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1. Introduction

Throughout this research work, X will denote a real Banach space which is endowed with norm ‖.‖
and the dual space X?; ∅ , C ⊂ Ω, N, and R will represent a closed convex subset of X with at least
one member, the set of positive integers, and the set of real numbers, respectively. Let {bn}

∞
n=1 be a

sequence in C and T : C −→ C be a given mapping. We use bn ⇀ b and bn → b to denote that the
sequence {bn}

∞
n=1 converges weakly and strongly to a point b, respectively. The generalized duality map

is the operator Jφ : C −→ 2C?
associated with the gauge function φ given by the mapping. Then, the

following identity holds:

Jφ(a) = {a? ∈ C : 〈a, a?〉 = ‖a‖‖a?‖ and ‖a?‖ = φ(‖a‖)}, (1.1)

where φ(`) = `q−1 for all ` ≥ 0 and 1 < q < ∞. Specifically, if q = 2, Jφ = J2 is called the normalized
duality map (NDM) represented as J which is defined by

J(a) = {a? ∈ C : 〈a, a?〉 = ‖a‖2 and ‖a?‖ = ‖a‖}.

It is known (see [1]) that if Ω is a real Hilbert spaceH , the NDM becomes an identity, i.e., Jω = {ω}.
Let T : C −→ C be a nonlinear map. The fixed point problem is to search for a point a ∈ C

that assures

Ta = a. (1.2)

We represent with F(T ) the set of fixed points of T , i.e., F(T ) = {b ∈ C : Tb = b}. We use ωω(bn) =

{b : ∃bn ⇀ b} to represent the weak ω-limit set of the sequence {bn}
∞
n=1. A nonlinear map T : C −→ C

is known as nonexpansive if it satisfies the inequality

‖Tb − Ta‖ ≤ ‖a − b‖,∀b, a ∈ C. (1.3)

The mapping T is known as quasi-nonexpansive (QN), if F(T ) , ∅ and (1.3) holds for all b ∈ C and
a ∈ F(T ).

The notion of nonexpansive operators (NM) stands as an indispensable part of the investigation of
the Mann-type iterative technique for evaluating invariant points of an operator T : C −→ C, where C
is as described above. Recall that the Mann-type iterative technique [2], developed from an arbitrary
b1 ∈ C, is given as follows:

bn+1 = (1 − δn)bn + δnTbn, (1.4)

where {δn}
∞
n=1 ⊂ [0, 1] satisfies some mild conditions.

The problem of investigating fixed points of NM with respect to strong convergence has been widely
studied by several authors. In this regard, Halpern [3] gave the following general iterative technique:

u ∈ Ω, b1 ∈ C

ϑn = (1 − δn)bn + δnTbn

bn+1 = (1 − αn)u + αnTϑn,

(1.5)
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where {αn}
∞
n=1, {δn}

∞
n=1 ⊂ [0, 1] satisfy appropriate conditions and u ∈ C is fixed. In particular, if

αn = 0, (1.5) reduces to the standard Mann iteration (1.4). Moreover, Halpern [3] proved the strong
convergence result of (1.5) when δn = 0 and for appropriate conditions on {αn}

∞
n=1. He further

established that the control parameters

D1 : limαn
n→∞

= 0 and D2 :
∞∑

n=1

αn = ∞

are necessary for convergence of (1.5) to the fixed point of =. Thereafter, several investigations have
been done to ascertain the implications of conditionsD1 andD2 on the convergence of (1.5); see [4,5]
for further reading.

In [6], Osilike and Isogugu studied the Halpern-type fixed point algorithm for k-strictly
pseudononspreading mappings T , which includes the class of nonspreading mappings (NSM) as a
special case. To achieve strong convergence results, they substituted an averaged-type mapping Tδ for
the mapping T , where

Tδ = (1 − δ)I + δT, δ ∈ (0, 1). (1.6)

Recently, Kohasaka and Takahashi [7, 8] studied an important class of nonlinear operators which
they referred to as NMS. Let Ω be a real, smooth, strictly convex (SC) and reflexive Banach space
(RBS) and denote by j : x −→ 2x? the duality mapping of x.

Let ∅ , C ⊂ X be closed and convex. A mapping T : C −→ C is called nonspreading if

φ(Tb,Ta) + φ(Ta,Tb) ≤ φ(Tb, a) + φ(Ta, b), (1.7)

for all b, a ∈ C, where
φ(b, a) = ‖b‖2 − 2〈b, j(a)〉 + ‖a‖2, (1.8)

for all b, a ∈ X.
Kohasaka and Takahashi considered the class of NSM to study the resolvent of a maximum

monotone operator in real, smooth, SC, and RBS. These mappings originate from another group of
operators called firmly nonexpansive mappings (see, for example, [7, 9]). In a real Hilbert space
(H), (1.8) reduces to the following identity:

φ(b, a) = ‖b‖2 − 2〈b, a〉 + ‖a‖2.

Consequently, ifH and C are as described above, then T is nonspreading if

‖Tb − Ta‖2 ≤ ‖Tb − a‖2 + ‖Ta − b‖2, ∀b, a ∈ C. (1.9)

It is established in [10] that (1.9) is equivalent to the inequality

‖Tb − Ta‖2 ≤ ‖b − a‖2 + 〈b − Tb, a − Ta〉, ∀b, a ∈ C. (1.10)

Remark. If T is nonspreading (resp. nonexpansive) and F(T ) , ∅, then T is QN.

In [10], the authors studied the iterative estimation of common invariant points of NM (ð) and NSM
(=) of Λ into itself in H . They studied a technique akin to the one employed by Moudafi in [11]. To
be precise, they established the following result:

AIMS Mathematics Volume 10, Issue 2, 3884–3909.



3887

Theorem 1.1 ( [10], Theorem 4.1). Let H and C be as described above. Let T, S : C −→ C be
as described in Remark 1 with the property that F(T ) ∩ F(S ) , ∅. Let bn}

∞
n=1 be a real sequence

generated by b1 ∈ C

bn+1 = (1 − αn)bn + αn[µnbn + (1 − µn)Tbn], ∀n ≥ 1,

where {αn}
∞
n=1, {µn}

∞
n=1 ⊂ [0, 1]. Then, we have:

(1) If
∞∑

n=1
αn(1 − αn) = ∞ and

∞∑
n=1

(1 − µn) < ∞, then bn ⇀ ν ∈ F(T ).

(2) If lim inf
n→∞

αn(1 − αn) > 0 and
∞∑

n=1
µn < ∞, then bn ⇀ ν ∈ F(T ).

(3) If lim inf
n→∞1

αn(1 − αn) > 0 and lim inf
n→∞1

µn(1 − µn) > 0, then bn ⇀ ν ∈ F(T ) ∩ F(S ).

Finding the fixed points of NM, NSM and some other related mappings have remained invaluable
topics in fixed point theory, and have been shown to be fundamental in the applied areas of signal
processing [12], the split feasibility problems [13], and convex feasibility problem [14]. In subsequent
works, Berinde [15,16] came up with the notion of enriched nonlinear mappings as a generalization of
the class of NM in the setup of H . This concept was later studied in a more general Banach space by
Saleem, Agwu and Igbokwe [17, 18].

Definition 1.2. A mapping T : C −→ C is referred to as ψT -enriched Lipschitzian (or (σ, ψT )-enriched
Lipshitzian) (see [17, 18]) (shortly, (σ, ψT )-ELM) if for all b, a ∈ Ca, there exist σ ∈ [0,+∞) and a
continuous nondecreasing function ψT : R+ −→ R+, with ψT (0) = 0, such that

‖σ(b − a) + Tb − Ta‖ ≤ (σ + 1)ψT (‖b − a‖). (1.11)

Observe from inequality (1.11) that:

(a) If σ = 0, then the class of mappings called ψT -Lipschitzian emerges.
(b) If σ = 0 and ψ(t) = Lt, for L > 0, then (1.11) reduces to a class of mappings known as L-

Lipschitzian, L represents the Lipschitz constant. In particular, if σ = 0,Ψ=(t) = Lt, and L = 1,
then (σ, ψT )-ELM immediately reduces to the class of NM on C.

(c) If ψT (t) = t, then inequality (1.11) becomes

‖σ(b − a) + Tb − Ta‖ ≤ (σ + 1)‖b − a‖, (1.12)

and it is called a σ-enriched nonexpansive mapping. The class of mappings defined by (1.12) was
first studied by Berinde [15, 16] as a generalization of a well-known class of nonlinear mappings
called NM.

Closer observation reveals that if ψT is not necessarily nondecreasing and guarantees the condition

ψT (t) < t, ∀t > 0,

then we have the class of σ-enriched contraction mappings.
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In view of the papers studied, particularly, the results obtained by Lemoto and Takahashi [10],
Berinde [16], and other related results in this direction, we consider the following questions:

Question 1.3. (1) Could there be a nonlinear mapping that contains the class of mappings defined
by (1.9) for which we would obtain the results in [10] as special cases?

(2) Could it be possible to obtain a strong convergence result for an averaged mapping in a more
general Banach space?

Lemoto and Takahashi considered the class of nonspreading mappings and proved the weak
convergence theorem as their main result in [10] in the setup ofH . Their results together with those of
Kohasaka and Takahashi [8] opened a new direction in metric fixed point theory. In the current paper,
we shall consider a new class of nonlinear mapping called σ-enriched nonspreading mappings ((σ)-
ENSM) in the setup of Ω. Further, we present some nontrivial examples to demonstrate its existence
(and its independency on the class of σ-enriched nonexpansive mappings ((σ)-ENEM)). By modifying
the iterative method studied in [10], we established strong convergence theorems which solve the
problems raise in Question 1.3.

The rest of the paper is organized as follows: Section 2 will consider preliminary results which
will be needed in establishing our main results. Proposition 3.7, and Theorems 3.6, 3.8, 3.9, and 3.11,
which will serve as our main results (including some of their consequences) and the conclusion of the
results obtained in this paper, will be considered in Section 3.

2. Preliminaries

The convexity of a Banach space X is characterized by the function δ(ε) : (0, 2] −→ [0, 1], known
as the modulus of convex of X, defined by

δ(ε) = inf
{
1 −
‖b + a‖

2
: ‖b‖ ≤ 1, ‖a‖ ≤ 1, ‖b − a‖ ≥ ε

}
.

The space C is regarded as uniformly convex if and only if δ(ε) > 0 for every ε such that 0 ≤ ε ≤ 2.
Let S X = {b ∈ X : ‖b‖ = 1}. For each b, a ∈ S X, the norm of X is referred to as Gateaux differentiable
provided the limit

lim
n→0

‖b + ta‖ − ‖b‖
t

(2.1)

exists. For the above case, X is called smooth. It is known as uniformly smooth (US) if the limit
described by (2.1) is achieved uniformly in X; whereas it is called strictly convex (SC) if

‖b + a‖
2

< 1,

whenever b, a ∈ S X and b , a. It is an established fact that X is uniformly convex (UC) if and only if
X? is US; for further details, see [19].

The smoothness of a Banach space X is characterized by the function ρ : [0,∞) −→ [0,∞), known
as the modulus of convexity of X, defined by

ρ(t) = sup
{

1
2

(‖b + a‖ + ‖b − a‖) − 1 : b, a ∈ X, ‖b‖ = 1, ‖a‖ = t
}
.
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It is known that X is US provided

lim
n→0

ρ(t)
t

= 0.

Set 1 < q ≤ 2. Then, X is called q-uniformly smooth if we can find a constant cq > 0 with the property
that ρ(t) ≤ cqtq for all t > 0. It is worth noting that X assumes smoothness if the mapping J (called
a sequentially continuous duality mapping) dwells in X with its domain in the weak topology and the
range in the weak-star topology. In this case, bn ⇀ b ∈ X ⇒ Jbn

?
⇀ Jb; see, for example, [20] for

further details. X enjoys the Opial property [21] if for any sequence {bn}
∞
n=1 which converges weakly in

X with a weak limit ℘,
lim sup

n→∞
‖bn − b‖ < lim sup

n→∞
‖bn − a‖

for all a ∈ X with b , a. It is a known fact that all X with finite dimension, all Hilbert spaces and all
spaces accredited to `p(1 ≤ p < ∞) admit the Opial property; see [20,21] for more details. It is also on
record that if X recognizes J, then it is smooth and also assures the employment of the Opial property;
see [20].

Let X,C,⇀ and→ be as described in section one. Let ∅ , M and ∅ , N be two subsets of X with
M ⊂ N. An operator QN : M −→ N is called sunny if

QN(QNb + ξ(b − QNb)) = QNb

for each b ∈ X and ξ ≥ 0. A mapping QN : m −→ N is said to be a retraction if QNb = b for each
b ∈ C.

Lemma 2.1. [22] Let Ω be as described above and ∅ , M,N ⊂ Ω be such that M ⊂ N. Let
QN : M −→ N be a retraction of M onto N. Then QN is sunny and nonexpansive if and only if

〈b − QN(b), j(a − QN(b))〉 ≤ 0,

for all b ∈ M and a ∈ N, where j(a − QN(b)) ∈ J(a − QN(b)) retains its usual meaning in X.

Lemma 2.2. [22] Let Ω and J be as described above. Then,

‖b + a‖2 ≤ ‖b‖2 + 2〈a, j(b + a)〉

for all b, a ∈ X and for all j(b + a) ∈ J(b + a).

Proposition 2.3. Let H be a real Hilbert space, ∅ , C ⊂ H and T : C −→ C be a σ-enriched
nonspreading mapping. Then, F(T ) is closed and convex.

Proof. Let {bn}
∞
n=1 be a sequence in F(T ) which converges to b. We want to show that b ∈ F(T ).

Now, since

‖Tβb − b‖ = β‖Tb − b‖ ≤ β‖Tbi − Tbn‖ + β‖bn − b‖

= β‖σ(b − bn) + Tb − Tbn − σ(b − bn)‖ + β‖bn − b‖

≤ β‖σ(b − bn) + Tb − Tbn‖ + β(σ + 1)‖bn − b‖, (2.2)

and since T is a σ-enriched nonspreading mapping, we have

‖σ(b − bn) + Tb − Tbn‖
2 ≤ (σ + 1)2‖bn − b‖2 + 2〈b − Tb, bn − Tbn〉
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= (σ + 1)2‖bn − b‖2. (2.3)

Equations (2.2) and (2.3) imply that

0 ≤ ‖Tb − b‖(σ + 1)‖bn − b‖ → 0 as n→ ∞. (2.4)

Hence, b ∈ F(T ).
Next, let ϑ1, ϑ2 ∈ F(T ) and λ ∈ [0, 1]. We prove that λϑ1+(1−λ)ϑ2 ∈ F(=). Let ψ = λϑ1+(1−λ)ϑ2.

Then, ϑ1b = (1 − λ)(ϑ1 − ϑ2) and ϑ2 − b = λ(ϑ2 − ϑ1). Since

β2‖Tb − b‖2 = ‖b − Tβb‖2 = ‖λϑ1 + (1 − λ)ϑ2 − =βb‖2

= ‖λ(ϑ1 − Tβb) + (1 − λ)(ϑ2 − Tβb)‖2

= λ‖ϑ1 − Tβb‖2 + (1 − λ)‖ϑ2 − Tβb‖2 − λ(1 − λ)‖ϑ1 − ϑ2‖
2

= λ‖(1 − β)ϑ1 + βTϑ1 − [(1 − β)b + βTb]‖2

+ (1 − λ)‖(1 − β)ϑ2 + βTϑ2 − [(1 − β)b + βTb]‖2

− λ(1 − λ)‖ϑ1 − ϑ2‖
2

= λ‖(1 − β)(ϑ1 − b) + β(Tϑ1 − Tb)‖2

+ (1 − λ)‖(1 − β)(ϑ2 − b) + β(Tϑ2 − Tb)‖2

− λ(1 − λ)‖ϑ1 − ϑ2‖
2

=
λ

(σ + 1)2 ‖σ(ϑ1 − b) + Tϑ1 − Tb‖2

+
1 − λ

(σ + 1)2 ‖σ(ϑ2 − b) + Tϑ2 − =ψ‖
2 − λ(1 − λ)‖ϑ1 − ϑ2‖

2

≤
λ

(σ + 1)2 [(σ + 1)2‖ϑ1 − b‖2 + 2〈ϑ1 − =ϑ1, b − Tb〉]

+
1 − λ

(σ + 1)2 [(σ + 1)2‖ϑ2 − b‖2 + 2〈ϑ2 − Tϑ2, b − Tb]〉

− λ(1 − λ)‖ϑ1 − ϑ2‖
2

= λ‖ϑ1 − b‖2 + (1 − λ)‖ϑ2 − b‖2 − λ(1 − λ)‖ϑ1 − ϑ2‖
2

= λ(1 − λ)[1 − λ + λ]‖ϑ1 − ϑ2‖
2 − λ(1 − λ)‖ϑ1 − ϑ2‖

2,

it follows that
β2‖Tb − b‖2 ≤ 0.

Therefore, b = Tb implies that b ∈ F(T ) as required. �

Definition 2.4. Let X be as described above, ∅ , C ⊂ X be closed and convex, and {bn}
∞
n=1 be a bounded

sequence in X. For any b ∈ C, we set

r(b, {bn}
∞
n=1) = lim sup

n→∞
‖b − bn‖.

The asymptotic radius of {bn}
∞
n=1 with respect to C is given as

r(C, {bn}
∞
n=1) = inf{r(b, {bn}

∞
n=1) : ℘ ∈ C}.
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The asymptotic center of {bn}
∞
n=1 with respect to C is the set

A(C, {bn}
∞
n=1) = {b ∈ C : r(b, {bn}

∞
n=1) = r(C, {bn}

∞
n=1)}.

It is an established fact that if X is UC, then A(C, {bn}
∞
n=1) is fixed at a point (see, for instance, [3, 22]).

Lemma 2.5. [23] Let {νn}
∞
n=1 be a sequence of non-negative real real numbers validating the

following inequality:

νn+1 ≤ (1 − πn)νn + πnµn,

where {πn}
∞
n=1 and {µn}

∞
n=1 satisfy the conditions:

(i) {πn}
∞
n=1 ⊂ [0, 1] and

∞∑
n=0
πn = ∞ or, equivalently,

∞∏
n=1

(1 − πn) = 0;

(ii) lim supn→∞ µn ≤ 0 or
∞∑

n=0
πnµn < ∞.

Then, lim
n→∞

νn = 0.

Lemma 2.6. [19] Let {γn}
∞
n=0 ⊂ R be such that we can find a subsequence {γnk}

∞
k=0 such that γk < γk+1

for all k ∈ N. Consider the sequence of integers {τ(n)}∞n=1 given by

τn = max{i ≤ n : γi ≤ γi+1}. (2.5)

Then, {τ(n)}∞n=1 is a nondecreasing sequence, for all n ≥ n0, validating the following requirements:

(i) lim
n→∞

τ(n) = ∞;
(ii) γτ(n) < γτ(n), ∀n ≥ n0;

(iii) γn < γτ(n), ∀n ≥ n0.

Lemma 2.7. [1, 22] Let X be a UC and B%{℘ ∈ X : ‖℘‖ ≤ %}, % > 0. Then, we can find a continuous,
strictly increasing function g : [0,∞) −→ [0,∞) with g(0) = 0 such that

‖rb + sa + tc‖2 ≤ r‖b‖2 + s‖a‖2 + t‖c‖2 − rsg(‖b − a‖)

for all b, a, c ∈ B% and for all r, s, t ∈ [0, 1, ] with r + s + t = 1.

The proposition below assures some essential properties of generalized duality mapping (Jφ).

Proposition 2.8. [18,24] Let X and X? be as described above. For q ∈ (1,∞), Jφ : X −→ 2X?
has the

following fundamental properties:

(1) Jφ(b) , ∅∀b ∈ X and D(Jφ)(: the dormain o f Jφ) = X;
(2) Jφ(b) = ‖b‖φ−1J2(b), ∀b ∈ X(b , 0);
(3) Jbφ(αb) = αφ−1Jφ(b), α ∈ [0,∞);
(4) Jφ(−b) = −Jφ(b).
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3. Results and discussion

Definition 3.1. Let X be as described above. A mapping T with domain D(T ) and range R(T ) in X is
known as σ-enriched nonspreading (σ-ENSM, for short) in the sense of Kurokawa and Takahashi [25]
if there exists σ ∈ [0,∞) and j(a − Ta) ∈ J(a − Ta) such that for all b, a ∈ D(T ), the following
inequality holds:

‖σ(b − a) + Tb − Ta‖2 ≤ (σ + 1)2‖b − a‖2 + 2〈b − Tb, j(a − Ta)〉. (3.1)

Now, by setting σ =
1
β
− 1, for some β ∈ (0, 1], it follows from Proposition 2.8 (3) and (3.1) that

‖σ(b − a) + Tb − Ta‖2 ≤ (σ + 1)2‖b − a‖2 + 2〈b − b, j(a − Ta)〉

⇔

∥∥∥∥(1
β
− 1

)
(b − a) + Tb − Ta

∥∥∥∥2
≤

1
β2 ‖b − a‖2 + 2〈b − Tb, j(a − Ta)〉

⇔

∥∥∥∥(1 − β
β

)
(b − a) + Tb − Ta

∥∥∥∥2
≤

1
β2 ‖b − a‖2 + 2〈b − Tb, j(a − Ta)〉

⇔ ‖(1 − β)(b − a) + βTb − βTa‖2 ≤ ‖b − a‖2 + 2〈β(b − Tb), β j(a − Ta)〉
⇔ ‖(1 − β)(b − a) + βTb − βTa‖2 ≤ ‖b − a‖2 + 2〈b − [(1 − β)b

+ βTb], j(a − [(1 − β)a + βTa])〉
⇔ ‖(1 − β)b + βTb − [(1 − β)a + βTa]‖2 ≤ ‖b − a‖2 + 2〈b − [(1 − β)b

+βTb], j(a − [(1 − β)a + βTa])〉. (3.2)

Remark. Observe that if σ = 0 in (3.1) (or β = 1 in (3.2)), we obtain an important class of
nonspreading mappings studied in [25]. Again, if we take Tβ = (I − β)I + βT , then (3.2) reduces
to the inequality

‖Tβb − Tβa‖2 ≤ ‖b − a‖2 + 2〈b − Tβb, j(a − Tβa)〉. (3.3)

Therefore, the averaged operator Tβ is a nonspreading mapping whenever T is a σ-enriched
nonspreading mapping.

Remark. Any nonspreading mapping T validating (3.1) with σ = 0 is known as 0-
enriched nonspreading.

Example 3.2. Let Bρ{b ∈ H : ‖b‖ ≤ ρ} for ρ > 0 and C = B2 ⊂ H . Define an operator T : C −→ C by

Tb =

b, b ∈ B2,

PB1b, b ∈ \B2,

where PA is a projection map ofH ontoA. Then, T is an enriched nonspreading mapping which does
not admit continuity. Obviously, F(=) = B2. Let b, a ∈ C. It suffices to examine the situation for
which b ∈ C \ B2, a ∈ B2. Now, since PB1 is nonexpansive (and hence 0-enriched nonexpansive) and
b − Tb = 0, it follows that

‖σ(b − a) + Tb − Ta‖2 = ‖σ(b − a) + PB1b − a‖2
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= ‖σ(b − a) + PB1b − PB1a‖
2 ≤ (σ+)2‖b − a‖2

= (σ + 1)2‖b − a‖2 + 2〈b − Tb, a − Ta〉.

Therefore, T is a σ-ENSM. Clearly, T is not continuous. In fact, for b0 ∈ ∂B2, ω0 ∈ ∂C, consider

cn =
(
1 −

1
n
)
b0 +

1
n

b0 ∈ C for each n ≥ 1. Then, bn → b0 but Tbn = PB1bn 9 Tb0 because ‖PB1bn‖ = 1
and ‖b0‖ = 2.

Remark. Note that T is not continuous in the last example; hence, T is not uniformly continuous. In
other words, the class of σ-ENSM is generally not Lipschitzian.

The following examples demonstrate the fact that the class of σ-ENEM and the class of σ-ESNM
are independent.

Example 3.3. Let R ⊃ C =
[1
2
, 2

]
be endowed with the usual norm and let = : C −→ C be define by

=ψ =
1
℘

for all ψ ∈ C. Then,

(i) T is not nonexpansive.

(ii) T is
3
2

-enriched nonexpansive.
(iii) F(T ) = {1}.

(iv) T is not a
3
2

-ESNM.

To validate (i) − (iv):

(i) Assume T is NE. Then, by the definition of NE, we should have

|Tb − Ta| =
∣∣∣∣a − b

ba

∣∣∣∣ ≤ |b − a|, ∀b, a ∈ C,

which, when b =
1
2

and a = 1, yields a contradiction.
(ii) For all ∀b, a ∈ C,

|σ(b − a) + Tb − Ta| =
∣∣∣∣σ(b − a) +

1
b
−

1
a

∣∣∣∣ =
∣∣∣∣σ(b − a) +

a − b
ba

∣∣∣∣
=

(
σ −

1
ba

)
|b − a|.

Observe that for any σ ≥
3
2

, the last identity becomes

|σ(b − a) + Tb − Ta| = (σ + 1)|b − a|, ∀b, a ∈ C,

and as such validates our conclusion that T is
3
2

-enriched nonexpansive.
(iii) F(T ) = {1} is not difficult to see.
(iv) Since every σ-enriched nonexpansive mapping satisfies the σ-enriched Lipschitz condition (see,

for instance, [17]),

‖σ(b − a) + Tb − Ta‖ = (σ + 1)L‖b − a‖, ∀b, a ∈ C,
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where L is the Lipschitz constant, and since every σ-enriched nonspreading mapping is generally
not Lipschitzian (see Example 3.2 and Remark 3 above), it follows from (ii) that = is not a σ-
enriched nonspreading mapping.

Example 3.4. Let X = R denote the reals with the usual norm. For each ψ ∈ R, let the mapping = be
given by

Tb =

0, if b ∈ (−∞, 2],
1, if b ∈ (2,∞).

Then, for all b, a ∈ (−∞, 2] and for all σ ∈ [0,∞), we have

(σ + 1)2|b − a|2 + 2〈b − Tb, j(a − Ta)〉 = (σ2 + 2σ + 1)|b − a|2 + 2ba

= (σ2 + 2σ)|b − a|2 + b2 + a2

≥ σ2|b − a|2

= |σ(b − a) + Tb − Ta|2.

Also, for all b, a ∈ (2,∞) and for all σ ∈ [0,∞), we have

(σ + 1)2|b − a|2 + 2〈b − Tb, j(a − Ta)〉 = (σ + 1)2|b − a|2 + 2(b − 1)(a − 1) > σ2|b − a|2

= |σ(b − a) + Tb − Ta|2.

Finally, if b ∈ (−∞, 2] and a ∈ (2,∞), then for all σ ∈ [0,∞), we get

(σ + 1)2|b − a|2 + 2〈b − Tb, j(a − Ta)〉 = (σ2 + 2σ)|b − a|2 + b2 + a2 − 2b

> |σ(b − a) − 1|2

= |σ(b − a) + Tb − Ta|2.

Thus, for all b, a ∈ X and for all σ ∈ [0,∞), we obtain

|σb − a) + Tb − Ta|2 ≤ (σ + 1)2|b − a|2 + 2〈b − Tb, j(a − Ta)〉.

Hence, T is σ-enriched nonspreading. Since every σ-enriched nonexpansive mapping T must satisfy
σ-enriched Lipschitz condition (see, for instance, [17])

‖σ(b − a) + Tb − Ta‖ = (σ + 1)L‖b − a‖, ∀b, a ∈ C,

where L is the Lipschitz constant. It is not difficult to see that T is not a σ-enriched
nonexpansive mapping.

The next example shows that a σ-ENSM is different from a NSM thereby leading to the conclusion
that the class of a σ-ENSM properly contains the class of NSM.

Example 3.5. Let R be as described above with the usual norm and suppose the mapping T : R −→ R
is given by

Tb = −b.
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Then, T is a σ-enriched nonspreading mapping. Indeed, for all b, a ∈ R with

|σ(b − a) + Tb − Ta|2 = (σ − 1)2|b − a|2,

and

(σ + 1)2|b − a|2 + 2〈b − Tb, a − Ta〉 = (σ + 1)2|b − a|2 + 2〈2b, 2a〉 = (σ + 1)2|b − a|2

+8ba,

there exists a σ ∈ [1,∞) such that

|σ(b − a) + Tb − Ta|2 ≤ (σ + 1)2|b − a|2 + 2〈b − Tb, a − Ta〉.

However, T is not nonspreading, for if b , 0 and a = −b, then

|Tb − Tb|2 = 4b2 > −4b2 = |b − a|2 + 2〈b − Tb, a − Ta〉.

Remark. If F(T ) , ∅ in (3.1), then we obtain a class of mapping called σ-enriched quasi-
nonexpansive mappings.

Now, we give the existence theorems of invariant points of σ-ENSM in X.

Theorem 3.6. Let X be a UC and ∅ , C ⊂ X be closed and convex. Let T : C −→ C be a σ-ENSM.
Then, the statements below are equivalent:

(i) The invariant point set of F(T ) , ∅.
(ii) ∃{bn}

∞
n=1 ⊂ C, with {bn}

∞
n=1 bounded, such that lim inf

n→∞
‖bn − Tbn‖ = 0.

Proof. We can see that (i) ⇒ (ii) is quite obvious. To establish the opposite implication, we
assume ∃{bn}

∞
n=1 ⊂ C, with {bn}

∞
n=1 bounded, such that lim inf

n→∞
‖bn − Tbn‖ = 0. As a consequence,

∃{Tbnk}
∞
k=1 ⊂ {Tbn}

∞
n=1 for which lim inf

k→∞
‖bnk − Tbnk‖ = 0. Suppose A(C, {bnk}

∞
k=1) = {%}. Let

Θ1 = sup{‖bnk‖, ‖Tbnk‖, ‖%‖, ‖T%‖ : k ∈ N} < ∞.
Since the mapping T is σ-nonspreading, it follows that

‖bnk − T%‖2 = ‖bnk − Tbnk + Tbnk − T%‖2

≤ ‖bnk − Tbnk‖
2 + ‖Tbnk − T%‖2 + 2‖bnk − Tbnk‖‖Tbnk − T%‖

≤ ‖bnk − Tbnk‖
2 + ‖Tbnk − T%‖2 + 2Θ1‖bnk − Tbnk‖

= ‖bnk − Tbnk‖
2 + ‖σ(bnk − %) + Tbnk − T% − σ(% − bnk)‖

2 + 2Θ1‖bnk − Tbnk‖

≤ ‖bnk − Tbnk‖
2 + ‖σ(bnk − %) + Tbnk − T%‖2 + σ2‖% − bnk‖

2

− 2σ‖σ(bnk − %) + Tbnk − T%‖‖% − bnk‖ + 2Θ1‖bnk − Tbnk‖

≤ ‖bnk − Tbnk‖
2 + (σ + 1)2‖bnk − %‖

2 + 2〈bnk − Tbnk , j(% − T%)〉
+ σ2‖% − bnk‖

2 − 2σ‖σ(bnk − %) + Tbnk − T%‖‖% − bnk‖

+ 2Θ1‖bnk − Tbnk‖

= ‖bnk − Tbnk‖
2 + ‖bnk − %‖

2 + 2σ(σ + 1)〈% − bnk , j(−(bnk − %))〉
+ 2〈bnk − Tbnk , j(% − T%)〉 − 2σ‖σ(bnk − %) + Tbnk − T%‖
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× ‖% − bnk‖ + 2Θ1‖bnk − Tbnk‖

≤ ‖bnk − Tbnk‖
2 + ‖bnk − %‖

2 − 2σ(σ + 1)〈% − bnk , j(bnk − %)〉
+ 2〈bnk − Tbnk , j(% − T%)〉 + 2Θ1‖bnk − Tbnk‖ (by Proposition 2.8(4))
= ‖bnk − Tbnk‖

2 + ‖bnk − %‖
2 − 2σ(σ + 1)‖% − bnk‖‖bnk − %‖

+ 2‖bnk − Tbnk‖‖% − T%‖ + 2Θ1‖bnk − Tbnk‖

≤ ‖bnk − Tbnk‖
2 + ‖bnk − %‖

2 − 2σ(σ + 1)‖% − bnk‖‖bnk − %‖

+ 2‖bnk − Tbnk‖(‖%‖ + ‖T%‖) + 2Θ1‖bnk − Tbnk‖

≤ ‖bnk − Tbnk‖
2 + ‖bnk − %‖

2 + 6Θ1‖bnk − Tbnk‖.

It, therefore, follows from the last inequality that

lim sup
k→∞

‖bnk − T%‖2 ≤ lim sup
k→∞

[‖bnk − Tbnk‖
2 + ‖bnk − %‖

2 + 6Θ1‖bnk − Tbnk‖].

As a consequence, we obtain

A(T%, {bnk}
∞
k=1) = lim sup

k→∞
‖bnk − T%‖ = lim sup

k→∞
‖bnk − %‖ = r(%, {bnk}

∞
k=1)}.

This, by implication, entails that T% ∈ A(C, {bn}
∞
n=1). In view of the uniform convexity of C, we

conclude that T% = % as required. �

The result below is an immediate consequence of Theorem 3.6.

Proposition 3.7. Let X and C be as described in Theorem 3.6. Let T : C −→ X be a σ-ESNM with
F(T ) , ∅. If bn ⇀ % ∈ C and (I − T )bn → 0, then % ∈ F(T ).

Theorem 3.8. Let T and C be as in Theorem 3.6 with X admitting the Opial property. Let T : C −→ C
be a σ-ESNM such that F(T ) , ∅. If {γn}

∞
n=1 is a sequence in (0, 1) with 0 < α ≤ γn ≤ 1 − α < 1, and

{bn}
∞
n=1 is a sequence in C developed from

bn+1 = (1 − γn)bn + γnTβbn, ∀n ∈ N, (3.4)

where Tβ = (I − β)I + βT, then (3.4) converges weakly to an element of F.

Proof. Let % ∈ F(T ) = F(Tβ) be arbitrarily chosen. Then, by Lemma 2.7, we can find a strictly
increasing function g : [0,∞) −→ [0,∞), characterized by convexity and the continuity property, with
g(0) = 0 such that

‖bn+1 − %‖
2 = ‖(1 − γn)(bn − %) + γn(Tβbn − %)‖2

≤ (1 − γn)‖bn − %‖
2 + γn‖Tβbn − %‖

2 − γn(1 − γn)g(‖bn − Tβbn‖)

= (1 − γn)‖bn − %‖
2 +

γn

(σ + 1)2 ‖(1 − σ)(bn − %) + Tbn − T%‖2

− γn(1 − γn)g
( 1
σ + 1

‖bn − Tbn‖
)

≤ (1 − γn)‖℘n − %‖
2 + γn‖bn − %‖

2 +
γn

(σ + 1)2 〈bn − Tbn, j(% − T%)〉
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− γn(1 − γn)g
( 1
σ + 1

‖bn − Tbn‖
)

= (1 − γn)‖bn − %‖
2 + γn‖bn − %‖

2 − γn(1 − γn)g
( 1
σ + 1

‖bn − Tbn‖
)

≤ ‖bn − %‖
2 − α2g

( 1
σ + 1

‖bn − Tbn‖
)
. (3.5)

Since α > 0 and σ ∈ [0,∞), it follows from (3.5) that

‖bn+1 − %‖ ≤ ‖bn − %‖.

This implies that lim
n→∞
‖bn − %‖ exists. Therefore, {bn}

∞
n=1 is bounded. By setting

lim
n→∞
‖bn − %‖ = δ,

we obtain from (3.5) that

α2g
( 1
σ + 1

‖bn − Tbn‖
)
≤ ‖bn − %‖ − ‖bn+1 − %‖,

which yields that
lim
n→∞
‖bn − Tbn‖ = 0.

But, {bn}
∞
n=1 is bounded. Therefore, ∃{bnk}

∞
k=1 ⊂ {bn}

∞
n=1 such that bnk ⇀ %. Also, lim

n→∞
‖bn − Tbn‖ = 0

implies that lim
k→∞
‖bnk − Tbnk‖ = 0. From Proposition 3.7, (I − T )bn → 0 as n → ∞. Consequently,

% ∈ F(=). To conclude, it suffices to establish the fact that for another subsequence {bni}
∞
i=1 ⊆ {bn}

∞
n=1

which is characterized by the weak convergence property (i.e., bni ⇀ ν as n → ∞), we have % = ν.
Suppose otherwise and let % , ν. Then, we get from Opial’s theorem that

lim
n→∞
‖bn − %‖ = lim

k→∞
‖bnk − %‖ < lim

k→∞
‖bnk − ν‖ = lim

n→∞
‖bn − ν‖

= lim
i→∞
‖bni − ν‖ < lim

i→∞
‖bni − %‖ = lim

n→∞
‖bn − %‖.

This is a contradiction. Consequently, {bn}
∞
n=1 converges weakly to % ∈ F(T ). �

Theorem 3.9. Let X be a UC which admits a weakly sequentially continuous duality mapping J,
∅ , C ⊂ X be closed and convex, and T : C −→ C be a σ-enriched nonspreading mapping such
that F(T ) , ∅. Let {γn}

∞
n=1 and {δn}

∞
n=1 be two sequences in (0, 1) such that the following requirements

are validated:

(a) lim
n→∞

γn = 0;

(b)
∞∑

n=1
γn = ∞;

(c) lim inf
k→∞

δn(1 − δn) > 0.

Let the sequence {bn}
∞
n=1 be developed from

u ∈ C, b1 ∈ C chosen arbitrarily,

ϑn = (1 − δn)bn + δnTβbn,

bn+1 = γnu + (1 − γn)ϑn, ∀n ∈ N,

(3.6)
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where Tβ = (I − β)I + βT. Then, {bn}
∞
n=1 given (3.6) admits strong convergence to a point % ∈ QFu,

where QF denotes a sunny nonexpansive retraction from X onto F(T ).

Proof. Since Tβ is quasi-nonexpansive, we have that F(T ) is closed and convex. Set

ξ = QF .

We shall divide the rest of the proof into several steps.
Step 1. We demonstrate that {bn}

∞
n=1, {ϑn}

∞
n=1, and {Tbn}

∞
n=1 are bounded. First, we establish that {bn}

∞
n=1

admits boundedness.
Fix % ∈ F(Tβ) = F(T ). Using Lemma 2.7, we can find a strictly increasing function g : [0,∞) −→

[0,∞) which is characterized by continuity, convexity, and g(0) = 0 properties such that the following
estimates hold:

‖ϑn − %‖
2 = ‖(1 − δn)bn + δnTβbn − %‖

2

≤ (1 − δn)‖bn − %‖
2 + δn‖Tβbn − %‖

2 − δn(1 − δn)g(‖bn − Tβbn‖)

≤ (1 − δn)‖bn − %‖
2 +

δn

(σ + 1)2 ‖σ(bn − %) + Tbn − T%‖2

− δn(1 − δn)g
( 1
σ + 1

‖bn − Tbn‖
)

≤ (1 − δn)‖bn − %‖
2 +

δn

(σ + 1)2 [(σ + 1)2‖bn − %‖
2 + 2〈bn − Tbn, j(% − T%)]

− δn(1 − δn)g
( 1
σ + 1

‖bn − Tbn‖
)

= ‖bn − %‖
2 +

2δn

(σ + 1)2 〈bn − Tbn, j(% − T%) − δn(1 − δn)g
( 1
σ + 1

‖bn − Tbn‖
)

≤ ‖bn − %‖
2. (3.7)

Again, from (3.6), we have

‖bn+1 − %‖ = ‖γnu + (1 − γn)ϑn − %‖

≤ γn‖u − %‖ + (1 − γn)‖ϑn − %‖

≤ γn‖u − %‖ + (1 − γn)‖bn − %‖ (by (3.7))
≤ max{‖u − %‖, ‖bn − %‖}.

Using induction, we get

‖bn+1 − %‖ ≤ max{‖u − %‖, ‖b1 − %‖}, ∀n ∈ N.

The last inequality yields that {‖bn − %‖}
∞
n=1 is bounded and as a consequence, {bn}

∞
n=1 is bounded. The

boundedness of {ϑn}
∞
n=1 and {Tbn}

∞
n=1 follows from the above result and (3.6).

Step 2. Now, for any n ∈ N, we want to show that

‖bn+1 − ξ‖
2 ≤ (1 − γn)‖bn − ξ‖

2 + 2γn〈u − ξ, j(bn+1 − ξ)〉. (3.8)
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To do this, note that for each n ∈ N, (3.7) (with % = ξ) gives

‖ϑn − ξ‖
2 ≤ ‖bn − ξ‖

2 +
2δn

(σ + 1)2 〈bn − Tbn, j(ξ − =ξ)〉 − δ(1 − δn)g
( 1
σ + 1

‖bn − Tbn‖
)
.

This, together with (3.6), gives

‖bn+1 − ξ‖ = ‖γnu + (1 − γn)ϑn − ξ‖

≤ γn‖u − ξ‖ + (1 − γn)
[
‖bn − ξ‖

2

− δn(1 − δn)g
( 1
σ + 1

‖bn − Tbn‖
)]
. (3.9)

Set Θ2 = sup
{
‖u−ξ‖−‖bn−ξ‖

2 +δ(1−δn)g
( 1
σ + 1

‖bn−Tbn‖
)

: n ∈ N
}
. Then, we obtain from (3.9) that

δn(1 − δn)g
( 1
σ + 1

‖bn − Tbn‖
)
≤ ‖℘n − ξ‖

2 − ‖bn+1 − ξ‖
2 + γnΘ2. (3.10)

Now, from Lemma 2.2 and (3.6), we get

‖bn+1 − ξ‖
2 = ‖γnu + (1 − γn)ϑn − ξ‖

2

= ‖γn(u − ξ) + (1 − γn)(ϑn − ξ)‖2

≤ (1 − γn)2‖ϑn − ξ)‖2 + 2γn〈u − ξ), j(bn+1 − ξ)〉
≤ (1 − γn)‖ϑn − ξ)‖2 + 2γn〈u − ξ), j(bn+1 − ξ)〉
≤ (1 − γn)‖bn − ξ)‖2 + 2γn〈u − ξ), j(bn+1 − ξ)〉.

Step 3. Now, we demonstrate that lim
n→∞

bn = ξ.
To do this, we consider the two cases below:

Case A. If the sequence {‖bn−ξ‖}
∞
n=1 is monotonically decreasing, then there exists an n0 ∈ N for which

{‖bn−ξ‖}
∞
n=n0

is decreasing. Consequently, {‖bn−ξ‖}
∞
n=1 is convergent and as such lim

n→∞
(‖bn−ξ‖

2−‖bn+1−

ξ‖2) = 0. This, in view of condition (c) and (3.10), yields

lim
n→∞

g
( 1
σ + 1

‖bn − Tbn‖
)

= 0.

From the property of g, we have
lim
n→∞
‖bn − Tbn‖ = 0. (3.11)

Since from (3.6)

bn − ϑn = δn(bn − Tβbn) =
δn

σ + 1
(bn − Tbn) and bn+1 − ϑn = γn(u − ϑn),

it follows from (3.11) and condition (a) that

lim
n→∞
‖bn − ϑn‖ = 0 and lim

n→∞
‖bn+1 − ϑn‖ = 0. (3.12)

AIMS Mathematics Volume 10, Issue 2, 3884–3909.



3900

Therefore, using the triangular inequality and (3.12), we get

lim
n→∞
‖bn+1 − ℘n‖ = lim

n→∞
‖bn+1 − ϑn + ϑn − bn‖ ≤ lim

n→∞
[‖bn+1 − ϑn‖ + ‖ϑn − bn‖]→ 0 (3.13)

as n→ ∞ (by (3.12)).
Since {bn}

∞
n=1 is bounded, there exists a subsequence {bnk}

∞
k=1 of {bn}

∞
n=1 such that bnk+1 ⇀ $ ∈ Λ

as k → ∞. It, therefore, follows from Proposition 3.7 and (3.11) that $ ∈ F(T ). This, together with
Lemma 2.1, implies that

lim sup
n→∞

〈u − ξ, j(bn+1 − ξ)〉 = lim
n→∞
〈u − ξ, j(bn+1 − ξ)〉 = 〈u − ξ, j($ − ξ)〉 ≤ 0. (3.14)

Thus, by Lemma 2.5, the result follows immediately.
Case B. If the sequence {‖bn − ξ‖}

∞
n=1 is not eventually decreasing, then there exists a subsequence

{nk}
∞
k=1 of {n}∞n=1such that

‖bnk − ξ‖ < ‖bnk+1 − ξ‖

for all k ∈ N. Using Lemma 2.6, we can find a nondecreasing sequence {m j}
∞
j=1 ⊂ N such that

m j → ∞ and
‖bm j − ξ‖ < ‖bm j+1 − ξ‖ and ‖b j − ξ‖ < ‖bm j+1 − ξ‖,

for all j ∈ N. This, together with (3.10), yields

δm j(1 − δm j)g
( 1
σ + 1

‖bm j − Tbm j‖
)
≤ ‖bm j − ξ‖

2 − ‖bm j+1 − ξ‖
2 + γm jΘ2.

From the requirements of (a) and (c) and the property of g, it follows that

lim
j→∞
‖bm j − Tbm j‖ = 0. (3.15)

Using the same method employed in Case A, we obtain

lim sup
j→∞

〈u − ξ, j(bm j − ξ)〉 = lim sup
j→∞

〈u − ξ, j(bm j+1 − ξ)〉 ≤ 0.

Since from (3.8)

‖bm j+1 − ξ‖
2 ≤ (1 − γm j)‖bm j − ξ‖

2 + 2γm j〈u − ξ, j(bm j+1 − ξ)〉 (3.16)

and ‖bm j − ξ‖ < ‖bm j+1 − ξ‖, it follows that

γm j‖bm j − ξ‖
2 ≤ ‖bm j − ξ‖

2 − ‖bm j+1 − ξ‖
2 + 2γm j〈u − ξ, j(bm j+1 − ξ)〉

≤ 2γm j〈u − ξ, j(bm j+1 − ξ)〉. (3.17)

In particular, since γm j > 0, it follows from (3.17) that

‖bm j − ξ‖
2 ≤ 2〈u − ξ, j(bm j+1 − ξ)〉

and hence
lim
j→∞
‖bm j − ξ‖ = 0.
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The last identity, together with (3.16), yields

lim
j→∞
‖bm j+1 − ξ‖ = 0.

On the other hand, we have that ‖℘m j −ξ‖ < ‖bm j+1−ξ‖ ∀ j ∈ N, which yields b j → ξ as j→ ∞. Hence,
bn → ξ as n→ ∞ and the proof is complete. �

Corollary 3.10. Let ∅ , C ⊂ X be closed and convex, where X is a real Hilbert space. Let T : C −→ C
be a σ-enriched nonspreading mapping such that F(T ) , ∅, and {γn}

∞
n=1 be a sequence in (0, 1) which

validates the requirements that:

(a) lim
n→∞

γn = 0;

(b)
∞∑

n=1
γn = ∞.

Then {℘n}
∞
n=1 developed fromu ∈ C, b1 ∈ C chosen arbitrarily,

bn+1 = γnu + (1 − γn)Tβbn, ∀n ∈ N,
(3.18)

where Tβ = (I − β)I + βT admits strong convergence to a point % ∈ QFu, where PF is the metric
projection from X onto F.

Theorem 3.11. Let X and C be as described in Theorem 3.9. Let Tβ,1 : C −→ C be a σ-enriched
nonspreading mapping and Tβ,2 : C −→ C be a σ-enriched nonexpansive mapping such that F(T1) ∩
F(T2) , ∅. Let {γn}

∞
n=1, {δn,1}

∞
n=1, {δn,2}

∞
n=1, and {δn,3}

∞
n=1 be four sequences in [0, 1] which validate the

requirements that:

(a) lim
n→∞

γn = 0;

(b)
∞∑

n=1
γn = ∞;

(c) δn,1 + δn,2 + δn,3 = 1;
(d) lim inf

k→∞
δn(1 − δn) > 0.

Then, {bn}
∞
n=1 developed from

u ∈ C, b1 ∈ C chosen arbitrarily,

ϑn = δn,1Tβ,1bn + δn,2Tβ,2bn + δn,3bn,3,

bn+1 = γnu + (1 − γn)ϑn, ∀n ∈ N

(3.19)

admits strong convergence to a point % ∈ QFu, where Tβ,1 = (I − β)I + βT1, Tβ,2 = (I − β)I + βT2, and
QF denotes a sunny nonexpansive retraction from X onto F.

Proof. Since Tβ,1 and Tβ,2 are quasi-nonexpansive, we have that F(T )∩ F(S ) is closed and convex. Set

ξ = QF .
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We shall divide the rest of the proof into several steps.
Step 1. We demonstrate that {bn}

∞
n=1, {ϑn}

∞
n=1, {Tbn}

∞
n=1, and {S bn}

∞
n=1 are bounded. First, we establish

that {bn}
∞
n=1 is bounded.

Let % ∈ F = F(T1) ∩ F(T2) be fixed. Using Lemma 2.7, we can find a strictly increasing function
g : [0,∞) −→ [0,∞) which is characterized by continuity, convexity, and g(0) = 0 properties such that
the following estimates hold:

‖ϑn − %‖
2 = ‖δn,1Tβ,1bn + δn,2Tβ,2bn + δnbn,3 − %‖

2

≤ δn,1‖Tβ,1bn − %‖
2 + δn,2‖Tβ,2bn − %‖

2 + δn,3‖bn − %‖
2 − δn,iδn,3g(‖bn − Tβ,ibn‖)

≤
δn,1

(σ + 1)2 ‖σ(bn − %) + T1bn − T%‖2 +
δn,2

(σ + 1)2 ‖σ(bn − %) + T2bn − T%‖2

+ δn,3‖bn − %‖
2 − δn,iδn,3g

( 1
σ + 1

‖bn − Tibn‖
)

≤
δn,1

(σ + 1)2 [(σ + 1)2‖bn − %‖
2 + 〈bn − T1, j(% − T1%)〉]

+
δn,2

(σ + 1)2 [(σ + 1)2‖bn − %‖
2] + δn,3‖bn − %‖

2 − δn,iδn,3g
( 1
σ + 1

‖bn − Ti℘n‖
)

≤ ‖℘n − %‖
2 − δn,iδn,3g

( 1
σ + 1

‖℘n − =ibn‖
)

≤ ‖bn − %‖
2, i = 1, 2. (3.20)

Also, from (3.19), we have

‖bn+1 − %‖ = ‖γnu + (1 − γn)ϑn − %‖

≤ γn‖u − %‖ + (1 − γn)‖ϑn − %‖

≤ γn‖u − %‖ + (1 − γn)‖bn − %‖ (by (3.20))
≤ max{‖u − %‖ + ‖bn − %‖},

which by induction yields

‖bn+1 − %‖ ≤ max{‖u − %‖ + ‖b1 − %‖}, ∀n ∈ N,

and as a consequence, it follows that {‖℘n − %‖}∞n=1 is bounded. The boundedness of
{bn}

∞
n=1, {ϑn}

∞
n=1, {T1bn}

∞
n=1, and {=2bn}

∞
n=1 follows directly from the boundedness of {bn}

∞
n=1 and (3.19).

Step 2. We establish that

‖bn+1 − ξ‖
2 ≤ (1 − γn)‖bn − ξ‖

2 + 2γn〈u − ξ, j(bn+1 − ξ)〉, (3.21)

for any n ∈ N. To do this, note that for each n ∈ N and i = 1, 2, (3.20) (with % = ξ) gives

‖ϑn − ξ‖
2 ≤ ‖bn − ξ‖

2 − δn,iδn,3g
( 1
σ + 1

‖bn − Tibn‖
)
.

This, together with (3.19), gives

‖bn+1 − ξ‖ = ‖γnu + (1 − γn)ϑn − ξ‖
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≤ γn‖u − ξ‖ + (1 − γn)
[
‖bn − ξ‖

2 − δn,iδn,3g
( 1
σ + 1

‖bn − Tibn‖
)]
. (3.22)

Set Θ3 = sup
{
‖u − ξ‖ − ‖bn − ξ‖

2 + δn,iδn,3g
( 1
σ + 1

‖bn − Tibn‖
)

: n ∈ N, i = 1, 2
}
. Then, we obtain

from (3.22) that

δn,iδn,3g
( 1
σ + 1

‖bn − Tibn‖
)
≤ ‖bn − ξ‖

2 − ‖bn+1 − ξ‖
2 + γnΘ3. (3.23)

Now, from Lemma 2.2 and (3.19), we get

‖bn+1 − ξ‖
2 = ‖γnu + (1 − γn)ϑn − ξ‖

2

= ‖γn(u − ξ) + (1 − γn)(ϑn − ξ)‖2

≤ (1 − γn)2‖ϑn − ξ)‖2 + 2γn〈u − ξ), j(bn+1 − ξ)〉
≤ (1 − γn)‖ϑn − ξ)‖2 + 2γn〈u − ξ), j(bn+1 − ξ)〉
≤ (1 − γn)‖bn − ξ)‖2 + 2γn〈u − ξ), j(bn+1 − ξ)〉.

Step 3. We demonstrate that ℘n → ξ as n→ ∞.
To show this, consider the two cases below:

Case A. If the sequence {‖bn−ξ‖}
∞
n=1 is monotonically decreasing, then ∃n0 ∈ N for which {‖bn−ξ‖}

∞
n=n0

is decreasing. Consequently, {‖bn − ξ‖}
∞
n=1 is convergent and lim

n→∞
(‖bn − ξ‖

2 − ‖℘n+1 − ξ‖
2) = 0. This, in

view of requirement (c) and (3.23), yields

lim
n→∞

g
( 1
σ + 1

‖bn − Tibn‖
)

= 0, i = 1, 2.

Employing the property of g, we have

lim
n→∞
‖bn − Tibn‖ = 0, i = 1, 2. (3.24)

Since from (3.19)

bn − ϑn = δn,1(Tβ,1bn − bn) + δn,2(Tβ,2bn − bn)

=
1

σ + 1
[δn,1(T1bn − ℘n) + δn,2(T2bn − bn)]

and bn+1 − ϑn = γn(u − ϑn), it follows from (3.24) and condition (a) that

lim
n→∞
‖bn − ϑn‖ = 0 and lim

n→∞
‖bn+1 − ϑn‖ = 0. (3.25)

Therefore, using the triangular inequality and (3.25), we get

lim
n→∞
‖bn+1 − bn‖ = lim

n→∞
‖bn+1 − ϑn + ϑn − bn‖ ≤ lim

n→∞
[‖bn+1 − ϑn‖ + ‖ϑn − bn‖] = 0. (3.26)

Since {bn}
∞
n=1 is bounded, we can find a subsequence {bnk}

∞
k=1 of {bn}

∞
n=1 such that bnk+1 ⇀ $ ∈ C

as k → ∞. It, therefore, follows from Proposition 3.7 and (3.24) that $ ∈ F. This, together with
Lemma 2.1, implies that

lim sup
n→∞

〈u − ξ, j(bn+1 − ξ)〉 = lim
n→∞
〈u − ξ, j(bn+1 − ξ)〉 = 〈u − ξ, j($ − ξ)〉 ≤ 0. (3.27)
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Thus, by Lemma 2.5, the result follows immediately.
Case B. Using the approach employed in establishing Theorem 3.9, we can show that lim

n→∞
bn = %, and

the proof is complete. �

Remark. (1) The result of this research work solves the question posed by Kurokawa and Takahashi;
see Remark on page 1567 in [25].

(2) Theorem 4.1 of [10] admits only a weak convergent result while our Theorem 3.11 admits a
strong convergence result. However, it is worth mentioning that the technique involved in proving
Theorem 3.11 is very different from the one employed in proving Theorem 4.1.

(3) In most cases, strong convergence results are better than weak convergence results
in applications.

4. Rate of convergence

For a nonempty convex subset C of a space X and T :−→ C:
(1) The Mann (Mn) iteration method (see [2]) is defined by the following sequence {bn}:b0 ∈ C

bn+1 = (1 − γn)bn + γnTbn
, (4.1)

where {γn} is a sequence in (0, 1).
(2) The sequence {bn} given by

b0 ∈ C

ϑn = (1 − δn)bn + δnTbn

bn+1 = (1 − γn)bn + γnTϑn

, (4.2)

where {γn}, {δn} are sequences in (0, 1), is called the Ishikawa (Ishn) method (see [26]).
(3) Our method (In) is given by

b0 ∈ C

ϑn = (1 − δn)bn + δnTβbn

bn+1 = (1 − γn)u + γnϑn

, (4.3)

where {γn}, {δn} are sequences in (0, 1) and Tβ = (1 − β)I + βT (with β ∈ (0, 1)).

Definition 4.1. [27] Suppose that {cn} and {dn} are two real convergent sequences with limits c and d,
respectively. Then, {cn} is said to converge faster than {dn} if

lim
n→∞

∣∣∣∣ cn − c
dn − d

∣∣∣∣ = 0.

Now, using the example below, we prove that the iteration process In used in obtaining our
main result of Theorem 3.9 is faster than the Mann Mn and Ishikawa Ishn methods for enriched
nonspreading operators.
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Example 4.2. Suppose T : R −→ R = −b, γn =
4
√

n
, β =

5
6
, δn =

1
4
, and u =

1
2

. It is clear that T is an

enriched nonspreading mapping with a unique fixed point of 0 (see Example 3.5 above). Also, it is not
difficult to see that Example 4.2 satisfies all the conditions of Theorem 3.9.

Proof. Since γn =
4
√

n
, β =

5
6
, and δn =

1
4

, it follows from Mn, Ishn, and Im that for b0 , 0,

Mn = (1 − γn)bn + γnTbn

=
(
1 −

4
√

n

)
bn −

4
√

n
bn =

(
1 −

8
√

n

)
bn =

n∏
i=2

(
1 −

8
√

i

)
b0,

Ishn = (1 − γn)bn + γn[(1 − δn)bn + δnTbn]

=
(
1 −

4
√

n

)
bn +

4
√

n
T
(1
2

bn

)
=

(
1 −

4
√

n

)
bn −

4
√

n

(1
2

bn

)
=

(
1 −

6
√

n

)
bn =

n∏
i=2

(
1 −

6
√

i

)
b0,

and

In = (1 − γn)u + γn[(1 − δn)bn + δn((1 − β)I + βT )bn]

=
4

2
√

n
+

(
1 −

4
√

n

)[(
1 −

1
4

)
bn +

1
4

((
1 −

5
6

)
bn −

5
6

bn

)]
=

2
√

n
+

(
1 −

4
√

n

)[3
4

bn −
1
6

bn

]
=

2
√

n
+

7
12

(
1 −

4
√

n

)
=

( 7
12
−

1
3
√

n

)
bn =

n∏
i=2

( 7
12
−

1
3
√

n

)
b0.

Now, consider

∣∣∣∣ In − 0
Mn − 0

∣∣∣∣ =

∣∣∣∣∣∣
n∏

i=2

( 7
12
−

1
3
√

n

)
b0

n∏
i=2

(
1 −

8
√

i

)
b0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏

i=2

( 7
12
−

1
3
√

n

)
n∏

i=2

(
1 −

8
√

i

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣ n∏
i=2

(
1 −

5
12
−

8
√

i
+

1

3
√

i(
1 −

8
√

i

) )∣∣∣∣∣∣ =

∣∣∣∣∣∣ n∏
i=2

(
1 −

1

12
√

i

5i − 92
√

i
√

i − 8

)∣∣∣∣∣∣.
It is not difficult to see that

0 ≤ lim
n→∞

∣∣∣∣∣∣ n∏
i=2

(
1 −

1

12
√

i

5i − 92
√

i
√

i − 8

)∣∣∣∣∣∣
l ≤ lim

n→∞

n∏
i=2

(
1 −

1
i

)
= lim

n→∞

1
n
. (4.4)
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Hence,

lim
n→∞

∣∣∣∣ In − 0
Mn − 0

∣∣∣∣ = 0.

Thus, our iteration scheme converges faster than Mann’s iteration method to the fixed point of T .
Similarly,

∣∣∣∣ In − 0
Ishn − 0

∣∣∣∣ =

∣∣∣∣∣∣
n∏

i=2

( 7
12
−

1
3
√

n

)
b0

n∏
i=2

(
1 −

6
√

i

)
b0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏

i=2

( 7
12
−

1
3
√

n

)
n∏

i=2

(
1 −

6
√

i

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣ n∏
i=2

(
1 −

5
12
−

6
√

i
+

1

3
√

i(
1 −

6
√

i

) )∣∣∣∣∣∣ =

∣∣∣∣∣∣ n∏
i=2

(
1 −

1

12
√

i

5i − 68
√

i
√

i − 6

)∣∣∣∣∣∣
with

0 ≤ lim
n→∞

∣∣∣∣∣∣ n∏
i=2

(
1 −

1

12
√

i

5i − 68
√

i
√

i − 6

)∣∣∣∣∣∣
≤ lim

n→∞

n∏
i=2

(
1 −

1
i

)
= lim

n→∞

1
n
. (4.5)

Therefore,

lim
n→∞

∣∣∣∣ In − 0
Ishn − 0

∣∣∣∣ = 0.

Thus, our iteration scheme converges faster than Ishikawa’s iteration method to the fixed point of T . �

In general, we notice that for x0 = b0 = −1, u = 0.5, and γn =
2

n + 5
, we can choose β = δn =

5
5

. Thus, all the conditions of Theorem 3.9 are fulfilled and {xn} = {bn} converges to 0 = PF(T )u

(see Figure 1 below). Similarly, for x0 = b0 = 0.7, u = −1, and γn =
2

n + 5
, the sequence {xn} =

{bn} converges to 0 = PF(T )u (see Figure 1 below). A closer observation on Figure 1 shows that the
convergence of the sequence {xn} = {bn} to the fixed point of T is independent of the numerical values
of the initial point x0 = b0 and u.
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n
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x n
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-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Plot of x_{n+1} = \frac{2}{n+5} u + \frac{5}{6}(1-\frac{2}{n+5}) x_n

u = 0.5, x
0
 = -1

u = -1, x
0
 = 0.7

Figure 1. Figure of {an} with initial values u = 0.8, a0 = −1 and u = −1, a0 = 0.7.
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