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Abstract: Statistical process control (SPC) is a quality control method that enables the monitoring of 

processes using statistical methodologies. Nonparametric control charts, including the Tukey control 

chart (TCC), are a robust and effective instrument to assess a method since the actual distribution of 

the quality characteristic in question is indeterminate. The extended exponentially weighted moving 

average (EEWMA) control chart was employed to monitor the mean process because of its rapid 

detection of shifts. To maximize the benefits of both control charts, we developed a method known as 

EEWMA-TCC, which combines EEWMA with TCC. The efficacy of the proposed chart was evaluated 

under symmetrical distribution using various individual and aggregate performance metrics based on 

average run length (ARL) and percentage reduction in ARL (PDARL). Our findings indicated that the 

suggested chart outperforms control charts, including the TCC chart, the EWMA chart, the EEWMA 

chart, and the EWMA-TCC (mixed exponentially weighted moving average-Tukey) chart, in the quick 

identification of shifts. An application of the proposed designs in the crucial dimension of machined 

part data is demonstrated. The results indicated that they were consistent with the research findings. 

On the other hand, nonparametric control charts provide an alternate way to track the mean process.  
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1. Introduction  

One tool for statistical process control (SPC) is the control chart, which enables users to monitor 

a process variable across time. The Shewhart chart [1], exponentially weighted moving average chart 

(EWMA) [2], and moving average chart (MA) [3] are often used control charts for process monitoring. 

The efficient monitoring chart provides a swift and quick signal. In any case, a number of writers have 

suggested a variety of control chart mixes to improve procedure quality. A variety of hybrid 

exponentially weighted moving average (HEWMA) charts [4], a modified exponentially weighted 

moving average (MEWMA) chart [5,6], a double exponentially weighted moving average (DEWMA) 

chart [7,8], a triple exponentially weighted moving average (TEWMA) chart [9], and an extended 

exponentially weighted moving average (EEWMA) control chart [10] were all developed to improve 

the EWMA chart’s capacity to detect small to moderate changes.  

Several researchers have proposed integrated control charting methodologies to enhance the 

efficacy of control charts in detecting abrupt shifts. Typically, parametric control charts assume a 

normal distribution for the underlying process. Nonparametric or distribution-free control charts are 

being investigated as an alternate method for monitoring processes based on target values. In this study, 

we include considerations of various mixed control charts, encompassing both parametric and 

nonparametric types. For example, Abbas et al. [11] investigated the use of mixed control charts that 

used EWMA and CUSUM to track operations; their results showed that the suggested chart is much 

more sensitive to minor changes. A CUSUM mixed EWMA chart, as suggested by Zaman et al. [12], 

is more effective and robust in detecting moderate and minor fluctuations. In their performance 

evaluation, Sukparungsee et al. [13] utilized a combined EWMA-MA control chart in addition to other 

charts that indicated the average, median, and standard deviation of run length. According to Taboran 

et al. [14], who were looking for process changes with different distributions, the suggested chart—

which combined MA and EWMA charts—performed better in terms of efficiency than the Shewhart 

chart, EWMA charts, and MA chart when utilizing average, median, and standard deviation of run 

length. The MEWMA-MA chart (MMEM) was developed by Talordphop et al. [15] with process mean 

observation, and the results demonstrated that the suggested chart outperforms traditional control 

charts, namely in detecting minor to moderate changes. The EEWMA-MA control chart was created 

by Naveed et al. [16] and includes supplementary data that measures performance based on average 

run length. According to the results, the proposed chart is the best way to spot changes in the process 

location parameter. To monitor process goal deviations, they implemented an EWMA-Sign control 

chart [17]. To better detect small changes, the researchers in [18] constructed a nonparametric CUSUM 

mean chart using the sign statistic. In [19], the author introduced a MEWMA-Sign, which was named 

after the modified exponentially weighted moving average control chart that contained the sign test. 

According to the results shown in [20,21], the EEWMA that utilizes signed-rank, and the sign test is 

more effective than the EWMA chart in detecting minute changes.  

Alemi [22] created the Tukey’s control chart (TCC) and is easy to use in cases where the workflow 

distribution is unclear or when non-normal occurrences occur and is helpful in monitoring the mean 

process. It has become popular for the tracking process means as an effective substitute for parametric 

control charts. In addition, research on creating enhanced or hybrid TCC designs is available in the 

literature. The EWMA-TCC for skewed distribution was introduced by Khaliq et al. [23], the MEC-

TCC by Riaz et al. [24], the Tukey MA-EWMA and Tukey MA-DEWMA by Taboran et al. [25,26], 

the MDEWMA-TCC by Phantu et al. [27], and the Tukey MEWMA-MA by Talordphop et al. [28] to 

construct control charts where we can react rapidly to adjustments and apply them to varied situations 

with minimal restrictions. Nonetheless, Sukparungsee [29] also addressed the reliability of Tukey’s 
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control charts, discovering skew and non-skew procedures, and that the asymmetric Tukey’s control 

chart performs better than the symmetric one. Under reasonable subgrouping, Khaliq et al. [30] 

developed Tukey-EWMA and median-based Tukey charts. Mahmood et al. [31] provided the 

TEWMA-Tukey control charts for both normal and non-normal processes utilizing repeat sampling 

schemes and single sample schemes. 

The ability to use nonparametric control charts with data of any distribution type is their main 

strength. To address this, we introduce the EEWMA-TCC nonparametric control chart, which 

integrates the EEWMA control chart with a TCC for process mean observation. We examine the 

average run length (ARL) to evaluate the quality of the control charts used in Monte Carlo simulations 

and ensure that the results are accurate using a percentage reduction in ARL (PDARL). We implement 

the EEWMA-TCC chart in a real-world scenario and compare it with control charts to demonstrate its 

practical significance. This paper is structured as follows: In Section 2, we detail the study’s 

methodology and materials. In Section 3, we present the simulation findings and an example. In 

Section 4, we present our conclusions. 

2. Materials and methods 

In this section, we outline the design components of the control chart and evaluate its efficacy. In 

Section 2.1, we present five varieties of control charts: Exponentially weighted moving average 

(EWMA), Tukey control chart (TCC), extended exponentially weighted moving average (EEWMA), 

EWMA-Tukey control chart (EWMA-TCC), and the proposed EEWMA-Tukey control chart 

(EEWMA-TCC). In Section 2.2, we delineate the measurement methodology. 

2.1. Control charts 

Let 
1 2 kX ,X ,...,X ,...be a set of normally distributed, independently occurring random variables with 

a mean of  and a standard deviation of  . The following is a general outline of the control chart format. 

2.1.1. Exponentially weighted moving average control chart (EWMA) 

Roberts [2] first proposed the EWMA statistic and implemented it using a smoothing parameter 

 ( )0 1  , as shown in Eq (1). 

k k k 1Z X (1 )Z .  −= + −           (1) 

The baseline value for the first time point is 0Z = . The mean and asymptotic variance are 

displayed below: 

kE( Z ) =             (2) 

2

kV( Z ) .
2 -






 
=  

 
           (3) 

The control limits, withG representing the control limit coefficient for the process considered to 

be in control, are outlined as follows: 
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UCL / LCL G .
2


 


= 

−
         (4) 

2.1.2. Tukey control chart (TCC) 

Alemi [22] presented a non-parametric control chart that is applicable when the data distribution 

is unspecified, with the upper and lower control limits of TCC defined as follows: 

3 1

1 1

( )

( )

UCL Q G IQR

LCL Q G IQR

= +

= −
           (5) 

where 
1G  is a control limit coefficient for the process considered to be in control of the TCC control 

chart. IQR is the interquartile range, where 
3 1( )Q Q− , 

1Q , and 3Q  are the first and third quartiles.  

2.1.3. Extended Exponentially Weighted Moving Average (EEWMA) Control Chart 

Naveed et al. [10] developed the EEWMA control chart to detect a fast change in the mean. The 

smoothing parameters are 
1  and 

2 , each ranging from 0 to 1, with 
10 1   and 

2 10    , 

respectively. The EEWMA statistic is outlined: 

k 1 k 2 k 1 1 2 k 1E X X (1 )E .   − −= − + − +         (6) 

The baseline value for the first time point of 0E  and 
0X are taken as the target mean. Therefore, 

the average and the asymptotic variance of kE  are  

kE( E ) ,=             (7) 

( )

( ) ( )

2 2

1 2 1 2 1 22

k 2

1 2 1 2

2 1
V( E ) .

2

    


   

 + − − +
=  

− − −  

        (8) 

The control limits of the EEWMA chart having 
2G represent the control limit coefficient for the 

process considered to be in control are outlined as follows:  

( )

( ) ( )

2 2

1 2 1 2 1 2

2 2

1 2 1 2

2 1
UCL / LCL G

2

    
 

   

+ − − +
= 

− − −
.     (9) 

2.1.4. EWMA-Tukey control chart (EWMA-TCC) 

Khaliq et al. [23] developed the EWMA-TCC through the combination of the EWMA and TCC 

control charts. The statistics are presented in the form of the EWMA statistic, and the asymptotic 

control limit of EWMA-TCC is represented as follows: 
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( )

( )

3 3

1 3

UCL Q G IQR
2

LCL Q G IQR
2









= +
−

= −
−

         (10) 

where 
3G  represents the control limit coefficient for the process considered to be in control. 

2.1.5. EEWMA-Tukey control chart (EEWMA-TCC) 

The proposed chart, EEWMA-TCC, integrates the advantages of the EEWMA and TCC control 

charts, with the former being responsive to minor shifts and the latter being independent of distribution 

parameters. The statistics will be presented in the form of the EEWMA statistic, and the asymptotic 

control limit of EEWMA-TCC is represented as follows: 

( )
( )

( ) ( )

( )
( )

( ) ( )

2 2

1 2 1 2 1 2

3 4 2

1 2 1 2

2 2

1 2 1 2 1 2

1 4 2

1 2 1 2

2 1
UCL Q G IQR

2

2 1
LCL Q G IQR

2

     

   

     

   

+ − − +
= +

− − −

+ − − +
= −

− − −

      (11) 

where 
4G  represents the control limit coefficient for the process considered to be in control. 

2.2. Performance measures 

Common control chart symbols are UCL, CL, and LCL, which are three straight lines. A control 

diagram procedure is considered to be in control when its charting statistic values fall between the 

upper and lower control limits; nevertheless, for it to be in an out-of-control declaration, a single point 

must be drawn beyond these bounds. The ARL recall from the average run length (ARL) denotes the 

anticipated number of runs before the control chart delivers a message indicating that the activity has 

deviated from the control. Provided the issue is under control, the reading of ARL0 should be raised, 

whereas ARL1 will remain relatively low. Various methods for analyzing the ARL have been published 

in scholarly works [32,33]. The optimal efficacy of the control chart is demonstrated by the minimal 

value, as indicated by the subsequent ARL constructions. 

N

k

k 1

RL

ARL
N

==


.          (12) 

Moreover, the standard deviation of the ARL is 

2

1

( )

1

N

k

k

RL ARL

SDRL
N

=

−

=
−


.        (13) 

The evaluations of the control chart are conducted based on the percentage reduction in ARL, 

which can be calculated as PDARL [34], as delineated in the following equation: 
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0 1
ARL

0

ARL ARL
PD 100

ARL

 −
=  
 

.       (14) 

However, we employ the Monte Carlo method to compute the simulation results under control, 

0ARL 370=  , utilizing 100,000 replications and between 5 and 10 subgroups, to provide the most 

advantageous run length investigated outcomes. The procedures of the simulation study are conducted 

as follows: 

• Generate n samples of random data following a specified distribution with the mean adjusted 

from   to 
1 1;   = + . Formulate 5 and 10 such subgroups. 

• Evaluate the suggested observing statistic and examine coefficient “G” at 
0ARL 370= . 

• Obtain the statistical values and the control limit for each control chart. 

• Reiterate the three steps to compute the Average Run Length (ARL1) and the standard deviation 

of run length (SDRL) 100,000 times.  

• Assess the percentage decrease in ARL as shown by PDARL in Eq (14). 

• Evaluate the efficacy of the control chart. 

3. Results and discussion 

3.1. Simulation results 

We examine the efficacy of the proposed chart in identifying shifts in the process mean utilizing 

EWMA, EEWMA, EWMA-TCC, and TCC control charts for Normal(0,1), Laplace(0,1), and 

logistic(6,2) distributions. The values of the parameters are established at 
0 370,ARL =  with constant 

shifts of (0.05, 0.1, 0.25, 0.5, 0.75, 1, and 1.5, 2), although the sensitive parameters for EWMA are set 

at 0.1 and 0.25, and for EEWMA, parameters 1 20.1,  0.03 = =  and 1 20.25,  0.10 = =   are 

utilized. The bold outcome of the all tables shows that the control chart with the smallest ARL1 is the 

most efficient.  

The simulation results show that in all distributions, the control limit constants of the mixed 

nonparametric control charts (EWMA-TCC and EEWMA-TCC) significantly exceed those of the 

respective control charts, while the control limit constants show an increasing pattern as the size of the 

subgroups increases. Nevertheless, we observe that when the smoothing value of the parameters climb, 

the coefficient control limit of parametric control charts rise, whereas that of nonparametric control 

charts diminish.  

The size of the subgroup influences the performance of ARL1; as the subgroup size increases, 

ARL1 decreases. However, with an increase in the smoothing value, ARL1 increases.  

Tables 1–6 categorize the efficacy of the control charts regarding the ARL criterion by subgroup 

and distribution. When there are small to large changes in the normal distribution, the suggested chart 

performs better than the other designs. When there is a big change (shift = 3), the EWMA-TCC chart 

performs better than the observed chart for both smoothing parameters set 1 and set 2 (Table 1). Table 2 

shows that different subgroups produce identical results. Figures 1–3 display the ARL curves from 

various outcomes of the simulation study. 
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Table 1. Performance of average run length (standard deviation) on a normal distribution 

with n=5 and two different smoothing parameters (0.1 on the left and 0.25 on the right).  

Shifts EWMA 

 

G 2.70=  

TCC 

 

1G 1.72=   

EEWMA 

  

2G 1.94=  

EWMA-

TCC 

3G 6.57=  

EEWMA-

TCC 

4G 7.56=  

EWMA 

 

G 2.90=  

EEWMA 

  

2G 2.15=  

EWMA-

TCC 

3G 4.35=  

EEWMA-

TCC 

4G 5.06=  

0 

 

0.25 

 

0.5 

 

0.75 

 

1 

 

1.5 

 

2 

 

3 

370.02 

(0.50) 

312.27 

(0.31) 

250.78 

(0.08) 

129.88 

(0.04) 

91.19 

(0.01) 

38.82 

(0.00) 

11.96 

(0.00) 

8.12 

(0.00) 

370.72 

(0.52) 

360.32 
(0.30) 

329.14 

(0.07) 

286.53 

(0.03) 

240.23 

(0.01) 

156.87 

(0.00) 

99.83 

(0.00) 

35.40 

(0.00) 

370.13 

(0.54) 

307.77 
(0.29) 

241.43 

(0.08) 

126.76 

(0.03) 

89.18 

(0.01) 

35.16 

(0.00) 

12.84 

(0.00) 

8.41 

(0.00) 

370.74 

(0.61) 

300.17 
(0.28) 

228.80 

(0.08) 

97.28 

(0.03) 

41.82 

(0.01) 

14.05 

(0.00) 

6.72 

(0.00) 

0.23 

(0.00) 

370.84 

(0.58) 

256.42 

(0.28) 

207.40 

(0.08) 

71.50 

(0.02) 

30.19 

(0.01) 

7.90 

(0.00) 

1.60 

(0.00) 

0.23 

(0.00) 

370.44 
(0.52) 

314.32 

(0.31) 

251.42 

(0.08) 

137.22 

(0.04) 

95.45 

(0.02) 

39.11 

(0.00) 

10.07 

(0.00) 

8.12 

(0.00) 

370.34 
(0.55) 

308.21 

(0.31) 

246.09 

(0.08) 

135.26 
(0.03) 

93.25 

(0.01) 

34.51 

(0.00) 

12.91 

(0.00) 

8.42 

(0.00) 

370.75 
(0.60) 

300.21 

(0.30) 

230.29 

(0.08) 

99.17 
(0.02) 

47.39 

(0.01) 

16.57 

(0.00) 

8.77 

(0.00) 

0.31 

(0.00) 

370.84 
(0.59) 

256.99 

(0.30) 

209.08 

(0.08) 

73.01 

(0.02) 

33.27 

(0.01) 

12.01 

(0.00) 

1.66 

(0.00) 

0.31 

(0.00) 

Table 2. Performance of average run length (standard deviation) on a normal distribution 

with n=10 and two different smoothing parameters (0.1 on the left and 0.25 on the right).  

Shifts EWMA 

 

G 2.71=  

TCC 

 

1G 1.73=   

EEWMA  

 

2G 2.71=  

EWMA-

TCC 

3G 6.58=  

EEWMA-

TCC 

4G 7.57=  

EWMA 

 

G 2.91=  

EEWMA 

  

2G 2.91=  

EWMA-

TCC 

3G 4.36=  

EEWMA-

TCC 

4G 5.08=  

0 

 

0.25 

 

0.5 

 

0.75 

 

1 

 

1.5 

 

2 

 

3 

370.15 

(0.55) 

305.26 

(0.33) 

220.43 

(0.08) 

121.88 

(0.04) 

83.21 

(0.02) 

32.21 

(0.00) 

9.22 

(0.00) 

5.01 

(0.00) 

370.57 

(0.53) 

353.08 

(0.32) 

322.75 

(0.08) 

261.46 

(0.05) 

227.81 

(0.02) 

144.33 

(0.00) 

91.56 

(0.00) 

29.27 

(0.00) 

370.40 

(0.55) 

301.23 

(0.32) 

216.98 

(0.09) 

119.55 

(0.04) 

79.06 

(0.02) 

31.92 

(0.00) 

9.46 

(0.00) 

5.09 

(0.00) 

370.61 

(0.55) 

291.68 

(0.33) 

206.54 

(0.09) 

81.82 

(0.04) 

38.51 

(0.02) 

12.33 

(0.00) 

4.70 

(0.00) 

0.20 

(0.00) 

370.55 

(0.54) 

253.65 

(0.33) 

202.83 

(0.08) 

63.91 

(0.04) 

24.43 

(0.01) 

5.22 

(0.00) 

1.35 

(0.00) 

0.20 

(0.00) 

370.35 

(0.55) 

307.78 

(0.34) 

240.31 

(0.07) 

130.03 

(0.04) 

89.93 

(0.02) 

33.97 

(0.00) 

9.25 

(0.00) 

5.24 

(0.00) 

370.39 

(0.52) 

306.44 

(0.34) 

239.12 

(0.07) 

128.45 

(0.05) 

88.85 

(0.02) 

33.32 

(0.00) 

10.22 

(0.00) 

6.65 

(0.00) 

370.65 

(0.52) 

298.33 

(0.33) 

225.41 

(0.07) 

90.07 

(0.04) 

44.56 

(0.02) 

14.31 

(0.00) 

8.67 

(0.00) 

0.30 

(0.00) 

370.62 

(0.52) 

254.43 

(0.34) 

207.67 

(0.07) 

70.15 

(0.04) 

30.22 

(0.01) 

10.31 

(0.00) 

1.33 

(0.00) 

0.30 

(0.00) 
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Figure 1. ARL curve in a normal distribution with n=5 and a smoothing value of 0.25. 

 

Figure 2. ARL curve in a Laplace distribution with n=10 and a smoothing value of 0.1. 

 

Figure 3. ARL curve in a Logistic distribution with n=5 and a smoothing value of 0.1. 

Compared to the other charts for all shifts, the EEWMA-TCC displays lower ARL1 values for the 

Laplace distribution, as presented in Tables 3 and 4. Moreover, the results for the subgroup n = 10 

remain unchanged in the data set that includes outputs. 

According to Tables 5 and 6, which display the overall findings of the Logistic distribution, the 

suggested chart outperforms its competitors—TCC, EWMA, and EWMA-TCC—for shifts ranging 
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from 0.25 to 3.00. On the other hand, the EWMA-TCC chart also performs well for shifts 2.00 and 3.00.  

Table 3. Performance of average run length (standard deviation) on a Laplace distribution 

with n=5 and two different smoothing parameters (0.1 on the left and 0.25 on the right).  

Shifts EWMA 

 

G 4.01=  

TCC 

 

1G 3.75=   

EEWMA 

  

2G 2.96=  

EWMA-

TCC 

3G 7.27=  

EEWMA-

TCC 

4G 8.71=  

EWMA 

 

G 4.70=  

EEWMA 

  

2G 3.67=  

EWMA-

TCC 

3G 5.782=  

EEWMA-

TCC 

4G 7.28=  

0 

 

0.25 

 

0.5 

  

0.75 

 

1 

 

1.5 

 

2 

 

3 

370.81 

(0.58) 

262.78 

(0.34) 

80.04 

(0.09) 

47.93 

(0.05) 

25.62 

(0.03) 

9.62 

(0.00) 

5.13 

(0.00) 

1.86 

(0.00) 

370.40 

(0.59) 

280.61 

(0.34) 

156.21 

(0.09) 

83.67 

(0.05) 

45.79 

(0.03) 

15.05 

(0.00) 

6.48 

(0.00) 

2.66 

(0.00) 

370.08 

(0.58) 

200.43 

(0.34) 

71.67 

(0.09) 

44.82 

(0.05) 

23.79 

(0.03) 

13.66 

(0.00) 

5.32 

(0.00) 

2.01 

(0.00) 

370.62 

(0.57) 

166.54 

(0.33) 

61.14 

(0.08) 

28.93 

(0.04) 

17.88 

(0.03) 

12.31 

(0.00) 

0.56 

(0.00) 

0.11 

(0.00) 

370.58 

(0.57) 

160.03 

(0.33) 

55.21 

(0.08) 

21.52 

(0.04) 

8.44 

(0.02) 

10.05 

(0.00) 

0.56 

(0.00) 

0.11 

(0.00) 

370.88 

(0.58) 

269.09 

(0.34) 

80.68 

(0.09) 

52.89 

(0.05) 

38.95 

(0.03) 

14.19 

(0.00) 

5.21 

(0.00) 

1.90 

(0.00) 

370.35 

(0.58) 

251.51 

(0.34) 

136.80 

(0.09) 

51.88 

(0.05) 

38.10 

(0.03) 

14.84 

(0.00) 

5.59 

(0.00) 

2.12 

(0.00) 

370.51 

(0.57) 

167.74 

(0.34) 

62.89 

(0.08) 

30.45 

(0.04) 

18.09 

(0.03) 

14.80 

(0.00) 

1.12 

(0.00) 

0.22 

(0.00) 

370.60 

(0.57) 

161.16 

(0.33) 

56.46 

(0.08) 

27.35 

(0.04) 

7.99 

(0.02) 

11.78 

(0.00) 

1.12 

(0.00) 

0.22 

(0.00) 

Table 4. Performance of average run length (standard deviation) on a Laplace distribution 

with n=10 and two different smoothing parameters (0.1 on the left and 0.25 on the right). 

Shifts EWMA 

 

G 4.28=  

TCC 

 

1G 3.76=   

EEWMA 

  

2G 4.69=  

EWMA-

TCC 

3G 7.28=  

EEWMA-

TCC 

4G 8.72=  

EWMA 

 

G 4.71=  

EEWMA 

  

2G 5.03=  

EWMA-

TCC 

3G 5.79=  

EEWMA-

TCC 

4G 7.29=  

0 

 

0.25 

 

0.5 

 

0.75 

 

1 

 

1.5 

 

2 

 

3 

370.56 

(0.58) 

261.96 

(0.34) 

80.63 

(0.09) 

48.55 

(0.05) 

26.34 

(0.03) 

9.83 

(0.00) 

4.22 

(0.00) 

1.87 

(0.00) 

370.45 

(0.58) 

278.08 

(0.34) 

155.33 

(0.09) 

82.51 

(0.05) 

44.34 

(0.03) 

14.01 

(0.00) 

6.21 

(0.00) 

2.38 

(0.00) 

370.34 

(0.58) 

197.67 

(0.34) 

69.32 

(0.09) 

42.61 

(0.05) 

21.44 

(0.03) 

12.82 

(0.00) 

4.41 

(0.00) 

2.00 

(0.00) 

370.39 

(0.58) 

164.90 

(0.34) 

60.03 

(0.09) 

28.22 

(0.04) 

15.56 

(0.03) 

11.04 

(0.00) 

0.51 

(0.00) 

0.10 

(0.00) 

370.49 

(0.57) 

159.22 

(0.34) 

53.83 

(0.08) 

20.31 

(0.04) 

7.10 

(0.02) 

9.23 

(0.00) 

0.51 

(0.00) 

0.10 

(0.00) 

370.18 

(0.58) 

270.05 

(0.34) 

130.03 

(0.09) 

53.11 

(0.05) 

39.17 

(0.03) 

13.81 

(0.00) 

4.65 

(0.00) 

1.96 

(0.00) 

370.61 

(0.58) 

242.24 

(0.34) 

129.81 

(0.09) 

48.55 

(0.05) 

35.32 

(0.03) 

13.99 

(0.00) 

5.01 

(0.00) 

2.02 

(0.00) 

370.49 

(0.58) 

165.78 

(0.34) 

62.20 

(0.09) 

29.13 

(0.04) 

16.73 

(0.03) 

13.33 

(0.00) 

1.10 

(0.00) 

0.20 

(0.00) 

370.61 

(0.57) 

160.23 

(0.34) 

54.88 

(0.08) 

25.62 

(0.04) 

7.96 

(0.02) 

10.64 

(0.00) 

1.10 

(0.00) 

0.20 

(0.00) 
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Table 5. Performance of average run length (standard deviation) on a Logistic distribution 

with n=5 and two different smoothing parameters (0.1 on the left and 0.25 on the right).  

Shifts EWMA 

 

G 12.43=  

TCC 

 

1G 2.50=   

EEWMA  

 

2G 12.74=  

EWMA-

TCC 

3G 17.0=  

EEWMA-

TCC 

4G 23.09=  

EWMA 

 

G 12.59=  

EEWMA 

  

2G 12.73=  

EWMA-

TCC 

3G 5.51=  

EEWMA-

TCC 

4G 7.13=  

0 

 

0.25 

 

0.5 

 

0.75 

 

1 

 

1.5 

 

2 

 

3 

370.58 

(0.58) 

270.42 

(0.34) 

202.32 

(0.09) 

145.81 

(0.05) 

89.90 

(0.03) 

43.87 

(0.00) 

10.46 

(0.00) 

0.01 

(0.00) 

370.74 

(0.59) 

365.32 

(0.34) 

349.12 

(0.09) 

323.45 

(0.05) 

290.06 

(0.03) 

218.89 

(0.00) 

165.32 

(0.00) 

85.41 

(0.00) 

370.38 

(0.58) 

260.95 

(0.34) 

199.77 

(0.09) 

143.39 

(0.05) 

87.52 

(0.03) 

59.89 

(0.00) 

11.23 

(0.00) 

0.01 

(0.00) 

370.46 

(0.58) 

242.98 

(0.34) 

145.99 

(0.09) 

80.59 

(0.05) 

41.23 

(0.03) 

11.96 

(0.00) 

2.43 

(0.00) 

0.01 

(0.00) 

370.48 

(0.58) 

210.38 

(0.33) 

107.79 

(0.08) 

50.60 

(0.04) 

25.55 

(0.02) 

4.48 

(0.00) 

2.43 

(0.00) 

0.01 

(0.00) 

370.51 

(0.58) 

299.61 

(0.34) 

231.09 

(0.09) 

147.74 

(0.05) 

90.33 

(0.03) 

45.61 

(0.00) 

11.33 

(0.00) 

0.01 

(0.00) 

370.11 

(0.58) 

297.54 

(0.34) 

216.71 

(0.09) 

146.39 

(0.05) 

88.87 

(0.03) 

60.13 

(0.00) 

12.42 

(0.00) 

0.01 

(0.00) 

370.54 

(0.58) 

255.07 

(0.34) 

147.37 

(0.09) 

85.69 

(0.05) 

42.97 

(0.03) 

12.33 

(0.00) 

2.57 

(0.00) 

0.01 

(0.00) 

370.53 

(0.58) 

211.42 

(0.33) 

115.64 

(0.08) 

57.29 

(0.04) 

27.15 

(0.03) 

4.65 

(0.00) 

2.57 

(0.00) 

0.01 

(0.00) 

Table 6. Performance of average run length (standard deviation) on a Logistic distribution 

with n=10 and two different smoothing parameters (0.1 on the left and 0.25 on the right).  

Shifts EWMA 

 

G 12.46=  

TCC 

 

1G 2.51=   

EEWMA 

  

2G 12.83=  

EWMA-

TCC 

3G 17.11=  

EEWMA-

TCC 

4G 23.15=  

EWMA 

 

G 12.63=  

EEWMA 

  

2G 12.97=  

EWMA-

TCC 

3G 5.73=  

EEWMA-

TCC 

4G 7.25=  

0 

 

0.25 

 

0.5 

 

0.75 

 

1 

 

1.5 

 

2 

 

3 

370.51 

(0.58) 

271.77 

(0.34) 

204.24 

(0.09) 

146.68 

(0.05) 

90.57 

(0.03) 

44.82 

(0.00) 

11.77 

(0.00) 

0.01 

(0.00) 

370.63 

(0.59) 

364.44 

(0.34) 

349.01 

(0.09) 

322.72 

(0.05) 

289.15 

(0.03) 

218.17 

(0.00) 

164.09 

(0.00) 

83.53 

(0.00) 

370.55 

(0.58) 

258.35 

(0.34) 

196.82 

(0.09) 

140.23 

(0.05) 

85.21 

(0.03) 

57.62 

(0.00) 

10.45 

(0.00) 

0.01 

(0.00) 

370.46 

(0.58) 

240.66 

(0.34) 

142.83 

(0.09) 

75.42 

(0.05) 

38.59 

(0.03) 

10.41 

(0.00) 

2.40 

(0.00) 

0.01 

(0.00) 

370.45 

(0.58) 

207.78 

(0.34) 

105.22 

(0.08) 

48.56 

(0.04) 

22.31 

(0.02) 

4.35 

(0.00) 

2.40 

(0.00) 

0.01 

(0.00) 

370.53 

(0.58) 

299.94 

(0.34) 

233.54 

(0.09) 

148.11 

(0.05) 

91.62 

(0.03) 

46.73 

(0.00) 

11.87 

(0.00) 

0.01 

(0.00) 

370.52 

(0.58) 

293.38 

(0.34) 

206.65 

(0.09) 

144.90 

(0.05) 

86.15 

(0.03) 

60.04 

(0.00) 

12.02 

(0.00) 

0.01 

(0.00) 

370.61 

(0.58) 

251.18 

(0.34) 

145.61 

(0.09) 

83.66 

(0.05) 

40.74 

(0.03) 

12.09 

(0.00) 

2.50 

(0.00) 

0.01 

(0.00) 

370.50 

(0.58) 

210.04 

(0.34) 

110.43 

(0.08) 

55.94 

(0.04) 

24.22 

(0.02) 

4.35 

(0.00) 

2.50 

(0.00) 

0.01 

(0.00) 
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3.1.1. EEWMA-TCC versus TCC 

The proposed EEWMA-TCC chart adjusts more rapidly than the TCC chart across all shifts, 

smoothing settings, subgroups, and distribution. According to PDARL, the EEWMA-TCC chart exhibits 

the highest percentage of ARL. For example, the EEWMA-TCC chart diminishes the ARL by 68.04%, 

while the TCC chart reduces it by 36.52% when the case subgroup is 5 and the smoothing value is 0.10 

in a normal distribution. Other instances exhibit consequences analogous to PDARL. The EEWMA-

TCC chart may be a viable alternative to the TCC chart. 

3.1.2. EEWMA-TCC versus EEWMA 

The EEWMA-TCC chart surpasses the EEWMA chart for shifts, smoothing parameters, and 

subgroups in both distributions. In logistics distribution, the EEWMA-TCC promptly detects 

significant large shifts (shift = 3). The PDARL in EEWMA, with a subgroup size of 10 and a smoothing 

parameter of 0.25 in a logistic distribution, reduces the ARL by 60.35%, whereas the EEWMA-TCC 

chart results in a decrease of 73.72%. Other scenarios yield identical outcomes to PDARL. The results 

illustrate the benefits of the suggested chart compared to the EEWMA chart. 

3.1.3. EEWMA-TCC versus EWMA 

The EEWMA-TCC chart surpasses the EWMA chart for shifts, smoothing parameters, and 

subgroups in all distributions. The PDARL in EWMA, with a subgroup size of 5 and a smoothing 

parameter of 0.25 in a normal distribution, reduces the ARL by 58.57%, whereas the EEWMA-TCC 

chart results in a decrease of 67.66%. Other scenarios yield identical outcomes to PDARL. The results 

demonstrate the advantages of the proposed chart relative to the EWMA chart. 

3.1.4. EEWMA-TCC versus EWMA-TCC 

Tables 1–6 demonstrate that the EEWMA-TCC chart exhibits superior detection speed compared 

to the EWMA-TCC chart across all parameter setups; nevertheless, for substantial shifts (shift >=2), 

the results are equivalent. As reported by PDARL, when the relevant subgroup is 5 and the smoothing 

parameter is 0.1 in a Laplace distribution, the EEWMA-TCC chart reduces ARL by 78.83%, while the 

EWMA-TCC chart reduces ARL by 70.76%. The outcomes produced by PDARL are conditionally 

independent. According to the data, the recommended chart has more advantages than the EWMA-

TCC chart. 

3.2. An illustrated example 

In this section, we evaluate the efficacy of the proposed chart in contrast to the control chart for 

detecting alterations in the critical dimension of a machined part [35]. The data conforms to a normal 

distribution, and the p-value of 0.62 suggests statistical significance. The estimated values of the 

control chart statistics are found at certain levels of the charting parameters. Then, the TCC, EEWMA, 

EWMA-TCC, and EEWMA-TCC control charts with lower and upper control limits are plotted, as 

shown in Figures 4 to 7. Figure 4 illustrates the graphed tracking statistics for the TCC control charts 

that do not indicate the initial out-of-control alarm. Nevertheless, the EEWMA chart demonstrates 

efficacy at sample number 7, corresponding to the EWMA-TCC chart, as illustrated in Figures 5 and 6. 
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Figure 7 demonstrates that the EEWMA-TCC recognizes the initial out-of-control signal at sample 

number 4. Nevertheless, the signal at sample number 5 remains uncontrolled, confirming the process 

deregulation. These data corroborate the advantages of the suggested control chart over its competitors, 

aligning with the comparable average run length characteristics. 

 

Figure 4. TCC control chart for the critical dimension of machined part data. 

 

Figure 5. EEWMA control chart for the critical dimension of machined part data. 

 

Figure 6. EWMA-TCC control chart for the critical dimension of machined part data. 
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Figure 7. EEWMA-TCC control chart for the critical dimension of machined part data. 

4. Conclusions 

In the absence of knowledge of the actual distribution of a quality attribute, nonparametric control 

charts serve as a reliable and robust instrument for assessing a process. We present the combined 

EEWMA control chart without distribution, utilizing the Tukey statistic to detect alterations in the 

process mean. The effectiveness of control charts using the minimum ARL1 is ascertained using Monte 

Carlo simulations predicated on symmetric distributions. Nonetheless, the PDARL is used to ensure the 

outcomes once more. The results show that different shifts are better detected by the proposed chart. 

In addition, a real-life example is provided to show how the proposed chart differs from previous 

fighting control charts in terms of practicality and ability to detect procedure changes. Following that, 

this study can only be used in situations where the data is normally distributed or symmetrical. It is 

also possible to undertake a thorough analysis to find the optimal span and smoothing factor values for 

certain shifts of interest. A further look into the practicality of the charting structure is necessary to 

monitor the dispersion of procedures.  
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