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1. Introduction

The biharmonic problem with variable exponents usually arises in the context of partial differential
equations where the biharmonic operator is applied to a function, but the coefficients or exponents of
the problem are not constant. This type of problem has important applications in several fields, such
as mathematical physics, engineering, and differential geometry, especially in modeling phenomena in
which the underlying material or medium has non-uniform properties. In particular, the biharmonic
equation describes the deflection of thin plates subjected to forces [1]. Su et al. [2] established the
solution of the thin film epitaxy equation, and the biharmonic equation can include variable exponents
to account for this heterogeneity. This is particularly useful for modeling composite materials where the
material properties change gradually with position. For example, a composite plate may have different
stiffnesses in different regions, and the biharmonic problem with variable exponents can model the
deformation of the plate under external loads. Also, the biharmonic equation appears in the study of
flow around objects [3–5]. When the viscosity of the fluid varies in space, the biharmonic operator
with variable exponents can be used to model the diffusion of momentum in such media. This would
allow a more realistic description of flow around objects with variable surface characteristics. The
biharmonic equation was used for smoothing, denoising, and segmentation tasks [1]. When applied
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to images with nonuniform texture or intensity, a biharmonic operator with variable exponents can
better model local image properties. For example, areas of an image with low contrast may have
different smoothing behavior than areas with high contrast, leading to a variable exponent formulation
in partial differential equations. A biharmonic operator with variable exponents can also be applied
in the analysis of electromagnetic wave propagation in media with varying permeability, which is
particularly useful in the design of optical and microwave devices with spatially graded materials.

In this paper, we fix a bounded domain Ω ⊂ RN with N ≥ 3 and consider the following system

Pλ,µ


∆2

p(τ)ϕ = λ |ϕ|p(τ)−2ϕ

δ(τ)2p(τ) + b(τ)|ϕ|r(τ)−2ϕ + µ a(τ)ϕ−θ(τ) in Ω,

ϕ = 0, on ∂Ω,

where δ(τ) is the distance between τ and the boundary of Ω. The operator ∆2
p(.) is defined by:

∆2
p(τ)ϕ = ∆(|∆ϕ|p(τ)−2∆ϕ).

The functions a, b, and θ are non-negative and satisfy suitable hypotheses that are fixed later, and the
functions p and r are continuous on Ω, such that for any τ ∈ Ω, we have

1 < p(τ) < r(τ) < p∗(τ).

For a given function Z, and for any τ in Ω, we denote

Z− = inf
x∈Ω

Z(x),Z+ = sup
x∈Ω

Z(x), and Z∗(τ) =

{ NZ(τ)
N−2Z(τ) , i f z(τ) < N,
∞, i f Z(τ) ≥ N.

(1.1)

Hereafter, we assume that

1 < p− ≤ p+ <
N
2
, (1.2)

and
0 < λ < CH := min(

p−

p+
γ

p−
− ,

p−

p+
γ

p+

+ ),

where
γ± =

N(p± − 1)(N − 2p±)
(p±)2 .

We recall that for each ϕ ∈ W2,p(τ)
0 (Ω), we have∫

Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ ≥ CH

∫
Ω

|ϕ(τ)|p(τ)

p(τ)δ(τ)2p(τ) dτ. (1.3)

The last inequality was introduced in the reference [6] for the case N = 1, and in the reference [7] for
the case N ≥ 2.

Recently, problems related to biharmonic operators have been extensively studied by several
authors, and by using several methods, we cite for instance the papers of Su and Chen [8], who
used a combination of the bipolar Rellich inequality with Gigliardo-Nirenberg inequality and Ekeland
variational principle; Su and Shi [9], who used a combination of the non-vanishing and the structure of
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a Palais-Smale sequence to prove ground state solutions to prove the existence of nontrivial solutions;
Su and Feng [10], who used the generalized versions of Lions-type theorem to prove ground state
solutions; Alsedi [11], who used a fountain theorem to prove the existence of infinitely many solutions;
Dhifli and Alsedi [12], who used the Nehari manifold to prove a multiplicity result; Ji and Wang [13],
who used the Nehari manifold to prove the existence of two nontrivial solutions.

Very recently, singular biharmonic equations have attracted the attention of several authors, we
cite for example the works of Ghanmi and Sahbani [14], who used the mountain pass and the
symmetric mountain pass theorems to prove their results; Alsaedi et al. [15], who used the Nehari
manifold to prove some multiplicity results; Drissi et al. [16], who used the Nehari manifold to study
biharmonic problems with Hardy nonlinearities, and Rǎdulescu and Repovš [17], who used variational
and topological arguments to study singular biharmonic problem including the capillarity equation
and the mean curvature problem. In particular, Ghanmi and Sahbani [14] considered the following
singular problem: 

∆2
p(τ)ϕ = λ |ϕ|p(τ)−2ϕ

δ(τ)2p(τ) + b(τ)|ϕ|r(τ)−2ϕ + a(τ)ϕ−θ(τ) in Ω,

ϕ = 0, on ∂Ω,

(1.4)

where a, b, and θ are three non-negative functions, θ ∈ (0, 1). Using the condition 1 < r(τ) < p(τ),
for all τ ∈ Ω, the authors proved that the functional associated with the problem (1.4), is coercive and
bounded below in its domain, and based on the min-max theorem, they proved that, for all λ ∈ (0,CH),
the problem (1.4) admits a nontrivial weak solution. For interested readers, we cite [18–20] for other
interesting related works.

Motivated by the above-mentioned results, our aim in this paper is to investigate a more general
problem. More precisely, problem Pλ,µ contains two types of singularities (i.e., a power singularity
and a singularity of Hardy type), and this makes our study more difficult. Moreover, the associated
functional energy is not of class C1, so the direct variational method cannot be applied. In particular,
the energy functional does not satisfy the mountain pass geometry, which implies also that the Ekland’s
variational principle cannot be applied. On the other hand, the exponent r is assumed to satisfy r > p,
and this implies that the functional energy is not coercive in its domain. To guarantee the coercivity of
the associated functional energy, we will work in some subsets called Nehari manifold sets. By these
sets, we prove the multiplicity of solutions in the space X = W2,p(τ)

0 (Ω). For this aim, we assume the
following hypotheses:

(H1) • a : Ω→ R, is such that
a ∈ L

t(τ)
t(τ)+θ(τ)−1 (Ω),

with
1 < t(τ) < p(τ) < r(τ) < p∗(τ), ∀ τ ∈ Ω.

• There exist b1, b2 > 0, such that

0 < b1 ≤ b(τ) ≤ b2, ∀ τ ∈ Ω.

(H2)
(1 − θ− − p−)r+

(1 − θ− − r+)p−
<

p+ − (1 − θ+)
r− − (1 − θ+)

.
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Remark 1.1. If a is a continuous function on Ω, then, the function a satisfies the hypothesis (H1)
for any

t(τ) =
p∗(τ)

a1
, p(τ) =

p∗(τ)
a2

, r(τ) =
p∗(τ)

a3
,

with a1 > a2 > a3 > 1. On the other hand, there are several functions satisfying hypothesis (H2). So,
we can construct a class of functions satisfying hypotheses (H1) and (H2).

Definition 1.1. A function ϕ in the space X is a weak solution of the problem (Pλ,µ) if, for each function
v in X, we have∫

Ω

|∆ϕ|p(τ)−2∆ϕ∆vdτ − λ

∫
Ω

|ϕ(τ)|p(τ)−2

δ(τ)2p(τ) ϕ(τ)v(τ)dτ

− µ

∫
Ω

a(τ)|ϕ|−θ(τ)v(τ)dτ −
∫

Ω

b(τ)|ϕ(τ)|r(τ)−2ϕ(τ)v(τ)dτ = 0.

Our main result of this paper is the following.

Theorem 1.1. Assume assumptions (H1) and (H2). Then, for each λ ∈ (0,CH), the problem (Pλ,µ)
admits two non-trivial solutions, provided that µ ∈ (0, µ∗) for some positive constant µ∗.

In Section 2 we introduce some results on functional spaces. In Section 3, we present and prove the
main result of this work.

2. Preliminaries

In this section, we recall some preliminaries on the Lebesgue and Sobolev spaces. For interested
readers, we refer to the works [21–23].

The sets C+(Ω) will denote the set of all functions µ that are continuous on Ω, and satisfy

µ(τ) > 1,∀τ ∈ Ω.

For each µ ∈ C+(Ω) , we define the space Lµ(τ)(Ω) by:

Lµ(τ)(Ω) = {ϕ : Ω→ R,measurable,
∫

Ω

|ϕ(τ)|µ(τ)dτ < ∞}.

We equip the space Lµ(τ)(Ω) with the following norm,

|ϕ|µ(τ) = inf
{
µ > 0 :

∫
Ω

|
ϕ(τ)
µ
|µ(τ)dτ ≤ 1

}
.

Equipped with the last norm, the space Lµ(τ)(Ω) becomes a Banach space. Moreover, it is separable and
reflexive if and only if µ satisfies

1 < µ− ≤ µ+ < ∞.

Proposition 2.1. [24, 25] For any ϕ ∈ Lµ(τ)(Ω) and v ∈ Lµ
′
(τ)(Ω), where 1

µ(τ) + 1
µ
′ (τ) = 1, we have,

|

∫
Ω

ϕvdτ| ≤ (
1
µ−

+
1

(p′)−
)|ϕ|µ(τ)|v|µ′ (τ).
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Let
ρµ(τ) : Lµ(τ)(Ω)→ R,

ϕ 7→

∫
Ω

|ϕ(τ)|µ(τ)dτ,

the modular on the space Lµ(τ)(Ω).

Proposition 2.2. [22, 24] For all ϕ ∈ Lµ(τ)(Ω), we have,

(1) |ϕ|µ(τ) < 1(resp = 1, > 1)⇔ ρµ(τ)(ϕ) < 1(resp = 1, > 1);
(2) |ϕ|µ(τ) > 1⇒ |ϕ|µ

−

µ(τ) ≤ ρµ(τ)(ϕ),≤ |ϕ|µ
+

µ(τ);

(3) |ϕ|µ(τ) < 1⇒ |ϕ|µ
+

µ(τ) ≤ ρµ(τ)(ϕ) ≤ |ϕ|µ
−

µ(τ).

Also, we get the following proposition.

Proposition 2.3. [22] Let µ and q be measurable functions such that q ∈ L∞(Ω) and 1 ≤ µ(τ).q(τ) ≤ ∞
for all τ ∈ Ω.

Let ϕ ∈ Lµ(τ)(Ω), ϕ , 0. Then,

(1) |ϕ|µ(τ)q(τ) ≤ 1⇒ |ϕ|µ
+

µ(τ)q(τ) ≤ ||ϕ|
µ(τ)|q(τ) ≤ |ϕ|

µ−

µ(τ)q(τ),

(2) |ϕ|µ(τ)q(τ) ≥ 1⇒ |ϕ|µ
−

µ(τ)q(τ) ≤ ||ϕ|
µ(τ)|q(τ) ≤ |ϕ|

µ+

µ(τ)q(τ).

Let us define the space

W2,µ(τ)(Ω) = {ϕ ∈ Lµ(τ)(Ω) : |∇ϕ| ∈ Lµ(τ)(Ω), |∆ϕ| ∈ Lµ(τ)(Ω)},

equipped with the norm

||ϕ|| = inf{µ > 0 :
∫

Ω

(|
∆ϕ(τ)
µ
|µ(τ) + a(τ)|

ϕ(τ)
µ
|µ(τ))dτ ≤ 1}.

W2,µ(τ)(Ω) is a separable and reflexive Banach space (see [21, 23]).
Let W2,µ(τ)

0 (Ω) be the closure of C∞0 (Ω) in W2,µ(τ)(Ω). Then, W2,µ(τ)
0 (Ω) is a Banach and reflexive

space with the norm
||ϕ|| = |∆ϕ|µ(τ).

Theorem 2.1. [26] If q ∈ C+(Ω) with q(τ) < µ∗(τ), for any τ ∈ Ω, then the embedding from W2,µ(τ)(Ω)
into Lq(τ)(Ω) is compact and continuous.

Let
Θ(ϕ) =

∫
Ω

|∆ϕ|µ(τ)dτ.

Then, we have the following result.

Proposition 2.4. [21, 23]

(1) If Θ(ϕ) ≥ 1, then ||ϕ||µ
−

≤ Θ(ϕ) ≤ ||ϕ||µ
+

,

(2) If Θ(ϕ) ≤ 1, then ||ϕ||µ
+

≤ Θ(ϕ) ≤ ||ϕ||µ
−

,

(3) Θ(ϕ) ≥ 1(= 1,≤ 1)⇔ ||ϕ|| ≥ 1(= 1,≤ 1).
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3. Main results

In this section, we prove the main result of this paper. We begin by defining the functional Φλ,µ :
X → R, associated with the problem (Pλ,µ), as follows:

Φλ,µ(ϕ) =

∫
Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ − λ

∫
Ω

|ϕ(τ)|p(τ)

p(τ)δ(τ)2p(τ) dτ

− µ

∫
Ω

a(τ)
1 − θ(τ)

|ϕ|1−θ(τ)dτ −
∫

Ω

b(τ)
|ϕ(τ)|r(τ)

r(τ)
dτ.

We note that, due to the singular term, the functional Φλ,µ is not of class C1. Moreover, from the fact
that 0 < 1 − θ(τ) < p(τ) < r(τ), we see that Φλ,µ is not bounded below in X. So, we cannot use the
direct variational method to prove the existence of solutions. Throughout this paper, we consider for
ϕ ∈ X, the function Jϕ : [0,∞[→ R, defined by

Jϕ(t) = Φλ,µ(tz).

We note that, by the fact that 0 < 1 − θ(τ) < p(τ) < r(τ), the functional Φλ,µ is not bounded below
in X, so we will prove that Φλ,µ is bounded on the Nehari manifold ℵ which is defined as:

ℵ = {ϕ ∈ X \ {0} : J
′

ϕ(1) = 0}.

Now, we split ℵ into the following parts:

ℵ+ = {ϕ ∈ N : J
′′

ϕ(1) > 0}.

ℵ− = {ϕ ∈ N : J
′′

ϕ(1) < 0}.

ℵ0 = {ϕ ∈ N : J
′′

ϕ(1) = 0}.

It is clear that:

J
′

ϕ(1) =

∫
Ω

(|∆ϕ(τ)|p(τ) −
|ϕ(τ)|p(τ)

δ(τ)2p(τ) )dτ − µ
∫

Ω

a(τ)ϕ1−θ(τ)dτ −
∫

Ω

b(τ)|ϕ(τ)|r(τ)dτ,

and

J
′′

ϕ(1) =

∫
Ω

p(τ)(|∆ϕ(τ)|p(τ) −
|ϕ(τ)|p(τ)

δ(τ)2p(τ) )dτ − µ
∫

Ω

a(τ)(1 − θ(τ))ϕ1−θ(τ)dτ −
∫

Ω

b(τ)r(τ)|ϕ(τ)|r(τ)dτ,

Moreover, we have
ϕ ∈ ℵ ⇔ A(ϕ) − B(ϕ) −C(ϕ) = 0, (3.1)

where

A(ϕ) =

∫
Ω

(|∆ϕ(τ)|p(τ) − λ
|ϕ(τ)|p(τ)

δ(τ)2p(τ) )dτ,

B(ϕ) = µ

∫
Ω

a(τ)|ϕ|1−θ(τ)dτ,

and
C(ϕ) =

∫
Ω

b(τ)|ϕ(τ)|r(τ)dτ.

Next, we will prove the following lemma.
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Lemma 3.1. Assume assumption (H1) holds. Let ϕ ∈ X, for λ ∈ (0,CH). Then, we have the following:

(1) There exists a constant C
′

H =
p−

p+
(1 − λ

CH
) > 0 such that,

C
′

H ||ϕ||
p− ≤ A(ϕ) ≤ ||ϕ||p

+

i f ||ϕ|| ≥ 1.

C
′

H ||ϕ||
p+

≤ A(ϕ) ≤ ||ϕ||p
−

i f ||ϕ|| ≤ 1.

(2) There exists a constant C1 > 0 such that,

B(ϕ) ≤ C1µmax(||ϕ||1−θ
+

, ||ϕ||1−θ
−

).

(3) There exists a constant C2 > (C
′

H)2 such that,

C(ϕ) ≤ C2 max(||ϕ||r
+

, ||ϕ||r
−

).

Proof. (1) Let ϕ ∈ X and 0 < λ < CH. By (1.3), we have

λ

CH

∫
Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ ≥ λ

∫
Ω

|ϕ(τ)|p(τ)

p(τ)δ(τ)2p(τ) dτ.

This implies that∫
Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ − λ

∫
Ω

|ϕ(τ)|p(τ)

p(τ)δ(τ)2p(τ) dτ ≥ (1 −
λ

CH
)
∫

Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ. (3.2)

Moreover, we have

p−
(∫

Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ − λ

∫
Ω

|ϕ(τ)|p(τ)

p(τ)δ(τ)2p(τ) dτ
)
≤ A(ϕ) ≤ Θ(ϕ). (3.3)

From (3.2) and (3.3), we get

p−(1 −
λ

CH
)
∫

Ω

|∆ϕ(τ)|p(τ)

p(τ)
dτ ≤ A(ϕ) ≤ Θ(ϕ).

So,

p−

p+
(1 −

λ

CH
)Θ(ϕ) ≤ A(ϕ) ≤ Θ(ϕ).

Then, by Proposition 2.4, we deduce the assertion (1).
(2) By (H1) and Proposition 2.1, we get∫

Ω

a(τ)ϕ1−θ(τ)dτ ≤ |a| t(τ)
t(τ)+θ(τ)−1

||ϕ|1−θ(τ)| t(τ)
1−θ(τ)

.

Using, 1 < t(τ) < p∗(τ), Proposition 2.2, and Theorem 2.1, we have

B(ϕ) ≤ µ |a| t(τ)
t(τ)+θ(τ)−1

max(|ϕ|1−θ
+

t(τ) , |ϕ|
1−θ−
t(τ) )

≤ µ |a| t(τ)
t(τ)+θ(τ)−1

max(||ϕ||1−θ
+

, ||ϕ||1−θ
−

).
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(3) By (H1), Proposition 2.2, and Theorem 2.1, we get

C(ϕ) =

∫
Ω

b(τ)|ϕ(τ)|r(τ)τ ≤ b2|ϕ|
r+

r(τ) + b2|ϕ|
r−
r(τ)

≤ C[||ϕ||r
+

+ ||ϕ||r
−

] ≤ C2 max(||ϕ||r
+

, ||ϕ||r
−

),

where, C2 = 2C + (C
′

H)2.

�

Lemma 3.2. Assume that assumption (H1) holds. For λ ∈ (0,CH), Φλ,µ is coercive and bounded below
on ℵ.

Proof. Let ϕ ∈ N, for ||ϕ|| > 1, from (3.1) and Lemma 3.1, we have

Φλ,µ(ϕ) ≥
1
p+

A(ϕ) −
1

1 − θ+
B(ϕ) −

1
r−

C(ϕ)

≥
1
p+

A(ϕ) −
1

1 − θ+
B(ϕ) −

1
r−

[A(ϕ) − B(ϕ)]

≥ (
1
p+
−

1
r−

)A(ϕ) − (
1

1 − θ+
−

1
r−

)B(ϕ)

≥ (
1
p+
−

1
r−

)C
′

H ||ϕ||
p− − µC1(

1
1 − θ+

−
1
r−

)||ϕ||1−θ
−

.

Since 0 < 1 − θ+ < 1 − θ− < p− < p+ < r− < r+, we get,

Φλ,µ(ϕ)→ +∞, as ||ϕ|| → +∞.

Hence, the lemma is proved. �

Lemma 3.3. Under assumption (H1), there exists µ0 > 0, given by

µ0 =
1

C1
(

r− − p+

r− − (1 − θ+)
)(

[p− − (1 − θ−)](C
′

H)2

[r+ − (1 − θ−)]C2
)

p+−(1−θ+)
r−−p+ ,

such that for any λ ∈ (0,CH), and µ ∈ (0, µ0), we have ℵ0 = ∅. The positive constants CH, C1,C2, and
C
′

H are given in (1.3) and in Lemma 3.1.

Proof. We suppose that there exists 0 < µ < µ0 such that ℵ0 , ∅. Then, there exists ϕ ∈ ℵ0. So, if
||ϕ|| < 1, then by (3.1), we have

0 = J
′′

ϕ(1) ≤ p+A(ϕ) − (1 − θ+)B(ϕ) − r−C(ϕ)
≤ p+A(ϕ) − (1 − θ+)B(ϕ) − r−(A(ϕ) − B(ϕ))
≤ (p+ − r−)A(ϕ) + C1[r− − (1 − θ+)]B(ϕ).

Then
(r− − p+)A(ϕ) ≤ C1[r− − (1 − θ+)]B(ϕ).

By Lemma 3.1, we have

(r− − p+) C
′

H ||ϕ||
p+

≤ µC1[r− − (1 − θ+)]||ϕ||1−θ
+

.
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Then,
(r− − p+) C

′

H

C1[r− − (1 − θ+)]
||ϕ||p

+−(1−θ+) ≤ µ. (3.4)

Again from (3.1), we have

0 = J
′′

ϕ(1) ≥ p−A(ϕ) − (1 − θ−)B(ϕ) − r+C(ϕ)
≥ p−A(ϕ) − (1 − θ−)(A(ϕ) −C(ϕ)) − r+C(ϕ)
≥ [p− − (1 − θ−)]A(ϕ) − [r+ − (1 − θ−)]C(ϕ).

Then, using Lemma 3.1, we obtain

C2||ϕ||
r−[r+ − (1 − θ−)] ≥ [p− − (1 − θ−)] C

′

H ||ϕ||
p+

.

Then,

||ϕ|| ≥ (
[p− − (1 − θ−)]C

′

H

C2[r+ − (1 − θ−)]
)

1
r−−p+ . (3.5)

Combining (3.4) and (3.5), we get

µ ≥
1

C1
(

r− − p+

r− − (1 − θ+)
)(

[p− − (1 − θ−)] (C
′

H)2

[r+ − (1 − θ−)]C2
)

p+−(1−θ+)
r−−p+ . (3.6)

Now, if ||ϕ|| ≥ 1, we have

||ϕ|| ≥ (
[p− − (1 − θ−)]C

′

H

C2[r+ − (1 − θ−)]
)

1
r+−p− , (3.7)

and

µ ≥
1

C1
(

r− − p+

r− − (1 − θ+)
)(

[p− − (1 − θ−)] (C
′

H)2

[r+ − (1 − θ−)]C2
)

p−−(1−θ−)
r+−p− . (3.8)

Using C2 > (C
′

H)2 and 0 < 1 − θ+ < 1 − θ− < 1 < q− < q+ < p− < p+ < r− < r+, we have,

0 <
[p− − (1 − θ−)](C

′

H)2

[r+ − (1 − θ−)]C2
< 1, (3.9)

q− − (1 − θ−)
r+ − p−

<
p+ − (1 − θ+)

r− − p+
. (3.10)

Combining, (3.6), (3.8), (3.9), and (3.10), we get

µ ≥
1

C1
(

r− − p+

r− − (1 − θ+)
)(

[p− − (1 − θ−)] (C
′

H)2

[r+ − (1 − θ−)]C2
)

p+−(1−θ+)
r−−p+ ,

which is a contradiction. �

Remark 3.1. For any 0 < λ < CH, 0 < µ < µ0 and from Lemmas 3.2 and 3.3, we obtain that

(1) N = ℵ+ ∪ ℵ−.
(2) Φλ,µ is coercive and bounded below on ℵ+ and ℵ−.
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Then, we note,
m = inf

ϕ∈ℵ
(Φλ,µ(ϕ)); m+ = inf

ϕ∈ℵ+
(Φλ,µ(ϕ)); m− = inf

ϕ∈ℵ−
(Φλ,µ(ϕ)).

Lemma 3.4. If (H1) and (H2) hold,then for any 0 < λ < CH and 0 < µ < µ0, we have

m ≤ m+ < 0.

Proof. If ϕ ∈ ℵ+, from (3.1) we have,

0 < J
′′

ϕ(1) ≤ p+A(ϕ) − (1 − θ+)B(ϕ) − r−C(ϕ)
≤ p+A(ϕ) − (1 − θ+)(A(ϕ) −C(ϕ)) − r−C(ϕ)
≤ [p+ − (1 − θ+)]A(ϕ) − [r− − (1 − θ+)]C(ϕ).

Then,

C(ϕ) <
(p+ − (1 − θ+))
r− − (1 − θ+)

A(ϕ). (3.11)

On the other hand, we also have from (3.1) that:

Φλ,µ(ϕ) ≤
1
p−

A(ϕ) −
1

1 − θ−
B(ϕ) −

1
r+

C(ϕ)

≤
1
p−

A(ϕ) −
1

1 − θ−
[A(ϕ) −C(ϕ)] −

1
r+

C(ϕ)

≤ (
1
p−
−

1
1 − θ−

)A(ϕ) + (
1

1 − θ−
−

1
r+

)C(ϕ).

By to (3.11), we get,

Φλ,µ(ϕ) < (
1
p−
−

1
1 − θ−

)A(ϕ) + (
1

1 − θ−
−

1
r+

)
p+ − (1 − θ+)
r− − (1 − θ+)

A(ϕ).

Then,

Φλ,µ(ϕ) ≤
(1 − θ− − p−)r+ − p−(1 − θ− − r+) p+−(1−θ+)

r−−(1−θ+)

p−r+(1 − θ−)
A(ϕ).

From (H2), we have,
(1 − θ− − p−)r+ − p−(1 − θ− − r+) p+−(1−θ+)

r−−(1−θ+)

p−r+(1 − θ−)
< 0.

So, Φλ,µ(ϕ) < 0, ∀ ϕ ∈ ℵ+. Thus m ≤ m+ < 0. �

Lemma 3.5. If (H1) and (H2) hold, then for 0 < λ < CH, 0 < µ < 1−θ+

p+ µ0, there exists k0 > 0, such that

m− ≥ k0 > 0.
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Proof. Let ϕ ∈ ℵ−. Then we know that ϕ
′′

ϕ(1) < 0. Moreover, we have two cases:
Case 1. ||ϕ|| < 1. From Lemma 3.2 and (3.5), we have

Φλ,µ(ϕ) ≥ (
1
p+
−

1
r−

)C
′

H ||ϕ||
p+

− µC1(
1

1 − θ+
−

1
r−

)||ϕ||1−θ
+

≥ ||ϕ||1−θ
+

[(
1
p+
−

1
r−

)C
′

H ||ϕ||
p+−(1−θ+) − µC1(

1
1 − θ+

−
1
r−

)]

≥ (
p− − (1 − θ−)

C2[r+ − (1 − θ−)]
)

1−θ+
r−−p+ [(

1
p+
−

1
r−

)([
p− − (1 − θ−)](C

′

H)2

C2[r+ − (1 − θ−)]
)

p+−(1−θ+)
r−−p+

− µC1(
1

1 − θ+
−

1
r−

)] = d1.

So, if

µ < (
1
p+
−

1
r−

)([
p− − (1 − θ−)](C

′

H)2

C2[r+ − (1 − θ−)]
)

p+−(1−θ+)
r−−p+

1
C1( 1

1−θ+ −
1
r− )

=
1 − θ+

p+
µ0,

we conclude that Φλ,µ(ϕ) ≥ d1 > 0.
Case 2. ||ϕ|| > 1. From Lemma 3.2 and (3.7), we have

Φλ,µ(ϕ) ≥ (
1
p+
−

1
r−

)C
′

H ||ϕ||
p− − µC1(

1
1 − θ+

−
1
r−

)||ϕ||1−θ
−

≥ ||ϕ||1−θ
−

[(
1
p+
−

1
r−

)C
′

H ||ϕ||
p−−(1−θ−) − µC1(

1
1 − θ+

−
1
r−

)]

≥ (
p− − (1 − θ−)

C2[r+ − (1 − θ−)]
)

1−θ−
r+−p− [(

1
p+
−

1
r−

)([
p− − (1 − θ−)](C

′

H)2

C2[r+ − (1 − θ−)]
)

p−−(1−θ−)
r+−p−

− µC1(
1

1 − θ+
−

1
r−

)] = d2.

So, if we have

µ < (
1
p+
−

1
r−

)(
p− − (1 − θ−)

C2[r+ − (1 − θ−)]
)

p−−(1−θ−)
r+−p−

1
C1( 1

1−θ+ −
1
r− )
,

then we obtain J(ϕ) ≥ d2 > 0.
Now, a simple calculation shows that

1 − θ+

p+
µ0 < (

1
p+
−

1
r−

)(
p− − (1 − θ−)

C2[r+ − (1 − θ−)]
)

p−−(1−θ−)
r+−p−

1
C1( 1

1−θ+ −
1
r− )
.

Hence, if we put k0 = min(d1, d2), then from the above study, we obtain Φλ,µ(ϕ) ≥ k0 > 0, which
implies that

m− = inf
ϕ∈N−

(Φλ,µ(ϕ)) ≥ k0.

�

Lemma 3.6. If (H1) and (H2) hold, then for ϕ ∈ X\{0}, there exists µ
′

> 0, such that, for 0 < µ < µ
′

and 0 < λ < CH, there exists t∗ > 0 and t+ < t− such that, t−ϕ ∈ ℵ−, t+ϕ ∈ ℵ+,

Φλ,µ(t+ϕ) = inf
0≤t≤t∗

Φλ,µ(tz) and Φλ,µ(t−ϕ) = sup
t≥0

Φλ,µ(tz).
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Proof. Let ϕ ∈ X\{0}. For all t > 1, we have

A(ϕ)tp−−1 − B(ϕ)t−θ
+

−C(ϕ)tr+−1 ≤ J′ϕ(t) ≤ A(ϕ)tp+−1 − B(ϕ)t−θ
−

−C(ϕ)tr−−1,

and for all 0 < t ≤ 1, we get

A(ϕ)tp+−1 − B(ϕ)t−θ
−

−C(ϕ)tr−−1 ≤ J′ϕ(t) ≤ A(ϕ)tp−−1 − B(ϕ)t−θ
+

−C(ϕ)tr+−1.

Now, we introduce the following function

h(t) = A(ϕ)tα − B(ϕ)t−θ −C(ϕ)tβ,∀t > 0,

where, β > α > θ > 0, A(ϕ), B(ϕ),C(ϕ) ≥ 0, we have

h(t) = 0⇔ tθh(t) = 0⇔ A(ϕ)tα+θ −C(ϕ)tβ+θ = B(ϕ).

Define τ(t) = A(ϕ)tα+θ −C(ϕ)tβ+θ. So, τ possesses a unique maximum point at

tmax =

(
A(ϕ)(α + θ)
C(ϕ)(β + θ)

) 1
(β−α)

.

B(ϕ) = µ
∫

Ω
a(τ)|ϕ|1−θ(τ)τ > 0 and if µ > 0, is small enough such that B(ϕ) < τ(tmax), then there

exist 0 < t1 < tmax < t2 < ∞ such that τ(t+) = τ(t−) = B(ϕ), τ′(t+) > 0, and τ′(t−) < 0, that is, t+ and t−

are two solutions of the equation h(t) = 0, for all t > 0.
The graph J′ϕ(t) is between two graphs

Uϕ(t) = A(ϕ)tp−−1 − B(ϕ)t−θ
+

−C(ϕ)tr+−1,

and
Vϕ(t) = A(ϕ)tp+−1 − B(ϕ)t−θ

−

−C(ϕ)tr−−1.

Now, using the discussion as τ, there exists µ
′

> 0 and 0 < t+ < t− < ∞ such that J′ϕ(t−) = J′ϕ(t+) = 0,
and t+ϕ ∈ ℵ+ t−ϕ ∈ ℵ− λ for all µ ∈ (0, µ

′

). �

Nextly, we pose µ∗ = min{µ
′

, 1−θ+

p+ µ0}, where µ
′

and µ0, are given in Lemmas 3.6 and 3.3,
respectively.

Proposition 3.1. If (H1) and (H2) hold, then for λ ∈ (0,CH) and µ ∈ (0, µ∗) the functional Φλ,µ has a
minimizer ϕ1 ∈ ℵ

+, such that,
Φλ,µ(ϕ1) = m+ < 0.

Proof. The functional Φλ,µ is bounded below in ℵ+. So, there exists {vn}, such that, Φλ,µ(vn) → m+.
By Lemma 3.2, we conclude that {vn} is bounded on reflexive space X, so, up to a sub-sequence, there
exist {vn} and ϕ1 in X such that

vn ⇀ ϕ1, weakly in X,
vn → ϕ1, strongly in Lβ(τ)(Ω), 1 ≤ β(τ) < p∗(τ),
vn → ϕ1, a.e in Ω.
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Next, by Proposition 2.3, we get

lim
n→∞

B(vn) = B(ϕ1), lim
n→∞

C(vn) = C(ϕ1). (3.12)

lim
n→∞

∫
Ω

|vn(τ)|p(τ)

p(τ)δ2p(τ) dτ =

∫
Ω

|ϕ1(τ)|p(τ)

p(τ)δ2p(τ) dτ. (3.13)

We prove that ϕ1 , 0 and B(ϕ1) > 0. If B(ϕ1) = 0, since (vn) ∈ ℵ+ and by (3.1) and (3.12), we get

Φλ,µ(vn) ≥ (
1
p+
−

1
r−

)A(vn) − (
1

1 − θ+
−

1
r−

)B(vn).

Then,

lim
n→∞

Φλ,µ(vn) ≥ (
1
p+
−

1
r−

) lim
n→∞

A(vn) ≥ 0.

From, Lemma 3.4, lim
n→∞

Φλ,µ(vn) = m+ < 0. This is a contradiction. Then, B(ϕ1) > 0 and ϕ1 ∈ X\{0}.
Now, we will be showing that vn → ϕ1 strongly in X.
Supposing the contrary, then vn 9 ϕ1 strongly in X. By the Brezis-Lieb Lemma (see [27]), we get∫

Ω

|∆(ϕ1)|p(τ)

p(τ)
dτ < lim inf

n→∞

∫
Ω

|∆(vn)|p(τ)

p(τ)
dτ. (3.14)

Using (3.12)–(3.14), we get

Φλ,µ(ϕ1) < lim
n→∞

Φλ,µ(vn). (3.15)

From Lemma 3.6, for ϕ1 ∈ X\{0}, there exists t+ > 0, such that t+ϕ1 ∈ ℵ
+. Since, vn 9 ϕ1 in X, we

concluded that,

A(t+ϕ1) < lim inf
n→∞

A(t+vn). (3.16)

Then, by Proposition 2.3, we get

B(t+ϕ1) = lim
n→∞

B(t+vn), C(t+ϕ1) = lim
n→∞

C(t+vn). (3.17)

By (3.16) and (3.17), we obtain

0 = J
′

ϕ1
(t+) < lim

n→∞
J
′

vn
(t+).

Then for n large enough, we obtain

J
′

vn
(t+) > 0. (3.18)

Now, since vn ∈ ℵ
+ for all n ∈ N, we have, J

′

vn
(1) = 0. Thus t+ , 1. Clearly, t+ is a minimizer of

g(t) = Φλ,µ(tz1), for t > 0. Then, by (3.15), we get

Φλ,µ(t+ϕ1) ≤ Φλ,µ(ϕ1) < lim
n→∞

Φλ,µ(vn) = inf
ϕ∈ℵ+

Φλ,µ(ϕ).

This is a contracted t+ϕ1 ∈ ℵ
+. So, vn → ϕ1 strongly in ℵ+ ∪ ℵ− as n → +∞, and by Lemma 3.2,

ℵ0 = ∅. Then, ϕ1 ∈ ℵ
+, and by Lemma 3.4,

Φλ,µ(ϕ1) = lim
n→∞

Φλ,µ(vn) = m+ < 0.

�
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Proposition 3.2. If (H1) and (H2) hold, then for λ ∈ (0,CH) and µ ∈ (0, µ∗) the functional Φλ,µ has a
minimizer ϕ2 ∈ ℵ

−, such that
Φλ,µ(ϕ2) = m− > 0.

Proof. Let {vn} in ℵ−, such that, Φλ,µ(vn) → m−. Lemma 3.2 implies that {vn} is bounded in reflexive
space X. So, up to a sub-sequence, there exist {vn} and ϕ2 in X such that,

vn ⇀ ϕ2, weakly in X,
vn → ϕ2, strongly in Lβ(τ)(Ω), 1 ≤ β(τ) < p∗(τ),
vn → ϕ2, a.e in Ω,

and
lim
n→∞

C(vn) = C(ϕ2). (3.19)

Next, we have ϕ2 , 0. Indeed, if ϕ2 = 0, from (3.19), we obtain,

C(vn)→ 0, as n→ ∞. (3.20)

Using the fact that {vn} ∈ ℵ
−, Eq (3.1), and Lemma 3.5, we have

0 < k0 < Φλ,µ(vn) ≤ (
1
p−
−

1
1 − θ−

)A(vn) + (
1

1 − θ−
−

1
r+

)C(vn).

Then, by (3.20) and the fact that 1 − θ− < p−, we obtain

0 < k0 ≤ lim
n→∞

Φλ,µ(vn) ≤ 0,

which is a contradiction. So, ϕ2 ∈ X\{0}. On the other hand, by Lemma 3.6 there exists a positive real
t− such that t−ϕ2 ∈ ℵ

−.
Next, we will prove that vn converges strongly to ϕ2 in X. Assume that this is not true. Then, by the

Brezis-Lieb Lemma (see [27]), we have∫
Ω

|∆(t−ϕ2)|p(τ)

p(τ)
dτ < lim inf

n→∞

∫
Ω

|∆(t−vn)|p(τ)

p(τ)
dτ. (3.21)

On the other hand, from Eq (3.21) and Proposition 2.3, we obtain

Φλ,µ(t−ϕ2) < lim
n→∞

Φλ,µ(t−vn). (3.22)

0 = J
′

ϕ2
(t−) < lim

n→∞
J
′

vn
(t−).

Thus for n large enough, we conclude that

J
′

vn
(t−) > 0. (3.23)

Since vn ∈ ℵ
−, then we have J

′

vn
(1) = 0 and using (3.23), we get t− , 1. Observe that the function

G(t) = Φλ,µ(tvn), for t > 0, attains its maximum at t = 1 and using (3.22), we get

Φλ,µ(t−ϕ2) < lim
n→∞

Φλ,µ(t−vn) ≤ lim
n→∞

Φλ,µ(vn) = inf
ϕ∈ℵ−

Φλ,µ(ϕ).
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This contradicts the fact that t−ϕ2 ∈ ℵ
−. Then, vn → ϕ2 strongly in X as n→ +∞, and thus ϕ2 ∈ ℵ. By

Lemma 3.2 we have, ℵ0 = ∅ and by Lemma 3.4, we get,

Φλ,µ(ϕ2) = lim
n→∞

Φλ,µ(vn) = m− > 0.

So, we conclude that ϕ2 ∈ ℵ
−. �

Lemma 3.7. If (H1) and (H2) hold and ϕ ∈ ℵ±, there exist ε > 0, and a continuous function α :
Bε(0)→ (0,+∞), such that

α(0) = 1, α(v)(ϕ + v) ∈ N+, ∀ v ∈ Bε(0),

where
Bε(0) = {v ∈ X : ||v|| < ε}.

Proof. Let ϕ ∈ ℵ+ and let the function f : X × R→ R defined by:

f (v, t) = J
′

ϕ+v(t)

=

∫
Ω

tp(τ)−1|∆(v + ϕ)(τ)|p(τ)dτ −
∫

Ω

tp(τ)−1 |(v + ϕ)(τ)|p(τ)

δ(τ)2p(τ) dτ

− µ

∫
Ω

t−θ(τ)a(τ)(v + ϕ)1−θ(τ)dτ −
∫

Ω

b(τ)tr(τ)−1|(v + ϕ)(τ)|r(τ)dτ, ∀ v ∈ X.

Since ϕ ∈ ℵ+, ve have f (0, 1) = J
′

ϕ(1) = 0 and f
′

(0, 1) = J
′′

ϕ(1) > 0.
Then, from the implicit function theorem, there exist ε > 0 and a continuous function α : Bε(0) →
(0,+∞), such that

f (v, α(v)) = 0, α(0) = 1. (3.24)

Using (3.24), we get
α(v)(ϕ + v) ∈ ℵ, ∀ v ∈ Bε(0).

Taking ε > 0 even smaller if necessary, we can also have

α(v)(ϕ + v) ∈ ℵ+, ∀ v ∈ Bε(0).

The proof for the case ϕ ∈ ℵ− is very similar, so we omit it. �

Proof of Theorem 1.1. By Lemma 3.7, we can find ϑ(t) > 0, t ∈ [0, t0] such that,

ϑ(t)(ϕ1 + th) ∈ ℵ+, ϑ(t)→ 1 as t → 0+.

Then, by Proposition 3.1, we have, ∀ t ∈ [0, t0],

m+ = Φλ,µ(ϕ1) ≤ Φλ,µ(ϑ(t)(ϕ1 + th)).

So, ∀ t ∈ [0, t1] with 0 < t1 ≤ t0, we get

m+ ≤ Φλ,µ(ϕ1) ≤ Φλ,µ(ϕ1 + th).
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Then,
0 ≤ Φλ,µ(ϕ1 + th) − Φλ,µ(ϕ1).

So, for t > 0, we get

0 ≤ lim
t→0

Φλ,µ(ϕ1 + th) − Φλ,µ(ϕ1)
t

,

which yields to∫
Ω

|∆ϕ1|
p(τ)−2∆ϕ1∆hdτ − λ

∫
Ω

|ϕ1(τ)|p(τ)−2

δ(τ)2p(τ) ϕ1(τ)h(τ)dτ

− µ

∫
Ω

a(τ)|ϕ1|
−θ(τ)h(τ)dτ −

∫
Ω

b(τ)|ϕ1(τ)|r(τ)−2ϕ1(τ)h(τ)dτ ≥ 0.

Since the function h is arbitrary, then we can change h by −h in the last inequality, and we conclude
that ϕ1 ∈ ℵ

+ is a nontrivial weak solution to the problem (Pλ,µ).
Now, by Lemma 3.7 and Proposition 3.2, the proof is the same for ϕ2 ∈ ℵ

−. By this stage, the proof
of Theorem 1.1 is now completed.

4. Conclusions

In this paper, we studied a p(x)-biharmonic problem involving two types of nonlinearities: Singular
and Hardy type. More precisely, we combine a variational method with the Nehari manifold method
to prove that such a problem admits two nontrivial solutions. We will generalize this study to
problems involving the p(·, ·)-Laplace operator, and we will extend this study to double-phase and
multi-phase problems.
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7. J. Necǎs, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique,
voisine de la variationnelle, Ann. Scuola Norm.-Sci., 16 (1962), 305–326.

8. Y. Su, H. Chen, The existence of nontrivial solution for biharmonic equation with sign-changing
potential, Math. Method. Appl. Sci., 41 (2018), 6170–6183. https://doi.org/10.1002/mma.5127

9. Y. Su, H. Shi, Ground state solution of critical biharmonic equation with Hardy potential and p-
Laplacian, Appl. Math. Lett., 112 (2021), 106802. https://doi.org/10.1016/j.aml.2020.106802

10. Y. Su, Z. Feng, Ground state solution to the biharmonic equation, Z. Angew. Math. Phys., 73 (2022),
15. https://doi.org/10.1007/s00033-021-01643-2

11. R. Alsaedi, Infinitely many solutions for a class of fractional Robin problems with variable
exponents, AIMS Math., 6 (2021), 9277–9289. https://doi.org/10.3934/math.2021539

12. A. Dhifli, R. Alsaedi, Existence and multiplicity of solutions for a singular problem
involving the p-biharmonic operator in RN , J. Math. Anal. Appl., 499 (2021), 125049.
https://doi.org/10.1016/J.JMAA.2021.125049

13. C. Ji, W. Wang, On the p-biharmonic equation involving concave-convex nonlinearities and sign-
changing weight function, Electron. J. Qual. Theo., 2 (2012), 1–17.

14. A. Ghanmi, A. Sahbani, Existence results for p(x)-biharmonic problems involving
a singular and a Hardy type nonlinearities, AIMS Math., 8 (2023), 29892–29909.
https://doi.org/10.3934/math.20231528

15. R. Alsaedi, A. Dhifli, A. Ghanmi, Low perturbations of p-biharmonic equations
with competing nonlinearities, Complex Var. Elliptic, 66 (2021), 642–657.
https://doi.org/10.1080/17476933.2020.1747057

16. A. Drissi, A. Ghanmi, D. D. Repovš, Singular p-biharmonic problem with
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