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1. Introduction

From this article, we focus on the extremals for a weighted Morrey’s inequality [2, 3, 8—12] with
exponential weight and apply our findings to build the existence of the solutions for a nonlinear partial
differential equation involving a weighted p-Laplace operator [20,21]. We know that partial differential
equations with Laplace operator [7, 16] play an important role in calculus of variations [18], partial
differential equations [4, 6, 19], potential theory [13], function theory, physics and calculus of
probability. The p-Laplace operator generalizes the Laplace operator to better model nonlinear
phenomena in various fields, such as non-Newtonian fluid dynamics, image processing, nonlinear
elasticity, population dynamics, nonlinear heat conduction, and electromagnetic fields. Therefore, by
studying the extremals of Morrey’s inequality with exponential weight, we discuss whether the
solutions of corresponding nonlinear partial differential equations with the p-Laplace operator
exist. The purposes of this article are to construct a Morrey’s inequality with exponential weight and
to explore the properties of solutions for the corresponding nonlinear partial differential equation.

Morrey’s inequality is the case of Sobolev’s inequality under the condition n < p < oo. It asserts
that there is a constant ¢, which depends on g and n, thus
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for any u € C'R" and 7 = 1 =2 [ullcoreny = suplu(x)l + sup {“CO fullyre =

xeR" x.yeR"
XEY

1
(L, lul?dx + [, |Vultdx)" .
In paper [10], the existence of extremals for Morrey’s inequality was studied by R. Hynd and F.
Seuffert through certain invariances. They obtained that there exists a nonconstant u € % 4(R") such

that
[14] 12 oy = CollVatllaqan)

where # "(R") = {u e L, (R") : uy € LY(R") fori = 1,--- ,n}, C, > 0. Moreover, they concluded that
for any ¢ € # MI(R"),
_ q-2 _
ct [ 19 av s = HEREOOE LD 200 1) - i)
Rn

Ixo = yol*™

if u € 2"9(R") is an extremal and there are two different points xg, yo € R” where the 1 — g Holder ratio
of this extremal reaches its maximum.

In recent years, weighted isoperimetric inequalities [5], weighted Sobolev inequality, weighted
Morrey’s inequality, and weighted Moser—Trudinger inequality have received too much attention. For
instance, X. Cabré and X. Ros-Oton studied Morrey’s inequality with monomial weight in paper [1]. In
a more in-depth study of the asymptotic behavior or stability of solutions to the weighted p-Laplacian
equation, the exponentially weighted Morrey inequality can be used to handle situations where the
region grows rapidly, thereby providing finer control. Based on this, exponential will play an important
role and it is specifically considered in the generation of the p-Laplacian. Inspired by these, we build
Morrey’s inequality with exponential weight after studying R. Hynd and F. Seuffert’s researches on
weighted inequalities [14,17,22] as follows:

Theorem 1.1. Let n < g < o, a constant C,, which depends on q and n exists so that
[u]cg\’zTI(Rn) < Cq,n”ullwell;‘ll(Rn) (11)

foreachu € C'R" andt=1 - ..

It is impossible to prove Morrey’s inequality with exponential weight by directly using the
traditional method of establishing Morrey’s inequality [4]. We improve the traditional method to prove
Morrey’s inequality with exponential weight.

Subsequently, studying the properties of the extremals of Morrey’s inequality with weight is of
considerable significance for exploring the properties of solutions to a nonlinear partial differential
equation with a weighted p-Laplace operator. Therefore, using the approach to research the extremals
of Morrey’s inequality in paper [12], we derive as

Theorem 1.2. There is a nonconstant u € er;z i (R") which makes

lctzen = Colltlhyra e

where the weighted Sobolev space of radial functions ||ull,,1.4 @) = > fRn |D%ul?eMdx
I la|l<m

rad,e
In particular, C. > 0 is the sharp constant in Theorem 1.1.
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How to construct a sequence of functions to discuss the existence of extremals by using the
invariance of norm is not easy. By improving the construction method in [12], we prove the existence
of extremals by using Arzela—Ascoli theorem and then analyze its existence.

This is how the rest is listed. We provide some definitions and notations for subsequent proof in the
second section. The demonstration of a weighted Morrey’s inequality is listed in Section 3. Finally, the
existence of extremals for this weighted Morrey’s inequality is established in Section 4.

2. Preliminaries

Some notations, concepts, and definitions related to this article are given in this section for the
convenience of understanding.

Definition 2.1. For f,g € L! (Q) and multiindex g, if

loc
f fDPwdx = (-1)¥ f gwdx
Q Q

for any test formula w € C2(U), then g is the a’"-weak partial derivative of f and consider it as D f =
g.

Definition 2.2. Sobolev space W*?(U) is a set that has all local summable formulas u : U — R satisfies
the existence of D“u and belongs to L”(U).

In this paper, weight means a locally integrable formula w on R”; thus, w(x) > 0 for almost
everywhere x € R".

Definition 2.3. For 0 < p < oo, the space L (Q) is composed of all measurable formulas g on Q as

1

P
”g”LZ(Q) = (f Igl"wdx) < 00
Q

where w is the weight and Q C R” is an open set.

Definition 2.4. (Weighted Sobolev space W,,”’(U) ) The weighted Sobolev space W,,””(U) can be the
functions u € L2(U) with DPu € L2(U) for || < I. Thus, the norm of u in W-2(U) is

1
lully 1oy, = [ZfU|DBu|pwdx] :

larl<l

Consider u : Q — R as a bounded and continuous function, then

e'xlu(x)| .

llulle,y o = ilelg

th

The seminorm of u: U — R with 7""-exponential weight Holder is

le u(x) — 7 u(y)|
lx —yI* '

[u]cor gy = sup
el x,yeQ
XEY

The norm with 7-exponential weight Holder is

”u”Cg«ZT‘(U) = ”u”CgM(U) + [M]CS‘,;(U)‘
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Definition 2.5. The space with 7"*-exponential weight Holder C%7(U) is composed of all functions u as
||u||CS|vZT|([_]) = ”u”CeM(U) + [u]cj:‘((j)

is finite.

The subspace consisting of radially symmetric functions in W,;"¥(Q) is written as W7 (Q).
Maximized Holder ratio. An extremal u has two different points a,b € R” Where the 1 —
g Holder ratio of this extremal reaches its maximum. That is

e u() = et ul| _ le? u(@ - evu(b)
sup . = - ) (2.1)
< |x —y] la — b|
The type of weighted p — Laplace equations. @ Assume u«# is an  extremal  that

satisfies (2.1), and ¢ denote the Dirac function. Then, PDE

ﬁ a
—div (e|x||Vu|q_2Vu) + Pyt = i (e%da - e%@])

*

lal Ibl
e 4 u(a)—e 4 u(b)

92/ ol
( 7 u(a)—e 9 u(b))

la—bl"""

is true in R" where 4 =
Morrey’s inequality.

and C, is the sharp constant for this weighted

3. Proof of Morrey’s inequality with exponential weight

bl

Proof of Theorem 1.1. First,
o]

il
b x 7 eV 1
f e‘?‘u(y) - e%u(x)'dy < r_f eq—u?_})ldy + r_f ————dy. (3.1)
B(x,r) n Jpixr [x =yl qan Jpxn |x =yl

For the point v € dB(0, 1) and 0 < [ < r, it can be derived that

\x+lv|

T u(x+1lv)—eq u(x)|

_ f A u(x+hv)dh‘

1 | x+hv| ! | x-+hv|
_ f st s [ euf'w(x+hv)dh|
0o q |x+hv| 0

¥
< —le
0o 9

|x+hv|

T u(x + hv)dh| + f l 'e@w(x + hv)‘ dh.
0

Therefore,

l vl
f f ‘e¥u(x + 1) — e%u(x)‘ ds (v)
0 S"'I(O,l)
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[
0 JS*10,1)

Following the first inequality on the right-hand side above, it must be obtained that

[
0 JSm10,1)

1 ‘ew Vu(x + hv)'
= f f — ds (y)dh
0 Jsm1xn h"

|x+hv| |

e 4

Vulx + hv)‘
= f n—1 dy
B (x) |x =yl

€4 Vu(y)
< f —— g dy
B*(x,r) |x _)’|

Following the second inequality on the right-hand side above, it implies that

[
1 x+hv]
f f ¢ u(x + h)|dS (v)dh
Sm=1(0,1) q

1 i h
ff e Iu()_c+ V)|dS(y)dh
Sn=l(xr) 4

\,\+hv\

7 |u(x + hv)l

\fb:"(x,l) q |x-y"

bl

e u(y)
B 4 Ix -l
|x+1v|

1
e s ux+1ly)—es u(x)‘dS(V) = f 1
N E))

[
x+hv] 1 x+hv|
e Vulx + hv)| dS (v)dh + f f ¢ Ju(x + hv)|dS (v)dh.
§m=1(0.1) C]

|x+hv|

7 Vu(x + hv)‘ dS (v)dh

Then

e%u(z) - e%u(x)‘ ds(2)

and

b

.Ln-l(m)
eq u(y)|

Iyl
z] x| ?V ln_l
f eTu(z) - et u(x)|dS (2) < z"-lf AL —f
§11(x,5) B 1X =) q I lx =y

Therefore, one can derive that

[yl ] 1 q V
f e%u(y) - el’q‘u(x) dy < r_f ¢ u(y) dy + — f
Sn=1(x,r) B B

n I |x =y qn
By using (3.1),

[yl
e u(y)
— dy.
n(xr) [X =y

et ju(x)|
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< e lu(x)| - e Ju(y)ldy +][ e lu(y)ldy

B'(x,1) B'(x,1)

] I i
evu(y) - et u()|dy + f e u(y)ldy

B(x,1) B"(x,1)

bl

eq Vu(y)' e%u(y)‘ "
<C f —dy + f —dy +J( e |u(y)ldy
Bix1) X — Yl Bl [x =) Bi(x,1)

for each x € R". Therefore,

bl

vl
. e V() et u(y)
e?u(x)| £ Cy f —n—ldy +C f —n—ldy +f
Bi(xl) |x =Yl Bi(x1) |x — Bi(x,1)

Following the first integral on the right-hand side of (3.2), according to the Holder inequality,

e%u(y)| dy. (3.2)

bl

e Vu(y)

f n—1 dy
Bl |x = Yl
1 (n-1)q T
bl q \4 1 -1
< e Vu(y)‘ dy dy
R" B'(x,1) lx =yl

< C2||u||D:)[;?|(Rn)'

The last inequality holds because (n — l)q%l < n by using g > n, so that

(n=1)g

1 g1
f ( ) dy < oo.
Br(x,1) lx =yl

Following the second integral on the right-hand side of (3.2), according to the Holder inequality, it can
be derived that
(n=1)g -

Il 1
lesu(y)| bl q q 1\
Bl |x =y B(x,1) B'(x,1) |x —y] ol

Following the third integral on the right-hand side of (3.2), according to the Holder inequality,

ﬁ"(x,])

gq-1

i}

1
q
et u(y)|dy < ( f |e'y'u<y>‘f|dy) = Cullulls, e
B"(x,1) “

Therefore,
X
e u(x) < C2||M||D'[13|(Rn) + Csllullps -
Next, it will be proved that

I bl
ecu(x) —edu(y)
-2 S C6||”||W1‘*‘1|(Rn)

T4

|x =yl
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We take any x,y € R". M = B"(x,r) N B"(y, r). Then,

e u(x) - evu(y)|
_ )[ ¢u(x) — ¢ uy)| dz
M
X <] bl Izl
:J€4 (eq u(x) — e« u(z)) - (eff u(y) —eq u(z))’ dz

SJ( e%u(x) - egu(z)‘ dz +J(
M M

Following the first integral on the right-hand side of (3.3), according to inequality (3.1), one can obtain

that
i3
cof
B (x,r)

Lzl [
. 4
<C, f AL f RALOWA) (34)
B (xr) |X — 2] By X — 2"

Following the first integral on the right-hand side of (3.4), according to the Holder inequality,

lzl
e Vu(z
[ v,
B (xr) |X — 2]

n q
< ( f e 1Vu(2)dz
B*(x,r)

g-1

n—(n—l),/%])T

e%u(y) - e%lu(z)‘ dz. (3.3)

e%u(x) - e%u(z)‘ dz

e%u(x) - e%lu(z)' dz

1o\ )"
f ( n—1 ) dZ
B"(x,r) |)C - Z|

< Ml pta (7
)
0
=r 4|U 1, .
Delz"l(R”)

Following the second integral on the right-hand side of (3.4), according to the Holder inequality, one
can derive that
<]
eru(z
f (nzl dZ
B'(x,r) |X - Zl

< ( [
B(x,r)
T
:f MNui(ldz| r'a
B(x,r)

1=2
=r q”””L‘f‘Z‘(R")-

1
4] . \? -z
equ(z)‘ dz| ra

Likewise, for the second integral on the right-hand side of (3.3), then

2 i} -1 1-2
eTu(x) = e u()| < Cor' il ey + o'l iy
el? 2
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Therefore, we have

[u]ij‘(R") < C‘i»”Hu”W:l’j(R")’

4. Proof of the existence of extremals

We want to use a variation of the classical Arzela-Ascoli theorem for getting a
subsequence (v, )men Which converge uniformly locally on a continual function v : R" —
R. Moreover, v can be the nonconstant extremal of a weighted Morrey’s inequality.

Proof of Theorem 1.2. First, we can define

1 I
— — 1 . P n —
A - E - lnf{”u”W:‘ﬁ"erl(R’l) ‘uE€ Wrad,e"“ (R )7 [M]CS"Z};(RIZ) - 1}
so that one can choose a minimizing sequence(u;) e and make A = Jh_}n; [|lu j”er;Z.elx\ & Then, by
choosing x;,y; € R", x; # y; and A = |x; —y,| then
bl bl
eruji(x;))—erujyj) 1
1= [uj]co‘,.y‘(Rn) < — + = 4.1)
o lxj =yl J
and
1
lim - = 1.
Let the rotation transformation O; be: Oje, = li ’:;’:l where e, = (0,---,0,1). Then we can construct
: J J

two function sequences

vij@) ==yl '(uj(lxj - yil0jz+ xj) — uj(xj))'
and

Wi(z) = |x; - yj|% ‘(uj(lxj - yil0jz + x;) — uj(xj))‘ .

Let v3(z) = %vl (@) + z—llvz i(z) for z € R" and j € N. Applying the invariances of the seminorms u —
[u]C%(Rn), u— ”u”Diff\(R") and u — ||u||L:|X‘(Rn), one can conclude [VU]CZ’Z‘(R") =1, [vzj]ij‘(R") =4,

[V3j] CSIQ/\(RII)
=5Vt 572
2 2/1 CS}T(R”)

e% (%vlj(x) + ﬁvli(x)) - 6%(%\/1/@) + %lVZj()’))

sup —
xyeRM |x — y| I

XEY
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3938

‘% 7"11(’“) e”"l/()’) + e"sz(X) e”sz()’)‘
= sup =
xR lx =yl
1x
LeP v = v, + & ]ev n2j(x) = €TV,
= sup
g o=yl
1
= E[Vlj]cj’;/l(Rn) + Zl[VZj]CZ’ZVl(Rn)
= 1.
The fourth equation above holds because (Le7 v, j(x) le » v1 ,(y)) ol - Le g 2 () - e’ Vz j(v) can
be obtained from v ;(z)[x; — y;| = v2;(z) so that 1 5€ C vl](x) e ; w,(y) and 37€ » vzj(x) e ; sz(y) are

both positive or negative. We also obtain that

||V3j||W1»P (R?)
rad,elx!

= vsjller @y + 3jllpre gy
ol el

=RV Y2 =Vij+ =V
2 j 2/1 ' ij\ R™) 2 ] 2/1 ! i\fl R?)
2l o+ 2l o+ FIVteny + 272 oty
= ﬁ”MjHLgX‘(Rn) ||Mj||LP MEOR ||I/tj||D1 ”(Rn ||uj||D1 2 @)

Z”uj”L:lX‘(R") + ”uj”Dilﬁ(R")'

Since hm - =1, we have

j—)OO

B e oy = m (ol o+ 1) = Tlhrs ey = A
Moreover, one can conclude v3;(0) = 0 and

|Mj(yj) - Mj(xj)| N 1 |Mj(yj) - Mj(xj)| <1 1

-2 [ :

2 lx; =yl 20 xj =yl J

1
_Vlj(en) + v2](en)

V3j(en) = )

21

by using (4.1). Then, we use the Arzela—Ascoli theorem in its variant form to obtain (v, )uen Which
converge uniformly to a continuous formula locally v : R* — R.

Then one can derive that

v(0) =0, v(e,) = 1 and [V]CS“Z‘(R") < 1. We can also conclude that

ve,) — v(0)
b= e o = e

Therefore,

[V]CZJ(R") = 1 .
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Suppose that (Vv;, ) converges weakly in Lp 4(R™). This implies the weak limit of Vv; in LZ:\ (R™) can
be the weak derivative of v. Therefore, we have vewr rade (R™) and

— 1‘““ i]lf V; s P > % P R™)*
(\ 00 || jmll‘/v:ag,e‘xl(]R ) - ” ||er : | l( )

1= [V]C:‘gl/(Rll) = ”V”Wl/’ B < 1,

rad.e'

we can conclude that v is a nonconstant extremal of this weighted Morrey’s inequality. O

Ixol
Corollary 4.1. Suppose xp,y0 € R" and o, € R are distinct and satisfy (1 —679)0 =

ol

I—evr ) B. Then there exists an extremal u that satisfies u(xy) = a, u(yy) = 8, and the 1—% Holder ratio

of this extremal reaches its maximum at x, and Y.

Proof of Corollary 4.1. We give a rotation transformation O, which makes O (”%;gl) = e, and let

[yo
u(x) = (ey”Olﬁ - elxl?la/)v (0 (—x — %o )) + a.
lyo — xol

Since the proof of Theorem 1.2, we know that an extremal v exists that fulfills v(0) = 0, v(e,) = 1, and
the two points O and e, where the 1-2 Holder ratio of this extremal reaches its maximum. Therefore, we
can derive that u(xo) = a and u(yy) = S. Using translation invariance, rotation invariance and scaling

invariance of [u] Co @y one can conclude that

[u(-x)]cogl(Rn)

[/ 1ol Il
= (ef(’)ﬁ—evoa/ V(O(x 0 ))+01
| lyo — Xol
= (eL‘}(’)B—ele()la V(O( % ))
L |y 0 — X0 | Col’:/‘(R”)
-l ol
|y 0 — Xo | CO\;T (R

bol ol X—X
|)’0 xOl OV(Rn)

Ivol Ixol ‘

)

erfB—era
= —[V(X)] 0 (g
lxo — Yo - Y(R :

bol ol
evﬁ—epa‘

1-n
lxo — yol ~»

bl byl
er u(xp) — e u(yo)

1=2
lxo — yol " »
O
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Theorem 4.2. Assume u € W' is an extremal and 1 — ;1—7 Holder ratio of this extremal reaches

its maximum at xo and y,. We denote { = (e%ogb(xo) - e%qﬁ(yo)) where ¢ € WY R") and ¥ =

ol bol 72 kol ol
e 4 u(xp)—e 9 u(yo) (e 4 u(xg)—e 4 u(yo))
— . Then
[xo=yol
c? f (e'xIIVulq_ZVqub + e'xluq-1¢) dx =9 (4.2)
Rn

for each ¢.

Proof. Since u is an extremal and two distinct points x(, yo € R" are here, where the 1 — g Holder ratio
of this extremal reaches its maximum, we have

[l/l] CS\’Z)[(RH)

e u(x) - evu(y)|

= sup —
wev | =yl

equ@@—eqﬂmﬂ

X0 — )’o|
- C ||u||W1‘J R

rad ¥

= C*Hulqu‘xl(R”) + C*”M”Dl‘,ql(Rn). (43)
Moreover, one can conclude that

[u]?

0 Y(Rn

g bol q
et u(xo) = e+ u(yo)

Ixo = yol*™

—wWMW+qu)

:Cf(f e'xluqu+f e'xllDMqux).
R’l Rn

Since Theorem 1.1, we substitute u + ¢ into (1.1) so that

eg(u(xo) + td(xp)) — e¥(u(yo) + f¢()’o))'q
lxo — yol™"
¢ ulx) — ¢ % ulyo) + et Blxo) — €4 (o)

X0 = yol*™"
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<C! f eM(u + t¢)ldx + C? f eM\Vu + 1V p|idx

R R

17 n
where p € W (R") and ¢ > 0.

rad, e

For any convex function 4 on interval I, we know that it has a property as follows:
h(x2) > h(x1) + h' (x1)(x2 = x1).

Therefore, by using the convexity of the function x +— |x|? for each x € R,

p

et uxo) — et u(yp) + r(e%(xo) - e%(ym)

lxo — yol”™
q

ol

Ixol by Ixol ol
e u(xp) — e ¢ u(yo)

e s u(xp) — e u(yo)

" (e¥ u(xo) — e M(Yo))

> 194

Ixpl

— [ -z ol ol
X0 — yol |xo — yol "« v u(xg) — e e u(yp)

1-2)(g-1
xo — yol! @D

ol bl q
e u(xp) — e s u(yo)
= — +1g
lxo = yol ™™

We subtract (4.4) from (4.3) to obtain

ol bol
e u(xo) — e u(yo)

a2 (gl bol
(e ? u(xo) — e u(yo))§

[

lxo — Yo

q

Iyol

Ixgl Ixol ol q
e 4 u(xo) = e 4 u(yo)

e ulxo) = ¢ 7 uv) + 1 ¥ 9w) - ¢ ¥ 6(00))
|xo — yol™™

<l f (M + 1) + Vi + 197 — &u? — M|Vul?) dx.
Rn

Next, we substitute (4.5) into (4.6) to obtain
c f (e'x'(u +1¢)? + eM|Vu + V|7 — eMut - e|x||Vu|q)dx
. gt
Il bol 9=2 (Il ol
e utx) = e )| (e utw) - ¢ ¥ utv) )¢

lxo — yol*™

>

From [12], we are aware that a constant ¢, exists, then

0 < [Vu +tVpl? — |Vul?

p — [Vul"2VuVe < c,0(x)
q

1171V, 1<g<2,

fortr € (0,1] and ®O(x) = ¢ .
(O Hand O qum%wm+wwvﬂ 2<g<w

Therefore,

|x| q _ ,lA q
0< eMVu + tVp|? — e™|Vu|

p — VUl Vuve < c,eMO(x).
q

4.4)

4.5)

(4.6)

4.7)

(4.8)
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By using L’Hopital’s rule, one can conclude that

eM(u + tg)? — eMlyd . eMgu + t¢)q_1</)
m = lim
t—0 qt t—0 q

= lzl—%l eMu+ 1) = eMut g,
Therefore, taking t — 0 in (4.7), one can derive that

Ct f n (Ve VuV e + eMut~'g) dx > <. (4.9)
Moreover, choosing —¢ in (4.9), we derive that

cl f (Va2 VuV e + eMut~'g) dx = B¢,

O
Remark 4.3. From Theorem 4.2, we can also derive that u is a weak method for PDE
i I ol
—div (e'x'IVulq_2Vu) + Myt = Yol (670(5xo - 6705),0)
and
—div (e""quIq_zVu) +eMutt =0 in R"\ {xo, yo}.
Theorem 4.4. Assume xy,y, € R" are two distinct points, and u € erjz o (R™) is an extremal with
Ixol bl
et u(xo) — e u(yo)|
[u] o @y = 7 .
Cad ®") %o — yol' "4
Then for any v € W:c;((li i (R") with v(xo) = u(xo) and v(yo) = u(yo),
f M (\Vul? + uf) dx < f M (IVvl + u''v) dx.
R” R”
Proof. By using (4.8), we select ¢ = v —u and t = 1. Then
v pld — eV ld
0< EV VU g ue2vuvin - u. (4.10)
q
Combining (4.10), (4.2), v(xo) = u(xo) and v(yg) = u(y,), then
f eMVvl?dx
Rn
> f M|\ Vulldx + p f eM|Vul">Vu(Vv — Vu)dx
R" R
Ixpl Ivol
= f eM\Vul'dx + pc (eTO(v —u)(xp) — e)TO(v - u)(yo)) - f Mut' (v — u)dx
n R)‘l
> f M\ Vulldx — f M vdx + f eMuddx.
n Rn Rﬂ
Therefore,
f MVl + uh)dx < f M (Vv + u™'v) dx.
Rn R}l
O
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5. Conclusions

This study presents three principal contributions. First, a weighted Morrey’s inequality with
exponential weight was established. Subsequently, the existence of extremals for this inequality was
rigorously investigated. As a principal application, these theoretical advances were shown to guarantee
the existence of weak solutions for a related weighted p-Laplace equation and a novel integral
inequality emerging directly from the established framework.

While the establishment of a novel weighted Morrey inequality and the investigation of its existence
of extremals represent significant advances, several fundamental properties-including boundedness,
uniqueness, symmetry, and regularity-remain unresolved. Furthermore, the stability of this weighted
Morrey’s inequality with exponential weight merits systematic investigation.
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