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Abstract: This paper investigated the quasi-synchronization of nonlinear systems with parameter
mismatch and time-varying delays via the event-triggered impulsive control (ETIC) approach, which
integrates impulsive control and event-triggered control. The instances of impulsive activation were
determined by an event-triggered mechanism based on a particular condition that depends on the
system states. By employing the comparison principle for impulsive systems and the formula for
variable parameters, we established the exact synchronization error bound and derived sufficient
conditions for achieving quasi-synchronization. Furthermore, we proved the absence of Zeno behavior
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1. Introduction

The collaborative behavior of dynamical systems has been gaining increasing attention from
academic researchers over recent decades. Synchronization as an important and interesting
collaborative behavior often occurs in biological systems, social systems and neural networks.
Synchronization can find many potential applications in multi-agent systems [1], secure
communications [2], drones, and image encryption. Synchronization phenomenon widely exists and
affects various industries and therefore, it is necessary to conduct research on synchronization. How
to design effective control methods to make the system achieve synchronization is the current research
focus in the control area.

There are various control methods for researching synchronization, such as sampling control [3],

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025174


3760

pinning control [4, 5], adaptive control [6], continuous-time feedback control [7], impulsive control
(IC) [8], event-triggered control (ETC) [9], intermittent control [10], and the combinations of
these with other control methods. The control methods mentioned above take into account both
environmental and practical constraints while ensuring that the required performance is achieved.
Among them, IC is superior in efficiency and has a wider range of applications, and it has been
used in network stability and synchronization [11, 12] research. For example, in [13], the prescribed-
time synchronization problem and topology identification for complex networks of piecewise-smooth
systems were studied under hybrid impulse control. In [14], the practical synchronization problem of
delayed neural networks with external disturbance and delayed impulses were studied under hybrid
impulse control. Besides, IC provides control input to the system at discrete time points, which can
overcome the restrictions of the continuous control methods and reduce the waste of communication
resources. Therefore IC is a promising strategy that is getting more and more attention [15–17].

Time-triggered impulsive control (TTIC) was the approach used in most of the research methods
mentioned above, where the impulsive instant follows a predetermined time sequence. Exponential
synchronization of the network was studied by designing an impulsive controller [18], but TTIC
leads to a waste of resources–some control inputs were not necessary when the system achieved the
demanded performance. In order to avoid frequent updates and reduce the communication loads and
computational cost, ETC was proposed. ETC is able to overcome these drawbacks because its event-
triggered moments are designed according to the system states, and control signals are sent only when
required, which makes it more efficient than other control methods [19–23]. For example, in [24],
a hybrid ETC approach was proposed to investigate the prescribed-time synchronization problem
for complex dynamic networks of piecewise smooth systems. In [25], a memory-based quantized
dynamic ETC strategy was proposed to investigate the practical finite-time synchronization problem
for Lur’e systems with actuator faults and performance constraints. ETC is more preferred in industrial
applications due to its superiority in saving communication costs and resource utilization [26–28].
Taking into account the advantages of ETC and IC, event-triggered impulsive control (ETIC) was
proposed. In this method, the impulsive instant is also an event-triggered moment, and the impulsive
instant is no longer triggered by a predetermined time, but determined by a state-dependent trigger
function. An event will be triggered only when the control error signal exceeds the designed threshold
value [29]. The ETIC mechanism demonstrates significant advantages across various controlled
systems [11, 19, 30].

In the real world, it is inevitable to have coupled dynamical systems with parameter mismatch,
even if the majority of current research on synchronization centers around systems with matching
parameters. For instance, the parameters of memristor neural networks (MNNs) depend on their
system states [8]. Different initial conditions may lead to heterogeneity in the parameters of MNNs,
thus the system cannot achieve complete synchronization. Consequently, it is necessary to study the
weak cooperative behavior generated by the parameter mismatch system [18, 31]. There are two types
of parameter mismatch: function-dependent (or structure-dependent) parameter mismatch (FDPM)
and state-dependent parameter mismatch (SDPM). Since the parameters of MNN are state-dependent
variables, MNNs can be regarded as a switching system, and different initial values may lead to
asynchronous switching. [18,32] analyzed the parameter mismatch of this type (SDPM). Another type
of parameter mismatch (FDPM) was analyzed in [33], where the drive-response system may have
a different parameter structure. As far as we know, most of the existing achievements are about the

AIMS Mathematics Volume 10, Issue 2, 3759–3778.



3761

parameter mismatch synchronization of MNNs, so our paper will investigate the quasi-synchronization
(QS) of nonlinear systems with parameter mismatch and time-varying delays. A characteristic of QS
is that its error does not exceed a non-zero bound [18,31,34]. However, the impulsive instants in these
articles focus on TTIC, which may lead to resource waste. Beyond control strategies, the generalization
of system models to yield more universal results is also a focal point of research. In recent years, many
papers have considered time delay [35], which is a phenomenon that indicates that the state of a system
depends on both its current and past states. It is widely discovered in various network systems. As a
common system disturbance, the interference of delay may change the initial dynamic behavior of the
network model, for instance, when the delay intervened to a stable neural network, the neural network
produced a chaotic attractor [36]. Therefore, it is valuable and important work to account for time
delay in system analysis, especially for the synchronization dynamics of delayed systems.

Based on the brief summary and discussion above, this paper aims to investigate the QS of nonlinear
systems with parameter mismatch and time-varying delays by using ETIC. There are three primary
challenges and difficulties in our study: the first challenge is how to handle the system delay term and
ETC input term; the second difficulty is how to handle the parameter mismatch system and derive the
QS conditions; the third difficulty is how to ensure that we can avoid Zeno behavior in the trigger
moment and calculate the minimum of the trigger interval. Our proposed method effectively resolves
these challenges. The following are the main contributions of this paper.

(1) Different from [33], this paper considers the time-varying delays in the system. In contrast to
the synchronization of the same structure [37], this paper considers the QS of nonlinear systems with
parameter mismatch and time-varying delays, which are prevalent in practical applications.

(2) The control method is different from the traditional TTIC in [38]. Our approach integrates IC and
ETIC together to address the QS of drive-response systems. The impulsive instants are event-triggered,
which greatly reduces the communication costs and resource consumption.

(3) Under the proposed ETIC strategy, an accurate QS error bound is derived by using the
comparison principle of impulsive systems and the formula for variable parameters. Additionally,
we ensure that the Zeno behavior at impulsive instant is avoided.

Notations: Rn denotes n-dimensional Euclidean space and Rn×m denotes n×m-dimensional Euclidean
space. For a vector or matrix, ‖· ‖ stands for its 2-norm. For any vector z or matrixZ, zT orZT denotes
that its transposition. For matrix Q, Q > 0 denotes Q is a positive definite matrix. R+ denotes the set of
positive real numbers andZ+ denotes the set of positive integers. C

([
−ρ, 0

]
,Rn) (abr. PCρ) represents

a space composed of the continuous function mapping [−ρ, 0] into Rn. I represents the identity matrix
of the appropriate dimension.

2. Preliminaries and model description

2.1. Preliminaries

The general nonlinear impulsive differential delayed system is considered as follows:
$̇ (t) = J ($t) , t , tk,

4$ (t) = G (k, $ (t)) , t = tk,

$ (t0 + s) = δ (s) , −ρ ≤ s ≤ 0,

(2.1)
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where $ (t) ∈ Rn denotes the state variable of the system and $̇ (t) is the upper-right derivative of
$ (t). For t ≥ t0, define $t (s) = $ (t + s), $t ∈ PCρ, where ρ is the upper bound of the time-varying
delays ρ (t). For all t, k, we assume J (0) = G (0) = 0, and δ (s) ∈ PCρ is the initial value. The
time sequence {tk} is the impulsive instant generate by ETIC. The system jump will be activated at the
impulsive instant tk, where

G (k, $ (t)) = 4$ (t) |t=tk = $
(
t+
k
)
−$

(
t−k
)
.

We assume system (2.1) is left continuous at every impulsive instant tk, namely, $ (tk) = $
(
t−k
)
, ∀k ∈

Z+. We assume that functions J ,G satisfy appropriate conditions such that the solution $ (t) exists in
the relevant time interval, which will be set later in the assumption.

2.2. Model description

Let

ζ̇ (t) = A1ζ (t) + B1σ (ζ (t − ρ (t))) (2.2)

be the drive system, where ζ (t) = (ζ1 (t) , ζ2 (t) , . . . , ζn (t))T
∈ Rn stands for the state variable of drive

system, with initial condition ζ (s) = (δ1 (s) , δ2 (s) , . . . , δn (s))T
∈ PCρ, σ ∈ C

(
PCρ,R

n
)
, is a nonlinear

function, andA1,B1 ∈ R
n×n are constant matrices.

The response system of (2.2) is described as

˙̃ζ (t) = A2ζ̃ (t) + B2σ
(
ζ̃ (t − ρ (t))

)
+U (t) , (2.3)

where ζ̃ (t) =
(
ζ̃1 (t) , ζ̃2 (t) , . . . , ζ̃n (t)

)
∈ Rn stands for the state variable of the response system, with

the initial condition ζ̃ (s) = ψ (s) = (ψ1 (s) , ψ2 (s) , . . . , ψn (s)) ∈ PCρ. U (t) is the control input and
A1 , A2,B1 , B2, i.e., drive-response systems (2.2)-(2.3) have their own different dynamical behavior
ifU (t) = 0.

The controllerU (t) designed in this paper is shown as below:

U (t) =

K
(
ζ̃ (tk) − ζ (tk)

)
, t ∈ (tk, tk+1) ,

C
(
ζ̃ (t) − ζ (t)

)
, t = tk,

(2.4)

where ζ (tk) , ζ̃ (tk), K and C are the ETC gain matrix and IC gain matrix, respectively. The sequence
{tk, k ∈ Z+} are impulsive instants which are generated by the designed triggering law designed later in
this paper.

Define the synchronization error η (t) = ζ̃ (t) − ζ (t) between system (2.2)-(2.3), and η (t) =

(η1 (t) , η2 (t) , . . . , ηn (t))T , with initial condition η (s) = ψ (s) − δ (s) ∈ PCρ. Then

η̇ (t) = ˙̃ζ (t) − ζ̇ (t)

= A2ζ̃ (t) −A1ζ (t) + B2σ
(
ζ̃ (t − ρ (t))

)
− B1σ (ζ (t − ρ (t))) +U (t)

= A2η (t) + B2ϕ
(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
+ 4Aζ (t) + 4Bσ (ζ (t − ρ (t))) +U (t) . (2.5)

Then
ϕ
(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
= σ

(
ζ̃ (t − ρ (t))

)
− σ (ζ (t − ρ (t))) ,
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4A = A2 −A1, 4B = B2 − B1,

which represents the parameter mismatch caused by different structures.

Remark 1. Under the ETIC strategy, the control action of (2.4) is determined by the state error
of system (2.2)-(2.3). Control actions persist in the presence of state error, and they stop when the
error is zero. QS is different from complete synchronization, and a drive-response system with the
same structure can achieve complete synchronization under an appropriate controller. However, if the
drive-response system has a different structure, the state error always exists, which means that the
controller will always act on the error system [18]. Although the drive-response system with FDPM
cannot achieve complete synchronization in this paper, an appropriate controller can maintain the
error within a certain range. Therefore, the QS of the drive-response system will be investigated in this
paper.

The following are the assumptions proposed in this paper.

Assumption 1 ( [39]). Suppose that the state ζ (t) of the drive system for any initial condition δ (s) ∈
C

([
−ρ, 0

]
,Rn) is bounded, i.e., there exists Γ (δ (s)) such that

‖ζ (t)‖ 6 γ,∀t ≥ Γ (δ (s)) .

Assumption 2. Suppose the nonlinear function σ (·) satisfies the Lipschitz condition, and there exists
constant p > 0, for ∀ζ1, ζ2 ∈ R

n, such that

‖σ (ζ1) − σ (ζ2)‖ ≤ p ‖ζ1 − ζ2‖ .

Assumption 3. There exists a constant P > 0, such that function σ (·) is bounded, i.e.,

‖σ (·)‖ ≤ P.

Remark 2. The assumptions mentioned above are reasonable. Assumption 1 is a tenable
assumption [39]. When the system delay is within an appropriate range, the system can satisfy the
bounded condition. The drive chaotic system with finite evolution is widely used in research work.
Assumptions 2 and 3 are the Lipschitz conditions that are satisfied by most linear and nonlinear
continuous functions.

We assumeN (ζ (t) , ζ (t − ρ (t))) = 4Aζ (t)+4Bσ (ζ (t − ρ (t))), according to Assumptions 1 and 2,
and it can be inferred that there exists a constant α, so that

‖N (ζ (t) , ζ (t − ρ (t)))‖ ≤ α, t > Γ̃ > Γ (δ (s)) , (2.6)

i.e., N (ζ (t) , ζ (t − ρ (t))) is also bounded. In addition, according to η (t) = ζ̃ (t) − ζ (t), we can obtain

η
(
t+
k
)
− η (tk) =

(
ζ̃
(
t+
k
)
− ζ

(
t+
k
))
−

(
ζ̃ (tk) − ζ (tk)

)
= ζ̃

(
t+
k
)
− ζ̃ (tk)

= C
(
ζ̃ (tk) − ζ (tk)

)
= Cη (tk) . (2.7)
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With the proposed controllers (2.4) and (2.7), error system (2.5) can be simplified and rewritten in
the form below:η̇ (t) = A2η (t) + B2ϕ

(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
+N (ζ (t) , ζ (t − ρ (t))) +Kη (tk) ,

η
(
t+
k

)
= (I + C) η (tk) , t = tk.

(2.8)

Let the state measurement error of error system (2.8) be defined as

θ (t) = η (tk) − η (t) , t ∈ (tk, tk+1] , (2.9)

and the following triggering law determines the impulsive sequence {tk}:

tk+1 = inf
{
t > tk| ‖θ (t)‖2 ≥ α2η

T (t)
[(
α̃ − α−1

1

)
I − α2KK

T
]
η (t)

}
. (2.10)

Obviously, one can select some appropriate positive constants α1, α2, α̃ and gain matrix K such that(
α̃ − α−1

1

)
I − α2KK

T > 0. Therefore, we always assume that matrix
(
α̃ − α−1

1

)
I − α2KK

T in (2.10)
is a positive definite matrix in the following discussion.

Remark 3. To investigate more general parameter mismatch systems, we need A1 , A2 and B1 ,

B2. In fact, the following two special cases are both included in our results. For the case A1 ,

A2, and B1 = B2, then 4B = 0n×n, ‖N (ζ (t) , ζ (t − ρ (t)))‖ = ‖4Aζ (t)‖ ≤ k1. For the case A1 =

A2, and B1 , B2, then 4A = 0n×n, ‖N (ζ (t) , ζ (t − ρ (t)))‖ = ‖4Bσ (ζ (t − ρ (t)))‖ ≤ k2, where k1, k2

are positive constants.

Remark 4. The ETIC strategy proposed in this paper combines ETC and IC. In the controller (2.4), IC
takes place precisely at the event-triggered instant. Meanwhile, between any two successive impulsive
moments, there exists ETC input. The ETC works until the next impulsive tk+1. In fact, the ETC can
be seen as a bridge connecting the two impulsive items. In the control input of controller (2.4), the
first part stands for ETC, and the second part represents IC. This paper proposes an ETIC method
that offers better performance and a lower cost of control. Whether impulsive moments are generated
depends on the state error within the drive-response systems.

Remark 5. Unlike the conventional impulsive systems discussed in [38], which depend on time-
triggered mechanisms to determine impulsive instances, the impulsive system (2.8) in this paper
employs an event-triggered approach. This methodology significantly minimizes unnecessary
information transmission, computational load, and communication overhead.

2.3. Definitions and lemmas

In this subsection, to analyze the QS of systems (2.2) and (2.3) we will present several definitions
and lemmas required for this paper. First, we introduce some fundamental definitions.

Definition 1 ( [2]). A function L : R+ × Rn → R+ is said to belong to the function class v if it is a
locally Lipschitz function and continuous in (tk, tk+1] × Rn , for ∀ς (t) ∈ Rn, and then

lim
(t, ς(t))→(t+k+1, $(t))

L (t, ς (t)) = L
(
t+
k+1, $ (t)

)
.
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Definition 2 ([2]). Given a locally Lipschitz function L : R+ × Rn → R+, its upper-right derivative is
defined as:

D+L ($ (t)) = lim sup
`→0

1
`

[L ($ (t) + `J ($t)) − L ($ (t))] .

Definition 3 ([38]). Drive-response systems (2.2) and (2.3) are said to achieve the QS with error bound
ε̂ > 0. When t → +∞, if there exists a set Ω, such that for all δ (s) , ψ (s) ∈ PCρ, the synchronization
error η (t) converges to Ω := {η (t) ∈ Rn| ‖η (t)‖ ≤ ε̂}, where η (t) = ζ̃ (t) − ζ (t), ζ̃ (t) and ζ (t) are the
solution of the response system and drive system, respectively.

Definition 4 ( [37]). Impulsive instants tk have no Zeno behavior if there always exists a positive
constant κ such that the trigger interval is greater than it, i.e., infk∈N {tk+1 − tk} ≥ κ > 0.

Next, we state some important lemmas.

Lemma 1 ( [40]). Let µ > 0, for any vectors x ∈ Rn, y ∈ Rn, and matrix A ∈ Rn×n, and then the
following inequality holds:

2xTAy ≤ µxTAAT x + µ−1yT y.

Lemma 2 ( [41]). Let w1 (s) and w2 (s) ∈ PC([−ρ,+∞], R+) be jumping discontinuous at s = sk, s ≥ 0,
w1

(
s−k

)
and w2

(
s−k

)
exist, w1 (sk) = w1

(
s+

k

)
, w2 (sk) = w2

(
s+

k

)
, 0 ≤ ρ (s) ≤ ρ. If there exist constants

π1, π2 > 0, β > 0, such thatD+w1 (s) ≤ π1w1 (s) + π2w1 (s − ρ (s)) , s , sk, s ≥ 0,
w1

(
s+

k

)
≤ βw1

(
s−k

)
, k ∈ N,

(2.11)D+w2 (s) > π1w2 (s) + π2w2 (s − ρ (s)) , s , sk, s ≥ 0,
w2

(
s+

k

)
= βw2

(
s−k

)
, k ∈ N,

(2.12)

and w1 (s) ≤ w2 (s) for −ρ ≤ s ≤ 0, then w1 (s) ≤ w2 (s) for s > 0.

3. Main results

In this section, the ETIC mechanism will be used to investigate the QS between (2.2) and (2.3) with
time-varying delays. Additionally, we rule out the Zeno behavior of the impulsive instant in the ETIC
mechanism.

Theorem 1. Assume that Assumptions 1–3 hold and under the control law (2.10), if there exists
constant β1 < 0 such that A2 + AT

2 + B2B
T
2 + 2K + α̃I − β1I < 0, and there exists constant λ2, such

that 0 < λ2 < 1, (I + C)T (I + C) − λ2I < 0. Then, the drive system (2.2) and response system (2.3)
can achieve QS. The synchronization error η (t) converges to

Ω :=

η (t) ∈ Rn| ‖η (t)‖ ≤

√√
1
λ2

(
α1α2)

λ3 −
1
λ2
β2

 , (3.1)

when t → ∞, where β2 = p2λmax (I), 0 < λ3 ≤ −
lnλ2
m1
− β1, m1 ≥ sup {tk+1 − tk} > 0.
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Proof. We choose the nonnegative Lyapunov function for error system (2.8) as:

L (t, η (t)) = ηT (t) η (t) . (3.2)

Evidently L (t, η (t)) belongs to function class v. Along the error system (2.8) calculate the right-upper
derivative of L (t, η (t)), for t ∈ (tk, tk+1), and we can obtain

D+L (t, η (t)) = 2ηT (t) η̇ (t)

= 2ηT (t)
(
A2η (t) + B2ϕ

(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
+N (ζ (t) , ζ (t − ρ (t))) +Kη (tk)

)
= ηT (t)

(
A2 +AT

2

)
η (t) + 2ηT (t)B2ϕ

(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
+ 2ηT (t)N (ζ (t) , ζ (t − ρ (t))) + 2ηT (t)K

[
θ (t) + η (t)

]
. (3.3)

We obtain the following inequalities by utilizing Assumption 1 and Lemma 1:

2ηT (t)N (ζ (t) , ζ (t − ρ (t))) ≤ α−1
1 η

T (t) η (t) + α1 ‖N (ζ (t) , ζ (t − ρ (t)))‖2 ,

2ηT (t)Kθ (t) ≤ α−1
2 ‖θ (t)‖2 + α2η

T (t)KKTη (t) ,

2ηT (t)B2ϕ
(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
≤ ϕT

(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
ϕ
(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
+ ηT (t)B2B

T
2 η (t) ,

ϕT
(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
ϕ
(
ζ̃ (t − ρ (t)) , ζ (t − ρ (t))

)
≤ p2 ‖η (t − ρ (t))‖2 .

Then, substituting the above simplification into (3.3), we have

D+L (t, η (t)) ≤ ηT (t)
(
A2 +AT

2 + B2B
T
2 + α−1

1 I + α2KK
T + 2K

)
η (t)

+ p2ηT (t − ρ (t)))Iη (t − ρ (t)) + α−1
2 ‖θ (t)‖2 + α1α

2. (3.4)

According the triggering law (2.10),

‖θ (t)‖2 < α2η
T (t)

[(
α̃ − α−1

1

)
I − α2KK

T
]
η (t) . (3.5)

We derive from (2.6), (3.4), and (3.5) that

D+L (t, η (t)) ≤ ηT (t)
(
A2 +AT

2 + B2B
T
2 + α−1

1 I + α2KK
T + 2K

)
η (t)

+ p2ηT (t − ρ (t)))Iη (t − ρ (t)) + ηT (t)
[(
α̃ − α−1

1

)
I − α2KK

T
]
η (t) + α1α

2

= ηT (t)
(
A2 +AT

2 + B2B
T
2 + 2K + α̃I

)
η (t) + p2ηT (t − ρ (t)))Iη (t − ρ (t)) + α1α

2

≤ β1L (η (t)) + β2L (η (t − ρ (t))) + α1α
2. (3.6)

Furthermore, when t = tk, according to (2.8) and (3.2), one has

L
(
t+
k
)

= ηT (tk) (I + C)T (I + C) η (tk) ≤ λ2L (tk) . (3.7)

AIMS Mathematics Volume 10, Issue 2, 3759–3778.



3767

Suppose w (t) is a unique solution of the following delayed impulsive comparison system, ∀δ > 0.
Therefore, the corresponding comparison system for (3.6) and (3.7) is as follows:

ẇ (t) = β1w (t) + β2w (t − ρ (t)) + α1α
2 + δ, t , tk,

w
(
t+
k

)
= λ2w (tk) , k ∈ Z+,

w (t) = ‖η (t)‖2 , t ∈ [−ρ, 0].

(3.8)

For t ≥ 0, by using Lemma 2 we have

L (t) ≤ w (t) . (3.9)

Using the variable parameter formula for (3.8), we can describe w (t) in terms of

w (t) = H (t, 0) w (0) +

∫ t

0
H (t, s) ×

(
β2w (s − ρ (s)) + α1α

2 + δ
)

ds, t ≥ 0. (3.10)

H (t, s) is the Cauchy matrix of system ẇ (t) = β1w (t) ,w
(
t+
k

)
= λ2w (tk), and additionally, through the

induction,

H (t, s) = eβ1(t−s)

 ∏
s≤tk≤t

λ2

 .
Due to β1 < 0 and 0 < λ2 < 1, ∀k ∈ N, since supk∈N {tk+1 − tk} < ∞, thus there exists constant m1 such
that 0 ≤ supk∈N {tk+1 − tk} ≤ m1, and there exists 0 < λ3 ≤ −

lnλ2
m1
− β1 such that

H (t, s) ≤ eβ1(t−s)λ
t−s
m1
−1

2 ≤ e
(
−λ3−

lnλ2
m1

)
(t−s)

λ
t−s
m1
−1

2 =
1
λ2

e−λ3(t−s). (3.11)

Substituting (3.11) into (3.10), then

w (t) ≤
1
λ2

e−λ3tw (0) +

∫ t

0

1
λ2

e−λ3(t−s)
×

(
β2w (s − ρ (s)) + α1α

2 + δ
)

ds

≤ ιe−λ3t +

∫ t

0
e−λ3(t−s)

×

(
1
λ2
β2w (s − ρ (s)) +

1
λ2

(
α1α

2 + δ
))

ds, (3.12)

where ι = 1
λ2

sup−ρ≤t≤0 ‖η (t)‖2. Define

M (~) = 2~ +

(
lnλ2

m1
+ β1

)
+

1
λ2
β2e2~ρ.

By the continuity of function M (~), and −
(

lnλ2
m1

+ β1

)
> 1

λ2
β2 > 0, we have M (∞) > 0, M (0) =

lnλ2
m1

+ β1 + 1
λ2
β2 < 0, and Ṁ (~) = 2 + 2 1

λ2
β2ρe2~ρ > 0. Therefor, there exists a unique positive solution

~ such thatM (~) = 0.
Evidently, ~ > 0, δ > 0, α1α

2 > 0, and 1
λ2
> 1, for t ∈ [−ρ, 0], and then

w (t) ≤
1
λ2
‖η (t)‖2 e−2~t < ιe−2~t +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

. (3.13)
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For all t > 0, we will demonstrate that the following inequality holds:

w (t) < ιe−2~t +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

. (3.14)

If (3.14) is incorrect, then there exists a constant t∗ > 0, such that

w (t∗) ≥ ιe−2~t∗ +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

, (3.15)

w (t) < ιe−2~t +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

, t < t∗. (3.16)

According to (3.12) and (3.16)

w (t∗) ≤ ιe−λ3t∗ +

∫ t∗

0
e−λ3(t∗−s)

×

(
1
λ2
β2w (s − ρ (s)) +

1
λ2

(
α1α

2 + δ
))

ds

< e−λ3t∗

ι +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

+

∫ t∗

0
eλ3 s ×

[
1
λ2
β2w (s − ρ (s)) +

1
λ2

(
α1α

2 + δ
)]

ds


< e−λ3t∗

ι +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

+

∫ t∗

0
eλ3 s ×

 1
λ2
β2

ιe−2~(s−ρ(s)) +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

 +
1
λ2

(
α1α

2 + δ
) ds


< e−λ3t∗

ι +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

+

1
λ2
β2ι

λ3 − 2~
e2~ρ

[
e(λ3−2~)t∗ − 1

]
+

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

[
eλ3t∗ − 1

]
= ιe−2~t∗ +

1
λ2

(
α1α

2 + δ
)

λ3 −
1
λ2
β2

. (3.17)

Obviously, (3.17) contradicts to (3.15) and then (3.17) holds, for all t > 0, ∀δ > 0, so from (3.9),

L (t) ≤ w (t) ≤ ιe−2~t +

1
λ2

(
α1α

2
)

λ3 −
1
λ2
β2
, t > 0. (3.18)

Combining (3.18) and (3.2), we have

‖η (t)‖ ≤

√√
ιe−2~t +

1
λ2

(
α1α2)

λ3 −
1
λ2
β2

≤
√
ιe−~t +

√√
1
λ2

(
α1α2)

λ3 −
1
λ2
β2
, (3.19)

where
ι =

1
λ2

sup
−ρ≤t≤0

‖η (t)‖2.
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Thus, under the ETIC strategy, the QS of drive-response systems (2.2) and (2.3) with time-varying
delays is achieved. When t → ∞, it follows from (3.19) that the trajectory of error system (2.8) is
exponentially converged to the set Ω, where

Ω =

η (t) ∈ Rn| ‖η (t)‖ ≤

√√
1
λ2

(
α1α2)

λ3 −
1
λ2
β2

 . (3.20)

The proof of QS between drive-response systems is complete. �

Remark 6. When the system degenerates into a parameter matching system, namely 4A = 0, 4B =

0, and α = 0 (i.e., the effect of parameter mismatch disappears), the drive-response systems can achieve
complete synchronization. In other words, Theorem 1 can be used for drive-response systems that have
the same structure.

Remark 7. By using the comparison principle of impulsive systems and the formula for variable
parameters, Theorem 1 gives the general results of QS of the parametric mismatch drive-response
systems, and the precise synchronization error bound ε̂, and the sufficient conditions for realizing QS
are derived. By selecting the appropriate positive constant α̃ and the control gain matrix C, K , one
can obtain a small error bound.

To avoid Zeno behavior, there should be a lower bound for the release interval tk+1 − tk, and it must
satisfy infk∈N {tk+1 − tk} > 0. Next, we will prove that the designed ETIC mechanism can eliminate the
Zeno phenomenon.

Theorem 2. Considering error system (2.8) under the controller (2.4) and the conditions of Theorem 1,
the impulsive instants tk can be calculated via event-triggered condition (2.10). Then, there exists a
positive constant κ > 0 such that infk∈N {tk+1 − tk} > κ > 0. This means that Zeno behavior in the
impulsive instants for the controlled error system (2.8) is avoided.

Proof. According to Assumption 3 and (2.6), the right-upper Dini derivative of measurement error
‖θ (t)‖ can be calculated, for t ∈ (tk, tk+1), and one can obtain

D+ ‖θ (t)‖ ≤ ‖η̇ (t)‖

=
∥∥∥∥A2η (t) + B2ϕ

(
ζ (t − ρ (t)) , ζ̃ (t − ρ (t))

)
+N (ζ (t) , ζ (t − ρ (t))) +Kη (tk)

∥∥∥∥
≤ ‖A2‖ ‖η (t)‖ + 2 ‖B2‖ ‖P‖ + α + ‖K‖ ‖η (tk)‖
≤ ‖A2‖ ‖η (tk) − θ (t)‖ + 2 ‖B2‖ ‖P‖ + α + ‖K‖ ‖η (tk)‖
≤ ‖A2‖ ‖θ (t)‖ + (‖A2‖ + ‖K‖) ‖η (tk)‖ + 2 ‖B2‖ ‖P‖ + α. (3.21)

Then, from θ (tk) = 0, it follows that

0 ≤ ‖θ (t)‖ ≤
E1

E2

[
exp (E2 (t − tk)) − 1

]
, (3.22)

where
E1 = (‖A2‖ + ‖K‖) ‖η (tk)‖ + 2 ‖B2‖ ‖P‖ + α, E2 = ‖A2‖ .
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Let Tk = tk+1 − tk. Define

X (η (t)) = α2η
T (t)

[(
α̃ −

1
α1

I
)
− α2KK

T

]
η (t) .

When the event violates triggering law (2.10), then we obtain

lim
t→tk+1

‖θ (t)‖ ≥
√

X (η (tk+1)). (3.23)

Based on (3.22) and (3.23), we have√
X (η (tk+1)) ≤ ‖θ (tk+1)‖ ≤

E1

E2

[
exp (E2Tk) − 1

]
. (3.24)

For t ∈ (tk, tk+1), we have that

Tk ≥ κ =
1
E2

ln
(
1 +

E2

E1

√
X (η (tk+1))

)
.

If X (η (tk+1)) = 0, then η (tk+1) = ζ̃ (tk+1) − ζ (tk+1) = 0, which means ζ̃ (tk+1) = ζ (tk+1). However, this
contradicts the fact that ζ̃ (tk+1) , ζ (tk+1). Therefore, we can conclude that

Tk ≥ κ > 0. (3.25)

This means that for any contiguous trigger interval satisfying infk∈N {tk+1 − tk} > κ > 0, then the
impulsive instants of error system (2.8) can avoid the Zeno behavior. The proof is complete. �

When B1 = B2 = 0n×n, i.e., 4B = 0, the error system (2.8) degenerates into the following form:η̇ (t) = A2η (t) + 4Aζ (t) +Kη (tk) ,
η
(
t+
k

)
= (I + C) η (tk) , t = tk,

(3.26)

and from Theorems 1 and 2, we have the following corollary.

Corollary 1. Suppose that the impulsive moment is generated by (2.10):

‖N (ζ (t) , ζ (t − ρ (t)))‖ ≤ α, t > Γ̃ > Γ (δ (s)) ,

and control gain matrix K , C satisfies the conditions

A2 + AT
2 + B2B

T
2 + 2K + α̃I − β1I < 0,

(I + C)T (I + C) − λ2I < 0,

where β1 < 0, 0 < λ2 < 1. Then system (3.26) reaches QS. The synchronization error η (t) converges to

Ω :=

η (t) ∈ Rn| ‖η (t)‖ ≤

√
1
λ2

(
α1α

2
)

λ3

 , (3.27)

when t → ∞, where 0 < λ3 ≤ −
ln λ2
m1
− β1, m1 ≥ sup {tk+1 − tk} > 0.
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4. Numerical example

The validity of the theoretical results under the proposed ETIC strategy is verified by providing
an example in this section. Considering the extensive and varied nonlinear dynamical phenomena of
Chua’s circuit system, such as chaos and bifurcations, we choose the following three-neuron nonlinear
Chua’s system with time-varying delays and parameter mismatch as the following drive system:

ζ̇ (t) = A1ζ (t) + B1σ (ζ (t − ρ (t))) ,
ζ (t0 + s) = δ (s) , s ∈ [−ρ, 0],

(4.1)

where

A1 =


−c1(1 + d2) c1 0

1 −1 1
0 −c2 0

 , B1 =


(d1 − d2)p1 0 0

0 −1 0
0 0 0

 ,
and δ (s) = (0.14, 0.1, 0.21)T .

The corresponding response system can be described as: ˙̃ζ (t) = A2ζ (t) + B2σ (ζ (t − ρ (t))) +U (t) ,
ζ̃ (t0 + s) = ψ (s) , s ∈ [−ρ, 0],

(4.2)

where

A2 =


−c3(1 + d4) c3 0

1 −1 1
0 −c4 0

 , B2 =


(d3 − d4)c3 0 0

0 0 0
0 0 0

 ,
and ψ (s) = (0.6, 0.35,−0.48)T .

Select the same parameters ci, di, (i = 1, ..., 4) as those in [38], i.e., c1 = 9.2156, c2 =

15.9946, c3 = 9.21, c4 = 15.995, d1 = −1.24905, d2 = −0.75735, d3 = −1.25, d4 = −0.785, ρ (t) =

0.7 − 0.1 sin (t), and the nonlinear function

σ (ζ (t − ρ (t))) =

(
−

1
2

(|ζ1 (t − ρ (t)) + 1| − |ζ1 (t − ρ (t)) − 1|) , 0, 0
)T

.

As depicted in Figure 1, it is evident that the state of drive system (4.1) is bounded, and ‖ζ (t)‖ ≤
γ ≈ 8.1430. Correspondingly,

‖N (ζ (t) , ζ (t − ρ (t)))‖ ≤ α ≈ 0.072.

The state path of the drive-response systems without ETIC is depicted in Figure 2, and the evolution
path of the error ‖η (t)‖ without ETIC is shown in Figure 3.
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Figure 1. The evolution of drive system (4.1).
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Figure 2. The evolution of drive-response systems without ETIC.
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Figure 3. The evolution of ‖η (t)‖ without ETIC.
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Control gain matrix

K =


−11.3 0 −0.3
−3.6 −2.5 0
−0.9 0 −3.5

 , C =


−0.002 0 0

1 −0.003 0
0 0 −0.2

 .

Select the appropriate parameters α1 = 20, α2 = 0.023, α̃ = 3.61, β1 = −10.427, and Lipschitz
constant p = 1. Then β2 = 1 and m1 is the lower bound of the trigger interval. Through the simulation
program, we can obtain m1 = 0.06, and accordingly, λ3 ≈ 27.183. It can be verified that the conditions
in Theorem 1 are true, and the theoretical synchronization error can be calculated to obtain ‖η (t)‖ ≤
0.08571.

The state trajectories of drive-response system (4.1)-(4.2) withU(t) are shown in Figure 4, and the
state evolution of ‖η (t)‖ with U(t) is shown in Figure 5. The number of impulsive instants for the
ETIC is shown in Figure 6. The simulation results show that the system error is below the theoretical
value, which validates the effectiveness of our results.

The TTIC proposed in [38] uses a fixed sampling interval of τ = 1 × 10−3, resulting in 20,000
control updates (see Figure 7). In contrast, the ETIC approach presented in this paper requires merely
118 control updates (see Figure 6). Traditional time-triggered control triggers transmissions at fixed
time intervals, regardless of whether the system requires an update. On the other hand, ETIC triggers
transmissions only when the system state satisfies the triggering conditions (when the error exceeds
a threshold). As a result, the number of transmissions is significantly reduced, and the transmission
time is more flexible. Compared to traditional TTIC, it is evident that ETIC reduces unnecessary
transmissions, thereby decreasing transmission times and communication load. Additionally, while
reducing transmission times, ETIC also improves system performance (faster convergence to a stable
state) (see Figures 5 and 8).
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Figure 4. The state trajectories of the drive-response system with ETIC.
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Figure 5. The trajectories of the synchronization error norm ‖η (t)‖ with ETIC.
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Figure 6. Impulsive instants with ETIC.
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Figure 7. Impulsive instants with TTIC.
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Figure 8. The evolution of the synchronization error norm ‖η (t)‖ with TTIC.

5. Conclusions

This paper investigates the QS of nonlinear drive-response systems with parameter mismatch and
time-varying delays via the ETIC strategy. According to the formula for variable parameters and the
comparison principle of the impulsive systems, some sufficient conditions for reaching the QS and the
exact expression of the error bound are obtained. In addition we have proved that this method can
avoid Zeno behavior at the impulsive instant. The event-triggered impulsive instant in the control
method is determined by the state-dependent trigger law, which significantly reducing the control
update frequency. It is also demonstrated that this event-triggered rule exhibits good performance.

In the future, we will consider using other control methods, such as employing the self-triggered
mechanism to generate triggered sequences. This approach eliminates the need for continuous
monitoring of trigger conditions and is more practical for reducing network load and communication
in real-world applications.
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