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1. Introduction

Let U be the unit disk in the complex plane C, U" = {z = (21,22, - ,Z,) : |zl < 1,i = 1,2,--- ,n} the
unit polydisc in the complex vector space C*, and 0U" = {z = (21,22, ,2n) : |lzsl =1, i=1,2,--- ,n}
the distinguished boundary of U”. Let H(U") be the space of all holomorphic functions on U" and
H*(U") the space of all bounded holomorphic functions on U” (see, for example, [12, 14,20]).

Let y € H{U") and ¢ = (¢1,¢2, - ,¢,) be a holomorphic self-mapping of U". The weighted
composition operator Wy, , on some subspaces of H(U") is defined by

Wy o f(2) = ¥(2) f(e(z), z € U".
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If y(z) = 1 on U", the operator W, , is reduced to the composition operator C,, while if ¢(z) = z, it
is reduced to the multiplication operator M. The theory of the (weighted) composition operators on
various spaces has quite a long and rich history (we will give some concrete studies. For example,
see [1-3] or [5] for the studies of composition operators; see [7, 11, 17] from one space to Bloch type
spaces; see [8,9,24] from one space to weighted spaces or Bloch spaces; see [28—30] for one on Hardy
spaces, Zygmund-Orlicz spaces, or logarithmic Bloch-Orlicz spaces).

Recall that for @ > 0, the a-Bloch space on U” denoted by B,(U") consists of all f € H(U") such
that

1l = %32(1 ARy K (z)| < oo,

It is well-known that B,(U") is a Banach space with the norm || f|g,w = |f(0)| + ||fll,. For this and
related spaces and operators on them, see, for example, [4,19,21] and the references therein.

A positive continuous function on U is called weight. Let u be a weight. The u-Bloch space on U”
denoted by 8B,,(U") consists of all f € H(U") such that

1l = su Zi)|=—(2)| < +oo0.
fll ze&;“( Ol5 @

It is a Banach space endowed with the norm ||fllg,w» = |f(0) + [|f]l,. Clearly, the u-Bloch space
is a natural generalization of the a-Bloch space (see [22,23,25,27] for other Bloch type spaces, and
see [10, 13] for a-Bloch space). For some information on this space, also see [18].
As an important closed subspace of 8B,(U"), the little u-Bloch space 8,,(U") consists of all f €
8B,(U") such that
z—dl"

R af
lim » u(z)|z—@)| =

In order to introduce the a-Bloch-Orlicz space on U”, we explain here the Bloch-Orlicz space on U,
which was introduced by Ramos Fernandez in [18]. More precisely, let ¢ be a Young’s function, that
is, ¢ is a strictly increasing convex function on the interval [0, +oc0) such that

#(0)=0 and tligrn o(t) = +o0.

Since ¢(0) = 0, from the convexity of ¢, it clearly follows that ¢(st) < s¢(t) forO < s < 1 and t > 0.
The Bloch-Orlicz space denoted by B,(U) consists of all f € H(U) such that

sup(1 — [z)p(Alf" (@) < +o0

zeU

for some positive A depending on f. The Minkowski’s functional

Iflly = inf {k > 0 : S(f) 1}
defines a semi-norm for B4(U), where

So(f) = Sug(l ~ 1z f @)D
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B4(U) becomes a Banach space with the norm

1fllgyw) = LFON + 1111y

Motivated by the Bloch-Orlicz space, the a-Bloch-Orlicz space on U denoted by B, ,(U) was
introduced by Liang in [15]. Since U” is an important bounded symmetric domain of C”, it is natural
to define a similar space on the domain and study some concrete operators on it.

The abovementioned facts motivate us to define the a-Bloch-Orlicz space on U". The space consists
of all f € H(U") such that

sup (1 ~ Py (1| 2L ) < +o0

€U D

for some A > 0 depending on f, and it is denoted by B, ,(U"). Since ¢ is convex, it is easy to see that
the Minkowski’s functional

Wmﬂ:anwyst)gq

defines a semi-norm on B, ,(U"), which is known as Luxemburg’s semi-norm, where

Smﬁdewwm¢b@ﬂ

zelU”

It can be easily proved that 8, ,(U") is a Banach space with the norm

1 l840c0m = 1FON + [ fllg.a-

Observe that when ¢(f) = ¢ with ¢+ > 0, we get back the a-Bloch space 8B,(U"). Furthermore,
from [18] we can suppose that ¢! is continuously differentiable on [0, +c0).

In this paper, we mainly study the boundedness and compactness of the operator W,, , on B, ,(U").
It can be regarded as a continuation of the investigation of concrete operators on these spaces.

Throughout the paper, we will write Wy, f instead of W, ,(f). The letter C will denote a positive
constant, and the exact value may vary in each case. The notation a < b means that there is a constant
C > 0, suchthata < Cb. Whena < band b < a, we write a < b.

2. Preliminary results

First, we obtain the following result, which is similar to the corresponding result in [18].

Lemma 2.1. For each f € B,,(U") \ {0}, it follows that

.
SQOM)sl. 2.1)

Moreover, for each f € B, ,(U") and z € U", the following holds:

0
|3_£(Z)| < ¢_I(W)H‘f|l¢a (2.2)
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Proof. For f € B, ,(U")\{0}, by the definition of B, ,(U"), there exists a decreasing sequence {4;} C R*
with SM(%_) < 1, such that 4; — ||f|ls as i — oo. Since the function ¢ is increasing, we get

f f
Si =S40 S s =S. (2.3)
“ (a) “ (||f||¢a)
From the monotonicity of ¢ and (2.3), we obtain that {S;} is bounded and increasing. Hence, there is a
real number S such that
SO = llmS, = supSi.
[—00 ieN

By (2.3)and S; < 1 foreach i € N, we have Sy < § and Sy < 1. So, forall z € U" and i € N, we have

|§;;( )

Si = Z(l ~ Py g(—4—) <8 (2.4)

Letting i — oo in (2.4), we obtain

for all z € U". Consequently, we obtain that § = §, and then S < 1. From this, for all f € 8B, ,(U")
and z € U", it follows that

) (2.5)

Ne

|3f< )
(1 = ) (==
Z e, ) <!
Then, foreach k € {1,2,--- ,n} and all z € U", we have
|12 (2)| 1
()< T=ap 26)
s ” — (1= lzal)*
Since ¢ is the strictly increasing convex function, it follows that
of 4 1
@) < (T Ifllpa- (2.7)
|(9Zk | ¢ ((1—|Zk|2)“) g
This completes the proof of the lemma. O
For the convenience, we write
/—1¢,Q(Z) = Z (S U.

_ 1 ’
¢~ ()

Noting that

_('d o (Mof
£ - fO) = fo < fuan = kZ‘ fo s,

from Lemma 2.1 we obtain the following result.
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Corollary 2.1. Let a > 0. If f € B,,(U"), then for all z € U", it follows that

n |zl 1
<1 d - 2.8
ICEIEDY | O 2.8)

We also have the following result, which is similar to that in [18].

Lemma 2.2. Let @ > 0. Then, B,,(U") = B, (U"), where B,, (U") is the special pyo-Bloch space
with the weight .. Moreover, for each f € B4 ,(U"), it follows that

I llg,.com = “f”B,,M(U")-

Proof. By Lemma 2.1, for all f € B,,(U") and z = (21,22, - ,2,) € U", we have

\ of
;u¢,a<zk>| o @| < 2l fllgs

which implies that 8, ,(U") € 8,, (U") and

1lls,,, ory < 7l fls, . 2.9)

Conversely, if f € 8, (U"), then we have

” of
;M¢,G(Zk)|azk(2)| <N Nl

for all z € U”, that is,
g 1
, 1
= 7 (ary)

of
|a—zk@| <l

which implies that

2@
| (’)Zk | S ¢_1( 1 5 )‘
1 1l (1 = |zf>)*
From this, we get
Lol
0zk
(1 —lz)” <L
o)
From this, and since ¢(2) < ﬁqb(s) for s > 0 and n € N, it easily follows that
f
Sl ——) < 1
b (nllfll,w)
This shows that || f1ls. < nllfll,,, and then
I1ll8s00m < 2llflls,,, wn (2.10)
and 8, (U") C B,,(U").

From the above proof, (2.9), and (2.10), we obtain that 8,,(U") = B, (U") and ||f]lg,,w" =
IlLf ||8#M @m. This completes the proof of the lemma. |
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The following result is a version of [6, Lemma 3.1]. For the completeness, we give its proof.

Lemma 2.3. For a fixed a € U, there exists a function f,, € H(U) such that

_laP
! |“') @.11)

11 —az?

3 fua@D = (

Proof. We set
1 - |af
-1

u(z) = —
@ =" (=57
Therefore, u is a real and continuously differentiable function in the sense that its partial derivatives
exist and are continuous on U. Furthermore, for all z € U, the function u satisfies

uz) > ¢—1((%)(’(1 - |a|2)”) > 0.

Now, we let f,,(z) = u(z)e”?, where v is a real function defined on U. In the order that f,, is a
holomorphic function on U, then its real part and its imaginary part must satisfy the Cauchy-Riemann
equations, that is,

)Q), z€U.

{ Uy, coS(V) — usin(v)v, = uy sin(v) + u cos(v)vy, 2.12)

uy cos(v) — usin(v)v, = —u, sin(v) — u cos(v)vy.
It is easy to see that if

uvy = —uy and uvy = uy, (2.13)

then (2.12) holds. To find a function v that satisfies (2.13), we define

_ Y1 du(s,y)
v(x,y) = f(; W5y) By ds + h(y),

where £ is a real function that satisfies

v L du(x,y) 9 Y1 Ou(s,y)
h(y)_u(x,y) Ox +8y{£ u(s,y) 0y

Then, by a computation, we see that v satisfies (2.13). This completes the proof. m|

ds}.

Using the function f,,, we can construct some special functions in the space B, ,(U").

Lemma 2.4. For the fixed a € U, the function

8aa(2) = ﬁ Jao(D)dt (2.14)

belongs to B, ,(U") for L € {1,2,--- ,n}. Moreover, ||gaallpo = 1.
Proof. It is clear that g, is holomorphic on U". The result holds due to the following equality:

1—laf? \a e
S p.a(8ac) = sup(l — [z (——=—=) =sup(l —lou()f) =1, (2.15)
e S (|1—azl|2) ZGUB( ")
where
W) = —— (2.16)
1 —aw
is the automorphism of U. From (2.15), we obtain that ||g, .lls. = 1. This completes the proof. O
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The following result characterizes the compactness of the operator W, ,. The proof is standard, so
it is omitted (see Proposition 3.11 in [5] or Theorem 3.1 in [16]).

Lemma 2.5. Let « > 0. Then, the operator Wy, is compact on B, ,(U") if, and only if, for each
bounded sequence {f;} C B, ,(U") such that {f;} — 0 uniformly on every compact subset of U" as
i — oo, it follows that lim;_ [|Wy . fillp.« = 0.

3. Main results and proofs

In this section, we assume that the function yu, , satisfies the following condition:

1
1
co = dt < +c0, 3.1
0 »f()‘ l‘t¢,(l(t)

In this case, we will give some examples that satisfy the condition (3.1). Moreover, we will
characterize the boundedness and compactness of the operator Wy, , on 8B, ,(U"). As the applications,
the characterizations of the boundedness and compactness of C, and M, on B ,(U") are obtained.

Theorem 3.1. Let « > 0, y € H(U"), and ¢ be a holomorphic self-mapping of U". Then, the operator
Wy, is bounded on B, ,(U") if, and only if,

Mo, a(Zk)
= 00, 3.2
%;MM@W)Q%+ G2
and
oY (2)
- (o4 33
S’:;EZW (Zk)| 2 ‘<+ (3.3)
Proof. For each fixed k € {1,2,--- ,n}, we write
1 0
u_mwwmwwimwwwwiﬂ
d
o <9¢f(z)

M = sup uy, w(Zk)’

zeU"

Suppose that L, M < +oo. Then, we clearly have L, < L and M; < M. For every f € 8,,(U") \ {0},
from the convexity of ¢, Lemmas 2.1 and 2.2, it follows that

Sq&,a( Vanf
(Lt M1+ 3 7 22 oo
")
= sup Z(l — Il )a ne@l g
= 4M+m@+%g A Mg
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|29 f(p(2)) + (2) i U (p(2))2 ()|

= sup > (1 = [5) "¢

0" n(Li + Mi(1 + z B2 )1l
" |22 | fle@)] + |w(2)| z L e@)||52 )
< sup Y (1 = z)g( oo
= n(Li+ Mi(1 + z B ANl
,, Bl(1+ £ (7 1], + v S sl @,
<sup ) (1~ laf)e TP
= (Lt M1+ 3 [ 225 o
e B £ L el el
= sup ) (1 = )9 T
= n(Li+ M1+ ,:21 B ANl
1 -
< sup ;( 2l ¢( M(Zk))
1 — —
< sup kZ‘( 2l ) ¢a(zk))
= 1 - R
sup ;( loe” ) |Z o
_ L (3.4)

Hence, from (3.4), we obtain

lei(2)]

Wy fllga < n[Le+ M(1 + Z f m (t))]nfn,p,a <n[L+M(1 +nco)llfllpa- (3.5

On the other hand, it follows from Corollary 2.1 that
Wy o f (O] = [(O)lf (0] < Cllflp.a- (3.6)
From (3.5) and (3.6), we obtain that

Wy llg, .com < Cllflls, ,wm»

which shows that the operator W, , is bounded on 8 ,(U").
Conversely, assume that the operator W, ,, is bounded on B, ,(U"). By setting f(2) =1 (clearly, 1 €
B4..(U")), we obtain = W, , f € B,,(U"). Then,

Wyof \ oo C 7,2
>Soalgigi,) = Seel ) = 2 ;( ~Prg ) G7
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From (3.7), foreach k € {1,2,--- ,n} and all z € U", it follows that

0 A
o) @) < Clllor

which shows

- supZ o] @] < (3.8)

zelUn

By Lemma 2.4, we see that the following function belongs to 8, ,(U"),

2]
g‘ﬁl(W)ﬂ(Z) = f fcpl(w),a(t)dt~
0

Moreover, [|gy,m).ells. = 1. Then, we have

Wi o8¢m0
C”gapl(w),a”¢,a

. |2(2)gyma(@(2) + ¥(2) z Pt ((2)) 32 2)|

— 1= 2\a
sup ;( o) -
|72 (280 (#(2)) + Y(2) z P (p(2) F2 )|

> (1 - )¢ - ) (3.9)

1284

From (3.9), we obtain

PERjad 5 D8a0a($() + Y@ Z g“”“” Tow,C )) (z)1 <
which leads to
Hoa @) Z g“”“”“( O Jol|sc gl o L@ gamate@)  G10)
By summing in (3.10) from 1 to n, we obtain
;u¢,a<zk>1w<z) ;] @05 @] <nC + ;uw(zk)j 5 Ollgamate@]  G1D)

Then, by Corollary 2.1 and the fact ||g,,u).llge = 1, (3.11) becomes

08 piow).x 0p; n N n @l q
Zﬂqsa(zk)'lﬂ(Z)Z e (z))a—zlj(z)|Snc+;ﬂ¢,(x(zk)'a—zk(z)‘(l+; fo ) 612
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Since

38¢z<w> @ 08 piw).a

—— (@)= fsol(w)a(zl) 8Zj (2) =0, ] # 1,

by Lemma 2.3 we get

- |(>01(W)|2 )0)% Z)‘
11— oi(w)gi2)* 7 92k

n (9',0 n li(2)] 1
<nC + ;u¢,a(zk)‘£(z)‘(1 + ; fo ™ (t)dt). (3.13)

Now, letting z = w in (3.13), by (3.8) and ¢y = [ —Lo=dr < +00, we have

3 nsazolu@o(
=1

O Hoa(We) A ” o ekl g
Zﬂ(p’a(gpl(w))‘lp(w)awk (W)'5”2C+”;ﬂ¢,a(wk)'a—W(W)'(l+;f0 ” a(t)dt)SnC+(1+nc0)M,

k=1

which shows

Hg.a(Zk) Oy
- f!?ﬁklzl oo @935, <+

The proof is finished. O

By directly applying Theorem 3.1, we derive the following two results.

Corollary 3.1. Let « > 0 and y € H(U"). Then, the operator My, is bounded on B ,(U") if, and only
if, y € H*(U") N B, (T").

Corollary 3.2. Let a > 0 and ¢ be a holomorphic self-mapping of U". Then, the operator C, is
bounded on B, ,(U") if, and only if,

O Hoa(z) | O
u ————|— ()| < +0
zeuﬁ; HoaPi(2)) | O |

The compactness of the operator Wy, , has been characterized from p-Bloch space 8,(U") to g-Bloch
space B,(U") in [26], which motivates us to consider the same problem on 8B, ,(U").

Theorem 3.2. Let a > 0, y € H(U"), and ¢ be a holomorphic self-mapping of U". Then, the operator
Wy, is compact on B, ,(U") if, and only if, W, , is bounded on B, ,(U"),

. & :u(/ﬁ,a(zk) (9‘101(2)
1 =0, 3.14
<P(Z)I—I>%U" ]; Moo (@i(2)) 4% 02k ( )
and
: 3w(z)
sa(zl)l—IgUn Z'u"m(zk)' 0. (3.15)
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Proof. Assume that the operator W, , is bounded on 8, ,(U") and (3.14), (3.15) holds, respectively.
To show that the operator W, , is compact on B, ,(U"), using Lemma 2.5, we just need to prove that
for each bounded sequence {f;} in B,4,(U") such that f; — 0 uniformly on any compact subset of
U" as j — oo, we have that lim;_,. [[Wyfills. = 0. Let {f;} be a such sequence in B,,(U"). Set
Co = sup ey I fillg,c- For & > 0, by (3.14) and (3.15), there exists a ¢ € (0, 1) such that

<&

2

1 _Heal@) d¢pi(2)
k;um(wxz» YO b

and

C N (2)
kZ::‘/lqﬁ,a(Zk)‘ azkz <

forall z € E ={z € U" : dist(¢(z),0U") < 6}. From this, for all z € E we have

L W, f;
D Hoal2)| =222 @)
=l Lk

= > Hoa@) ‘”(Z)fj(so( ) +u2) Z —(s0( ))—(z>\
k=1

- ()

;u,p,a(zk) ?kz“f,(so(z)ﬂ ;1 um(zk)\ o (<p(z))||w<z) @)

d W (2) L (@ D Hga(Zr) 0¢p(2)
Zlud)a(Zk) (9Zk (1 ’ ; ~fO‘ :u¢,a(t)dt)||fj||¢’a * Z /l¢,<1(901(Z))‘l//(Z) 0Zk |||f]||¢’a

k=1

<(1 + ncy)Coe + Coe
=(2 + ncy)Coe,

which shows

sup Z#q& a(Zk)‘ j(Z)' < (2 + ney)Coe.

€k 40
On the other hand, U"\ E = {z € U" : dist(¢(z),0U") > ¢} is a compact subset of U". Hence, f; — 0
uniformly on U" \ E as j — oco. From Cauchy’s estimate, it follows that g—g — O uniformly on U" \ E
as j — oo foreach [ € {1,2,---,n}. Since W, , is bounded on B, ,(U"), from Theorem 3.1 we have
that M < +oo0.
Set fi(z) = 7, z € U". Then, f; € B4,(U"). Since W, is bounded on B, ,(U"), W, fi = Yy, €
B4.(U"). From the definition of B, ,(U"), we have

n W(z) o
U, v 520) + YD)
> Spa 1-
sel i) = S 20 ~ P9 g )
2O 0i(2) + YRR

> (1= Ja) ¢ ) (3.16)

Cllfllg.a
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Since wyo(zi) = W, from (3.16) we obtain

(-lgg 2y

0
12| < ot 22 “00)+ w<z)—<z>\ < Cllfillg

4 P

02k
Therefore,

W (z)

Hoa(@@5 @) < Cllill + oaa] 75 2)],

Since |p(2)| < 1, 1€ {1,2,--- ,n}, we get

sup Z#q&a(Zk)‘lﬁ(Z)—(Z)l < Cllfillya + sup Zuqsa(zk)i ats )sol( )

zeU" \E zelOn \E

6tﬁ(z)

< Cllfillg + sup Zumzk){

zeU? \E

< Clifillg.a + Wl < +o0.

For the convenience, we write

Cr= sup Z#qﬁa(Zk)‘lﬂ(Z)—(Z)'

zeUM\E =1
Then, C; < +oo foreach [ € {1,2,--- ,n}. Hence, foreach [ € {1,2,--- ,n}, we have

|Wwf||¢wsupzu¢a<zk>\ ‘”’f’ @)

zelU"

< sg;umk)\ i +Z:§§E2u¢a(zk>1 ’(z)\
<2+ anCos + sup. ZuM(zk) ik )f,(so( ) + Uz )Z —(90( >>—( )
EUNE 4
W (2)
< 2+ ce)Cos + sup Zum(zk)i =[5

zen \E

+ sup Zu(m(zk)i ((,D(z))Ht//(z) @)

zeU’\E
< 2+ coe)Cos + M sup [fi(g(2)] + Z C, —(so(z»\
zeU"\E
-0, (3.17)
as j — oo. Moreover, it follows by (3.17) that the operator W, , is compact on 8B, ,(U").
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Now, suppose that the operator W, , is compact on 8, ,(U"). It is clear that W, , is bounded on
B4..(U"). First, we prove that condition (3.14) holds. If the condition (3.14) is not right, then there is a
constant gy > 0 and a sequence {7} in U" with w" = (") — dU" as m — oo, such that

3 peald) o )a‘”(“ > &, (3.18)
24 i)

for all m € N. Since W, , is bounded on 8B, ,(U"), by the condition (3.2) in Theorem 3.1, we see that
forall/ € {1,2,---,n}, the sequence

O HealZ) . 6‘901(z’")
{;u¢,a(¢ (z’"))‘ Ve }

is bounded. Hence, there is a subsequence of {7} (for simplicity, here we assume that it is the sequence
{z"}) such that the following limit exists:

. - Mg, a(Zk a‘Pl(Z )
1 B S
L Nrerrresy oz

for every [ € {1,2,---,n}. Also, we may assume that for every [ € {1,2,--- ,n}, the following limit
exists:
Tim [} = lim |2

From (3.18), there must be an [, € {1,2,--- ,n} (here, we can assume that /, = 1) such that
. - Mg, a(Zk 3901 (Z )
lim — (" =g #0.
5 D e o :

In order to obtain a contradiction, we divide into the following two cases for consideration.
Case 1. Assume that [w}'| — 1 as m — oo. Set

Z1 Wy
hm(z) = f |fw’l",oz(t)|dt - f |fw’l",oz(t)|dt’ Z€ Un
0 0

Then, h,, € B,,(U") and h,, — 0 uniformly on compact subsets of U" as m — co. Moreover, by an
easy computation,

ohy,

—(Z) =0, k+1, (3.19)
3Zk
mw) =0 and P2 2 1p o, (3.20)
<1

Then, from (3.19) and (3.20), we get

6901(z’") " Ho.a(Z)

)
,Ll¢ a(‘Pl(Zm))

Wy clinll, Z#m(z’?)‘w(zm) (") W &1 #0,
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as m — oo, which is a contradiction, since ||Wy yh|l,,, — 0 as m — co.
Case 2. Assume that [w]'| - p < 1 as m — oo. Since w" — 9dU", there is an [ € {2,--- , n} such that
W'l = 1 as m — oo. If there is a &, > 0 such that

. _fﬁféfﬁ__ m 6¢KZ )
; Moo (@i(2™)) 'l//( ) 2 &,

we can also assume that

limz /~1¢C¥(ka))‘l//( )5901(z’")

m—eo £ 14 o ()(2

= &3 # 0.

Similar to Case 1, we obtain a contradiction by using the functions

m

i@ = [ Upaldi= [ a0l men

Now, for the [ chosen above, assume that
n o Zm
lim ) 2% @)
m—eo e 114 o (pi(2"))

Set Zm = h,, +’I;m. Then, {h,,} C B,,(U") and 7{,,1 — 0 uniformly on compact subsets of U" as m — oo.
We have

_ g 8901(z )| O Hoa(3)
Wy ohim > S —
Wy olimlle,, 2 ; Hp.o(@1(2™)) v ,Z‘ Moo (@i(2™))

a m
W) 901(Z ) o

w(" )(9901(zm) e 20, (321)

as m — oo, which also is a contradiction, since IIWWEmIIM so — 0asm — oo

Now, we begin to prove that condition (3.15) holds. Assume that condition (3.15) is not right. Then,
there exist a positive constant g4 and a sequence {z”} in U" with w” = ¢(7") — dU" as m — oo, such
that

Zn: M(zk)‘&p(zm) > &4,

k=1

for all m € N. Since W, is bounded on B, (U"), from (3.3) in Theorem 3.1, we know that the

sequence
(3 ot ﬂaw@m>
k=1

is bounded. Hence, there is a subsequence of {7} such that

aw(z

0#ap = lim Zﬂw( )
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Also, we may assume that for every / € {1,2,--- , n}, there is a finite limit
lim [wy'| = Lim |@y(z").
m—0o m—0oo

Case 3. Assume that [w]'| — 1 as m — oo. Set

1 ((1n(1 —wi'z)))?
In(1 = W)\ 21n(1 = [w?P)

Sm(2) = —In(1 - wz)), meN.

Then, {S,,} € B4,(0") and S,, — 0 uniformly on compact subsets of U" as m — oco. Moreover, we
also have

m

0Sud _ 1 MRS )
0z In(1 —|le2) In(1 - [w}'?) 1-wiz ’

— 0, k#1,

azk (Z)
1 oS ,,(w™)
S, wW") =—-= and ————= =0.
w™ > an P
So, we get

Wy oSl = supZum(zk){

€U azy!

>Zu¢q< D] St ))+w<zm>2—<< )

- L S 2 20

ow,, ¢,S '

5901(Z )

as m — oo, which is a contradiction.
Case 4. Assume that [w]'| - p < 1 as m — oo. Since w" — 9JU", there is an [ € {2,--- , n} such that
W'l = 1 as m — oo.
Set L
1 (In(1 — wrz))?
In(1 — [w}" |2)( 2In(1 = [w)']?)

Sulz) = —1In(1 - w_;”zz)), m € N.

Similar to Case 3, we obtain
0 (Zm)
lim § poa @] 2] = a0 # 0,

which also is a contradiction. Now, for the / chosen above, assume that

lim Z Hg.o 2y )'aw(zm)
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Let
S (@) = S @) + Su(2).

Then, {§m} C 8B4,(U") and S » — 0 uniformly on compact subsets of U" as m — oo. For such
sequence, we have

WSl > Zum ) ‘g(i,) @] = D ) ‘”(fn) S e -
k=1

as m — oo, from which we obtain a contradiction. Hence, the proof is finished. O

According to Theorem 3.2, we get the following two results.

Corollary 3.3. Let « > 0 and y € H(U"). Then, the operator M,, is compact on B ,(U") if, and only
if, y € H7(U") N B, o(U").

Corollary 3.4. Let a > 0 and ¢ be a holomorphic self-mapping of U". Then, the operator C, is
compact on B, ,(U") if, and only if, C, is bounded on 8B ,(U") and

. N tge(z) [0
1 P
B Z ! g Pi @) 02 2] =0

In the final of the paper, we give the following example in order to show that there exists ¢ such that
My o(1) satisfies the condition (3.1).

Example 3.1. Let ¢(¢) = ¥ and p > max{1, a}. Then, p,,(?) satisfies the condition (3.1).

Proof. From the condition p > 1, it follows that ¢ is a strictly increasing convex function in [0, +00).
Now, we prove that

L
f dt < 400,
0 /’lqﬁ,a(t)

It is not hard to see that ¢~ () = £ , and then p4, (1) = (1 - tz)%. Since the function p (1) is unbounded
in the point = 1, we just need to show that the following integral is convergent,

1 1 1 1
f di = f 1 (3.22)
0 Hpall) o (1-r2)r
In fact, we have
1 . 1 1 1\5
lim(1l - % —— = lim(1 - ) — = lim =(3)"-
—1- (1-pR)r A=-0r(l+0nr =1 (1+0)r 2

Since 0 < a/p < 1and 0 < (%)% < +o00, by the comparison rule, the integral (3.22) is convergent. O
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4. Conclusions

In this paper, we define the @-Bloch-Orlicz space on U” by using Young’s function and show that
its norm is equivalent with a special u-Bloch space. We completely characterize the boundedness and
compactness of the weighted composition operator W , on the a-Bloch-Orlicz space in terms of the
behaviors of the symbols ¢ and ¢. In addition, we give an example that satisfies the condition (3.1),
which shows the rationality of this condition. As some applications, the corresponding results of the
operators M, and C, are obtained. This paper can be viewed as a continuation and extension of our
previous studies.
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