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1. Introduction

Modeling industrial data is now considered a substantial area of interest for researchers across
different disciplines, including biometrics, engineering, survival, lifetime, reliability sciences, and
numerous other areas. Different probability distributions are available, but they have some limitations
in fitting these types of data sets. For example, see Verevka et al. [1] and Barskov et al. [2]. There is
a constant increase in the range of count data, and the constraints of existing models make modeling
these data challenging. Therefore, in the last few decades, many researchers have sought to propose
adaptable models for modeling these types of data sets using different generalized approaches. For
more details, see Alzaatreh and Famoye [3], leren et al. [4], Riad et al. [5], EL-Helbawy et al. [6], Altun
et al. [7], Alotaibi et al. [8], Maya et al. [9], Meraou et al. [10—13], Alrweili et al. [14], Alrweili [15,16].

On the other side, several situations exist where the suggested extension distributions are unsuitable
for analyzing different data sets. Additionally, the role and importance of generating a new family of
distribution using various generators becomes a very important and compulsory task for researchers
to accommodate the variety of data patterns being generated in every field of life. Data coming from
different fields of study, specifically in the industrial field, all need a better model to fit their diverse
data patterns and be motivated by the urgency of highly flexible statistical models. Consequently,
Nofal et al. [17] introduced a new methodology to create a new distribution called the generalized
Kumaraswamy (GK) family. It is a new concept of generalizing a given distribution, which introduces
three additional parameters in a baseline distribution, and it has wider applications in industrial,
engineering, survival, and other fields. The cumulative distribution function (cdf) and the probability
density function (pdf) of the GK class of distributions can be defined as

1-{1-a(Fy)

Alx) = —(-ay xeR, B,y>0, O0<a<l, (1.1

d
o S _ a’ﬁ'yf(X) F B-1 1 F )ﬁ r-1 1.2
() = =gy F) {1-aF@yl . (12)

where f(x) and F(x) are, respectively, the pdf and cdf of the basic distribution.

It is well documented that the Rayleigh distribution (RD) is frequently used to model diverse data
sets drawn from different areas, especially for analyzing industrial data. Consequently, the RD is
suitable for modeling industrial data. This is vital in the reliability analysis of industrial devices,
such as 3D printing, drones, and robots. Let us consider the random variable X has RD with positive
parameter 6, so its cdf and pdf, respectively are

Mx)=1-¢™, x>0, (1.3)
and
n(x) = 26y e, (1.4)

The RD is widely used in reliability and survival analysis for mortality rates, especially when
studying extreme events. Since it captures tail behavior effectively, it is particularly also useful
in understanding the upper quantiles of life expectancy or survival time. Also, it has undoubtedly
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established itself as a crucial tool for data modeling across nearly all sectors, including survival,
hydrology, insurance, and energy theory. However, despite its widespread use and advantages, the
RD is constrained by its inherent limitations. One of the primary constraints of the RD is its capacity
to represent solely monotonically increasing forms of hazard functions, as it can only model data where
the hazard rate increases or decreases consistently over time. Also, the RD is regarded as a limiting
model for residual lifetimes. For this, we have seen increased interest in studying the RD and its
applications in various fields such as medicine, engineering, insurance, industry, and risk management.
Some of these efforts are listed below by Chukwudi et al. [18], Muzamil et al. [19], Aijaz et al. [20],
Abdulsalam et al. [21], Javed et al. [22].

The basic motivations for the recommended GKRD in practice are:

(1) The GKRD provides a crucial important role in analyzing numerous kinds of data sets. Its
parameters provide a flexible way to manipulate the shape and characteristics of a probability
distribution. This adaptability allows researchers and analysts to tailor the distribution to better
fit real-world data, making it a valuable tool in diverse fields such as statistics, engineering,
biology, etc. Further, the four parameters of the proposed GKRD make the underlying patterns
more interpretable. This enhanced interpretation ability can lead to deeper insights and a better
understanding of the factors influencing the data.

(2) With adding three additional parameters, the GKRD has the ability to represent the unimodal or
bimodal probability distribution.

(3) Another motivation is the ability to induce skewness in symmetrical and asymmetrical
distributions. This capability is particularly valuable in fields where skewed distributions are
prevalent, such as finance, economics, and insurance.

The following are the key objectives:

e The primary objective that must be fulfilled is introducing a novel model, and the new distribution
is named the generalized Kumaraswamy Rayleigh distribution (GKRD). We also determined
its various statistical properties, including moments, the moment-generating function, and order
statistics.

e Derive and discuss its reliability characteristics.

e Estimate the model parameters using the maximum likelihood and Bayesian approaches under
the square error loss function (SELF) and illustrate the pattern of these derived estimators using
a comprehensive simulation study.

e Check the validity and flexibility of the GKRD using industrial and financial data sets.

The rest of the study is organized as follows: The recommended GKRD is defined in Section 2
with some distributional properties. In Section 3, we present several mathematical properties including
moments, the quantile function, and the moment generating function. Section 4 demonstrates the
estimation of the model parameters based on two different proposed methods. The effectiveness of the
proposed estimation tools are studied using some simulation studies in Section 5, and three distinct
real data sets are applied to show the results of the application of the GKRD. The concluding report is
given in Section 7.
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2. Derivation of the generalized Kumaraswamy Rayleigh distribution

Here, in this part of the study, several distributional properties such as the pdf, cdf, survival, and
hazard rate function of the GKRD are derived.

2.1. Model and assumption

Based on Eqs (1.1)—(1.2) and by replacing the classical distribution with the RD, the cdf and pdf of
the proposed GKRD are

1-{1-a( =y}

2(1) = —(—ay , t>0, B,v,0>0, O0<a<1, 2.1
20B8y0 te™"" _g2 )81 _a2 )71
f(f):m {1—60 } {l—a(l—ee )ﬂ} . (22)

The pdf curves of the GKRD are explored using several parametric values of parameters and displayed
in Figure 1. As shown in Figure 1, the proposed GKRD is unimodal and has decreasing behavior.
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Figure 1. Density plots of the GKRD for various parameter choices.
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The survival function (sf) and hazard rate function (hrf) can be obtained from the following
equations:

h—aﬂ—éwWY—ﬂ—ay
1—(1-a)y ’

S@) = (2.3)

and

2aBy0 te " { !
{1-a—ep —(1-ay

Figure 2 reports the hrf curves of the GKRD using several parameter values. It is upside down and
increasing depending on the parameter values.

h(t) = —ef T - et - e y) (2.4)

== 0=0.95,8=0.45,y=3,6=1.2
—— 0=0.95,3=0.45,y=3,6=0.9
0=0.95,3=0.45y=3,6=0.6
0=0.95,3=0.45,y=3,6=0.3

T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

---- a=0.5,=4.1,y=1.8,6=1

— a=0.5,8=4.1,y=1.8,6=0.75
0=0.5,8=4.1,y=1.8,6=0.5
0=0.5,8=4.1,y=1.8,6=0.25 -

== @=0.7,8=1.3,y=0.8,6=1.2
— @=0.7,3=1.3,y=0.6,6=0.9
0=0.7,3=1.3,y=0.4,6=0.6
0=0.7,3=1.3,y=0.2,6=0.3

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

---- 0=0.95,8=0.3,y=0.6,6=3.5 /
— 0=0.7,8=0.3,y=0.6,6=3.5 /
0=0.45,8=0.3,y=0.6,6=3.5
0=0.2,8=0.3,y=0.6,6=3.5

Figure 2. hrf plots of the GKRD for various parameter choices.

2.2. Special cases

The proposed GKRD has several specialized sub-models, which confirm its importance in modeling
various types of data sets. The specialized sub-models are displayed in Table 1.
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Table 1. Several sub-models of the GKRD.

Parameter Model
a B 0% 0
1 KRD
1 1 GRD
1 1 1 RD

3. Theoretical characteristics of the GKRD
In this section, some key mathematical characteristics of the GKRD are investigated.

3.1. Quantile function

The quantile function Q, of the proposed GKRD is given by

1

1\ 2
1
QP:{_élog[l—|:1_{1_p[1_(1_a')y]};:|ﬁ]} > O<P< 1’ (31)

1
where p € (0, 1) represents the probability level. Further, with p = o the value of the median is
obtained, and it is

1
2

115
1 1 Y
Q) ={—=log|1 - ll — {l - E[l -(1- a)y]} ] ) 3.2)

3 9

The skewness (S) and kurtosis () coefficients can be obtained using the formula:

Qoos + Qurs —2Qu;s

S = Qors — Qoas G-

and
K(T) = Qo375 — Qo625 + Qo375 — QO.IZS‘
Q75 — Qo2s
3.2. Useful expansion
Let us define the following series as:
J = . W
(1-2) = ;(—1)(l)z. (3.4)
Thus, by applying Eq (3.4) in (2.2), the pdf of the GKRD becomes
R R O
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2Byt o —0(+ 1) —or2\P!
s Mo 1 - ) 3.5
_W;m(aﬁwe (1-¢") (3.5)

1-Q

where 7(@.8,7) = (—1)2Z(ﬁ ; 1)(7; 1) o,

3.3. Moments and associated measures

The k™ ordinary moment of T that follows the GKRD is defined as follows:

280 <
Hy = % ; ni(a, B,7y) wi(t, B, 6), (3.6)

with a)k’,(t,ﬁ, 0) = f tk+le—9(l+1)lz (1 —Ht ) dt.
0

Taking k = 1 and 2 in Eq (3.6), the first and second moments of origin of the GKRD can be obtained
as

/ 28y~
e p—— ; (e, B,y) w(t,B,0), (3.7)
and
2By0 =
lJ; = % Z nl(a’ﬁa 7) wZ,l(t’ﬁ, 0) (38)
=0

Next, the variance and coeflicient of variance (CV) for the GKRD can be found as follows:

Var = 1) — (i),
and
cv = ar
M

3.4. Moment-generating function

The moment-generating function (MGF) of the GKRD can be derived as

2By6
MO) = =i W) Y (@ B,) wra(,5,6). (3.9)
k=0

We have numerically assessed several statistical summary measures such as Mean, Variance, CV(T),
S(T), and K(T) for different parametric values and posted them in Tables 2 and 3. The same can easily
be observed for these quantities from the plots presented in Figures 3 and 4. Henceforth, the GKRD is
an option to model the positively skewed and leptokurtic data sets.
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Table 2. Descriptive measures of the GKRD for @ = 0.25 and 8 = 0.8.

0 Y 74 Var CV(T) S(T) K(T)
0.4 0.3 0.6879 0.1257 0.5155 0.3580 -0.5424
0.55 0.4798 0.0629 0.5227 0.3875 -0.517
0.8 0.3828 0.0406 0.5263 0.4025 -0.5025
1.2 0.2992 0.0251 0.5294 0.4160 -0.4885
0.8 0.3 0.4864 0.0629 0.5155 0.3580 -0.5424
0.55 0.3392 0.0314 0.5227 0.3875 -0.517
0.8 0.2707 0.0203 0.5263 0.4025 -0.5025
1.2 0.2116 0.0125 0.5294 0.4160 -0.4885
1.2 0.3 0.3971 0.0419 0.5155 0.3580 -0.5424
0.55 0.2770 0.0210 0.5227 0.3875 -0.517
0.8 0.2210 0.0135 0.5263 0.4025 -0.5025
1.2 0.1728 0.0084 0.5294 0.4160 -0.4885
1.6 0.3 0.3439 0.0314 0.5155 0.3580 -0.5424
0.55 0.2399 0.0157 0.5227 0.3875 -0.517
0.8 0.1914 0.0101 0.5263 0.4025 -0.5025
1.2 0.1496 0.0063 0.5294 0.4160 -0.4885
Table 3. Descriptive measures of the GKRD for @ = 0.75 and 8 = 1.6.
0 Y M Var CV(T) S(T) K(T)
0.4 0.3 1.9210 0.5316 0.3795 0.2499 -0.3336
0.55 1.5114 0.3015 0.3633 0.1814 -0.353
0.8 1.3110 0.2162 0.3546 0.1402 -0.3631
1.2 1.1289 0.1530 0.3465 0.0988 -0.3706
0.8 0.3 1.3583 0.2658 0.3795 0.2499 -0.3336
0.55 1.0687 0.1507 0.3633 0.1814 -0.353
0.8 0.9270 0.1081 0.3546 0.1402 -0.3631
1.2 0.7982 0.0765 0.3465 0.0988 -0.3706
1.2 0.3 1.1091 0.1772 0.3795 0.2499 -0.3336
0.55 0.8726 0.1005 0.3633 0.1814 -0.353
0.8 0.7569 0.0721 0.3546 0.1402 -0.3631
1.2 0.6517 0.0510 0.3465 0.0988 -0.3706
1.6 0.3 0.9605 0.1329 0.3795 0.2499 -0.3336
0.55 0.7557 0.0754 0.3633 0.1814 -0.353
0.8 0.6555 0.0540 0.3546 0.1402 -0.3631
1.2 0.5644 0.0383 0.3465 0.0988 -0.3706
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3.5. Order statistic

Let a random sample #,,1,,...,t, represent a continuous GKRD. Based on Arnold et al. [23] and
David et al. [24], the density function of the k™ order statistic is as follows:

EDIEOI [1 - E@®]™ (3.10)

m!
Pun® = T m =R

Next,

m! 2aBy0 te " g2 1B o g7
Py (1) = k=Dl -l =1 —ap) {1 —e™? } {1 —a(l—e™ )ﬂ}

k—1 m—k
x[1-{t-a-eP| [[1-a-e™¥) -a-oy]"". @11
The ¢(1.m)(t) minimum-order statistics is obtained by substituting m = 1 in equation:

2maByl e
1-0-amr

1

G1:my (1) {1 - e_etz}ﬂ_l {1 —a(l - e‘etz)ﬁ}y_

-1

x[{1 - a1 -y} - —a)y]m . (3.12)

Similarly, we will get the expression of the m™ order-statistic by replacing k = m,

N g ) B
Oimmy () = (zlniaﬁ')’f :)7),” {1 _ e—eﬂ}ﬁ 1 {1 —a(l - o )ﬁ})’ 1
x[1={1-a( -y (3.13)

4. Statistical inference

In this estimation section, we estimate the parameters of the GKRD using two estimation methods.
These methods, which include maximum likelithood (MLE) and Bayesian estimators under SELF, are
crucial in enhancing ecological studies.

4.1. Maximum likelihood method (MLE)

Consider {t,1,,...,t,} a random sample of size m is taken from the GKRD and its associated log
likelihood function LL is

Zml log £(1;) = Zml log {M (1-e)" (1-a(1 - e-Q’?)ﬂ)H}
i=1

LL( p) 2 —(—ay

m(loga +logB +logy +logf) —mlog[l - (1 — )]+ (B - 1)2 10g(1 - e—ﬁtf)

i=1

+(y - I)Zmllog(l —a(l - "Y). 4.1
i=1
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Now differentiate the above equation for p = (@, 3,7y, )

OLL(t; p) _m my(1 — a,)y—l o m (1 - e—Htiz),B
o 1-(-ap VTV LTa oy “2)
OLLtp) _m < _oe " log(l — e %)(1 — e
= o i Y og(1-e ) — ey — 1 , 43
9B B ggog( «")-at )2; 1 —a(l — ey *3)
0LL(tp) _m mlog(l —a)(1 - @) = e
B gy -+2;10g@ a(l - ey, (4.4)
and -
OLL(t,p) m L m Barle " (1 —~ e“”iz)
e =61 ~r-1 . 45
=t )Z;l_fw oy )2; o Sy (4.5)

The parameter estimates of p = (a,f,7, 6) are the solution of the above non-linear equations (4.2)—
(4.5). Because these normal equations lack closed-form solutions, we use numerical methods to
effectively solve them and derive ML estimates such as the Newton-Raphson, fixed point, or secant
methods. To achieve this goal, we used the optim function in R software for the estimation process.

4.2. Bayesian estimation

Compared to the maximum likelihood estimation approach, Bayesian estimation is a more current
and efficient approximation. Considering past data and samples, we can make the Bayesian estimation.
We consider the independent informative type of priors for the parameters p = (@, 8, y, 0) as

ﬂ,(p) o Qal_l ﬂaz—l ,ya3—1 9114—1 e—bltl—bzﬁ—b37—b49.

The posterior density of p has the below form:

Tl = Lp)nplon)
_ za,m+a1—1ﬁm+a2—1,ym+a3—19m+a4—l e—bla—bzﬁ—bgy—ma
(1= -am"
[ e (1-e) {1-aa -ep)" 4.6)

i=1
Hence, the Bayes estimation based on SELF
B=(p-py
is obtained to be:

&wcjéfmmw. @)
o

By obtaining the joint prior, the posterior function can be determined, and it can be applied to the
Metropolis-Hasting method.

AIMS Mathematics Volume 10, Issue 2, 3710-3733.
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5. Simulation experiments

Here, we discuss the performance of the two proposed estimators, MLE and Bayes, considering
a finite number of samples. We do a simulation study with various samples («,f3, ¥, ) (Scenario 1:
o = (0.75,1,2,1.5), Scenario 2: p = (0.8,1.1,2.3,1.8), Scenario 3: p = (0.9,1.2,2.5,2)) from the
GKRD. We calculated the mean estimates (Mean), average bias (Bias), root mean square error (RMSE),
and the efficiency (Eff) to weigh the MLEs and Bayes accuracy. Additionally, we present the mean
of the number of iterations (NIT) required for convergence in each method (the Metropolis-Hasting
technique for Bayes estimator and Newton Raphson for the MLE technique), showing that convergence
occurs within number = 1000 steps.

The computations were obtained employing the R program with the function optim for Newton
Raphson technique and optim for the Metropolis-Hasting procedure by taking the values of p as
Scenario 1, Scenario 2, and Scenario 3 respectively. Recall that, for the Bayesian estimation, we
choose the gamma informative prior to obtaining the final estimate p. The algorithm for computing the
unknown parameters for the GKRD is presented in details in Appendix. The results of the simulation
are presented in Tables 4-6. The following expression is utilized to generate random samples from the
suggested model:

1
1)) 2

1 Llp
t=q-glog|1—|1-{1-¢ll-(1-a ) , 0<g<l

Based on the findings presented in Tables 4-6, we can concluded the following points:

e As m increases the parameter estimates become closer to the true parameter. It appears obvious
that the estimates of p are generally unbiased for the two methods of estimates.

e The RMSEs also show a decreasing pattern with an increase in m for the two methods of estimates.

e The results show that the Bayes estimator under SELF achieves an excellent performance among
ML estimators. This is evident from the consistently low values of RMSE observed across all
cases.

e Based on the NIT for the two proposed estimation procedures, it indicates the excellent
performance of the Bayes estimator under SELF compared to the MLE method.

e The performance Bayes under SELF estimator is better than the MLE technique in all procedure
scenarios because all efficiency values are greater than 1.

AIMS Mathematics Volume 10, Issue 2, 3710-3733.
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Table 4. Simulation results for various parameter settings under Scenario 1.

m  Par MLE Bayes Eff
Mean Bias RMSE NIT Mean Bias RMSE NIT

75 «a 0.8997 0.1497 0.2497 11 0.5874 0.1626 0.0398 5 6.2738
B 1.1629 0.1629 0.2249 1.1549 0.1549 0.0461 4.8785
0% 2.8214 0.8214 1.2828 1.9501 0.0499 0.0236 54.355
0 1.7158 0.2158 0.7419 1.3143 0.8143 0.2897 2.5609

100 « 0.7990 0.0490 0.2491 10 0.7387 0.0113 0.0094 3 26.5
B 1.1617 0.1617 0.2118 1.0496 0.0496 0.0284 7.4577
0% 29147 09147 1.1374 2.0204 0.0204 0.0172 66.127
0 1.5592 0.0592 0.4687 1.2876 0.7876 0.2178 3.4063

200 « 0.7985 0.0485 0.2487 11 0.7459 0.0041 0.0056 6 44.410
B 1.1332 0.1332 0.1607 1.0271 0.0271 0.0034 47.264
y 2.2124 0.2124 0.8976 2.0704 0.0704 0.0088 102
0 1.4794 0.0206 0.3462 1.7081 0.2081 0.1401 2.4710

300 « 0.7698 0.0198 0.2398 10 0.7655 0.0155 0.0027 5 88.814
B 1.1399 0.1399 0.1590 1.0221 0.0221 0.0025 63.6
y 2.0489 0.0489 0.4968 1.9358 0.0642 0.0079 62.886
0 1.4971 0.0029 0.2711 1.7054 0.2054 0.1134 2.3906

Table 5. Simulation results for various parameter settings under Scenario 2.

m  Par MLE Bayes Eff
Mean Bias RMSE NIT Mean Bias RMSE NIT

75 « 09976 0.1976 0.2981 8 0.5797 0.2203 0.0703 3 4.2403
B 1.2336 0.1336 0.2737 1.0340 0.0660 0.0750 3.6493
0% 29946 0.6946 2.1815 2.6245 0.3245 0.1171 18.629
0 2.0733 0.2733 1.3915 2.3758 0.5758 0.6553 2.1234

100 «a 0.8955 0.0955 0.2669 9 0.6414 0.1586 0.0449 5 5.9443
B 1.1852 0.0852 0.1615 0.9583 0.1417 0.0271 5.9594
0% 2.6917 0.3917 1.0912 22717 0.0283 0.0203 53.753
0 1.9411 0.1411 0.7705 2.3332 0.5332 0.5777 1.3337

200 «a 0.8557 0.0557 0.2581 11 0.7418 0.0582 0.0131 4 19.702
B 1.1900 0.0900 0.1305 1.1555 0.0555 0.0121 10.785
0% 2.6241 0.3241 1.0744 24736 0.1736 0.0201 53.452
0 1.9438 0.1438 0.4761 24321 0.6321 0.3764 1.3337

300 « 0.8382 0.0382 0.2485 10 0.7586 0.0414 0.0089 5 27.921
B 1.1816 0.0816 0.1120 1.1336 0.0336 0.0063 17.777
0% 2.4060 0.1060 0.6505 2.3139 0.0161 0.0133 48.909
0 1.9205 0.1205 0.3338 2.1268 0.3268 0.2595 0.1302
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Table 6. Simulation results for various parameter settings under Scenario 3.

m  Par MLE Bayes Eff
Mean Bias RMSE NIT Mean Bias RMSE NIT

75 «a 0.9091 0.0091 0.2196 12 0.7811 0.1189 0.0396 7 5.5454
B 1.2678 0.0678 0.1892 1.1170 0.0830 0.0208 9.0961
0% 3.7911 1.2911 3.3738 2.6981 0.1981 0.0485 69.562
0 22781 0.2781 1.1318 2.5410 0.5410 0.6393 1.7703

100 « 0.9252 0.0252 0.2017 8 0.8040 0.0960 0.0122 3 16.532
B 1.2727 0.0727 0.1859 1.3039 0.1039 0.0138 13.471
0% 3.3419 0.8419 2.4688 2.3542  0.1458 0.0300 82.293
0 2.2186 0.2186 1.0014 2.2183 0.2183 0.3614 2.7708

200 « 0.9825 0.0825 0.1190 9 0.8509 0.0591 0.0108 4 9.2523
B 1.2317 0.0317 0.1059 1.2016 0.0016 0.0121 8.7520
y 29719 04719 1.8267 2.4405 0.0595 0.0200 91.335
0 2.1325 0.1325 0.8462 2.2748 0.2748 0.2861 2.9577

300 « 0.9944 0.0944 0.0990 12 0.9227 0.0273 0.0107 5 9.2523
B 1.2275 0.0275 0.0860 1.2325 0.0325 0.0069 12.463
0% 2.8578 0.3578 1.3202 2.5359 0.0359 0.0120 110.01
0 2.0783 0.0783 0.7752 2.1816 0.1816 0.2164 3.5822

6. Real application data sets

The most important part of statistical inference is the application of actual data and mathematical
modeling. Data is frequently modeled under established probability distributions in the manufacturing
and quality control industries in order to discover faults, guarantee product quality, and keep standards
consistent. So we always need a new distribution.

Here in this study, the proposed GKRD is used to model two industrial data sets taken from
Saudi Arabia (KSA) and one from financial data, and the resulting fits are compared to the
competitive continuous distributions including the Kumaraswamu Gul alpha power transformed
Rayleigh distribution (KGAPRD), Poisson generalized Rayleigh distribution (PGRD), new generalized
Rayleigh distribution (NGRD), generalized Rayleigh distribution (GRD), Rayleigh distribution (RD),
gamma distribution (GD), Weibull distribution (WD), and log-normal distribution (LND). Using the
conventional criteria of the lowest values of the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), the fits given by the GKRD and the other examined models were
compared. Furthermore, the comparison of the fitted distributions was assessed using the Kolmogorov-
Smirnov (KS) test with its associated -values and Anderson-Darling test (AD). For more information
about recently financial applications see Atchadé et al. [25], and Kamal et al. [26].

6.1. First data

The first real life data set used in this study was studied by Yu et al. [27], and it is based on the
efficiency of the construction industry and their pure technical between 2013 and 2022 in the KSA.
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The values of the proposed data set are shown in Table 7.

Table 7. Values of the first data set.

Zone 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Mecca 358 481 595 671 7.81 868 891 997 10.011 9.80
Eastern 255 390 459 637 7.1 7.38 7.55 7.17 17.89 8.54
Al Madinah 326 346 347 499 6.38 642 681 616 6.77 7.21
Asir 341 381 398 465 547 574 592 6.17 6.13 6.53
Jizan 342 339 362 446 537 571 556 549 5.64 5.80
Al-Qassim 343 345 337 411 446 481 510 507 524 5.45
Tabuk 299 278 296 396 448 496 482 475 4.89 5.13
Ha’il 289 259 273 359 419 459 452 450 4.70 4.75
Al Jawf 229 275 248 335 422 442 455 444 463 4.71
Najran 283 292 262 333 4.02 438 447 444 461 4.8
Northern Borders 1.51 1.51 1.6 279 395 404 399 408 44 4.48
Al Bahah 1.96 217 2 297 363 4.07 376 3.68 3.85 4.13

6.2. Second data

Here are the values provided about the construction industry and their scale efficiency in the KSA
from 2013 to 2022. The suggested data set was considered by Yu et al. [27] and is shown in Table 8.

Table 8. Values of the second data set.

Zone 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Mecca 939 971 983 996 997 995 998 997 10.005 9.96
Eastern 892 923 943 956 958 971 9.78 9.72 9.82 9.87
Al-Madinah 7.46 747 7.81 852 862 861 873 843 874 8.77
Asir 749 7777 793 834 829 832 842 836 847 8.51
Jizan 6.66 669 684 764 771 775 775 7.68 7.82 7.82
Al-Qassim 6.6  6.62 6.67 747 751 753 767 7.6 173 7.73
Tabuk 531 546 566 641 654 652 654 643 6.67 6.6

Ha’il 423 427 429 531 547 547 559 514 562 5.72

6.3. Third data

In this subsection, the data set is drawn from group medical insurance. It is defined as the total loss
for all the claim amounts exceeding 25,000 USD during 1991. The values of the data set are given in
euros (EUR), and it is available at http://www.soa.org as well as used by Meraou et al. [10].

Based on the three proposed data sets, various non-parametric plots including the kernel density,
fitted histogram, scaled total time on the test (TTT), probability-probability (PP), QQ normal, and box
plots are plotted in Figures 5-7.
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Figure 6. Describing the second recommended data set.
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Figure 7. Describing the third recommended data set.

Table 9 summarized the obtained results of goodness-of-fit test with the ML estimates of all fitted
model using the industrial and financial data sets. It is well documented that the GKRD is recognized
as the optimal choice for the three data sets, with the following:

(1) Datal: @ =02, f=24, y=10, 6=0.05.
(2) Data2: @ = 0.9, =375, y=20, §=00l.
(3) Data3: @ =0.1, =18, y=30, 6=0.02.
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6.4. Concluding remarks on data analysis

Clearly, from the obtained results in Table 9, for the three data sets, the GKRD is an efficient,
superior model among competing models based on all AIC and BIC measures. This ensures that the
GKRD is the most appropriate model among the choices. Specifically, in terms of P-value and AD, the
GKRD outperforms all other models considered, confirming its status as the most optimal distribution
for the three data sets when compared to alternative models. Additionally, the plots for the estimated
pdf versus fitted histogram and estimated cdf versus empirical cdf are plotted in Figures 8—10. The
various plots presented also confirm a good fit for the GKRD to the considered data sets.
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Figure 8. The estimated pdfs and their corresponding estimated cdfs employing the first data
set.
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Figure 9. The estimated pdfs and their corresponding estimated cdfs employing the second
data set.
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7. Concluding remarks

For modeling industrial and financial data sets that many models lack, to model, we defined
a novel four-parameter probabilistic model. The new model was created using the generalized
Kumaraswamy technique, resulting in the generalized Kumaraswamy Rayleigh model. Several
important distributional and statistical characteristics have been determined and analyzed. By using
a wide range of methods, including the classical MLE and Bayesian techniques, we are able to handle
statistical analysis of the GKRD distribution and its unknown parameters. Therefore, we came to
the conclusion that the Bayes approach is superior to the conventional estimating method since it
consistently produces lower values for the MSE. Additionally, using three real-life data sets taken from
industrial and financial domains, the results indicate that the proposed GKRD distribution effectively
analyzes both data sets compared to competing distributions.

8. Future work

In future work, this study may attract the bivariate case of the GKRD. In addition, this study
may contribute to the estimation of model parameters in censored samples based on several cases.
In addition, the proposed model can attract a wider set of applications, such as in engineering and
environmental fields.

Author contributions

Alanazi Talal Abdulrahman, Tariq S. Alshammari and Ramlah H Albayyat worked on mathematics;
Eslam Hussam, Amirah Saeed Alharthi and Khudhayr A. Rashedi worked on english and
programming. All the authors have read and approved the final version of the manuscript for
publication.

AIMS Mathematics Volume 10, Issue 2, 3710-3733.



3730

Acknowledgments

This research has been funded by the Scientific Research Deanship at the University of Ha’il, Saudi
Arabia, through project number (RG-24 068).

Availability of data and materials
All data exists in the paper with their related references.
Funding

This research has been funded by the Scientific Research Deanship at the University of Ha’il, Saudi
Arabia, through project number RG-24 068.

Use of Generative-Al tools declaration

The authors declare that they have not used Artificial Intelligence (Al) tools in the creation of this
article.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. V. Verevka, E. Epichenko, Developing a model for predicting bankruptcy of
construction industry enterprises, Econom. Anal. Theory Pract., 23 (2024), 878-892.
https://doi.org/10.24891/ea.23.5.878

2. V. V. Barskov, Y. A. Dubolazova, A. A. Maykova, E. A. Konnikov, Modeling the probability
of companies bankruptcy in the construction industry, Soft Meas. Comput., 2 (2023), 5-15.
https://doi.org/10.36871/2618-9976.2024.02.001

3. A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions,
METRON, 71 (2013), 63-79. https://doi.org/10.1007/s40300-013-0007-y

4. T. G. Ieren, S. S. Abdulkadir, A. A. Issa, Odd Lindley- Rayleigh distribution its properties and
applications to simulated and real life datasets, J. Adv. Math. Comput. Sci., 35 (2020), 68—88.
https://doi.org/10.9734/jamcs/2020/v351130240

5. FE H.Riad, B. Alruwaili, E. M. Almetwally, E. Hussam, Fuzzy reliability analysis of the COVID-19
mortality rate using a new modified Kies Kumaraswamy model, J. Math., 2022 (2022), 3427521.
https://doi.org/10.1155/2022/3427521

6. A.EL-Helbawy, M. Hegazy, A. Abd EL-Hady, Statistical properties and applications of the discrete
exponentiated modified Topp-Leone Chen distribution, J. Bus. Environ. Sci., 4 (2025), 106—132.

7. E. Altun, D. Bhati, N. M. Khan, A new approach to model the counts of earthquakes: INARPQX(1)
process, SN Appl. Sci., 3 (2021), 274. https://doi.org/10.1007/s42452-020-04109-8

AIMS Mathematics Volume 10, Issue 2, 3710-3733.


https://dx.doi.org/https://doi.org/10.24891/ea.23.5.878
https://dx.doi.org/https://doi.org/10.36871/2618-9976.2024.02.001
https://dx.doi.org/https://doi.org/10.1007/s40300-013-0007-y
https://dx.doi.org/https://doi.org/10.9734/jamcs/2020/v35i130240
https://dx.doi.org/https://doi.org/10.1155/2022/3427521
https://dx.doi.org/https://doi.org/10.1007/s42452-020-04109-8

3731

8.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. Alotaibi, E. M. Almetwally, H. Rezk, Reliability analysis of Kavya Manoharan
Kumaraswamy distribution under generalized progressive hybrid data, Symmetry, 15 (2023), 1671.
https://doi.org/10.3390/sym15091671

R. Maya, M. R. Irshad, C. Chesneau, S. L. Nitin, D. S. Shibu, On discrete Poisson—-Mirra
distribution:  Regression, INAR (1) process and applications, Axioms, 11 (2022), 193.
https://doi.org/10.3390/axioms 11050193

M. A. Meraou, M. Z. Raqab, F. B. Almathkour, Analyzing insurance data with an alpha power
transformed exponential Poisson model, Ann. Data Sci., 2024. https://doi.org/10.1007/s40745-024-
00554-z

M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, D. Kundu, Analysis of skewed data by using
compound Poisson exponential distribution with applications to insurance claims, J. Stat. Comput.
Simul., 92 (2021), 928-956. https://doi.org/10.1080/00949655.2021.1981324

M. A. Meraou, N. Al-Kandari, M. Z. Ragab, Univariate and bivariate compound models based on
random sum of variates with application to the insurance losses data, J. Stat. Theory Pract., 16
(2022), 56. https://doi.org/10.1007/s42519-022-00282-8

M. A. Meraou, M. Z. Ragab, D. Kundu, F. A. Alqgallaf, Inference for compound truncated Poisson
log-normal model with application to maximum precipitation data, Comm. Statist. Simulation
Comput., 2024. https://doi.org/10.1080/03610918.2024.2328168

H. Alrweili, E. S. Alotaibi, Bayesian and non-bayesian estimation of Marshall-Olkin XLindley
distribution in presence of censoring, cure fraction, and application on medical data, Alexandria
Eng. J., 112 (2025), 633-646. https://doi.org/10.1016/j.aej.2024.10.108

H. Alrweili, Analysis of recent decade rainfall data with new exponential-exponential
distribution: Inference and applications, Alexandria Eng. J., 95 (2024), 306-320.
https://doi.org/10.1016/j.aej.2024.03.075

H. Alrweili, On the analysis of environmental and engineering data using alpha power
transformed cosine moment exponential model, Int. J. Anal. Appl., 22 (2024), 99.
https://doi.org/10.28924/2291-8639-22-2024-99

Z. M. Nofal, E. Altun, A. Z. Afify, M. Ahsanullah, The generalized kumaraswamy-G family of
distributions, J. Stat. Theory Appl., 18 (2019), 329-342. https://doi.org/10.2991/jsta.d.191030.001
C. D. Obi, P. O. Chukwuma, P. Chinyere, C. P. Igbokwe, P. O. Ibeakuzie, I. C. Anabike, A novel
extension of Rayleigh distribution: Characterization, estimation, simulations and applications, J.
Xidian Univ., 18 (2024), 177-188. https://doi.org/10.5281/Zenodo.12664617

M. Jallal, A. Ahmad, R. Tripathi, Weibull-Power Rayleigh distribution with applications related to
distinct fields of science, Realibilty Theory Appl., 2 (2022), 272-290.

A. Aijaz, S. Q. ul-Ain, A. Afaq, T. Rajnee, Inverse Weibull-Rayleigh distribution characterisation
with applications related to cancer data, Reliab. Theory Appl., 16 (2021), 364-382.

H. Abdulsalam, Y. Abubakar, G. DikkoH, On the properties and applications of a new
extension of exponentiated Rayleigh distribution, FUDMA J. Sci., § (2021), 377-398.
https://doi.org/10.33003/fjs-2021-0502-459

M. Javed, S. M. Asim, A. Khalil, S. F. Shah, A. Zahra, New Rayleigh flexible Weibull extension
(RFWE) distribution with applications to real and simulated data, Model. Simul. Eng., 2022 (2022),
7718284. https://doi.org/10.1155/2022/7718284

AIMS Mathematics Volume 10, Issue 2, 3710-3733.


https://dx.doi.org/https://doi.org/10.3390/sym15091671
https://dx.doi.org/https://doi.org/10.3390/axioms11050193
https://dx.doi.org/https://doi.org/10.1007/s40745-024-00554-z
https://dx.doi.org/https://doi.org/10.1007/s40745-024-00554-z
https://dx.doi.org/https://doi.org/10.1080/00949655.2021.1981324
https://dx.doi.org/https://doi.org/10.1007/s42519-022-00282-8
https://dx.doi.org/https://doi.org/10.1080/03610918.2024.2328168
https://dx.doi.org/https://doi.org/10.1016/j.aej.2024.10.108
https://dx.doi.org/https://doi.org/10.1016/j.aej.2024.03.075
https://dx.doi.org/https://doi.org/10.28924/2291-8639-22-2024-99
https://dx.doi.org/https://doi.org/10.2991/jsta.d.191030.001
https://dx.doi.org/https://doi.org/10.5281/Zenodo.12664617
https://dx.doi.org/https://doi.org/10.33003/fjs-2021-0502-459
https://dx.doi.org/https://doi.org/10.1155/2022/7718284

3732

23. B. C. Arnold, N. Balskrishnan, H. N. Nagaraja, A first course in order statistics, In: Classics in
applied mathematics, Society for Industrial and Applied Mathematics, 2008.

24. H. A. David, H. N. Nagaraja, Order statistics, John Wiley & Sons, Inc., 2004.

25. M. N. Atchadé, A. A. Agbahide, T. Otodji, M. J. Bogninou, A. M. Djibril, A new shifted Lomax-X
family of distributions: Properties and applications to actuarial and financial data, Comput. J. Math.
Stat. Sci., 4 (2025), 41-71. http://dx.doi.org/10.21608/cjmss.2024.307114.1066

26. M. Kamal, R. Aldallal, S. G. Nassr, A. Al Mutairi, M. Yusuf, M. S. Mustafa, et al., A new
improved form of the Lomax model: Its bivariate extension and an application in the financial
sector, Alexandria Eng. J., 75 (2023), 127-138. https://doi.org/10.1016/j.aej.2023.05.027

27. H. Yu, Z. Shang, Z. Wang, Analysis of the current situation of the construction industry in
Saudi Arabia and the factors affecting It: An empirical study, Sustainability, 16 (2024), 6756.
https://doi.org/10.3390/sul6166756

Appendix

pdf.GKRD=function(star,x){

alpha=star[1]

beta=star[2]

delta=star[3]

theta=star[4]
2*beta*delta*alpha*theta*x*exp(-theta*x"2)/(1-(1-alpha) "delta)*
(1-exp(-theta*x"2)) " (beta-1)*(1-alpha*(l-exp(-theta*x"2)) "beta) " (delta-1)
3

t=seq(0,2,1en=1000)
plot(t,pdfGKRD(c(0.95,0.45,3,1.2),t),col="red",type="1",1wd=2,1ty=4)

cdf.GKRD=function(star,x){

alpha=star[1]

beta=star[2]

delta=star[3]

theta=star[4]
(1-(1-alpha*(1-exp(-theta*x"2)) "beta) "delta)/(1-(1-alpha) "delta)

3

t=seq(0,2,1len=1000)
plot(t,cdf.GKRD(c(0.2,1.3,1.5,4.5),t),col="red",type="1",1wd=2,1ty=4)

hrf.GKRD <- function(star,x){

alpha=star[1]

beta=star[2]

delta=star[3]

theta=star[4]
2*beta*delta*alpha*theta*x*exp(-theta*x"2)/(1-(1-alpha) "delta)*
(1-exp(-theta*x"2)) " (beta-1)*(l-alpha*(l-exp(-theta*x"2)) "beta) "(delta-1)/
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(1-(1-(1-alpha*(1-exp(-theta*x"2)) "beta) "delta)/(1-(1-alpha) "delta))

}

t=seq(0,2,1en=1000)
plot(t,hrf.GKRD(c(0.95,0.3,0.6,3.5),t),col="red",type="1",1wd=2,1ty=4)

## Estimation

fMLE<-function(star,x){

alpha=star[1]

beta=star[2]

delta=star[3]

theta=star([4]
-sum(log(beta*delta*alpha*theta*exp(-theta*x"2)/(1-(1-alpha) "delta)*
(1-exp(-theta*x"2)) " (beta-1)*(1-alpha*(l-exp(-theta*x"2)) "beta) " (delta-1)
))

3

NB=100; nb=100; res.alpha=numeric(NB) ;res.beta=numeric(NB)
res.delta=numeric(NB) ;res.theta=numeric(NB)

for(i in 1:NB){

alpha=0.75;delta=2; beta=1.0;theta=1.5

u=runif(nb,0,1)
X=sqrt(-1/theta*log(1-(1-(1-u*(1-(l-alpha) "delta)) " (1/delta)) " (1/beta)))
res.alphal[i]=optim(c(alpha,beta,delta,theta), fMLE,method="N",x=X)$par[1]
res.beta[i]=optim(c(alpha,beta,delta,theta), fMLE,method="N",x=X)$par[2]
res.deltal[i]=optim(c(alpha,beta,delta,theta), fMLE,method="N",x=X) $par[3]
res.theta[i]=optim(c(alpha,beta,delta,theta), fMLE,method="N",x=X) $par[4]
}

AEMLE.alpha=mean(res.alpha); AEMLE.beta=mean(res.beta)
AEMLE.delta=mean(res.delta); AEMLE.theta=mean(res.theta)
AB.alpha=abs(mean(res.alpha-alpha)); AB.beta=abs(mean(res.beta-beta))
AB.delta=abs(mean(res.delta-delta)); AB.theta=abs(mean(res.theta-theta))
MSEMLE.alpha=mean((alpha-res.alpha)**2); MSEMLE.beta=mean((beta-res.beta)**2)
MSEMLE.delta=mean((delta-res.delta)**2); MSEMLE.theta=mean((theta-res.theta)**2)

## Application
result=goodness.fit(pdf = pdf.GKRD, cdf =cdf.GKRD, method = "BFGS",
starts = c(alpha,beta,delta,theta), data = data, domain = c(0,Inf),mle = NULL)

] ©2025 the Author(s), licensee AIMS Press. This
A is an open access article distributed under the
@ AIMS Press terms of the Creative Commons Attribution License
/ (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 2, 3710-3733.


https://creativecommons.org/licenses/by/4.0

	Introduction
	Derivation of the generalized Kumaraswamy Rayleigh distribution
	Model and assumption
	Special cases

	Theoretical characteristics of the GKRD
	Quantile function
	Useful expansion
	Moments and associated measures 
	Moment-generating function
	Order statistic

	Statistical inference
	Maximum likelihood method (MLE)
	Bayesian estimation

	Simulation experiments
	Real application data sets
	First data
	Second data
	Third data
	Concluding remarks on data analysis

	Concluding remarks
	Future work

