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Abstract: In parameter identification problem, errors are common in measurement data, resulting in 

uncertainty in the identified parameters. Traditional deterministic methods cannot address this 

uncertainty. A novel approach, which integrates an advanced particle swarm optimization algorithm 

(APSO) and the stochastic perturbation collocation method (SPC), is proposed to address this issue, 

called APSO-SPC for short. The APSO algorithm improves the heterogeneous comprehensive learning 

particle swarm optimization algorithm (HCLPSO) based on the dynamic evolution sequence (DES), 

improving computational efficiency for each deterministic parameter identification process. 

Furthermore, the SPC method accurately estimates the means and standard deviations of uncertain 

parameters. Three numerical examples demonstrate the accuracy and efficiency of the APSO-SPC 

method in assessing parameter uncertainties caused by random measurement errors. 
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HCLPSO: heterogeneous comprehensive learning particle swarm optimization algorithm; DES: 

dynamic evolution sequence; APSO: advanced particle swarm optimization algorithm; MC: Monte 

Carlo method; SPM: stochastic perturbation method; PSO: particle swarm optimization 

1. Introduction 

With the development of engineering technology, system parameters are difficult to calculate 

directly from physical equations due to factors such as structural complexity [1], material 

heterogeneity [2], and measurement challenges and errors [3]. To ensure the safety and reliability of 

engineering structures, it is often necessary to infer system parameters based on known system 

models and responses, known as parameter identification [4,5]. Parameter identification has been 

widely applied in various engineering fields, including mechanics, construction, and materials. Using 

an improved Kriging surrogate model and evolutionary algorithm, Han et al. [6] proposed a multipoint 

additional criterion and identified the parameters of nonlinear rotor-bearing system. Wang et al. [7] 

replaced finite element analysis with an integrated surrogate model and used the Jaya algorithm to 

obtain concrete thermal parameters. Roux et al. [8] identified material parameters using the efficient 

global optimization and the Kriging model. However, previous studies have primarily focused on the 

identification of deterministic parameters. 

Normally, parameter identification is based on measurement data and performs parameter 

inversion through optimization algorithms. However, measurement errors are inevitably introduced 

when measuring structural responses [9]. These measurement errors tend to be random. The 

uncertainty in measurement data inevitably leads to uncertainty in the parameters to be identified [10]. 

Unlike obtaining accurate parameter values under deterministic conditions, the parameter identification 

problem with uncertainty caused by random measurement errors requires the assessment of the statistical 

characteristics of these uncertain parameters, such as means and standard deviations [11]. There is 

relatively little research on quantifying the uncertainty in parameter identification. Quantifying 

uncertainty requires a sufficient number of samples, which implies repetitive deterministic optimization 

processes and results in high computational costs. Therefore, there is a need for a suitable uncertainty 

analysis method to address such problems. 

When statistically analyzing uncertain quantities, methods such as the Monte Carlo method 

(MC) [12,13], the stochastic perturbation method (SPM) [14–16], Bayesian inference [17], and 

variational inference [18] can be employed. MC is the most widely used method, suitable for the 

statistics of various uncertain quantities. Since the accuracy of MC in estimating uncertainties 

depends on the sample size, a large number of parameter identification processes are required to 

obtain sufficient samples, resulting in significant computational costs [19,20]. Compared with MC, 

SPM does not require plenty of samples to estimate results and demands fewer computational resources. 

However, SPM involves the calculation of derivatives of random quantities with respect to random 

variables, and the computational effort grows exponentially as the number of random variables 

increases [21]. Bayesian inference and variational inference are both highly effective methods. 

However, in parameter identification problem, mathematical expressions such as prior probabilities 

and likelihood functions are not easily formulated. Moreover, the accuracy of inference depends on 

the quantity of observational data. Higher accuracy leads to more deterministic parameter 
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identification processes, which incurs significant time costs. We need a stochastic analysis method that 

is computationally simple and does not require a large number of samples. 

Wu et al. [22,23] proposed the stochastic perturbation collocation (SPC) method based on random 

perturbation theory. This method constructs the expressions for the mean and variance of random 

quantities by selecting specific collocation points. The computational format is simple, as it does not 

require the derivatives of random quantities with respect to the random variables. The number of 

collocation points needed is low, which means the number of repetitive deterministic sampling steps is 

low, making SPC well-suited for our problem. Currently, SPC has been applied in various stochastic 

engineering problems [24–27] but has not yet been used to assess the statistical characteristics of 

parameters with uncertainty to be identified. This paper is the first to consider using SPC to quantify the 

uncertainty of parameters, addressing the parameter identification problem with random measurement 

errors. Since SPC involves multiple deterministic parameter identification iterations, improving each 

iteration’s efficiency is crucial for overall computational enhancement. 

The most critical aspect is enhancing the optimization algorithm's ability to search for optimal 

solutions. In recent years, research on efficient intelligent optimization algorithms [28,29] has gradually 

matured. Among them, Lynn proposed HCLPSO [30]. This optimization algorithm has outstanding 

global and local search capabilities and is considered one of the excellent variants of the particle swarm 

optimization algorithm (PSO) [31,32]. This method has been widely applied in parameter identification. 

Hachana et al. [33] used root mean square error as the fitness function and identified the electrical model 

parameters of photovoltaic module/string with HCLPSO. Zhu et al. [34] introduced a hybrid objective 

function by minimizing the discrepancies between the measured and calculated natural frequencies and 

the correlation function vector of acceleration of damaged and intact structures and identified local 

damages using HCLPSO. Yousri et al. [35] analyzed the parameters of a novel fractional order dynamic 

photovoltaic model with HCLPSO. However, HCLPSO searches for optimal solutions by generating 

random point sets, which has the disadvantage of uneven distribution, making it difficult to cover the 

search space effectively. Overcoming this disadvantage and further enhancing the global search 

capability of HCLPSO would significantly improve computational efficiency. 

This paper improves HCLPSO based on a low-discrepancy sequence, dynamic evolution sequence 

(DES) [36], forming APSO, and applies it to parameter identification. APSO addresses the issue of 

insufficient coverage of the search domain in the original HCLPSO, enhances the global search capability, 

and can significantly improve the computational efficiency of deterministic parameter identification. 

This paper integrates deterministic parameter identification using APSO with SPC to quantify the 

uncertainty of parameters, resulting in the APSO-SPC method. This method not only solves the 

parameter identification problem with uncertainty caused by random measurement errors but also 

substantially reduces the computational time cost. 

The remaining work of this paper is structured as follows. The parameter identification problem 

with random measurement errors is briefly introduced in Section 2. Section 3 elaborates on SPC for 

addressing the uncertainty in parameter identification caused by random measurement errors, as well as 

HCLPSO improvement based on DES. Three numerical examples are presented in Section 4. The first 

example validates the accuracy of parameter identification using APSO and its advantages compared 

with HCLPSO. The second and third case examples validate the accuracy of SPC in assessing the 

statistical properties of uncertain parameters to be identified. The conclusion is given in Section 5. 
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2. Parameter identification problem with uncertainty caused by random measurement errors 

Measurement errors stem from various factors, including measurement methods, instruments, 

environmental conditions, and the operational skills of the measuring personnel, among others. When 

measurement errors are not considered, the parameter identification problem can be transformed into an 

optimization problem. Typically, the objective function is defined as the least squares error between the 

predicted values of the mathematical model and the measured values: 

( ) ( )ˆ:f = −e y e y ,                                                               (1) 

where f   denotes the objective function, e   denotes the parameters to be identified, ŷ   denotes the 

predicted values of the model, and y   denotes the measured values. When considering measurement 

errors, the objective function for parameter identification is given by 

( ) ( ) ( )ˆ:f = −e y e y ξ ,                                                          (2) 

where ξ   denotes the measurement errors. From Eq (2), it can be seen that due to the influence of 

measurement errors, the objective function for each parameter identification process may vary, leading 

to different identified parameters. In other words, the parameters e  are a function of the measurement 

errors ξ : 

( ) ( )arg min :f h= =e e ξ ,                                                          (3) 

where g  is the mapping relationship between the measurement errors ξ  and the parameters e . 

Since the measurement errors are uncertain, the identified parameters are also uncertain, making it 

impossible to solve for the values using deterministic parameter identification methods. Instead, 

uncertainty analysis methods are needed to assess the statistical characteristics of the uncertain 

parameters, such as the means and standard deviations. The procedure of evaluating the means and 

standard deviations of random parameters will be discussed in the next section. 

3. Method of this paper 

A new APSO-SPC method is proposed in this paper, which primarily addresses the parameter 

identification problem with uncertainty caused by random measurement errors through SPC, and reduces 

the computational cost of the deterministic parameter identification process using APSO. The 

computational format of SPC is introduced in this section first. Then how to use APSO to approach the 

( )g ξ  values needed in the SPC’s calculation process is explained. 

3.1. Stochastic perturbation collocation method 

SPC is a modified version of SPM proposed by Wu et al. [23,37], which can obtain the means and 

standard deviations of random quantities with a simple computational scheme and higher accuracy. In 
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the parameter identification problem discussed in this paper, random quantities are parameters 

( )
T

1 2, , , De e e=e  . Measurement errors ( )
T

1 2, , , n  =ξ   are n  -dimensional independent random 

variables, all following a distribution with a mean of zero and a symmetric probability density function, 

with corresponding standard deviations of ( )
T

1 2, , , n  =σ . As noted in Section 2, 

( ) ( ) ( )ˆarg min : h= − =e y e y ξ ξ .                                                  (4) 

The formula for the means of random quantities provided by SPC is 
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The symbols in Eq (7) lack specific physical interpretations and are introduced solely to facilitate 

the derivation. 
, ,, ,i i j i j  − a a a   are the specific collocation points. By calculating ( )h 0  , ( )ih a  , 

( ),i jh a  , and ( ),i jh − a   and performing a specific combination, Eqs (5) and (6) are obtained. It is 

important to note that although SPC offers many benefits, it has certain limitations: the random 

variables are required to be independent and their probability density functions must be symmetric. 

This is the prerequisite for the validity of Eqs (5) and (6). The detailed derivation of Eqs (5) and (6) 

can be referenced in [38]. 

From Eqs (5) and (6), it is known that the SPC method listed here has an accuracy of fifth-order, 

which is much higher than the second-order accuracy of SPM. Moreover, SPC does not require the 

calculation of the derivatives of ( )h ξ , only the calculation of ( )h 0 , ( )ih a , ( ),i jh a , and ( ),i jh − a . 

Since there are 1 ( )h 0  , 2 n   ( )ih a  , 
( )1

2
2

n n −
   ( ),i jh a  , and 

( )1
2

2

n n −
   ( ),i jh − a  , a total of 

22 1n +  calculations are required. In other words, the process of using the optimization algorithm to 

find the parameters only requires 
22 1n +  iterations, which greatly reduces the computational cost. By 

the way, SPC has precisions of other orders, theoretically up to an infinite order. Higher precision can 

handle larger coefficients of variation. The fifth-order precision of SPC is sufficient for handling cases 

with a coefficient of variation within 10%. Higher precision implies more collocation points. If the 

coefficient of variation is not large, a third-order precision computational scheme, which only requires 

2 1n +   calculations, is enough. It can be referenced in [37]. The computational scheme for ( )h 0  , 

( )ih a , ( ),i jh a , and ( ),i jh − a  are described in the next subsection. 

3.2. Modified HCLPSO based on DES (APSO) 

HCLPSO generally generates the initial population through random sampling. The weaker 

uniformity reduces the coverage of the point set in the space, leading to an incomplete search by the 

algorithm. This section improves HCLPSO based on DES [36], forming APSO. DES is a low 

discrepancy sequence with excellent uniformity, which can improve the convergence efficiency of the 

algorithm [39–41]. For convenience, a brief introduction to the original HCLPSO algorithm process is 

provided first. The entire process can be found in [30].  

Define the population size in the particle swarm algorithm as N  , the maximum number of 

iterations as G , the objective function as f , and the solution (i.e., the parameters to be identified) as 

( )
T 1

1 2, , , n

ne e e R = e , where  ,i i ie a b . Define the population as 

,1 ,2 ,, , ,g g g g N
 =  E e e e ,                                                            (9) 

where g  represents the g -th iteration step. The initial population is represented as: 

( )0 0N=  +  − E A 1 ε B 1 A 1 ,                                                        (10) 

where ( )
T

1 2, , , nA A A=A   and ( )
T

1 2, , , nB B B=B   define the upper and lower bounds of the 

solution,   stands for the Kronecker product,  stands for the Hadamard product, N1  is a vector of 
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size 1 N , with each element being 1, and 0ε  is a matrix of random numbers uniformly distributed 

between 0 and 1, with a matrix size of n N .  

Divide the population into the exploration and exploitation subpopulations, with sizes of 1N  and 

2N , respectively. The velocity update formula of the exploration subpopulation is 

( )1, , ,1, , , 1, 1g i g g i g g i g i g iw k i N+ = + −  v v ε p e ,                                             (11) 

where 
,g iv  is the velocity of the i -th particle at the g -th iteration, 

gw  is the inertia coefficient, 
gk  is 

the self-learning factor, 
,1,g iε is a vector of random numbers uniformly distributed between 0 and 1, 

with a vector size of 1n , and ,g ip  is a random comprehensive learning vector.  

The velocity update formula of the exploitation subpopulation is 

( ) ( )1, , ,1 ,2, , , ,2 ,3, ,best , 1,g i g g i g g i g i g i g g i g g iw c c N i N+ = + − + −  v v ε p e ε e e ,                 (12) 

where ,1 2.5 2gc g G= −  , ,2 0.5 2gc g G= +  , ,2,g iε   and ,3,g iε   are two vectors of random numbers 

uniformly distributed between 0 and 1, with sizes of 1n , and ( )( ),best ,arg min , 1g g if i N=    e e .  

Next, we introduce how to modify the HCLPSO. The modification idea originates from an 

intuitive observation: a group of birds that search for foods in an orderly and uniform manner is more 

efficient than a random and disordered group. We attempted to replace the random part of the HCLPSO 

with the low discrepancy sequence DES, yielding very good results. The way to generate DES can be 

referenced in [36]. 

We replace the random point set 0ε  in the initial population with DES 
( )0

P  to ensure that the 

population is more evenly distributed across the entire search space at the initial stage 

( ) ( )0

0 N=  +  − E A 1 P B 1 A 1 ,                                                  (13) 

where 
( )0

P  is a DES with a size of n N . 

Next, revise the velocity update formulas for the exploration and exploitation subpopulations to 

optimize the search direction 

( ) ( )1

1, , , , 1, 1g i g g i g i g i g iw k i N+ = + −  v v P p e ,                                      (14) 

( ) ( ) ( )2

1, , ,1 , , ,2 ,3, ,best , 1,g i g g i g i g i g i g g i g g iw c c N i N+ = + − + −  v v P p e ε e e ,                     (15) 

where 
( ) ( ) ( )( )

1

1 1 1

1 , , N=P P P  is a DES with a size of 1n N , and 
( ) ( ) ( )( )

2

2 2 2

1 , , N=P P P  is a DES with a 

size of 2n N . This is the APSO algorithm. The values of ( )h 0 , ( )ih a , ( ),i jh a , and ( ),i jh − a  can 

be obtained throughthis method. 
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3.3. Integration of APSO and SPC 

All the necessary formulas have been presented. Now, we integrate APSO and SPC and provide 

the pseudocode for the entire parameter identification process. A   and B   depend on the possible 

interval estimation of the parameters. The selection of 1 2 ,, , , , , and g g g iN N G w k p are not unique and can 

be referenced in [30]. The basic principle is that the larger the values of 1 2, , and N N G , the higher the 

probability of the algorithm finding the solution. 

The pseudocode of APSO-SPC. 

1. Input n , A , B , 
1N , 

2N , G ; 
1 2N N N= + ; 

2. Generate DES 
( ) ( ) ( )0 1 2,   and P P P ; 

3. For every collocation point a (i.e., , ,,  ,  or i i j i j  − 0 a a a ); 

4.     Initialize population 
0E  according to Eq (13); 

5.     0g = ; 

6.     While g G  

7.         1g g= + ; 

8.         Find ( ) ( )( ),best
ˆarg ming g= −e y e y a ; 

9.         If ( ) ( ) tol
ˆ

g e− y e y a ; 

10.             Break 

11.         End 

12.         For 1:i N=  

13.             If 
11 i N   

14.                 Update 1,g i+v  according to Eq (14); 

15.             Else 

16.                 Update 1,g i+v  according to Eq (15); 

17.             End 

18.             1, , 1,g i g i g i+ += +e e v ; 

19.             Constrain e  within A  and B ; 

20.         End 

21.     End 

22.     Find ( ) ( )( ),best
ˆarg minG G= −e y e y a ; 

23.     Output ,bestGe  as the solution ( )h a ; 

24. End; ( )h 0 , ( )ih a , ( ),i jh a  and ( ),i jh − a  are obtained now; 

25. Obtain means of uncertain parameters according to Eq (5); 

26. Obtain covariance matrix of uncertain parameters according to Eq (6). 

Here, tole  is a small constant used to determine whether convergence has been achieved. Usually, 

it is not necessary to iterate G   times for the algorithm to converge. At this point, the value of 

( ) ( )ˆ
G −y e y a  is very close to zero. If convergence fails, try using larger N  and G . 



3856 

AIMS Mathematics  Volume 10, Issue 2, 3848–3865. 

4. Numerical examples 

4.1. Cantilever beam 

Beams are one of the most common structures and have significant practical relevance. Due to 

their simple structure and the availability of extensive research results, beams are well-suited as 

numerical examples to validate the effectiveness of our algorithm. 

4.1.1. Parameter identification based on APSO 

To validate the superiority of APSO in parameter identification over HCLPSO, this example 

considers the parameter identification of a cantilever beam fixed at one end and free at the other. The 

length of the cantilever beam, 3mL = , is subjected to a downward concentrated force ( )0 11F F e= +  

at ( )0 21a a e= +  , where 0 0.8a L=  , 5

0 5 10 NF =   , and the possible range for 1e   and 2e   is both 

 0.2, 0.2− . F  and a  are the parameters to be identified. According to the mechanics of materials, the 

deflection at any position x  on the cantilever beam can be expressed as 

( )

( )

2

2

3 , 0
6

3 ,
6

Fx
a x x a

EI
u

Fa
x a a x L

EI

−
−  

= 
− −  



, 

where 
40.0000833mI =  is the moment of inertia, and 

112 10 PaE =   is the elastic modulus. 

To identify the parameters F   and a  , measurement points are set on the cantilever beam to 

measure the deflection values. In this subsection, two measurement points are set at 1 0.6x L=  and 

2 0.4x L=  on the cantilever beam. The measured deflection values at these points are 1 0.087mu −=  

and 2 0.043mu = −  , respectively. By substituting 1u   and 2u   into the deflection expression, the true 

parameters can be calculated as 
55 10 NF =    and 2.4ma =  . The least squares error between the 

predicted deflection values and the actual deflection values at the two measurement points is used as 

the objective function. Both APSO and HCLPSO are employed for optimization and eventually 

converge to the true values, indicating that both APSO and HCLPSO have good parameter 

identification accuracy. 

Table 1. Comparison of the convergence steps of HCLPSO and APSO. 

Variable name F (N) a (m) 

Relative error 1% 0.1% 0.01% 1% 0.1% 0.01% 

HCLPSO 51 223 402 41 227 385 

APSO 46 146 270 23 130 243 

To further compare the computational performance of the two algorithms, they were run 30 times 

each, and the average number of convergence steps when the relative error of the parameters with the 

true values was 1%, 0.1%, and 0.01% are statistically analyzed. The results are listed in Table 1. Under 
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different error standards, the percentage increase in speed is used as a measure of speed improvement. 

To quantitatively measure the degree of speed improvement, the relative speedup is introduced: 

HCLPSO convergence steps DES-PSO convergence steps
Relative speedup 100%

DES-PSO convergence steps

−
=  . 

From Table 1, when the relative error converges to 1%, APSO identifies the parameters F  and 

a  with relative speedups of 10.87% and 78.26%, respectively. When converging to 0.1%, APSO has 

relative speedups of 52.74% and 74.62%. When converging to 0.01%, APSO has relative speedups of 

48.89% and 58.44%. In summary, APSO is more computationally efficient in parameter identification. 

4.1.2. Parameter identification with random measurement errors 

During the measurement of measurement points, measurement errors often occur, leading to 

discrepancies between actual measured values and true values [42]. In this example, it is assumed that 

the deflection values 1u  and 2u  measured in Section 4.1.1 have the same measurement error v , which 

is uniformly distributed over  0.001m, 0.001m− . Due to errors in the measured deflection values 1u  

and 2u , the calculated concentrated force F  and the position a  will also deviate from the true values. 

Although the true values cannot be precisely determined, statistical data of the parameters can be 

analyzed.  

SPC is employed to obtain the means and standard deviations of the parameters. MC is performed 

with 100000 samples, whose results are considered reference solutions to test the accuracy of SPC. 

The means and standard deviations of the concentrated force F  and the position a  computed by 

MC and SPC are shown in Table 2. It can be observed from Table 2 that: the means calculated by SPC 

are within 0.06% of those calculated by MC; the standard deviations calculated by SPC have an error 

within 2.78% of those calculated by MC. This indicates that SPC can achieve high accuracy with 

limited computational cost. 

Table 2. Comparison of results between MC and SPC. 

 MC(100,000 times) SPC relative error 

Mean of F  (N) 499824.13 500003.66 0.04% 

Standard deviation of F  (N) 73175.83 73131.47 0.06% 

Mean of a  (m) 2.4418  2.4403 0.06% 

Standard deviation of a  (m) 0.2854 0.2775 2.78% 

Additionally, Table 2 indicates that although the measurement error is minimal, it can still result 

in coefficients of variation of 14.63% for parameter F   and 11.37% for parameter a  . Even minor 

variations can significantly impact the outcomes of engineering analyses, which underscores the 

importance of analyzing the uncertainty in parameter identification caused by random measurement 

errors. 
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4.2. Parameter identification of cement with random measurement errors in extremely cold regions 

Building structures in extremely cold regions are often subject to cracking due to low 

temperatures [43–45]. To ensure the reliability of these structures, it is necessary to have an appropriate 

filler ratio and good curing methods, as well as cement materials suitable for cold regions. This 

example considers a batch of molded cement and analyzes its construction conditions. Ref. [46] 

provides a mathematical model of the performance of cement and related influencing factors, as seen 

in Table 3. By measuring the strength 1y , slump 2y , and cement consumption 3y , and using the least 

squares error between predicted and measured values as the objective function, HCLPSO and APSO 

are both employed for optimization to analyze the environmental temperature 1e  , the cement-sand 

mass ratio 2e  and the solid phase mass fraction of the slurry 3e  during the construction of this batch 

of cement. There is a certain degree of error associated with the measurements, and it is assumed that 

the measurement errors follow a uniform distribution. The distribution range of the measured variables 

and the parameters to be identified can be found in Table 4. 

Table 3. Mathematical model of measured variables and parameters to be identified. 

Measured variables Mathematical model 

Strength 1y  (MPa) 
1 2 3

2 3 2

2 2

1

3 3

41.189410 0.022597 121.121930 1.030760

1.454270 119.68705 6.456120 10

e e e

e

y

e e e−

+ − −

+ + 

=

+
 

Slump 2y  (cm) 1 2 32 68.045440 0.046469 4.05172 0.609680y e e e−= − −  

Cement consumption 3y  (kg·m-3) 33 2583.53735 1080.22956 8.27441e ey − += +  

Table 4. Distribution intervals for the measured variables and parameters to be identified. 

Measured variables Distribution interval Parameters to be identified 
Possible distribution 

interval 

Strength 1y  (MPa)  0.535,0.545  Curing temperature 1e  (℃)  0 25,  

Slump 2y  (cm)  27.5,28.5  Cement-to-sand ratio 2e  (1)  0.1,0.2  

Cement consumption 3y

(kg·m-3) 
 95,105  

Solid phase mass fraction of slurry 

3e  (%) 
 60,80  

We first examine the convergence behavior of the optimization algorithm. G  is chosen as 300 

and different values of 1 2 and N N  are chosen to compare the convergence behavior. 

From Figure 1, we can observe that as the number of particles increases and the number of 

iterations grows, it becomes easier for the algorithm to find the optimal solution. Despite the 

randomness, APSO converges faster than HCLPSO in most cases. If the number of particles is 

insufficient, the algorithm cannot converge effectively. On the other hand, too many particles do not 

significantly improve the convergence speed and lead to waste. An appropriate number of particles 

ensures a good convergence speed without excessive time cost. We adopt 1 230 and 50N N= =  for the 

subsequent calculations. 
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Figure 1. The convergence of the objective function ( )f e . 

In this problem, the number of random errors is 3n = , which means 22 1 19n + =  deterministic 

optimization processes are required. For a personal computer, APSO takes approximately 0.1013 

seconds to complete one deterministic optimization process, while HCLPSO takes about 0.1417 

seconds. The total time for APSO-SPC is approximately 1.9547 seconds, while the total time for 

HCLPSO+SPC is approximately 2.7134 seconds. It is obvious that computing the derivatives of the 

random quantities 1e , 2e , and 3e  with respect to random measurement errors are not realistic, and thus 

SPM cannot be used. If we use MC, the number of deterministic optimization processes required will 

be significantly large, 100,000 MC simulations would take approximately 10,130 seconds. It can be 

concluded that SPC exhibits a distinct advantage concerning computational efficiency. The next step 

is to assess its accuracy. The SPC and MC are used to calculate the means and standard deviations of 

the parameters, with the MC results serving as the benchmark for evaluation. The results can be seen 

in Table 5. 
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Table 5. Comparison of results between SPC and MC. 

 MC (100,000 runs) SPC Relative error 

Mean of 1e  (℃) 17.90954766 18.10020748 1.06% 

Standard deviation of 1e  (℃) 1.140044345 1.123606971 1.44% 

Mean of 2e  (1) 0.147621727 0.147735203 0.08% 

Standard deviation of 2e  (1) 0.004125800 0.004061462 1.56% 

Mean of 3e  (%) 63.33780769 63.32166274 0.03% 

Standard deviation of 3e  (%) 0.435925564 0.429374577 1.50% 

The results indicate that the relative error of the means obtained by SPC and MC with 100,000 

runs is within 1.06%, and the relative error of the standard deviations is within 1.56%. Therefore, this 

numerical example proves that APSO-SPC has good accuracy and applicability in the cement 

construction information identification problem with uncertainty caused by random measurement 

errors. 

5. Conclusions 

To solve the parameter identification problem with uncertainty caused by random measurement 

errors, a new APSO-SPC method is proposed in this paper. Utilizing SPC for uncertainty analysis 

allows for the assessment of the statistical characteristics of the parameters with uncertainty, effectively 

tackling the issue of uncertain parameter identification. Additionally, the incorporation of the APSO 

enhances the search domain coverage that was previously inadequate in HCLPSO, thereby improving 

computational efficiency for each parameter identification instance and substantially reducing the 

computational time costs. Through three distinct numerical examples, this paper validates the accuracy 

of APSO in parameter identification and its greater computational efficiency compared with HCLPSO, 

and the accuracy of SPC in quantifying the statistical information of parameter identification 

uncertainty caused by stochastic measurement errors is validated. 

The novel approach we propose, Optimization Algorithm integrated with SPC, can address the 

parameter identification problem with uncertainty caused by random measurement errors. The APSO 

we developed is not the only option. Any advanced optimization algorithm can be tried. Adopting 

emerging technologies can lead to optimistic outcomes. 

The approach outlined in this paper is utilized for static parameter identification. Future endeavors 

will consider extending the application of this precise and efficient method to the dynamic parameter 

identification problem present in nonlinear dynamical systems [47–50]. The issues that need to be 

addressed include the proper modeling of the dynamic system, and modeling the mathematical 

relationship between the measured variables and the system parameters. 
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