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1. Introduction

The study of epidemic models has gained increasing importance due to the rising frequency and
impact of infectious diseases on global health. These models provide essential frameworks for
understanding disease spread and devising effective control strategies. Among these, the
susceptible-vaccinated-infectious-recovered (S V I R) model plays a crucial role in analyzing
diseases where vaccination is a key factor in mitigating outbreaks.

Traditional deterministic epidemic models assume homogeneous populations and predictable
disease spread. However, real-world epidemics exhibit significant randomness due to environmental
fluctuations, human behavior, and uncertainties in vaccination coverage. To address these
complexities, researchers have incorporated stochasticity into epidemic models, leading to more
realistic predictions. Recent advancements in stochastic S V I R models have explored various
aspects, including optimal vaccination strategies, the influence of media on disease spread, and the
impact of different types of noise [1–3].

In this work, we focus on a stochastic S V I R model that accounts for non-constant population
sizes and random fluctuations in transmission and vaccination rates. By integrating stochastic
elements into key parameters, we aim to capture the inherent randomness of real-world epidemics.
Our numerical analyses highlight how vaccination strategies can effectively control disease spread,
even under unpredictable disturbances. These findings contribute to understanding the interplay
between stochastic influences, vaccination, and population dynamics, offering valuable insights for
epidemic control and management [4].

Building upon previous research, including the foundational works of Allen [5], Brauer [6], Gray et
al., Rozhnova et al., and Witbooi [7–9], we examine how noise and other stochastic factors affect the
long-term behavior of S V I R models.

This study addresses these gaps by developing a stochastic S V I R model that incorporates
environmental white noise, capturing the inherent variability in epidemic dynamics. Unlike previous
studies, the model explicitly accounts for random fluctuations in both disease transmission and
vaccination rates while considering a dynamic population size. This approach provides a more
comprehensive framework to evaluate the interplay between stochasticity, vaccination strategies, and
population dynamics, ultimately advancing the field of stochastic epidemic modeling.

This study builds on the work of Joko Harianto and Titik Suparwati, who initially developed an
S V I R model to assess the effectiveness of various vaccination strategies [10]. They structured the
model into four distinct compartments: St for susceptible individuals, Vt for vaccinated individuals,
It for infected individuals, and Rt for recovered individuals.

In our model, we define β as the transmission rate necessary for disease spread and assume a
constant recovery rate denoted by γ. The rate at which susceptible individuals are vaccinated is
represented by α, while disease-induced mortality is captured by ω. The natural mortality rates,
which are unrelated to the disease, are given as µ1 for the susceptible group, µ2 for the vaccinated, µ3

for the infected, and µ4 for the recovered individuals. Newborns are added to the susceptible class at a
constant rate µ, ensuring a continuous supply of individuals who can potentially contract the disease.

Furthermore, γ1 represents the rate at which susceptible individuals acquire immunity and transition
into the recovered compartment. The model assumes that immunity gained through vaccination is long-
lasting and equivalent to natural immunity. However, vaccinated individuals may still be susceptible to
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infection, albeit at a reduced rate β1, reflecting partial immunity or lower effective contact with infected
individuals. This comprehensive model is formulated as follows [10]:

d
dt


S
V
I
R

 =


µ −S (µ1 + βI + α)
αS − V (β1I + γ1 + µ2)

I (βS + β1V ) −I (γ + µ3 + ω)
γ1V + γI − µ4R

 . (1.1)

We begin our analysis with the following initial conditions: S0 > 0, V0 > 0, I0 > 0, and R0 >

0. These initial values represent the population sizes for the susceptible, vaccinated, infected, and
recovered groups, respectively, at the initial time point t = 0, reflecting the population’s status at the
start of the observational period.

Importantly, the initial population satisfies the relation:

S0 + V0 +I0 +R0 = N , (1.2)

where N represents the total population size, ensuring that all individuals in the population are
accounted for. In the deterministic S V I R model, the total population remains constant as births
and deaths balance out. However, in the stochastic version, the total population may decrease over
time due to the influence of stochastic perturbations.

To maintain biological plausibility and consistency, all model parameters are assumed to be strictly
positive. This assumption prevents biologically unrealistic values and ensures the system remains
well-defined.

Following the theoretical framework outlined in [10], the system exhibits key properties that
govern disease transmission dynamics over time. While the total population remains constant in the
deterministic setting, the distribution of individuals among the compartments evolves dynamically
based on the model’s parameters.

By ensuring that all parameters are strictly positive and that the population distribution is
comprehensive, the model remains consistent with real-world epidemiological scenarios. This
approach allows for an accurate representation of disease spread and the impact of intervention
strategies.

• The disease-free equilibrium, denoted as E0 = (S0,V0,I0,R0), is given by:

E0 =

(
µ

α + µ1
,

αµ

(α + µ1)(γ1 + µ2)
, 0,

γ1αµ

µ4(α + µ1)(γ1 + µ2)

)
.

This equilibrium exists and is globally asymptotically stable if the basic reproduction number R0

satisfies the condition:

R0 =
βµ

(α + µ1)(µ3 + γ + ω)
+

β1αµ

(α + µ1)(µ3 + γ + ω)(γ1 + µ2)
≤ 1.

• If the basic reproduction number R0 is less than or equal to one (R0 ≤ 1), the system stabilizes at
a disease-free equilibrium. In this case, the infection cannot sustain itself within the population
and eventually dies out. When R0 ≤ 1, any initial outbreak will dissipate over time as the number
of infected individuals declines to zero.
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Conversely, if R0 exceeds one (R0 > 1), the system’s dynamics change significantly. The model
then predicts the existence of an endemic equilibrium, where the disease persists in the population
at a stable level. This means that the infection will not be eradicated but will remain within the
population over time. The infected compartment, represented by I , will only maintain a non-
zero value when the condition R0 > 1 holds. Therefore, the establishment of an endemic state is
directly linked to this threshold, mathematically represented as follows:

E + =
(
S +,V +,I +,R+

)
=

(
µ

α + µ1 + βI +
,

αµ

(α + µ1 + βI +)(γ1 + µ2 + β1I +)
,I +,

γ1V + + γI +

µ4

)
where I + is the positive root of θ(I ) = O1I 2 + O2I + O3(1 − R0), where:

• O1 = (µ3 + γ + ω)β1β > 0,
• O2 = (µ3 + γ + ω)

[
(α + µ1)β1 + (γ1 + µ2)β

]
− β1βµ,

• O3 = (µ3 + γ + ω)(α + µ)(γ1 + µ) > 0.

Environmental factors significantly impact biomathematical models in real-world scenarios, as
evidenced by recent studies [11, 12]. To accurately capture the dynamics of epidemics within such
unpredictable environments, it is essential to employ stochastic differential equations. Recent
literature has extensively explored epidemic models influenced by environmental white noise [13–15].

This paper aims to elucidate the effects of white noise on epidemic dynamics by analyzing a
stochastic S V I R model. We hypothesize that stochastic white noise directly influences the
compartments St, Vt, It, and Rt, as explored in [16, 17]. Building on this perspective, we develop
and analyze the following stochastic S V I R model by introducing perturbations in the parameters
α and γ.

While the deterministic model offers valuable insights, it does not capture the randomness inherent
in real-world epidemic scenarios. To address this, we introduce stochastic elements into the
transmission and vaccination processes by perturbing the parameters α → α + σ1 dB1 and
γ → γ + σ2 dB2, resulting in:

dS = (µ − µ1S − βS I − αS )dt − σ1S dB1,

dV = (αS − β1V I − γ1V − µ2V )dt + σ1S dB1,

dI = (βS I + β1V I − γI − µ3I − ωI )dt − σ2I dB2,

dR = (γ1V + γI − µ4R)dt + σ2I dB2.

(1.3)

Within our stochastic S V I R model, the terms B1(t) and B2(t) represent independent standard
Brownian motion processes. These stochastic processes are essential components of the model,
introducing randomness into the system and allowing us to simulate the unpredictable fluctuations
that occur in real-world epidemic dynamics. The independence of B1(t) and B2(t) ensures that the
random influences they represent do not correlate, thereby accurately capturing the inherent
variability in both disease transmission and vaccination rates.

The coefficients σ2
1 and σ2

2 represent the variances of the stochastic perturbations associated with α
and γ, respectively. Specifically, σ2

1 corresponds to the variance of the noise affecting the vaccination
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rate α, while σ2
2 pertains to the variance of the noise influencing the recovery rate γ. These variances

determine the intensity of the stochastic fluctuations: higher values imply a greater degree of
randomness within the system.

Introducing stochastic perturbations into epidemiological models allows for a more nuanced
representation of disease dynamics. These perturbations account for random environmental factors
and inherent variability that traditional deterministic models may overlook. By incorporating
stochastic elements, the model better reflects real-world complexities, such as unexpected fluctuations
in disease spread due to environmental changes, social behaviors, or other unpredictable influences.
This approach ensures that the model not only captures the average behavior of an epidemic but also
the potential deviations from expected outcomes, providing a more comprehensive and realistic
understanding of disease progression [18, 19].

The methodology we adopt in this study involves the development of novel Lyapunov functions
and the construction of a rectangular set, both designed to be independent of the positive equilibrium
E + found in the deterministic counterpart of the model. This independence is crucial for accurately
analyzing the stability and long-term behavior of the system under stochastic influences [20, 21].

In epidemiological studies, it is well-recognized that many infectious diseases exhibit temporal
variations that often correspond with seasonal changes. These variations significantly impact the spread
and intensity of epidemics, making it essential to incorporate time-periodic coefficients into the analysis
of disease dynamics. The inclusion of these periodic factors aligns the model more closely with real-
world scenarios, where disease incidence may rise and fall cyclically due to factors such as temperature
changes, population movements, or seasonal human activities [22–24].

In this study, we work within the framework of a complete probability space, which we denote by
(Ω,F , {Ft}t≥0,P). This probability space is structured to include a filtration {Ft}t≥0 that satisfies the
standard assumptions typically required in stochastic processes, such as being right-continuous and
containing all P-null sets. These conditions are essential for ensuring that the filtration appropriately
models the flow of information over time, which is critical for the analysis of stochastic dynamics in
the model.

Let R+ = [0,∞) be the non-negative real line, and R4
+ = {(ℏ1, ℏ2, ℏ3, ℏ4) ∈ R4 : ℏi > 0, i = 1, 2, 3, 4}

represents the positive orthant in four-dimensional space.
For an integrable function ℓ(t) over the interval [0,∞), we define its time-averaged value as ⟨ℓ⟩t =

1
t

∫ t

0
ℓ(s) ds. When dealing with a bounded function ℓ(t) defined on [0,∞), we use the notations ℓ̂ =

inft∈[0,∞) ℓ(t) and ℓ̌ = supt∈[0,∞) ℓ(t) to indicate its essential infimum and supremum, respectively.
We now present the following theorem, which establishes the existence and uniqueness of positive

solutions for the proposed dynamical system.

Theorem 1.1. Assume that the stochastic system described by Eq (1.3) has an initial condition
(S0,V0,I0,R0) ∈ R4

+. Then, for all t ≥ 0, the system admits a unique and positive solution
(St,Vt,It,Rt) ∈ R4

+ almost surely.
Moreover, the solution (St,Vt,It,Rt) satisfies the following long-term properties:

lim
t→∞

St

t
= 0, lim

t→∞

Vt

t
= 0, lim

t→∞

It

t
= 0, lim

t→∞

Rt

t
= 0, a.s. (1.4)
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Additionally, the following upper bounds hold:

lim sup
t→∞

log St

t
≤ 0, lim sup

t→∞

log Vt

t
≤ 0, lim sup

t→∞

log It

t
≤ 0, lim sup

t→∞

log Rt

t
≤ 0, a.s. (1.5)

Furthermore, if µ(t) satisfies the condition

µ(t) >
σ2

1(t) ∨ σ2
2(t)

2
, (1.6)

then the following limits hold:

lim
t→∞

1
t

∫ t

0
S (r) dB1(r) = 0, lim

t→∞

1
t

∫ t

0
I (r) dB2(r) = 0, a.s. (1.7)

The proof of Theorem (1.1) follows a methodology similar to that used in Theorem 2.1 [18] and is
supported by Lemmas 2.1 and 2.2 in [25]. As the reasoning is analogous, we will not reproduce the
full details of the proof here.

2. Disease extinction and long-term persistence

This section delves into the conditions that determine whether the disease It will die out (extinction)
or continue to persist over time. We begin by establishing a theorem that provides the conditions under
which the disease will go extinct.

Theorem 2.1. Let the parameter µ be such that µ > max
(
σ2

1
2 ,
σ2

2
2

)
. Consider a solution (St,Vt,It,Rt)

to the system given by Eq (1.3), where the initial values (S0,V0,I0,R0) are within the positive
orthant R4

+. Let us consider that the basic reproduction number, denoted as R∗0, is characterized by the
following expression:

R
∗
0 :=

βµ

(µ1 + α)(µ3 + γ + ω +
σ2

2
2 )
+

β1µ

µ2(µ3 + γ + ω +
σ2

2
2 )
,

and further suppose that this quantity satisfies the condition

R
∗
0 < 1.

Under these assumptions, the solution (St,Vt,It,Rt) satisfies the following asymptotic behavior:

lim sup
t→∞

log It

t
≤ (µ3 + γ + ω +

σ2
2

2
)(R∗0 − 1) < 0, almost surely.

This result indicates that the disease will eventually die out with probability one.

Proof. We start by analyzing the first equation in the system described by Eq (1.3). This equation gives
the dynamics of the susceptible population St. Dividing the equation by t and rearranging terms, we
have

St −S0

t
= µ − µ1⟨S ⟩t − β⟨S I ⟩t − α⟨S ⟩t −

σ1

t

∫ t

0
S (r)dB1(r).
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Next, we solve for ⟨S ⟩t explicitly:

µ − µ1⟨S ⟩t − α⟨S ⟩t − β⟨S I ⟩t −
σ1

t

∫ t

0
S (r)dB1(r) =

St −S0

t
.

Rearranging this equatio n yields

µ = (µ1 + α)⟨S ⟩t + β⟨S I ⟩t +
St −S0

t
+
σ1

t

∫ t

0
S (r)dB1(r).

Thus, solving for ⟨S ⟩t gives

⟨S ⟩t =
µ

µ1 + α
−
β

µ1 + α
⟨S I ⟩t − ð1(t),

where the term ð1(t) is defined as

ð1(t) =
1

µ1 + α

(
σ1

t

∫ t

0
S (r)dB1(r) +

St −S0

t

)
.

Utilizing the strong law of large numbers applicable to martingales, along with the fundamental
characteristics of stochastic integrals, it can be established that the stochastic component converges to
zero as t → ∞. Therefore, we conclude that

lim
t→∞
ð1(t) = 0, almost surely.

This leads to the following upper bound for ⟨S ⟩t:

lim sup
t→∞

⟨S ⟩t ≤
µ

µ1 + α
, almost surely. (2.1)

Next, we consider the second equation in the system described by Eq (1.3). This equation gives the
dynamics of the vaccinated population Vt. Dividing the equation by t and rearranging terms, we have

Vt − V0

t
= α⟨S ⟩t − β1⟨V I ⟩t − (γ1 + µ2)⟨V ⟩t +

σ1

t

∫ t

0
S (r)dB1(r),

Next, we solve for ⟨V ⟩t explicitly:

α⟨S ⟩t − β1⟨V I ⟩t − (γ1 + µ2)⟨V ⟩t +
σ1

t

∫ t

0
S (r)dB1(r) =

Vt − V0

t
.

Rearranging this equation yields

(γ1 + µ2)⟨V ⟩t = α⟨S ⟩t − β1⟨V I ⟩t −
Vt − V0

t
+
σ1

t

∫ t

0
S (r)dB1(r).

Thus, solving for ⟨V ⟩t gives

⟨V ⟩t =
α⟨S ⟩t
γ1 + µ2

−
β1

γ1 + µ2
⟨V I ⟩t + ð2(t),
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where the term ð2(t) is defined as

ð2(t) =
1

γ1 + µ2

(
σ1

t

∫ t

0
S (r)dB1(r) −

Vt − V0

t

)
.

Utilizing the strong law of large numbers applicable to martingales, along with the fundamental
characteristics of stochastic integrals, it can be established that the stochastic component converges to
zero as t → ∞. Therefore, we conclude that

lim
t→∞
ð2(t) = 0, almost surely.

This leads to the following upper bound for ⟨V ⟩t:

⟨V ⟩t =
α⟨S ⟩t
γ1 + µ2

−
β1

γ1 + µ2
⟨V I ⟩t.

From (2.1), one can get

lim sup
t→∞

⟨V ⟩t ≤
αµ

(γ1 + µ2)(µ1 + α)
, almost surely. (2.2)

Now, considering the entire system in (1.3), we sum up the differential equations to get the total
population equation:

Rt −R0

t
+

St −S0

t
+

Vt − V0

t
+

It −I0

t
= µ − µ1⟨S ⟩t − µ2⟨V ⟩t − (µ3 + ω)⟨I ⟩t − µ4⟨R⟩t.

This equation can be rearranged as

µ1⟨S ⟩t + µ2⟨V ⟩t + (µ3 + ω)⟨I ⟩t + µ4⟨R⟩t = µ. (2.3)

Next, we apply Ito’s lemma to the third equation of the system (1.3), which governs the dynamics
of the infected population It. This yields

log It − log I0

t
= β⟨S ⟩t + β1⟨V ⟩t − µ3 − γ − ω −

σ2
2

2
+
σ2B2(t)

t
.

By inserting the expression for ⟨V ⟩t provided in Eq (2.3) into the current equation, we obtain the
following result:

log It − log I0

t
=

(
β −
β1µ1

µ2

)
⟨S ⟩t +

β1µ

µ2
− (µ3 + γ + ω +

σ2
2

2
)

−
β1(µ3 + γ)
µ2

⟨I ⟩t −
β1µ4

µ2
⟨R⟩t + ð3(t),

≤
βµ

µ1 + α
+
β1µ

µ2
− (µ3 + γ + ω +

σ2
2

2
) −
β1µ1

µ2
⟨S ⟩t

−
β1(µ3 + γ)
µ2

⟨I ⟩t −
β1µ4

µ2
⟨R⟩t + ð3(t), (2.4)
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where ð3(t) is a term that converges to zero almost surely as t → ∞.

Taking the limit superior of both sides of Eq (2.4), and combining the results from (2.1) and (2.3),
we obtain

lim sup
t→∞

log It

t
≤

(
µ3 + γ + ω +

σ2
2

2

)
(R∗0 − 1), almost surely.

Therefore, if R∗0 < 1, then limt→∞It = 0, almost surely, indicating that the disease will become
extinct with probability one. □

Theorem 2.2. If

R
∗
0 =

βµ

(µ + α + σ2
1/2)(γ + µ3 + ω + σ

2
2/2)

+
β1µα

(µ + α + σ2
1/2)(µ2 + γ1 + σ

2
1/2)(γ + µ3 + ω + σ

2
2/2)

> 1,

then for any initial value (S0,V0,I0,R0) ∈ R4
+, the infected population It of the model has the

property

lim inf
t→∞

⟨I ⟩t ≥
(γ + µ3 + ω + σ

2
2/2)(R∗0 − 1)

(a1 + b1)β + b2β1
, a.s,

where

a1 =
βµ

µ + α + σ2
1/2
, b1 =

β1µα

(µ + α + σ2
1/2)(µ2 + γ1 + σ

2
1/2)
, b2 =

β1µα

(µ + α + σ2
1/2)(µ2 + γ1 + σ

2
1/2)
.

In other words, this result indicates that the disease will continue to spread and persist in the
population if the basic reproduction number R∗0 exceeds the critical threshold of 1. Specifically, when
R∗0 > 1, each infected individual, on average, generates more than one new infection, which leads to
sustained transmission and the continued presence of the disease within the population.

Proof. Set

V(S ,V ,I ,R) = − log I − (a1 + b1) log S − b2 log V − c1 log R,

where positive constants a1, b1, b2, and c1 will be established in subsequent calculations. By utilizing
Ito’s lemma, we derive the following result.

dV = V dt − (a1 + b1)σ1 dB1(t) − b2σ1 dB1(t) − c1σ2 dB2(t) − σ2 dB2(t), (2.5)
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where

LV = L
(
− log I − (a1 + b1) log S − b2 log V − c1 log R

)
= −βS − β1V + γ + µ3 + ω +

σ2
2

2

−
a1µ

S
+ a1

(
µ + α +

σ2
1

2

)
+ a1βI

−
b1µ

S
+ b1

(
µ + α +

σ2
1

2

)
+ b1βI

−
b2αS

V
+ b2β1I + b2

(
µ2 + γ1 +

σ2
1

2

)
−

c1µ4

R
+ c1γ1 + c1γ + c1

σ2
2

2
+ γ + µ3 + ω +

σ2
2

2
+ ((a1 + b1)β + b2β1) I .

Let
a1 =

βµ

µ + α + σ2
1/2
,

b1 =
β1µα

(µ + α + σ2
1/2)(µ2 + γ1 + σ

2
1/2)
,

b2 =
β1µα

(µ + α + σ2
1/2)(µ2 + γ1 + σ

2
1/2)
,

c1 =
γ + µ3 + ω + σ

2
2/2

γ1
.

Then

LV ≤ −
βµ

µ + α + σ2
1/2
−

β1µα

(µ + α + σ2
1/2)(µ2 + γ1 + σ

2
1/2)
+ γ + µ3 + ω +

σ2
2

2
+ ((a1 + b1)β + b2β1)I . (2.6)

This simplifies to

LV ≤ −(γ + µ3 + ω +
σ2

2

2
)(R∗0 − 1) + ((a1 + b1)β + b2β1)I . (2.7)

By replacing the expression given in Eq (2.7) into Eq (2.5), and then performing integration on both
sides of Eq (2.5), we derive the following outcome:

1
t

[V(St,Vt,It,Rt) −V(S0,V0,I0,R0)] ≤ −
(
γ + µ3 + ω +

σ2
2

2

) (
R
∗
0 − 1

)
+

[
(a1 + b1)β + b2β1

]
⟨I ⟩t −

M (t)
t
, (2.8)

where M (t) is a martingale given by

M (t) = (a1 + b1)
∫ t

0
σ1 dB1(s) + b2

∫ t

0
σ1 dB1(s) + c1

∫ t

0
σ2 dB2(s) +

∫ t

0
σ2 dB2(s).
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Applying the strong law of large numbers for martingales, we can deduce that as t approaches
infinity, the expression

lim
t→∞

M (t)
t
= 0, a.s.

converges to zero. This implies that the contribution of the martingale term becomes negligible in the
long run.

lim inf
t→∞

1
t

[V(St,Vt,It,Rt) −V(S0,V0,I0,R0)] ≤ lim inf
t→∞

[
−

(
γ + µ3 + ω +

σ2
2

2

) (
R
∗
0 − 1

)
+

[
(a1 + b1)β + b2β1

]
⟨I ⟩t

]
.

As t grows indefinitely, the difference term 1
t [V(St,Vt,It,Rt) −V(S0,V0,I0,R0)] gradually

diminishes. This is due to the application of the strong law of large numbers for martingales, which
guarantees that the limit of this difference as t tends to infinity is zero almost surely. Therefore, we
can assert:

lim
t→∞

1
t

[V(Rt,St,Vt,It) −V(R0,S0,V0,I0)] = 0.

Given this result, it follows directly that:

lim inf
t→∞

1
t

[V(Rt,St,Vt,It) −V(R0,S0,V0,I0)] = 0.

Therefore, the inequality simplifies to:

0 ≤ −
(
γ + µ3 + ω +

σ2
2

2

) (
R
∗
0 − 1

)
+

[
(a1 + b1)β + b2β1

]
lim inf

t→∞
⟨I ⟩t.

Furthermore,

lim inf
t→∞

⟨I ⟩t ≥
(γ + µ3 + ω +

σ2
2

2 )(R∗0 − 1)
(a1 + b1)β + b2β1

.

This completes the proof. □

2.1. Remark

The deterministic reproduction number and the stochastic threshold values are connected, as
stochastic perturbations modify the effective threshold. High stochastic intensities can drive disease
extinction by destabilizing infection dynamics. Stochastic perturbations introduce variability, altering
disease persistence and extinction probabilities. These insights highlight the need for stochastic
modeling in realistic epidemic predictions. The deterministic model uses a basic reproduction number
to determine disease persistence. In the stochastic model, this threshold is modified due to the
presence of random perturbations. Stochastic fluctuations lower the effective reproduction number,
making disease extinction more likely even when the deterministic model predicts persistence.
Stronger stochastic fluctuations increase the probability of disease extinction. When random noise
intensity reaches a certain level, it disrupts transmission dynamics enough to drive the infection out of
the population. This highlights how real-world uncertainties, such as environmental or behavioral
changes, can influence disease spread and control. These findings emphasize the importance of
incorporating stochasticity into epidemic models to better reflect real-world uncertainties and improve
disease prediction and control strategies.
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3. Numerical schemes and evaluation of computational results

After completing the examination of disease eradication and long-term persistence, we shift our
focus to performing numerical simulations. We will execute simulations based on the model described
in Eq (1.3) to illustrate the practical implications of our findings. For this purpose, we will use the
following parameter values: µ = 0.03, µ1 = 0.04, µ2 = 0.035, µ3 = 0.06, µ4 = 0.045, β = 0.5,
β1 = 0.05, γ = 0.1, γ1 = 0.1, α = 0.2, and ω = 0.1. The initial conditions for the simulation are set
as follows: S (0) = 0.5, V (0) = 0.3, I (0) = 0.2, and R(0) = 0. For the numerical simulations, we
employ the technique of Higham [26]. Let us consider the discretized equation of the model in which
ξ is a normally distributed random variable that introduces randomness into the numerical scheme and
∆t is the time step controlling how frequently the system updates, which is chosen very small, equals
to 0.01 or 0.001.

Sk+1 = Sk + (µ − µ1Sk − βSkIk − αSk)∆t − σ1Sk

√
∆tξk −

1
2
σ2

1Sk(∆tξ2
k − ∆t),

Vk+1 = Vk + (αSk − β1VkIk − γ1Vk − µ2Vk)∆t + σ1Sk

√
∆tξk +

1
2
σ2

1Sk(∆tξ2
k − ∆t),

Ik+1 = Ik + (βSkIk + β1VkIk − γIk − µ3Ik − ωIk)∆t − σ2Ik

√
∆tζk −

1
2
σ2

2Ik(∆tξ2
k − ∆t),

Rk+1 = Rk + (γ1Vk + γIk − µ4Rk)∆t + σ2Ik

√
∆tζk +

1
2
σ2

2Ik(∆tξ2
k − ∆t).

(3.1)

Following the incorporation of white noise into the system (1.3), we analyze the behavior of the
susceptible class, denoted as S in Figure 1. The addition of stochastic perturbations introduces
randomness into the dynamics of the susceptible population, causing fluctuations that deviate from
the deterministic model. The stochastic differential equation governing the S class can be expressed
as a modified version of the original system, incorporating a noise term. This term reflects the
inherent unpredictability in the transmission dynamics due to various external factors, leading to a
more realistic representation of the system under study. The resulting model provides valuable
insights into the potential variability and uncertainty in the population dynamics, emphasizing the
importance of accounting for random effects in epidemiological modeling.

Figure 1. The path S(t) for the model (1.3) at σ1 = σ2 = 0.00, 0.02, 0.03, 0.04.

When white noise is introduced into the system (1.3), the dynamics of the vaccinated class, denoted
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by V , experience stochastic fluctuations in Figure 2. The incorporation of this noise term into the
differential equation for V adds a layer of randomness to the vaccination process, simulating real-world
uncertainties such as variability in vaccine efficacy or coverage. This stochastic perturbation causes
the size of the vaccinated population to fluctuate around its deterministic path, reflecting possible
variations in the rate at which individuals are vaccinated or the effectiveness of the vaccine over time.
The modified model for V thus captures the inherent unpredictability in the vaccination dynamics,
providing a more nuanced understanding of how random factors might influence the overall success of
a vaccination program.

Figure 2. The path V(t) for the model (1.3) at σ1 = σ2 = 0.00, 0.02, 0.03, 0.04.

The inclusion of white noise into the model significantly impacts the infected class, denoted by I .
The stochastic term introduces random fluctuations into the infection dynamics, which can represent
various sources of uncertainty such as changes in contact rates, transmission variability, or other
external factors affecting the spread of the disease. These random perturbations cause the number of
infected individuals to deviate from the deterministic trajectory, capturing the unpredictable nature of
disease transmission in a real-world setting. As a result, the modified differential equation for the
infected class I not only accounts for the expected progression of the disease but also reflects the
possible short-term increases or decreases in the number of infected individuals due to random
influences. This stochastic approach provides a more realistic portrayal of the infection dynamics,
emphasizing the role of randomness in disease spread and control in Figure 3.

Figure 3. The path I(t) for the model (1.3) at σ1 = σ2 = 0.00, 0.02, 0.03, 0.04.
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The recovered class, denoted by R, is influenced by the introduction of white noise in a manner
that reflects the uncertainties associated with recovery rates. The stochastic perturbations in the model
account for the randomness in the recovery process, which could stem from factors such as varying
immune responses among individuals, differences in treatment efficacy, or external influences that
affect recovery times. As a result, the number of recovered individuals R fluctuates around its expected
value, capturing the inherent variability in the recovery process in Figure 4. This addition of white noise
ensures that the model more accurately represents the unpredictable nature of recovery, providing
a more comprehensive understanding of how recovered individuals contribute to the overall disease
dynamics in a stochastic environment.

Figure 4. The path R(t) for the model (1.3) at σ1 = σ2 = 0.00, 0.01, 0.02, 0.03.

4. Discussion and justification

In classical epidemic modeling, deterministic approaches provide insights into disease dynamics
but fail to account for real-world randomness. Our study transitions from a deterministic S V I R
model to a stochastic framework by introducing environmental white noise into the transmission and
vaccination rates, leading to system (1.3). These stochastic perturbations capture unpredictable
fluctuations in infection spread, vaccination uptake, and recovery rates, making the model more
biologically realistic than its deterministic counterpart.

From the theoretical results, we establish the stochastic reproduction number R∗0. Unlike the
deterministic threshold, stochastic effects introduce an additional extinction condition, meaning that
even when R∗0 > 1, random fluctuations may drive the disease to extinction. Numerical simulations
confirm that increasing noise intensity (σ1, σ2) can lower R∗0 below 1, altering long-term epidemic
outcomes. This effect is absent in deterministic models, where R0 > 1 always predicts persistence.

Our findings align with Rozhnova and Nunes [8], who observed that randomness increases infection
peak variability, emphasizing the importance of adaptive vaccination. Similarly, Gray et al [7] reported
noise-induced disease resurgence, supporting our results.

The implications of these findings are substantial for public health policies. Unlike deterministic
models, stochastic simulations show that small fluctuations in transmission or vaccination rates can
significantly alter epidemic outcomes. These results reinforce the need for adaptive epidemic control
measures, particularly in dynamic environments where real-time responses to disease fluctuations are
essential.
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One limitation of this model is that it assumes constant rates, whereas real-world epidemiological
parameters fluctuate over time. Future research should integrate time-dependent transmission and
vaccination rates, spatial effects, and real epidemiological data validation. Further exploration of
stochastic control measures, such as adaptive vaccination and quarantine policies, could refine
epidemic management strategies.

Overall, this study demonstrates that stochastic S V I R models provide a more realistic
representation of epidemic behavior than deterministic models. The stochastic framework captures
randomness in disease spread, reinforcing the necessity of integrating uncertainty into epidemic
modeling for better forecasting and intervention planning.

5. Conclusions

This study investigates the dynamics of disease transmission under the influence of stochastic
perturbations, providing a comprehensive analysis of the system’s behavior. By incorporating white
noise into the S V I R model, we have effectively captured the inherent uncertainties present in
real-world scenarios, particularly in infection, recovery, and vaccination processes. The stochastic
model not only aligns more closely with observed epidemiological data but also offers deeper insights
into the conditions for disease persistence and extinction. Our findings highlight the critical role of
randomness in epidemiological models, demonstrating its significant impact on disease dynamics and
predictive outcomes. This work contributes valuable insights into the complex interplay between
deterministic and stochastic factors in epidemic modeling, offering a robust framework for future
research and public health strategies aimed at controlling infectious diseases. The implications of this
study are broad, paving the way for refinements in epidemiological modeling and improved disease
management practices.
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