented a decomposition formula to obtain the numerical scheme. This
numerical approach allowed for numerical simulation as a graphical representation for certain real data
sets and different parameter values in order to understand the model’s dynamic behavior.
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1. Introduction

Presently, people in many countries face a series of epidemics, each caused by a different type of
emerging or reemerging virus. Monkeypox (MPOX) disease is one of these urgent situations that need
to be monitored appropriately since the World Health Organization (WHO) has recently reported a
resurgence of theMPOX outbreak, with the disease reemerging and spreading across multiple countries
worldwide. Numerous cases and clusters have been identified simultaneously in diverse geographical
areas [1]. The MPOX virus is the cause of a zoonotic illness. The spreading of this virus to humans
mainly comes through bites or scratches from wild animals, such as rodents and primates. Human-
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to-human transmission arises through respiratory droplets or contact with body fluids when a person
touches a lesion on an infected individual or their items. The symptoms ofMPOX patients frequently
resemble those of smallpox but are less severe. It begins with a slight fever, chills, weariness, muscle
aches, exhaustion, and headache. The MPOX can cause swelling in the lymph nodes, while smallpox
does not cause lymphadenopathy. The time between the onset of symptoms and the rash completely
recovering typically lasts 14–28 days [2–4]. Currently, there is no vaccine that directly protects against
MPOX disease. However, due to the similarity between the virus that causes MPOX disease and
smallpox disease, vaccination against smallpox is the best choice. It effectively prevents MPOX
disease by as much as 80–85 percent [5]. Mathematical models of epidemics have long been used
to help us understand the effects of numerous disease transmissions in the real world. Understanding
the virus and its transmission dynamics is critical for establishing efficient prevention and control
strategies. Therefore, many researchers have focused on developing the MPOX epidemic model for
various reasons, including potential human outbreaks. Some examples of interesting works, such as
the analysis of the MPOX disease with the impact of vaccination, were studied in [6, 7] A quarantine
class and an enlightenment campaign were incorporated into the MPOX model, which can be found
in [8], while the factor of isolated humans was added to the model, as seen in [9–11]. In [12], pox-like
analysis was investigated under the factor of recovery with permanent immunity. Monkeypox analysis
using data and statistical tools were examined in [13, 14].

Fractional calculus is an area of pure mathematics that generalizes the concepts of differentiation
and integration involving non-integer derivatives and integrals. It is a valuable and efficient tool
for describing complex dynamical systems and simulating real-world problems, particularly in
epidemiology, since it has hereditary properties and describes memory in the context of numerous
diseases. Besides, fractional models provide a more realistic illness trajectory. Fractional differential
operators enhance epidemiological modeling by combining memory, heterogeneity, and nonlocal
dynamics. This leads to more accurate predictions, a better understanding of diseases, and improved
control strategies for illnesses such as monkeypox, COVID-19, HIV, and so on. Fractional derivatives,
which can take any real number as an order, are highly flexible and nonlocal. These characteristics
make them more dependable than classical derivatives for approximating real data since they take
into account global interactions and memory effects. Researchers have defined the many forms
of fractional derivative operators in fractional calculus. Each form is created to capture distinct
characteristics of the fractional derivative idea. For instance, Riemann-Liouville (RL, one of the
original definitions of fractional derivative), Caputo [15, 16], Caputo-Katugampola [17], Caputo-
Fabrizio [18, 19], Atangana-Baleanu [18, 19], Hilfer [20], constant proportional-Caputo (CPC) [21],
and (k, ψ)-Hilfer proportional [22]. The CPC derivative is a modern development in the fractional
derivative, which is designed in [21]. It is a hybrid concept between Caputo’s type and the proportional
derivatives to gain a novel type of fractional calculus and potential applications for modeling actual
data from various problems. In addition, the CPC operator is a more comprehensive framework than
the Caputo fractional derivative operator, for which supporting research can be found in [23, 24]. This
operator offers a significant advantage by effectively addressing current challenges in different issues
that traditional operators cannot adequately evaluate. Several studies [25–27] highlight that the CPC
operator provides a more practical and accurate approach for examining mathematical models applied
to real-world problems using real data compared to classical and fractional-order operators.

The application of fractional calculus to mathematical modeling is a novel approach that has

AIMS Mathematics Volume 10, Issue 2, 4000–4039.



4002

captured the interest of many researchers across diverse scientific domains. It is particularly intriguing
due to the memory effect, a unique and powerful characteristic of fractional-order models, which
remains supereminent over the classical models due to the diverse properties of fractional operators
that yield more accurate and reliable data. Many fractional models consist of differential equations
carefully designed by researchers to address the pressing problems within the global environment.
Extensive research has been conducted on studying and analyzing fractional-order models for
disease transmission dynamics. El-Mesady et al. [28] designed a fractional-order vaccination
mathematical model for tuberculosis incorporating a susceptible class with an underlying ailment.
Peter et al. [29] developed a fractional mathematical model for studying measles infection with double-
dose vaccination. The work [30] constructed a mathematical model under the Atangana-Baleanu-
Caputo derivative to examine meningitis with treatment and vaccination dynamics. The authors [31]
presented the pneumococcal pneumonia infection model using fractional-order derivatives in the sense
of the Caputo-Fabrizio operator. Peter [32] studied the transmission dynamics of a Brucellosis model
under the Caputo-Fabrizio fractional operator. Additionally, MPOX virus infection is one of the
research areas that has gotten a lot of attention and produced some fascinating results since the
disease resurfaced after a long hiatus. We refer the reader to several previously interesting works
about the MPOX fractional model. For example, Peter et al. [33] presented and established the
dynamical behavior of the MPOX virus model by using both classical and differential equations via
the Caputo-Fabrizio fractional derivative. Ngungu et al. [34] studied the dynamics of the MPOX
virus spreading with a non-pharmaceutical intervention using real-time data with the Caputo-Fabrizio
operator. Wireko et al. [35] used fractal-fractional operators (FFOs) to explore the biological behavior
of theMPOX disease. Sudsutad et al. [36] investigated the theoretical analysis for the transmission of
theMPOX virus fractional model under the FFOs involving the Atangana-Baleanu sense. The study by
El-Mesady et al. [37] looked into how theMPOX virus spreads in human hosts and rodent populations
using a Caputo fractional-order nonlinear model. The MPOX virus is established by applying a
deterministic mathematical model in the context of the Atangana-Baleanu fractional derivative that
depends on the generalized Mittag-Leffler kernel [38]. Zhang et al. [39] studied a deterministic Caputo
fractional-order mathematical model of Marburg-MPOX virus co-infection transmission. Liu et al. [40]
analyzed the dynamics of a MPOX disease with the impact of vaccination utilizing a fractional
mathematical model. For more works, we refer readers to see [41, 42]. However, even though many
researchers employ fractional differential systems to understand real-world phenomena, finding exact
solutions to such systems through manual methods is still a formidable challenge. Hence, several
efficient techniques are produced to find the approximated solution of fractional differential systems,
such as the predictor-corrector [43, 44], Adams-Bashforth [43, 45], Newton polynomial [43, 45], and
the decomposition formula method [46,47]. The last introduced powerful knowledge is Ulam stability,
an essential technique in mathematical analysis and other related sciences. Ulam stability is vital to
maintaining the stability and reliability of solutions under minor variations. It ensures that solutions
remain valid and usable even though conditions change marginally. There are various kinds of Ulam
stability commonly used, like Ulam-Hyers (UH) stability and Ulam-Hyers-Rassias (UHR) stability;
see the history and its application in [48–51].

After composing all of the stories and being motivated by the above discussions, the CPC operator is
particularly interesting in this aspect because it is a recent operator, and there has been little literature-
based research on its application. Also, to the best of our current understanding, no studies using
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the proposed derivative operator have been conducted or published in the existing literature on the
dynamics of the monkeypox virus as well as the benefit of using the CPC operator, as mentioned above,
to address memory and hereditary properties for resulting in more accurate prediction and translation.
Therefore, this study takes a comprehensive approach to analyzing the behavior of the MPOX model
and investigating the factors influencing population changes, which may help control the monkeypox
outbreak. We have developed a deterministicMPOX model by extending the works [9, 33] in terms of
incorporating the vaccinated-individuals compartment into the model and yielding a unique classical
model. Later, we transform the model into a fractional-order system using the CPC operator to gain
a better understanding of the virus dynamics. Our focus is on studying the dynamic behavior of this
model, a task we accomplish by leveraging the well-known fixed-point theory of Banach’s type to
prove the solution’s existence and uniqueness. We investigate the stability of equilibrium points with
the help of the basic reproduction number. Moreover, we ensure the solutions exist by analyzing their
stability via various Ulam stability. A decomposition formula for the CPC derivative technique is
derived to obtain the numerical scheme, and some graphics in the numerical simulation are shown to
visualize the system’s behavior analysis. This work will help to fill the gap in the study of monkeypox
transmittance using fractional derivatives and expand the scope of this study to benefit disease control.

The remaining sections of the paper are as follows: Section 2 introduces some concepts of the
CPC operators. The MPOX model construction is presented in Section 3. Section 4 is dedicated
to investigating model analysis, including the solution’s positiveness and boundedness, the basic
reproduction number, and the local stability analysis of the equilibrium points. Section 5 explores the
existence theory for the proposed model; that is, the uniqueness result is verified using Banach’s fixed-
point theorem. Section 6 verifies various Ulam’s type stability and their generalization. The numerical
scheme derived from a decomposition formula for the CPC derivative is determined in Section 7.
Finally, the results are discussed via some examples, and the summation of this discussion is given in
the final part.

2. Preliminaries

This section provides some fundamental definitions and properties of fractional calculus, which will
be used to analyze the system throughout this work.

Definition 2.1. ( [52]). The Caputo fractional order derivative of a function f with order α ∈ (0, 1) is
provided by

C
D
α
0,t f (t) =

1
Γ(1 − α)

∫ t

0
f ′(s)(t − s)−αds.

Definition 2.2. ( [52]). Assume f (t) is an integrable function. The RL-integral of α > 0 is given by

RLIα0,t f (t) =
1
Γ(α)

∫ t

0
f (s)(t − s)α−1ds, −∞ ≤ a < t ≤ ∞.

Definition 2.3. ( [21]). A proportional-Caputo (CP) is a hybrid operator that combines the
proportional operator and the Caputo fractional derivative as:

CP
D
α
0,t f (t) =

1
Γ(1 − α)

∫ t

0

(
K1(α, s) f (s) +K0(α, s) f ′(s)

)
(t − s)−αds
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= (K1(α, t) f (t) +K0(α, t) f ′(t)) ×
t−α

Γ(1 − α)
,

where K0(α, t) = αC2αt1−α and K1(α, t) = (1 − α)tα, for C is constant and α ∈ (0, 1).
Moreover, as defined in the particular case where K0 and K1 are depending only on α, the CPC

operator can be defined by

CPC
D
α
0,t f (t) =

1
Γ(1 − α)

∫ t

0

(
K1(α) f (s) +K0(α) f ′(s)

)
(t − s)−αds

= K1(α)RLI1−α
0,t f (t) +K0(α)CDα0,t f (t),

where K0(α) and K1(α) are constants with respect to t.

Here, this study uses the specific case when K0(α) = αC2αQ1−α and K1(α) = (1 − α)Qα where C
and Q are constants.

Definition 2.4. ( [21]). The inverse operator of the CPC fractional derivative operator is provided by:

CPCIα0,t f (t) =
1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−
K1(α)
K0(α)

(t − s)
)

f (s)ds,

which satisfies the relation below:

CPCIα0,t

[
CPC
D
α
0,t f (t)

]
= f (t) − e

(
−
K1(α)
K0(α) t

)
f (0).

3. Formulation of the mathematical models

3.1. The integer order of theMPOX model

In this subsection, we formulate a deterministic model of the dynamics of MPOX transmission
across two groups: humans denoted by Nh and rodents denoted by Nr. The human population has six
different compartments: the susceptible (S h), exposed (Eh), infectious (Ih), clinically ill (Ch), recovered
(Rh), and vaccinated individuals (Vh). The rodent population has three compartments: the susceptible
(S r), exposed (Er), and infectious (Ir). Thus, the total populations of humans and rodents are given by
Nh(t) = S h(t) + Eh(t) + Ih(t) + Ch(t) + Rh(t) + Vh(t) and Nr(t) = S r(t) + Er(t) + Ir(t), respectively. The
transmission diagram of the population flow among these compartments is displayed in Figure 1.
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Figure 1. Transmission chart of the suggestedMPOX model.

Here, the descriptions of the population changes of each group are presented in the following:

• Human groups: The amount of susceptible humans changes due to recruitment through birth
rate or immigration Λh. The vaccinated population further increased the number in this class after
the induced immunity waned at the rate η. This population class is rejected by the natural death
per capital rate µh and by the population gaining infection after contact with infected humans
or infected rodents at the rate b1 or b2, respectively. It is also reduced by vaccinating at the
rate λ. The amount of exposed humans grows with the force of infection in the term of ϕh =

(b1Ih(t) + b2Ir(t))/Nh(t) and declines by the disease progression rate a1 and the natural death per
capital rate µh. The amount of infected individuals increases after transitioning from the exposed
class with the disease progression rate a1. The natural recovery rate ω reduces the population in
the infectious class due to immunity. This population is also reduced by the natural death rate
µh, the disease-induced death rate δ1, and the clinically ill rate a2 after moving to a clinically
ill class of humans. The number of clinically ill humans grows due to those who seek medical
assistance after becoming sick with a clinically ill rate a2. These individuals are decreased by
disease-induced death rate δ2 and natural death rate µh. Moreover, moving to the recovered class
at the rate ν can reduce the population in this class. The group in the recovered compartment
increases with the recovery rate of clinically ill humans ν and the natural recovery rate due to
immunity ω, while it declines with the natural death rate µh. The susceptible individuals enter
into the vaccinated class with a rate λ. The vaccinated individuals are declined by the natural
death rate and the waning induced immunity with a rate η.
• Rodent groups: The amount of susceptible rodents changes due to recruitment through birth

rate Λr. These individuals are decreased by interaction with infected rodents at a rate b3 and
natural death per capital rate of rodents µr. The amount of exposed rodents grows with the
force of infection in the term ϕr = b3Ir(t)/Nr(t). It is declined by the natural death rate µr and
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the progression rate a3, which transit from exposed rodents to infected rodents. The amount of
infected rodents increases from the exposed rodent’s transit to infectious rodents at the rate a3.
The infected rodents are reduced due to the natural death rate µr.

Therefore, based on the above description, a nonlinear system of the integer-order of the MPOX
model corresponding with nine ordinary differential equations, the so-called MPOX model, is shown
below: 

dS h(t)
dt

= Λh −

(
b1Ih(t) + b2Ir(t)

Nh(t)
+ µh + λ

)
S h(t) + ηVh(t),

dEh(t)
dt

=

(
b1Ih(t) + b2Ir(t)

Nh(t)

)
S h(t) − (µh + a1)Eh(t),

dIh(t)
dt
= a1Eh(t) − (ω + a2 + µh + δ1)Ih(t),

dCh(t)
dt

= a2Ih(t) − (ν + µh + δ2)Ch(t),

dRh(t)
dt

= νCh(t) + ωIh(t) − µhRh(t),

dVh(t)
dt

= λS h(t) − (µh + η)Vh(t),

dS r(t)
dt

= Λr −

(
b3Ir(t)
Nr(t)

+ µr

)
S r(t),

dEr(t)
dt

=
b3Ir(t)S r(t)

Nr(t)
− (a3 + µr)Er(t),

dIr(t)
dt
= a3Er(t) − µrIr(t),

(3.1)

where the positive initial conditions are S h(0) = S h0 , Eh(0) = Eh0 , Ih(0) = Ih0 , Ch(0) = Ch0 , Rh(0) = Rh0 ,
Vh(0) = Vh0 , S r(0) = S r0 , Er(0) = Er0 , and Ir(0) = Ir0 . The details of each all positive parameter are
included and displayed in Table 1.

Table 1. The details of dependent parameters of theMPOX model (3.1).

Parameters Description
Λh, Λr The recruitment rate for susceptible humans and rodents, respectively.
b1, b2, b2 Contact rate between infected humans and susceptible humans, rodents and

susceptible humans, and rodents and susceptible rodents, respectively.
a1 Disease progression rate from exposed humans to infected humans.
a2 Clinically ill rate.
a3 Progression rate from exposed rodents to infected rodents.
ω Natural recovery rate due to immunity.
ν The rate of recovery for clinically ill humans.
η Waning induced immunity.
λ Vaccinated against monkeypox.
δ1, δ2 Disease-induced death rate for infectious and clinically ill humans, respectively.
µh, µr Natural death per capital rate of humans and rodents, respectively.
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3.2. TheMPOX model under the CPC derivative operator

As we know, fractional infectious models have specific hereditary properties and describe memory
regarding disease dynamics because they employ fractional derivatives with a higher degree of freedom
to account for more complex diseases and provide knowledge into the behavior and control of epidemic
diseases. Consequently, this subsection further develops the integer orderMPOX model (3.1) utilizing
the CPC derivative operator as follows:

CPC
D
α
0,tS h(t) = F1(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tEh(t) = F2(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tIh(t) = F3(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tCh(t) = F4(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tRh(t) = F5(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tVh(t) = F6(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tS r(t) = F7(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tEr(t) = F8(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

CPC
D
α
0,tIr(t) = F9(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)),

(3.2)

where F j = F j(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t)), for j = 1, 2, . . . , 9 and F j for the
suggested model are given by

F1(t, S h(t)) = Λh − (ϕh + c1)S h(t) + ηVh(t),
F2(t, Eh(t)) = ϕhS h(t) − c2Eh(t),
F3(t, Ih(t)) = a1Eh(t) − c3Ih(t),
F4(t,Ch(t)) = a2Ih(t) − c4Ch(t),
F5(t,Rh(t)) = νCh(t) + ωIh(t) − µhRh(t),
F6(t,Vh(t)) = λS h(t) − c5Vh(t),
F7(t, S r(t)) = Λr − ϕrS r(t) − µrS r(t),
F8(t, Er(t)) = ϕrS r(t) − c6Er(t),
F9(t, Ir(t)) = a3Er(t) − µrIr(t),

(3.3)

with ϕh = (b1Ih(t) + b2Ir(t))/Nh(t), ϕr = b3Ir(t)/Nr(t), c1 = µh + λ, c2 = µh + a1, c3 = ω + a2 + µh + δ1,
c4 = ν + µh + δ2, c5 = µh + η, and c6 = a3 + µr with S h0 ≥ 0, Eh0 ≥ 0, Ih0 ≥ 0, Ch0 ≥ 0, Rh0 ≥ 0, Vh0 ≥ 0,
S r0 ≥ 0, Er0 ≥ 0, and Ir0 ≥ 0. The suggested model (3.2) is said to be the CPC-MPOX model.

4. Model analysis

4.1. Positiveness and boundedness

Since the variables in real-world phenomena have positive values, particularly the epidemic model
based on the human population, all variables and parameters are considered to be positive. Moreover,
the invariant region is essential in mathematical modeling as it guarantees that solutions remain
biologically feasible and mathematically meaningful. In this part, we investigate the factors that
guarantee the solutions of the CPC-MPOX model (3.2) are positive, and we locate the invariant area,
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ensuring that the solution is bounded. To achieve this purpose, we define

R9
+ =

{
F ∈ R9 : F ≥ 0 andF(t) = (S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t))T

}
.

Theorem 4.1. All solutions of the CPC-MPOX model (3.2) under the initial conditions are bounded
in R9

+.

Proof. From the CPC-MPOX model (3.2), we obtain

CPC
D
α
0,tS h(t) = Λh + ηVh(t) ≥ 0,

CPC
D
α
0,tEh(t) = ϕhS h(t) ≥ 0,

CPC
D
α
0,tIh(t) = a1Eh(t) ≥ 0,

CPC
D
α
0,tCh(t) = a2Ih(t) ≥ 0,

CPC
D
α
0,tRh(t) = νCh(t) + ωIh(t) ≥ 0,

CPC
D
α
0,tVh(t) = λS h(t) ≥ 0,

CPC
D
α
0,tS r(t) = Λr ≥ 0,

CPC
D
α
0,tEr(t) = ϕrS r(t) ≥ 0,

CPC
D
α
0,tIr(t) = a3Er(t) ≥ 0.

(4.1)

If a set of the conditions (S h0 , Eh0 , Ih0 ,Ch0 ,Rh0 ,Vh0 , S r0 , Er0 , Ir0) ∈ R
9
+, then according to the above

system (4.1), the solution F cannot avoid from the hyper-planes: (S h, Eh, Ih, Ch, Rh, Vh, S r, Er,
Ir) = (0, 0, 0, 0, 0, 0, 0, 0, 0). Additionally, the vector field points into R9

+ on each hyperplane that is
surrounded by the nonnegative constants. This means that R9

+ is the positively invariant region. □

Theorem 4.2. Let a positive set of solutions (S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t))
under the initial conditions. Then, there exists a domain Ω = Ωh × Ωr ⊂ R

6
+ × R

3
+, that is positively

invariant so that

Ωh =
{
(S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t)) ∈ R6

+ and Nh ≤ Λh/µh

}
, (4.2)

Ωr =
{
(S r(t), Er(t), Ir(t)) ∈ R3

+ and Nh ≤ Λr/µr

}
. (4.3)

Proof. Since Nh(t) = S h(t) + Eh(t) + Ih(t) + Ch(t) + Rh(t) + Vh(t), then from the proposed model (3.2),
we have

CPC
D
α
0,tNh(t) = CPC

D
α
0,tS h(t) + CPCDα0,tEh(t) + CPCDα0,tIh(t)

+CPCDα0,tCh(t) + CPCDα0,tRh(t) + CPCDα0,tVh(t)
= Λh − µhNh(t) − δ1Ih(t) − δ2Ch(t).

In the case of no disease, we get CPCDα0,tNh(t) = Λh − µhNh(t). It implies that

CPC
D
α
0,tNh(t) ≤ 0 if Nh(t) ≥

Λh

µh
, for all t ∈ [0,T ].

By a particular comparison principle, we obtain

Nh(t) ≤ Nh(0)e−µht +
Λh

µh
(1 − e−µht).
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Then, we get

Nh(t) ≤
Λh

µh
if Nh(0) ≤

Λh

µh
.

Thus, the feasible region of human groups (4.2) is completed.
Similarly, since Nr(t) = S r(t) + Er(t) + Ir(t), then

CPC
D
α
0,tNr(t) = CPCDα0,tS r(t) + CPCDα0,tEr(t) + CPCDα0,tIr(t) = Λr − µrNr(t).

It implies that
CPC
D
α
0,tNr(t) ≤ 0 if Nr(t) ≥

Λr

µr
, for all t ∈ [0,T ].

By a particular comparison principle, we have

Nr(t) ≤ Nr(0)e−µrt +
Λr

µr
(1 − e−µrt).

Then, we have

Nr(t) ≤
Λr

µr
if Nr(0) ≤

Λr

µr
.

Thus, the feasible region of rodent groups (4.3) is obtained. This shows the boundedness of the
solutions for the CPC-MPOX model (3.2). Hence, the region Ω = Ωh × Ωr, defined as (4.2) and (4.3),
is positively invariant. We therefore conclude that the proposed model is epidemiologically feasible
and well-posed in Ω. The proof is complete. □

4.2. The stability of the equilibria

The equilibrium points of the the CPC-MPOX model (3.2) can be calculated by setting the right-
hand side equal to zero. This gives two possible positive equilibria, which are

• The MPOX free equilibrium (E0
MFE); this point is defined when there is no disease in the

population:

E
0
MFE = (S 0

h, E
0
h, I

0
h ,C

0
h,R

0
h,V

0
h , S

0
r , E

0
r , I

0
r ) =

(
c5Λh

c1c5 − λη
, 0, 0, 0, 0,

λΛh

c1c5 − λη
,
Λr

µr
, 0, 0

)
.

Note that: c1c5−λη = µh(µh+η+λ) > 0, N0
h = S 0

h+E0
h + I0

h +C0
h +R0

h+V0
h , and N0

r = S 0
r +E0

r + I0
r .

• TheMPOX endemic equilibrium (E∗MEE); this point is defined when there is disease transmission
in the population:

E
∗
MEE = (S ∗h, E

∗
h, I
∗
h,C

∗
h,R

∗
h,V

∗
h , S

∗
r , E

∗
r , I
∗
r ),

where

S ∗h =
c5Λh

c5(ϕh + c1) − ηλ
, E∗h =

c5Λhϕh

c2[c5(ϕh + c1) − ηλ]
, I∗h =

c5Λha1ϕh

c2c3[c5(ϕh + c1) − ηλ]
,

C∗h =
c5Λha1a2ϕh

c2c3c4[c5(ϕh + c1) − ηλ]
,

R∗h =
νc5Λha1a2ϕh

µhc2c3c4[c5(ϕh + c1) − ηλ]
+

ωc5Λha1ϕh

µhc2c3[c5(ϕh + c1) − ηλ]
,

V∗h =
c5Λhλ

c5[c5(ϕh + c1) − ηλ]
, S ∗r =

Λr

ϕr + µr
, E∗r =

ϕrΛr

c6(ϕr + µr)
, I∗r =

a3ϕrΛr

c6µr(ϕr + µr)
.
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Next, the basic reproduction number is conducted as an epidemic indicator. It is an essential
fundamental epidemiological parameter used to assess the long-term dynamics of the epidemic, which
is denoted by R0. It is also defined as the expected number of secondary infections generated by a
single infected individual throughout their infectious period. The basic reproduction number can be
used as a disease control measure because it indicates the spread of a disease in terms of transmission
within a population. It helps determine whether an outbreak or epidemic will occur or the infection
will eventually disappear. Here, we will calculate it by using the next-generation technique as in [53].
For the proposed model, the disease-free state variables are S h,Rh, S r while the infected state variables
are Eh, Ih,Ch,Vh, Er, Ir. Therefore,

F =



0 b1S 0
h

N0
h

0 0 0 b2S 0
h

N0
h

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 b3

0 0 0 0 0 0


and V =



c2 0 0 0 0 0
−a1 c3 0 0 0 0

0 −a2 c4 0 0 0
0 0 0 c5 0 0
0 0 0 0 c6 0
0 0 0 0 −a3 µr


,

where F and V denote the transmission and transitions matrices, respectively. Then, the next-
generation matrix is provided as below:

FV−1 =



a1b1S 0
h

c2c3N0
h

b1S 0
h

c3N0
h

0 0 a3b2S 0
h

c6µrN0
h

b2S 0
h

µrN0
h

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 a3b3

c6µr

b3
µr

0 0 0 0 0 0


.

This implies the spectral radius of (4.2) (R0)

R0 = max{Rh
0,R

r
0} = max

{
a1b1S 0

h

c2c3N0
h

,
a3b3

c6µr

}
.

Remark 4.3. We can notice that:

• If R0
h > 1 and R0

r > 1, then R0 > 1.
• If R0

h < 1 and R0
r > 1, then R0 = R

0
r > 1.

• If R0
h > 1 and R0

r < 1, then R0 = R
0
h > 1.

• If R0
h < 1 and R0

r < 1, then R0 < 1.

For the following two theorems, the stability of the equilibrium points will be analyzed. To do this,
the Jacobian matrix (J) of the system is given by

AIMS Mathematics Volume 10, Issue 2, 4000–4039.



4011

J =



−
b1Ih+b2Ir

Nh
− c1 0 −

b1S h
Nh

0 0 η 0 0 −
b2S h
Nh

b1Ih+b2Ir
Nh

−c2
b1S h
Nh

0 0 0 0 0 b2S h
Nh

0 a1 −c3 0 0 0 0 0 0
0 0 a2 −c4 0 0 0 0 0
0 0 ω ν −µh 0 0 0 0
λ 0 0 0 0 −c5 0 0 0
0 0 0 0 0 0 −

b3Ir
Nr
− µr 0 −

b3S r
Nr

0 0 0 0 0 0 b3Ir
Nr

−c6
b3S r
Nr

0 0 0 0 0 0 0 a3 −µr


. (4.4)

Theorem 4.4. If R0 < 1, then the MPOX free equilibrium of the CPC-MPOX model (3.2) is locally
asymptotically stable with the necessary and sufficient criteria:

|arg(θi)| >
απ

2
, i = 1, 2, ..., 9. (4.5)

Proof. From the asumption R0 < 1, it implies that Rh
0 < 1 and Rr

0 < 1. By applying matrix (4.4) at the
point E0

MFE, we have

J(E0
MFE) =



−c1 0 −
b1S 0

h

N0
h

0 0 η 0 0 −
b2S 0

h

N0
h

0 −c2
b1S 0

h

N0
h

0 0 0 0 0 b2S 0
h

N0
h

0 a1 −c3 0 0 0 0 0 0
0 0 a2 −c4 0 0 0 0 0
0 0 ω ν −µh 0 0 0 0
λ 0 0 0 0 −c5 0 0 0
0 0 0 0 0 0 −µr 0 −b3

0 0 0 0 0 0 0 −c6 b3

0 0 0 0 0 0 0 a3 −µr



.

Then, the characteristic equation is computed by |J(E0
MFE) − θÎ| = 0, and Î is a identity matrix. This

yields the eigenvalues as the following:

θ1 = −c4, θ2 = −µr, θ3 = −µh,

θ4,5 =
1
2

(
−(c1 + c5) ±

√
(c1 + c5)2 − 4(µh(µh + η + λ))

)
,

θ6,7 =
1
2

−(c2 + c3) ±

√
(c2 + c3)2 − 4

(
c2c3 −

a1b1S 0
h

N0
h

)  ,
θ8,9 =

1
2

(
−(µr + c6) ±

√
(µr + c6)2 − 4(µrc6 − a3b3)

)
.

Obviously, the eigenvalues θ1, θ2, θ3, and θ4,5 have negative real parts. SinceRh
0 < 1 andRr

0 < 1, then
the eigenvalues θ6,7 and θ8,9 also have negative real parts, respectively. This assures the assumption (4.5)
with 0 < α ≤ 1. Therefore, the point E0

MFE is locally asymptotically stable. □
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For the following theorem, we will utilize the Routh-Hurwitz criterion to investigate the local
stability of endemic equilibria. Here, we will determine the conditions under which the endemic
equilibrium point is locally asymptotically stable. The Jacobian matrix (4.4) yields the following
matrix for E∗MEE:

J1(E∗MEE) =



−
b1I∗h+b2I∗r

N∗h
− c1 0 −

b1S ∗h
N∗h

0 0 η 0 0 −
b2S ∗h
N∗h

b1I∗h+b2I∗r
N∗h

−c2
b1S ∗h
N∗h

0 0 0 0 0 b2S ∗h
N∗h

0 a1 −c3 0 0 0 0 0 0
0 0 a2 −c4 0 0 0 0 0
0 0 ω ν −µh 0 0 0 0
λ 0 0 0 0 −c5 0 0 0
0 0 0 0 0 0 −

b3I∗r
N∗r
− µr 0 −

b3S ∗r
N∗r

0 0 0 0 0 0 b3I∗r
N∗r

−c6
b3S ∗r
N∗r

0 0 0 0 0 0 0 a3 −µr



.

We can easily see two negative eigenvalues; one is ω1 = −µh, and another one is ω2 = −c4. For the rest
of the equilibrium points, we consider the reduced matrix

J2(E∗MEE) =



−
b1I∗h+b2I∗r

N∗h
− c1 0 −

b1S ∗h
N∗h

η 0 0 −
b2S ∗h
N∗h

b1I∗h+b2I∗r
N∗h

−c2
b1S ∗h
N∗h

0 0 0 b2S ∗h
N∗h

0 a1 −c3 0 0 0 0
λ 0 0 −c5 0 0 0
0 0 0 0 −

b3I∗r
N∗r
− µr 0 −

b3S ∗r
N∗r

0 0 0 0 b3I∗r
N∗r

−c6
b3S ∗r
N∗r

0 0 0 0 0 a3 −µr


.

This yields the associated characteristic equation as follows:

ω7 + ϵ1ω
6 + ϵ2ω

5 + ϵ3ω
4 + ϵ4ω

3 + ϵ5ω
2 + ϵ6ω + ϵ7 = 0, (4.6)

with ϵk denoting the coefficients of ω7−k, k = 1, 2, 3, . . . , 7 after resetting the polynomial equation in
the formula form. Since the proof of the local asymptotic stable needs the negative real parts of all
roots of (4.6), we use the Routh-Hurwitz criteria to obtain the conditions for the stability of E∗MEE.
We define the following notation, h1 = (ϵ1ϵ2 − ϵ3)/ϵ1, h2 = (ϵ1ϵ4 − ϵ5)/ϵ1, h3 = (ϵ1ϵ6 − ϵ7)/ϵ1, g1 =

(ϵ3h1 − ϵ1h2)/h1, g2 = (ϵ5h1 − ϵ1h3)/h1, g3 = ϵ7, d1 = (h2g1 − h1g2)/g1, d2 = (h3g1 − h1g3)/g1, e1 =

(g2d1 − g1d2)/d1, e2 = g3, and f1 = (d2e1 − d1e2)/e1.
Thus, the Hurwitz assumptions concerning (4.6), which ensure that all roots have negative real parts,

are as follows: (H1). (i) ϵ1 > 0; (ii) ϵ7 > 0; (iii) ϵ1ϵ2 > ϵ3; (iv) ϵ1ϵ2ϵ3 + ϵ1ϵ5 > ϵ
2
1ϵ4 + ϵ

2
3 ; (v) h2g1 > h1g2;

(vi) g2d1 > g1d2; and (vii) d2e1 > d1e2. Therefore, we can conclude this part by the following theorem:

Theorem 4.5. Suppose that the necessary and sufficient assumption (H1) of Hurwitz criteria is
satisfied, then theMPOX endemic equilibrium of the CPC-MPOXmodel (3.2) is locally asymptotically
stable.
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5. Qualitative analysis

In this part, an analysis of the CPC-MPOX model (3.2) will be investigated applying Banach’s
contraction mapping principle [54]. First, the Banach space on [0,T ] for all continuous real-valued
functions is given by X = C(I × R9,R) under the norm ∥Y∥ = ∥(S h, Eh, Ih,Ch,Rh,Vh, S r, Er, Ir)∥ =
∥S h∥ + ∥Eh∥ + ∥Ih∥ + ∥Ch∥ + ∥Rh∥ + ∥Vh∥ + ∥S r∥ + ∥Er∥ + ∥Ir∥, where S h, Eh, Ih, Ch, Rh, Vh, S r, Er,
Ir ∈ X and ∥S h∥ = supt∈[0,T ] |S h(t)| = Bh1 , ∥Eh∥ = supt∈[0,T ] |Eh(t)| = Bh2 , ∥Ih∥ = supt∈[0,T ] |Ih(t)| = Bh3 ,
∥Ch∥ = supt∈[0,T ] |Ch(t)| = Bh4 , ∥Rh∥ = supt∈[0,T ] |Rh(t)| = Bh5 , ∥Vh∥ = supt∈[0,T ] |Vh(t)| = Bh6 , ∥S r∥ =

supt∈[0,T ] |S r(t)| = Br1 , ∥Er∥ = supt∈[0,T ] |Er(t)| = Br2 , and ∥Ir∥ = supt∈[0,T ] |Ir(t)| = Br3 . Next, assume
F ∈ X and Y ∈ C([0,T ],R), and the CPC-MPOX model (3.2) can be presented as CPC

D
α
0,tY(t) = F(t,Y(t)), t ∈ [0,T ], α ∈ (0, 1],

Y(0) = Y0,
(5.1)

where

Y(t) =



S h(t)
Eh(t)
Ih(t)
Ch(t)
Rh(t)
Vh(t)
S r(t)
Er(t)
Ir(t)


, Y(0) =



S h(0)
Eh(0)
Ih(0)
Ch(0)
Rh(0)
Vh(0)
S r(0)
Er(0)
Ir(0)


=



S h0

Eh0

Ih0

Ch0

Rh0

Vh0

S r0

Er0

Ir0


, F(t,Y(t)) =



F1(t, S h)
F2(t, Eh)
F3(t, Ih)
F4(t,Ch)
F5(t,Rh)
F6(t,Vh)
F7(t, S r)
F8(t, Er)
F9(t, Ir)


,

when Gi, i = 1, 2, . . . , 9 are given by (3.3). Then, the problem (5.1) can be written applying
Definition 2.4 as below

Y(t) − e
(
−

K1(α)
K0(α) t

)
Y(0) =

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,Y(s))ds. (5.2)

From the problem (5.1), the Eq (5.2) can be presented in the integral form:

S h(t) = e
(
−

K1(α)
K0(α) t

)
S h0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F1(s, S h(s))ds, (5.3)

Eh(t) = e
(
−

K1(α)
K0(α) t

)
Eh0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F2(s, Eh(s))ds, (5.4)

Ih(t) = e
(
−

K1(α)
K0(α) t

)
Ih0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F3(s, Ih(s))ds, (5.5)

Ch(t) = e
(
−

K1(α)
K0(α) t

)
Ch0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F4(s,Ch(s))ds, (5.6)

Rh(t) = e
(
−

K1(α)
K0(α) t

)
Rh0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F5(s,Rh(s))ds, (5.7)

Vh(t) = e
(
−

K1(α)
K0(α) t

)
Vh0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F6(s,Vh(s))ds, (5.8)
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S r(t) = e
(
−

K1(α)
K0(α) t

)
S r0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F7(s, S r(s))ds, (5.9)

Er(t) = e
(
−

K1(α)
K0(α) t

)
Er0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F8(s, Er(s))ds, (5.10)

Ir(t) = e
(
−

K1(α)
K0(α) t

)
Ir0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F9(s, Ir(s))ds. (5.11)

Define an operator F : X → X where F = (F1,F2,F3,F4,F5,F6,F7,F8,F9). In consideration
of (5.3) to (5.11), we obtain

(F1S h)(t) = e
(
−

K1(α)
K0(α) t

)
S h0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F1(s, S h(s))ds,

(F2Eh)(t) = e
(
−

K1(α)
K0(α) t

)
Eh0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F2(s, Eh(s))ds,

(F3Ih)(t) = e
(
−

K1(α)
K0(α) t

)
Ih0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F3(s, Ih(s))ds,

(F4Ch)(t) = e
(
−

K1(α)
K0(α) t

)
Ch0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F4(s,Ch(s))ds,

(F5Rh)(t) = e
(
−

K1(α)
K0(α) t

)
Rh0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F5(s,Rh(s))ds,

(F6Vh)(t) = e
(
−

K1(α)
K0(α) t

)
Vh0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F6(s,Vh(s))ds,

(F7S r)(t) = e
(
−

K1(α)
K0(α) t

)
S r0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F7(s, S r(s))ds,

(F8Er)(t) = e
(
−

K1(α)
K0(α) t

)
Er0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F8(s, Er(s))ds,

(F9Ir)(t) = e
(
−

K1(α)
K0(α) t

)
Ir0 +

1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F9(s, Ir(s))ds.

Next, the transformation of the CPC-MPOX model (3.2) to Y = FY that is a fixed point problem,
will be later applied with a fixed point theory to prove that the CPC-MPOX model (3.2) has a solution.

Theorem 5.1. Suppose that F ∈ X corresponding with the assumption (A1) is as follows:

(A1) There is a constant Nmax = max{N1,N2,N3,N4,N5,N6,N7,N8,N9} > 0, such that

∣∣∣Fi(t, S h(t), Eh(t), Ih(t),Ch(t),Rh(t),Vh(t), S r(t), Er(t), Ir(t))

−Fi(t, S ∗h(t), E∗h(t), I∗h(t),C∗h(t),R∗h(t),V∗h(t), S ∗r (t), E∗r (t)), I∗r (t))
∣∣∣

≤ Ni

( ∣∣∣S h(t) − S ∗h(t)
∣∣∣ + ∣∣∣Eh(t) − E∗h(t)

∣∣∣ + ∣∣∣Ih(t) − I∗h(t)
∣∣∣

+
∣∣∣Ch(t) −C∗h(t)

∣∣∣ + ∣∣∣Rh(t) − R∗h(t)
∣∣∣ + ∣∣∣Vh(t) − V∗h(t)

∣∣∣
+

∣∣∣S r(t) − S ∗r (t)
∣∣∣ + ∣∣∣Er(t) − E∗r (t)

∣∣∣ + ∣∣∣Ir(t) − I∗r (t)
∣∣∣ ),

where i = 1, 2, 3, . . . , 9 and S h, Eh, Ih, Ch, Rh, Vh, S r, Er, Ir ∈ X, and t ∈ [0,T ].
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If

K1(α)
[
K2

0(α)
]−1
Nmax < 1, (5.12)

then the CPC-MPOX model (3.2) has a unique solution.

Proof. Define a bounded, closed, and convex subset Dra := {(S h, Eh, Ih,Ch,Rh,Vh, S r, Er, Ir) ∈ X :
∥(S h, Eh, Ih,Ch,Rh,Vh, S r, Er, Ir)∥ ≤ ra} with a radius ra defined as

ra ≥ Kmax +
K1(α)
K2

0(α)
F∗max

[
1 −

K1(α)
K2

0(α)
Nmax

]−1

,

where Kmax = max{S h0 , Eh0 , Ih0 , Ch0 , Rh0 , Vh0 , S r0 , Er0 , Ir0} and F∗max = max{F∗1, F∗2, F∗3, F∗4, F∗5, F∗6, F∗7,
F∗8, F∗9}. Let supt∈[0,T ] |Fi(s, 0)| = F∗i < +∞, i = 1, 2, 3, . . ., 9. The process is divided into two parts.

Step I. We prove that FDra ⊂ Dra .
For any (S h(t), Eh(t), Ih(t), Ch(t), Rh(t), Vh(t), S r(t), Er(t), Ir(t)) ∈ Dra , t ∈ [0,T ], we have

|(F1S h)(t)| ≤
∣∣∣∣∣e(
−

K1(α)
K0(α) t

)
S h0

∣∣∣∣∣ + 1
K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)

×
[
|F1(s, S h(s)) − F1(s, 0)| + |F1(s, 0)|

]
ds

≤ S h0 +
1

K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
) [
N1

[
|S h(t)| + |Eh(t)|

+|Ih(t)| + |Ch(t)| + |Rh(t)| + |Vh(t) + |S r(t)| + |Er(t)| + |Ir(t)|
]
+ F∗1

]
ds

≤ S h0 +
K1(α)
K2

0(α)

[
N1

(
|S h(t)| + |Eh(t) + |Ih(t)| + |Ch(t)||

+|Rh(t)| + |Vh(t) + |S r(t)| + |Er(t)| + |Ir(t)|
)
+ F∗1

]
≤ S h0 +

K1(α)
K2

0(α)
[
N1ra + F

∗
1
]
.

In the same process, we also have

|(F2Eh)(t)| ≤ Eh0 +
K1(α)
K2

0(α)
[
N2ra + F

∗
2
]
,

|(F3Ih)(t)| ≤ Ih0 +
K1(α)
K2

0(α)
[
N3ra + F

∗
3
]
,

|(F4Ch)(t)| ≤ Ch0 +
K1(α)
K2

0(α)
[
N4ra + F

∗
4
]
,

|(F5Rh)(t)| ≤ Rh0 +
K1(α)
K2

0(α)
[
N5ra + F

∗
5
]
,

|(F6Vh)(t)| ≤ Vh0 +
K1(α)
K2

0(α)
[
N6ra + F

∗
6
]
,

|(F7S r)(t)| ≤ S r0 +
K1(α)
K2

0(α)
[
N7ra + F

∗
7
]
,
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|(F8Er)(t)| ≤ Er0 +
K1(α)
K2

0(α)
[
N8ra + F

∗
8
]
,

|(F9Ir)(t)| ≤ Ir0 +
K1(α)
K2

0(α)
[
B9ra + F

∗
9
]
.

This yields that

∥(FY)(t)∥ ≤ Kmax +
K1(α)
K2

0(α)
[
Nmaxra + F

∗
max

]
.

Therefore, FDra ⊂ Dra .
Step II. We prove that F is a contraction.
Let (S h, Eh, Ih, Ch, Rh, Vh, S r, Er, Ir) ∈ Dra and (S ∗h, E∗h, I∗h, C∗h, R∗h, V∗h , S ∗r , E∗r , I∗r ) ∈ Dra , for

t ∈ [0,T ]. We obtain that

|(F1S h)(t) − (F1S ∗h)(t)|

≤
1

K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
|F1(s, S h(s)) − F1(s, S ∗h(s))|ds

≤
1

K0(α)

∫ t

0
(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)

ds × N1

{
|S h(t) − S ∗h(t)|

+|Eh(t) − E∗h(t)| + |Ih(t) − I∗h(t)| + |Ch(t) −C∗h(t)| + |Rh(t) − R∗h(t)|

+|Vh(t) − V∗h(t)| + |S r(t) − S ∗r (t)| + |Er(t) − E∗r (t)| + |Ir(t) − I∗r (t)|
}
.

This yields that,

|(F1S h)(t) − (F1S ∗h)(t)| ≤
K1(α)
K2

0(α)
N1∥Y(t) − Ȳ(t)∥.

Likewise, we obtain

|(F2Eh)(t) − (F2E∗h)(t)| ≤
K1(α)
K2

0(α)
N2∥Y(t) − Ȳ(t)∥,

|(F3Ih)(t) − (F3I∗h)(t)| ≤
K1(α)
K2

0(α)
N3∥Y(t) − Ȳ(t)∥,

|(F4Ch)(t) − (F4C∗h)(t)| ≤
K1(α)
K2

0(α)
N4∥Y(t) − Ȳ(t)∥,

|(F5Rh)(t) − (F5R∗h)(t)| ≤
K1(α)
K2

0(α)
N5∥Y(t) − Ȳ(t)∥,

|(F6Vh)(t) − (F6V∗h)(t)| ≤
K1(α)
K2

0(α)
N6∥Y(t) − Ȳ(t)∥,

|(F7S r)(t) − (F7S ∗r )(t)| ≤
K1(α)
K2

0(α)
N7∥Y(t) − Ȳ(t)∥,

|(F8Er)(t) − (F8E∗r )(t)| ≤
K1(α)
K2

0(α)
N8∥Y(t) − Ȳ(t)∥,

|(F9Ir)(t) − (F9I∗r )(t)| ≤
K1(α)
K2

0(α)
N9∥Y(t) − Ȳ(t)∥.
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Since F = (F1,F2,F3,F4,F5,F6,F7,F8,F9) and Nmax > 0, then

∥F (S h, Eh, Ih,Qh,Rh, S r, Er, Ir) − F (S ∗h, E
∗
h, I
∗
h,Q

∗
h,R

∗
h, S

∗
r , E

∗
r , I
∗
r )∥ ≤

K1(α)
K2

0(α)
Nmax∥Y(t) − Ȳ(t)∥.

Under the assumption (5.12), we can conclude that F is a contraction. Then, we get F has a unique
fixed point. Therefore, the CPC-MPOX model (3.2) has a unique solution. □

Next, we investigate some sufficient criteria of the Ulam’s stability for the CPC-MPOXmodel (3.2).
The definitions of these types and some necessary remarks are provided below.

Assume that κFY > 0 is a constant and PFY ∈ C([0,T ],R+). The inequalities are given:∣∣∣CPCDα0,tY(t) − F(t,Y(t))
∣∣∣ ≤ κFY , (5.13)∣∣∣CPCDα0,tY(t) − F(t,Y(t))
∣∣∣ ≤ κFYPFY(t), (5.14)∣∣∣CPCDα0,tY(t) − F(t,Y(t))
∣∣∣ ≤ PFY(t), (5.15)

where t ∈ [0,T ] and κFY = max (κFY j
)T , for j = 1, 2, . . . , 9.

Definition 5.2. The CPC-MPOX model (3.2) is called UH stable if there exists a constant ΦFY > 0
such that for every κFY > 0 and each solution ZY ∈ X of (5.13), there exist a solution Y ∈ X of (3.2)
with

|ZY(t) − Y(t)| ≤ ΦFYκFY , (5.16)

where t ∈ [0,T ] and ΦFY = max (ΦFYi
)T , i = 1, 2, . . . , 9.

Definition 5.3. The CPC-MPOX model (3.2) is called generalized UH stable if there exists a function
PFY ∈ C([0,T ],R+), with PFY(0) = 0 so that for κFY > 0 and for each solution ZY ∈ X of (5.14), there
exist a solution Y ∈ X of (3.2) with

|ZY(t) − Y(t)| ≤ PFY(κFY), (5.17)

where t ∈ [0,T ], and PFY = max (PFY)T , i = 1, 2, . . . , 9.

Definition 5.4. The CPC-MPOX model (3.2) is called UHR stable with respect to PFY ∈ C([0,T ],R+)
if there exists a number ΩFY > 0 so that for every κFY > 0 and for each solution ZY ∈ X of (5.15), there
exists a solution Y ∈ X of (3.2) with

|ZY(t) − Y(t)| ≤ ΩFYκFYPFY(t), (5.18)

where t ∈ [0,T ],ΩFY = max (ΩFYi
)T , and PFY = max (PFY i

)T , i = 1, 2, . . . , 9.

Definition 5.5. The CPC-MPOX model (3.2) is called generalized UHR stable with respect to PFY ∈
C([0,T ],R+) if there exists a number ΩFY > 0 so that for each solution ZY ∈ X of (5.15), there exists
a solution Y ∈ X of (3.2) with

|ZY(t) − Y(t)| ≤ ΩFYPFY(t), (5.19)

where t ∈ [0,T ],ΩFY = max (ΩFYi
)T , and PFY = max (PFY i

)T , i = 1, 2, . . . , 9.

Remark 5.6. ZY ∈ X is the solution of (5.13), if and only if, there is χY(0) = 0 satisfied |χY(t)| ≤ κGY ,
χY = max (χYi)

T , i = 1, 2, . . . , 9, κFY > 0, and CPCDα0,tY(t) = F(t,Y(t)) + χY(t).
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Remark 5.7. ZY ∈ X is the solution of (5.14), if and only if, there is ψY ∈ X satisfied |ψY(t)| ≤
κFYPFY(t), ψY = max (ψYi)

T , PFY = max (PFYi
)T , i = 1, 2, . . . , 9, and CPCDα0,tY(t) = F(t,Y(t)) + ψY(t).

Lemma 5.8. Assume that ZY ∈ X is a solution of (5.13), then∣∣∣∣∣∣∣∣ZY(t) − ZY0 −
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

∣∣∣∣∣∣∣∣ ≤ κFYK1(α)

(K0(α))2 . (5.20)

Proof. Let ZY be the solution of (5.13). From Remark (5.6), we have CPC
D
α
0,tZ(t) = F(t,Z(t)) + χY(t),

ZY(0) = ZY0 ≥ 0.
(5.21)

Thus, the solution to (5.21) is provided below:

ZY(t) = ZY0 +
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

+
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
χY(s)ds.

Therefore, ∣∣∣∣∣∣∣∣ZY(t) − ZY0 −
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

∣∣∣∣∣∣∣∣
≤

1
K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
χY(s)ds ≤

K1(α)
(K0(α))2 κFY .

The proof is completed. □

Theorem 5.9. Assume the conditions in Theorem 5.1 and Lemma 5.8 are satisfied, then the CPC-
MPOX model (3.2) is UH stable.

Proof. Assume that κFY ∈ R
+ and ZY is a solution of (5.13). Let Y ∈ X be a unique solution of (3.2),

then

|ZY(t) − Y(t)| ≤

∣∣∣∣∣∣∣∣ZY(t) − ZY0 −
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

∣∣∣∣∣∣∣∣
+

1
K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
|F(s,ZY(s)) − F(s,Y(t))| ds

≤
K1(α)

(K0(α))2

(
κFY +Nmax |ZY(t) − Y(t)|

)
.
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Setting

ΦFY :=
K1(α)

(K0(α))2

(
1 −

K1(α)
(K0(α))2Nmax

)−1

,

this yields that |ZY(t) − Y(t)| ≤ ΦFYκFY . Hence, by Definition 5.2, the CPC-MPOX model (3.2) is UH
stable. □

Corollary 5.10. Setting PFY(κFY) = ΦFYκFY with PFY(0) = 0 in Theorem 5.9, by Definition 5.3, the
CPC-MPOX model (3.2) is UH stable.

The following conditions are necessary to prove the UHR and generalized UHR stability.

(D1) There is an increasing function PFY ∈ C([0,T ],R+) and a number λFY > 0, so that

CPCIα0 PFY(t) ≤ λFYPFY(t).

Lemma 5.11. Let ZY ∈ X be the solution of (5.15), then∣∣∣∣∣∣∣∣ZY(t) − ZY0 −
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

∣∣∣∣∣∣∣∣ ≤ κFYλFYPFY(t). (5.22)

Proof. Let ZY ∈ X be a solution of (5.15). Applying Remark 5.7, we obtain CPC
D
α
0,tZ(t) = F(t,Z(t)) + ψY(t),

ZY(0) = ZY0 ≥ 0.
(5.23)

Hence, a solution of (5.23) is provided below:

ZY(t) = ZY0 +
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

+
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
ψY(s)ds.

Since, ∣∣∣∣∣∣∣∣ZY(t) − ZY0 −
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

∣∣∣∣∣∣∣∣
≤

1
K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
|ψY(s)| ds ≤ κFYλFYPFY(t),

then, the inequality (5.22) is achieved. □

Theorem 5.12. Assume the conditions in Theorem 5.1 and Lemma 5.11 are satisfied, then the CPC-
MPOX model (3.2) is UHR stable.
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Proof. Let κFY ∈ R
+ and ZY be the solution of (5.15). Suppose that Y ∈ X is a unique solution of the

CPC-MPOX model (3.2), then

|ZY(t) − Y(t)| ≤

∣∣∣∣∣∣∣∣ZY(t) − ZY0 −
1

K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
F(s,ZY(s))ds

∣∣∣∣∣∣∣∣
+

1
K0(α)

t∫
0

(t − s)α−1E1,α

(
−

K1(α)
K0(α)

(t − s)
)
|F(s,ZY(s)) − F(s,Y(t))| ds

≤ κFYλFYPFY(t) +
K1(α)

(K0(α))2Nmax |ZY(t) − Y(t)| .

Setting
ΦGY := λGY

(
1 − K1(α)

(K0(α))2Mmax

)−1
,

this yields that |ZY(t) − Y(t)| ≤ ΦFYκFYPFY(t). Hence, by Definition 5.4, the CPC-MPOX model (3.2)
is UHR stable. □

Corollary 5.13. Setting κGY = 1 in Theorem 5.12, by Definition 5.5, the CPC-MPOX model (3.2) is
UHR stable.

6. Numerical algorithm

This section derives the numerical schemes for solving the approximated solution of the CPC-
MPOX model (3.2) by utilizing the decomposition technique for the CPC derivative operator. Next,
we create an approximation design for the CPC derivative operator via α ∈ (0, 1] of a function f (t). We
will make a sequence of N+1 equations under N+1 conditions for the fractional Cauchy problem in the
context of CPC derivative operator [47]. A sequence ( fN) of the solutions to such systems eventually
leads to the solution of the obtained problem.

Theorem 6.1. Assume that N is a positive number and f ∈ AC2([0,T ],R). Let

AN =

N∑
i=0

Γ (i + α − 1)
i!Γ(2 − α)Γ (α − 1)

, BN,i =
Γ (i + α − 1)

(i − 1)!Γ(2 − α)Γ (α − 1)
, (6.1)

Vi : [0,T ]→ R be functions defined by

Vi(t) =
∫ t

0
si−1

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds. (6.2)

Then,

CPC
D
α
0,t f (t) =

AN

tα−1

[
Qα (1 − α) f (t) + αQ1−αC2α f ′(t)

]
−

N∑
i=1

t1−α−iBN,iVi(t) + Etr(t), (6.3)

where lim
N→∞
Etr(t) = 0 for t ∈ [0,T ].
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Proof. Using Definition 2.3 and K1(α) = Qα (1 − α), K0(α) = αQ1−αC2α, α ∈ (0, 1], we have

CPC
D
α
0,t f (t) =

1
Γ(1 − α)

∫ t

0

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
(t − s)−αds.

Let u = Qα (1 − α) f (s) + αQ1−αC2α f ′(s) and dv = (t − s)−αds. Using the integrating by part
technique, yields that

CPC
D
α
0,t f (t) =

t1−α

Γ(2 − α)

[
Qα (1 − α) f (0) + αQ1−αC2α f ′(0)

]
+

1
Γ(2 − α)

∫ t

0
(t − s)−α+1 d

ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds. (6.4)

Applying the generalized binomial theorem, it follows that

(t − s)1−α = (t − a)1−α
(
1 −

s − a
t − a

)1−α
= (t − a)1−α

∞∑
i=0

Γ (i + α − 1)
Γ (α − 1) i!

( s − a
t − a

)i
. (6.5)

Plugging (6.5) into (6.4), it follows that

CPC
D
α
0,t f (t)

= Etr(t) +
t1−α

Γ(2 − α)

[
Qα (1 − α) f (0) + αQ1−αC2α f ′(0)

]
+

1
Γ(2 − α)

∫ t

0
t1−α

N∑
i=0

Γ (i + α − 1)
Γ (α − 1) i!

( s
t

)i d
ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds,

where

Etr(t) =
1

Γ(2 − α)

∫ t

0
t1−αRN(s)

d
ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds, (6.6)

RN(s) =
∞∑

i=N+1

Γ (i + α − 1)
i!Γ (α − 1)

( s
t

)i
.

Hence, by direct calculation, we get

CPC
D
α
0,t f (t) = Etr(t) +

t1−α

Γ(2 − α)

[
Qα (1 − α) f (0) + αQ1−αC2α f ′(0)

]
+

t1−α

Γ(2 − α)

N∑
i=0

Γ (i + α − 1)
Γ (α − 1) i!ti

∫ t

0
si d

ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds

= Etr(t) +
t1−α

Γ(2 − α)

[
Qα (1 − α) f (0) + αQ1−αC2α f ′(0)

]
+

t1−α

Γ(2 − α)

∫ t

0

d
ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds

+
t1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!ti

∫ t

0
si d

ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds
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= Etr(t) +
t1−α

Γ(2 − α)

[
Qα (1 − α) f (t) + αQ1−αC2α f ′(t)

]
+

t1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!ti

∫ t

0
si d

ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds.

Let u = si and dv = d
ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds. Using the integrating by part

technique, it follows that

CPC
D
α
0,t f (t) = Etr(t) +

t1−α

Γ(2 − α)

[
Qα (1 − α) f (t) + αQ1−αC2α f ′(t)

]
+

t1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1) ti

Γ (α − 1) i!ti

[
Qα (1 − α) f (t) + αQ1−αC2α f ′(t)

]
−

t1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!ti

∫ t

0
isi−1

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds

= Etr(t) +
t1−α

Γ(2 − α)

N∑
i=0

Γ (i + α − 1)
Γ (α − 1) i!

[
Qα (1 − α) f (t) + αQ1−αC2α f ′(t)

]
−

t1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!ti

∫ t

0
isi−1

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]
ds.

Now, we show that Etr(t) → 0 as N → ∞ for t ∈ [0,T ], and to show this, we give an upper bound for
the error term. Since Γ(x + α) ∼ Γ(x)xα and s/t < 1,

|RN(s)| =
∞∑

i=N+1

Γ (i + α − 1)
i!

( s
t

)i
≤

∞∑
i=N+1

Γ (i + α − 1)
i!

≤

∞∑
i=N+1

iα−2 ≤

∞∫
N

sα−2ds.

Then,

|RN(s)| ≤
1

N1−α(1 − α)
. (6.7)

Substituting (6.7) into (6.6) with M∗(t) = maxs∈[0,T ]

∣∣∣∣ d
ds

[
Qα (1 − α) f (s) + αQ1−αC2α f ′(s)

]∣∣∣∣ implies the
following upper bound:

|Etr(t)| ≤
t2−αM∗(t)

N1−α(1 − α)Γ(2 − α)
. (6.8)

The righthand side of (6.8) tends to zero for all t ∈ (0,T ) as N → ∞. □

To obtain the numerical approximation of the CPC-MPOX model (3.2), we apply Theorem 6.1.
Then,

CPC
D
α
0,tS h(t) =

AN

tα−1

[
Qα (1 − α) S h(t) + αQ1−αC2αS ′h(t)

]
−

N∑
i=1

t1−α−iBN,iVS hi
(t),

CPC
D
α
0,tEh(t) =

AN

tα−1

[
Qα (1 − α) Eh(t) + αQ1−αC2αE′h(t)

]
−

N∑
i=1

t1−α−iBN,iVEhi
(t),
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CPC
D
α
0,tIh(t) =

AN

tα−1

[
Qα (1 − α) Ih(t) + αQ1−αC2αI′h(t)

]
−

N∑
i=1

t1−α−iBN,iVIhi
(t),

CPC
D
α
0,tCh(t) =

AN

tα−1

[
Qα (1 − α) Ch(t) + αQ1−αC2αC′h(t)

]
−

N∑
i=1

t1−α−iBN,iVChi
(t),

CPC
D
α
0,tRh(t) =

AN

tα−1

[
Qα (1 − α) Rh(t) + αQ1−αC2αR′h(t)

]
−

N∑
i=1

t1−α−iBN,iVRhi
(t),

CPC
D
α
0,tVh(t) =

AN

tα−1

[
Qα (1 − α) Vh(t) + αQ1−αC2αV ′h(t)

]
−

N∑
i=1

t1−α−iBN,iVVhi
(t),

CPC
D
α
0,tS r(t) =

AN

tα−1

[
Qα (1 − α) S r(t) + αQ1−αC2αS ′r(t)

]
−

N∑
i=1

t1−α−iBN,iVS ri
(t),

CPC
D
α
0,tEr(t) =

AN

tα−1

[
Qα (1 − α) Er(t) + αQ1−αC2αE′r(t)

]
−

N∑
i=1

t1−α−iBN,iVEri
(t),

CPC
D
α
0,tIr(t) =

AN

tα−1

[
Qα (1 − α) Ir(t) + αQ1−αC2αI′r(t)

]
−

N∑
i=1

t1−α−iBN,iVIri
(t),

and

VS hi
(t) =

∫ t

0
si−1

[
Qα (1 − α) S h(s) + αQ1−αC2αS ′h(s)

]
ds,

VEhi
(t) =

∫ t

0
si−1

[
Qα (1 − α) Eh(s) + αQ1−αC2αE′h(s)

]
ds,

VIhi
(t) =

∫ t

0
si−1

[
Qα (1 − α) Ih(s) + αQ1−αC2αI′h(s)

]
ds,

VChi
(t) =

∫ t

0
si−1

[
Qα (1 − α) Ch(s) + αQ1−αC2αC′h(s)

]
ds,

VRhi
(t) =

∫ t

0
si−1

[
Qα (1 − α) Rh(s) + αQ1−αC2αR′h(s)

]
ds,

VVhi
(t) =

∫ t

0
si−1

[
Qα (1 − α) Vh(s) + αQ1−αC2αV ′h(s)

]
ds,

VS ri
(t) =

∫ t

0
si−1

[
Qα (1 − α) S r(s) + αQ1−αC2αS ′r(s)

]
ds,

VEri
(t) =

∫ t

0
si−1

[
Qα (1 − α) Er(s) + αQ1−αC2αE′r(s)

]
ds,

VIri
(t) =

∫ t

0
si−1

[
Qα (1 − α) Ir(s) + αQ1−αC2αI′r(s)

]
ds,

where AN and BN,i are given by (6.1) under the conditions

V′S hi
(t) = ti−1

[
Qα (1 − α) S h(t) + αQ1−αC2αS ′h(t)

]
, V′S hi

(0) = 0, i = 1, . . . ,N,
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V′Ehi
(t) = ti−1

[
Qα (1 − α) Eh(t) + αQ1−αC2αE′h(t)

]
, V′Ehi

(0) = 0, i = 1, . . . ,N,

V′Ihi
(t) = ti−1

[
Qα (1 − α) Ih(t) + αQ1−αC2αI′h(t)

]
, V′Ihi

(0) = 0, i = 1, . . . ,N,

V′Chi
(t) = ti−1

[
Qα (1 − α) Ch(t) + αQ1−αC2αC′h(t)

]
, V′Chi

(0) = 0, i = 1, . . . ,N,

V′Rhi
(t) = ti−1

[
Qα (1 − α) Rh(t) + αQ1−αC2αR′h(t)

]
, V′Rhi

(0) = 0, i = 1, . . . ,N,

V′Vhi
(t) = ti−1

[
Qα (1 − α) Vh(t) + αQ1−αC2αV ′h(t)

]
, V′Vhi

(0) = 0, i = 1, . . . ,N,

V′S ri
(t) = ti−1

[
Qα (1 − α) S r(t) + αQ1−αC2αS ′r(t)

]
, V′S ri

(0) = 0, i = 1, . . . ,N,

V′Eri
(t) = ti−1

[
Qα (1 − α) Er(t) + αQ1−αC2αE′r(t)

]
, V′Eri

(0) = 0, i = 1, . . . ,N,

V′Iri
(t) = ti−1

[
Qα (1 − α) Ir(t) + αQ1−αC2αI′r(t)

]
, V′Iri

(0) = 0, i = 1, . . . ,N.

7. Results and discussion

This section uses the numerical algorithm from the previous section to obtain the numerical
solutions of the CPC-MPOX model (3.2). The values of the basic parameters are listed as in Table 2
with the initial condition: S h(0) = 3.4× 108, Eh(0) = 1000, Ih(0) = 100, Ch(0) = 100, Rh(0) = 1× 106,
Vh(0) = 1 × 106, S r(0) = 9 × 104, Er(0) = 100, and Ir(0) = 100. From the given data, we obtain
R0 = 1.5379 × 104 > 1, ϵ1 = 1.42043, ϵ2 = 0.69421, ϵ3 = 0.13750, ϵ4 = 0.01003, ϵ5 = 0.00018, ϵ6 =

9.32369 × 10−9, ϵ7 = 1.03004 × 10−13, h1 = 0.59741, h2 = 0.00990, h3 = 9.32362 × 10−9, g1 =

0.11395, g2 = 0.00018, g3 = 1.03004 × 10−13, d1 = 0.00896, d2 = 9.32308 × 10−9, e1 = 0.00018, e2 =

1.03004 × 10−13, f1 = 9.31797 × 10−9. Consequently, these calculated values satisfy the conditions
(i)–(vii) in Theorem 4.5. Thus, the endemic equilibrium point is locally asymptotically stable.

Table 2. The values of parameter used for the simulations of the CPC-MPOX model (3.2).

Parameter Value in days Source Parameter Value in days Source
Λh 11731.91 [55] ω 0.4670 [40]
Λr 0.016 [9] ν 0.0843 [40]
b1 0.5701 [40] µh 1/(79 × 365) [55]
b2 0.2508 [40] µr 0.000016 [9]
b3 0.2461 [40] λ 0.2393 [40]
a1 0.0486 [40] η 0.201 [40]
a2 0.1119 [40] δ1 0.0011 [40]
a3 0.1053 [40] δ2 0.00010091 [40]

Here, Figure 2 shows the numerical solutions for the classical MPOX model (3.1) of each group
of human and rodent populations, while Figure 3 expresses the numerical solutions utilizing the CPC
fractional operator for the CPC-MPOX model (3.2) with varies α = 0.995, 0.985, 0.975, 0.965, 0.955.
As shown in both of the mentioned figures, the findings demonstrate that the fractional order model
follows the same trend as the traditional model but is more flexible and has a higher degree of freedom.
At larger fractional orders, increasing and decreasing behavior converges to the classical model more
quickly than small fractional orders. Furthermore, from Figure 3 observation, a slight adjustment in the
fractional order αwas found to cause only a minor change in the behavior. This indicates that variations
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in the fractional order have a negligible impact on the stability of the disease dynamics across different
groups within the proposed model. In addition, the simulation takes place over a 500-day period. Under
certain conditions, solution trajectories in all population groups reach the steady-state for all various
values of α as time passes. Figure 2a and Figure 3a indicate the behavior of the susceptible humans.
It is observed that the amount of them decreases rapidly in a short time in the beginning and tends to
a steady-state as time tends to infinity. Figure 2b, Figure 3b, Figure 2c, Figure 3c, Figure 2d, Figure
3d, Figure 2i, and Figure 3i indicate the behavior of the exposed, infectious, clinically ill humans,
and the infected rodents, respectively. We can see that the populations of each group are quite similar
in order to gradually increase before reaching a steady state as time passes. Figure 2e and Figure 3e
indicate the behavior of the recovered humans, and we extended the period to 5000 days for trend
clearly observation. We found that the behavior of this group is increasing and tends to the steady state
in the end. The behavior of the vaccinated humans is shown in Figure 2f and Figure 3f, demonstrating
rapid population growth in a very short time and then reaching the equilibrium point. The behavior of
the susceptible rodents drops initially before tending to a steady state, as seen in Figure 2g and Figure
3g. While Figure 2h and Figure 3h indicate the behavior of the exposed rodents, the population climbs
to a peak and then falls until reaching a stable state.

Additionally, we place greater emphasis on examining the influence of the immunity-induced
recovery rate ω on the dynamics of three human compartments regarding theMPOX infection, which
are exposed, infectious, and clinically ill individuals. The parameter representing the recovery rate is
varied with the following values: 0.4670 (baseline from Table 2), 0.5137 (10% increase), 0.5604 (20%
increase), 0.6538 (40% increase), and 0.8406 (80% increase) under vary α = 1, 0.9 and 0.8 as seen in
Figures 4–6, respectively. These graphs present two significant observations. First, an increase in ω
levels corresponds to a clear reduction in the amount of infected individuals across all groups. Second,
lower α values lead to a slightly faster decline in the amount of infected humans.

Similarly, investigating the impact of the contact rates between infected individuals or infected
rodents on exposed, infected, and clinically ill humans is also highly significant. In this context, the
parameter value for the contact rate of infected individuals with the susceptible population is utilized
as follows: 0.5701 (baseline from Table 2), 0.62711 (10% increase), 0.68412 (20% increase), 0.79814
(40% increase), and 0.91216 (60% increase). The contact rate of infected rodents with the susceptible
population is utilized as follows: 0.2508 (baseline from Table 2), 0.27588 (10% increase), 0.30096
(20% increase), 0.35112 (40% increase), and 0.40128 (60% increase). Figures 7–9 demonstrate the
impact of varying contact rate parameters b1 and b2 under different values of α: 1, 0.9, and 0.8,
respectively. The graphs indicate that the contact rate substantially influences the population sizes of
the respective groups. An increase in the contact rate leads to a corresponding increase in the amount
of individuals in the groups mentioned. Besides, a reduction in the value of α leads to a slightly faster
decline in the population sizes of all groups.

Therefore, based on all of the simulations above in various scenarios, we found a key finding that
the fractional order or the memory index, the immunity-induced recovery rate, and the contact rates
between infected individuals or infected rodents are factors that play an important role in determining
whether monkeypox infection levels increase or decrease in the human population. These parameters
can serve as control measures for monkeypox transmission.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Simulations of S h(t), Eh(t), Ih(t), Ch(t), Rh(t), Vh(t), S r(t), Er(t), and Ir(t) of the
CPC-MPOX model (3.2).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Simulations of S h(t), Eh(t), Ih(t), Ch(t), Rh(t), Vh(t), S r(t), Er(t), and Ir(t) of the
CPC-MPX model (3.2) when α ∈ {0.995, 0.985, 0.975, 0.965, 0.955}.
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Figure 4. Impact of recovery rate ω when α = 1.00.

AIMS Mathematics Volume 10, Issue 2, 4000–4039.



4029

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
10

5

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
10

4

(b)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4
10

4

(c)

Figure 5. Effect of recovery rate ω when α = 0.90.
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Figure 6. Effect of recovery rate ω when α = 0.80.
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Figure 7. Effect of infected contact rates b1 and b2 when α = 1.00.
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Figure 8. Effect of infected contact rates b1 and b2 when α = 0.9.
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Figure 9. Effect of infected contact rates b1 and b2 when α = 0.8.
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8. Conclusions

This study presented a CPC fractional derivative model for the spread of the monkeypox virus,
accounting for interactions between humans and rodents. The model was developed to analyze system
behavior and identify parameters that can help control the disease. For the theoretical part, we
proved the positiveness and boundedness of solutions and examined the equilibrium points and the
basic reproduction number. We investigated the local asymptotically stable steady state. We verified
the qualitative results of the suggested model, including the existence and uniqueness results, using
the Banach contraction mapping principle. Various Ulam’s stability was demonstrated to ensure
the existing solutions. The exactness of the theoretical guarantee is confirmed via the numerical
simulations in all diagrams utilizing a decomposition formula for a constant proportional Caputo
derivative. For the numerical and graphical parts, the graphical results highlight the key advantage
of our proposed CPC-MPOX model. It proves to be more realistic and practical than the traditional
model, and its flexibility enhances precision, enabling us to achieve superior outcomes compared to the
classical approach. Using the value of the parameters in Table 2, it was shown by numeric calculation
that R0 > 1 and all conditions of Routh-Hurwitz criteria are satisfied. Hence, we concluded that the
endemic equilibrium point is locally asymptotically stable, which supports Theorem 4.5. Furthermore,
the suggested model is shown by rising the value parameters of the recovery rate due to immunity
and the contact rates of susceptible humans with infected humans and infected rodents at various
levels and different fractional orders to analyze the effect in population dynamics influenced by the
spread of MPOX via graphical simulation. The study demonstrated that the factors in our case can
be incorporated into the control mechanisms of monkeypox transmission. These findings may offer
valuable insights into the prevention and control ofMPOX outbreaks in the future.

For future work, applying the CPC derivatives operator to study and analyze other epidemic models
in real-world situations can be a proper alternative technique. On the other hand, other fractional
operators, such as piece-wise and stochastic operators, can be considered forMPOX virus transmission
to investigate real-world situations more realistically.
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