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Abstract: The original leader–follower model categorizes agents with opinions in [−1, 1] into a
follower group, a leader group with a positive target opinion in [0, 1], and a leader group with a
negative target opinion in [−1, 0]. Leaders maintain a constant attraction to their target, blending it
with the average opinion of their group neighbors at each update. Followers, on the other hand, have a
constant attraction to the average opinion of their leader group’s opinion neighbors, also integrating it
with their group neighbors’ average opinion. This model was numerically studied.

This paper extends the leader–follower model to include a social relationship, variable degrees over
time, high-dimensional opinions, and a flexible number of leader groups. We theoretically investigate
conditions for asymptotic stability or consensus, particularly in scenarios where a few leaders can
dominate the entire population.

Keywords: social network; leader–follower dynamics; consensus; Hegselmann–Krause dynamics;
averaging dynamics
Mathematics Subject Classification: 91C20, 91D25, 91D30, 93D50, 94C15

1. Introduction

The leader–follower model contains the Hegselmann–Krause model and involves two types of
individuals: leaders and followers. The Hegselmann–Krause (HK) model is widely studied in
averaging opinion dynamics. Early work in this area, such as Hegselmann and Krause (2002),
introduced the bounded-confidence model, where agents update their opinions by averaging those of
their neighbors within a given confidence threshold [1]. This model was later extended in various
directions. In 2005, Lorenz provided a stabilization theorem that characterized the conditions under
which opinion dynamics under bounded confidence would converge [2]. Two years later, Lorenz
(2007) offered a survey on continuous opinion dynamics under bounded confidence, discussing the
theoretical underpinnings and extensions of the HK model [3]. Both works laid the foundation for
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understanding the mathematical stability of opinion dynamics models. In 2009, Castellano et al.
provided a comprehensive review on the statistical physics of social dynamics, comparing different
models of opinion dynamics, including the Hegselmann–Krause model [4]. This paper highlighted
the universality of the HK model in describing consensus and fragmentation processes in social
systems. The next decade saw significant advancements in understanding the behavior of opinion
dynamics under heterogeneous conditions. In 2013, Bhattacharyya et al. analyzed the convergence
properties of the HK model and proved mathematical results related to the stability of the model [5].
Their work showed that under certain conditions, the model would reach consensus, while under
others, fragmentation would occur. In 2015, Fu et al. extended the HK model to study the effects
of group-based populations with heterogeneous confidence thresholds, further emphasizing the role
of heterogeneity in opinion dynamics [6]. This work demonstrated that the structure of social
groups significantly influences the dynamics of opinion formation. A year later, Proskurnikov and
Tempo (2017) presented a tutorial on the modeling and analysis of dynamic social networks from a
control theory perspective, which opened up new avenues for studying opinion dynamics on complex
networks [7]. Their approach enabled the use of control-theoretic tools to study stability and consensus
in networked systems. In 2021, Bernardo et al. introduced heterogeneous opinion dynamics with
adaptive confidence thresholds that evolve over time based on agents’ interactions. This work added
a layer of realism to the original HK model by acknowledging that agents’ openness to influence may
change dynamically [8]. Similarly, Vasca et al. (2021) focused on the practical consensus in bounded-
confidence models, emphasizing the idea that perfect consensus is not always necessary, but rather,
achieving agreement within acceptable bounds is sufficient for system stability [9]. The research by
Fortunato (2005) explored the consensus threshold in the HK model, analyzing how network structure
and the initial distribution of opinions impact the likelihood of achieving consensus in the system [10].
Finally, recent work by Lanchier and Li (2022) analyzed the consensus behavior of the HK model under
various conditions, providing a rigorous mathematical analysis of when consensus is achieved and how
it depends on the initial conditions and network topology [11]. The exploration of limited connectivity
in opinion dynamics was addressed by Parasnis et al. (2018), who studied the Hegselmann–Krause
dynamics under sparsely connected networks, showing how local interactions in such networks affect
the formation of consensus [12]. Li (2022) introduced the mixed Hegselmann–Krause model [13],
which generalizes the Hegselmann–Krause model, argued in [14] that it also encompasses the Deffuant
model [15–18], and further investigated it on infinite graphs in [19].

The authors in [20] proposed a leader–follower model that partitions agents whose opinion is in
[−1, 1] to a follower group, a leader group with a positive target opinion in [0, 1], and a leader group
with a negative target opinion in [−1, 0]. Individual j is an opinion neighbor of individual i if their
opinion distance does not exceed the confidence threshold of individual i. If all individuals share the
same confidence threshold, two are opinion neighbors if their distance does not exceed that threshold.
A leader’s opinion depends on the opinion neighbors in its group and its group target, while a follower’s
opinion depends on all opinion neighbors. Define [n] = {1, 2, . . . , n}. Say N agents, including N1

followers, N2 positive target agents, and N3 negative target agents, set as [N1], [N1 + N2] − [N1], and
[N] − [N1 + N2]. The mechanism is as follows:
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xi(t + 1) =
1 − αi − βi

|NF
i (t)|

∑
j∈NF

i (t)

x j(t) +
αi

|NP
i (t)|

∑
j∈NP

i (t)

x j(t)

+
βi

|NN
i (t)|

∑
j∈NN

i (t)

x j(t), i = 1, . . . ,N1,

xi(t + 1) =
(1 − wi)
|NP

i (t)|

∑
j∈NP

i (t)

x j(t) + wid, i = N1 + 1, . . . ,N1 + N2,

xi(t + 1) =
1 − zi

|NN
i (t)|

∑
j∈NN

i (t)

x j(t) + zig, i = N1 + N2 + 1, . . . ,N,

(1.1)

where
xi(t) = opinion of agent i at time t,

d ∈ [0, 1] is the positive target opinion,
g ∈ [−1, 0] is the negative target opinion,
ϵi = confidence threshold of agent i,

NF
i (t) = { j ∈ [N1] : ∥xi(t) − x j(t)∥ ≤ ϵi},

NP
i (t) = { j ∈ [N1 + N2] − [N1] : ∥xi(t) − x j(t)∥ ≤ ϵi},

NN
i (t) = { j ∈ [N] − [N1 + N2] : ∥xi(t) − x j(t)∥ ≤ ϵi},
αi = degree to the average opinion of agent i’s

positive target neighbors,
βi = degree to the average opinion of agent i’s

negative target neighbors,
wi = degree to the positive target of agent i,
zi = degree to the negative target of agent i,
αi, βi, wi, zi ∈ [0, 1].

The authors in [21] pointed out that it can be an application in e-commerce. The Leader–Follower
model we investigate now includes the following:

• There is a social relationship.
• The degree toward the average opinion of a group can vary over time.
• The number of leader groups is decidable.
• Opinions can be high-dimensional.

Let N S
i (t) be the collection of all social and opinion neighbors of individual i in set S at time t and

xi(t) ∈ Rd be the opinion of individual i at time t where xi(0) is a random variable. The leader group L
model with target g ∈ Rd is given by:

xi(t + 1) =
αi(t)
|N L

i (t)|

∑
j∈N L

i (t)

x j(t) + (1 − αi(t))g, i ∈ L, (1.2)

where αi(t) ∈ [0, 1] is a random variable indicating the degree of individual i toward the average
opinion of its group neighbors at time t, and L is the collection of all leader group members. Say the

AIMS Mathematics Volume 10, Issue 2, 3652–3671.



3655

leader groups are L1, . . . , Lm with targets g1, . . . , gm. The follower group F model is given by:

xi(t + 1) =
(
1 −

∑m
k=1 β

k
i (t)

)
|N F

i (t)|

∑
k∈N F

i (t)

xk(t) +
m∑

k=1

βk
i (t)

|N Lk
i (t)|

∑
k∈N

Lk
i (t)

xk(t), i ∈ F, (1.3)

where βk
i (t) ∈ [0, 1] is a random variable indicating the degree toward the average opinion of its social

and opinion neighbors in leader group Lk at time t, and F consists of all followers. βk
i (t) = 0 if N Lk

i (t) =
∅. Observe that (1.2) and (1.3) reduce to (1.1) when there are two leader groups and a follower group.
(1.2) reduces to the synchronous Hegselmann–Krause model when αi(t) = 1 for all i ∈ L at all times.
Similarly, (1.3) reduces to the synchronous Hegselmann–Krause model when βk

i (t) = 0 for all k ∈ [m]
and i ∈ F all the time. In (1.2) and (1.3), a leader’s opinion depends on the social and opinion neighbors
in its group and its group target. In contrast, a follower’s opinion depends on all social and opinion
neighbors. Since finite time convergence holds in the synchronous Hegselmann–Krause model, finite
time convergence also holds in (1.2) when it is reduced to the synchronous Hegselmann–Krause model.
The same applies to (1.3). In particular, finite time convergence holds in (1.2) when all agents agree
on their target at some time.

Interpreting in a graph, a vertex represents an individual, and an edge symbolizes a relationship
between two individuals. Saying

• G(t) = (V, E(t)) is the social graph at time t with vertex set and edge set V and E(t);
• G (t) = (V,E (t)) is the opinion graph at time t with vertex set and edge set V and E (t).

Edge (i, j) ∈ E(t) if individual i is socially connected with individual j, or if individual j is a social
neighbor of individual i. Similarly, edge (i, j) ∈ E (t) if individual i is opinion connected with individual
j, or if individual j is an opinion neighbor of individual i, i.e., ∥xi(t) − x j(t)∥ ≤ ϵi. We can interpret a
social relationship with an undirected social graph if every edge (i, j) ∈ E(t) implies ( j, i) ∈ E(t). For
instance, if individual i is a relative of individual j, then the reverse is also true. However, not all social
relationships are reciprocal. For example, if individual i knows individual j, it does not necessarily
imply that individual j knows individual i. In such cases, we use a directed social graph to represent
the relationship. On the other hand, if all individuals share the same confidence threshold in an opinion
relationship, we can interpret this opinion relationship with an undirected graph. Both G(t) and G (t)
can be directed graphs. The social graph G(t) is considered undirected if every (i, j) ∈ E(t) implies
( j, i) ∈ E(t). Similarly, the opinion graph G (t) is considered undirected if every (i, j) ∈ E (t) implies
( j, i) ∈ E (t). A graph is δ-trivial if the opinion distance between any two vertices does not exceed δ.
Denote B(a, r) as the open ball centered at a with radius r, i.e., B(a, r) = {x : ∥x − a∥ < r}. A profile
G ∩ G is the intersection of the social and opinion graphs.

2. Main results

Since leader groups are independent, and similarly for the follower groups, we respectively
investigate sufficient conditions for asymptotic stability or a consensus in the leader group L and the
follower group F with m leader groups. The sufficient condition in Theorem 2.1 is independent of
social and opinion relationships. maxi∈L αi(t) represents the degree of the leader in L with the largest
degree toward the average opinion of its group neighbors at time t. If there are infinitely many times
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at which maxi∈L αi(t) is less than some random variable smaller than 1, a consensus equal to the target
is achieved within L. In fact, even a slight tendency toward the target by all leaders in L guarantees a
consensus equal to the target.

Theorem 2.1. There is a consensus equal to the target in (1.2) when

lim inf
t→∞

max
i∈L
αi(t) < 1.

The sufficient condition in Theorem 2.2 assumes an undirected social graph and an undirected
opinion graph on L. Specifically, the synchronous Hegselmann–Krause model meets this condition,
thus ensuring asymptotic stability. Asymptotic stability of the synchronous Hegselmann–Krause model
illustrates finite time convergence. mini∈L αi(t) represents the degree of the leader in L with the smallest
degree toward the average opinion of its group neighbors at time t.

∑
t≥0(1/mini∈L αi(t)−1) < ∞ implies

that mini∈L αi(t) approaches 1 as t → ∞.

Theorem 2.2. Assume that the social graph and opinion graph are undirected on L; the social graph
becomes constant after some time, and∑

t≥0

(1/min
i∈L
αi(t) − 1) < ∞. Then, asymptotic stability holds in (1.2).

The sufficient condition in Theorem 2.3 specifies that the social graph and opinion graph can be
directed, provided that all followers are socially connected with a leader in each leader group. This
condition also identifies circumstances under which a few leaders can dominate the entire population.
βk

i (t) = β
k
i for all k ∈ [m] and i ∈ F at all times indicates that the degree of a follower toward the average

opinion of its neighbors in a leader group remains constant over time. maxi∈F

(
1 −

∑m
k=1 β

k
i

)
represents

the degree of the follower in F with the maximum degree toward the average opinion of its group
neighbors. Similarly, maxi∈Lk;k∈[m] α

k
i (s) represents the degree of the leader with the maximum degree

toward the average opinion of its group neighbors at time s. Following the assumptions in Theorem 2.3,
all leaders in a leader group approach their target, and all followers approach their weighted average of
the targets of the leader groups.

Theorem 2.3. Assume that all followers have one social neighbor in each leader group, that{
xi(t), gk

}
i∈(

⋃m
k=1 Lk)∪F, k∈[m] ⊂ B

(
g j,min

i∈F
ϵi/(1 + 1{m ≥ 2})

)
for some j ∈ [m] and t ≥ 0, that βk

i (t) = β
k
i for all k ∈ [m] and i ∈ F all the time, and that

max
i∈F

(1 −
m∑

k=1

βk
i ) < 1 and sup

s≥t

{
max

i∈Lk;k∈[m]
αk

i (s)
}
< 1.

Then,

lim
t→∞

max
i∈Lk;k∈[m]

∥xi(t) − gk∥ = 0 and lim
t→∞

max
i∈F
∥xi(t) −

∑m
k=1 β

k
i gk∑m

j=1 β
j
i

∥ = 0.

The sufficient condition in Theorem 2.4 assumes an undirected social graph and an undirected
opinion graph on F, allowing the social graph and opinion graph on leader groups to be directed.
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Specifically, the synchronous Hegselmann–Krause model satisfies this condition. maxi∈F;k∈[m] β
k
i (t)

represents the degree of the individual in F with the maximum degree toward the average opinion
of its social and opinion neighbors in a leader group at time t.

∑
t≥0 maxi∈F;k∈[m] β

k
i (t) < ∞ implies that

maxi∈F;k∈[m] β
k
i (t) approaches 0 as t → ∞.

Theorem 2.4. Assume that the social graph and opinion graph are undirected on F, the social graph
on F becomes constant after some time, and∑

t≥0

max
i∈F;k∈[m]

βk
i (t) < ∞.

Then, asymptotic stability holds in (1.3).

Theorems 2.1 and 2.3 impose no restrictions on the social graph and opinion graph being undirected.
In other words, the social graph and opinion graph in Theorems 2.1 and 2.3 can be directed. However,
Theorem 2.2 assumes that the social graph and opinion graph on L are undirected, while Theorem 2.4
assumes that the social graph and opinion graph on F are undirected. The critical steps in deriving the
results of Theorems 2.2 and 2.4 involve constructing a function to establish an inequality and applying
Cheeger’s inequality. These derived inequalities, along with Cheeger’s inequality, are valid under the
assumption of undirected graphs. When the graphs are directed, the challenge arises because these
techniques are no longer applicable.

3. The leader group model

All leader groups are independent. Therefore, we investigate the behavior of a leader group. Let
yi(t) = xi(t) − g, (1.2) becomes

yi(t + 1) =
αi(t)
|N L

i (t)|

∑
j∈N L

i (t)

y j(t). (3.1)

It is clear that (3.1) is the synchronous Hegselmann–Krause model when αi(t) = 1 for all i ∈ L all the
time. Asymptotic stability holding in (1.2) is equivalent to holding in (3.1).

Lemma 3.5. We derive xi(t)→ g if lim supt→∞ αi(t) = 0 for all i ∈ L.

Proof. It follows from the triangle inequality that

∥yi(t + 1)∥ ≤ αi(t) max
j∈N L

i (t)
∥y j(t)∥.

Taking lim sup on both sides, we obtain

lim sup
t→∞

∥yi(t + 1)∥ ≤ max
i∈L
∥yi(0)∥ lim sup

t→∞
αi(t) = 0.

This indicates that yi(t)→ 0 as t → ∞. Hence, xi(t)→ g as t → ∞. □

Lemma 3.6. Let Zt = maxi∈L ∥xi(t) − g∥. Then, (Zt)t≥0 is nonincreasing and

Zt − Zt+1 ≥
(
1 −max

i∈L
αi(t)

)
Zt. (3.2)
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Proof. By the triangle inequality, we obtain

Zt+1 = max
i∈L
∥yi(t + 1)∥ ≤ max

i∈L
αi(t) max

i∈L
∥yi(t)∥ = max

i∈L
αi(t)Zt.

It turns out that (Zt)t≥0 is nonincreasing and

Zt − Zt+1 ≥
(
1 −max

i∈L
αi(t)

)
Zt.

□

Next, we show circumstances in which social relationships and opinion relationships do not
influence the achievement of consensus.

Proof of Theorem 2.1. It follows from Lemma 3.6 that (Zt)t≥0 is a nonnegative supermartingale. Via
the martingale convergence theorem, Zt converges to some random variable Z∞ with finite expectation
as t → ∞. Letting αt = maxi∈L αi(t) and taking lim sup on (3.2), we derive

0 = lim sup
t→∞

(Zt − Zt+1) ≥ Z∞ lim sup
t→∞

(1 − αt) = (1 − lim inf
t→∞

αt)Z∞.

This implies Z∞ = 0. □

Lemma 3.7. Assume that the social graph is undirected on L, the opinion graph is undirected on L with
a confidence threshold of ϵ, and E(t) ⊂ E(t+1). Let Wt =

∑
i, j∈L(∥xi(t)− x j(t)∥2∧ϵ2)∨ϵ21{(i, j) < E(t)}.

Then, we derive

Wt −Wt+1 ≥ 4
∑
i∈L

∥xi(t) − xi(t + 1)∥2 − 4|L|2(1/min
i∈L
αi(t) − 1)

×max
i∈L
∥xi(0) − g∥

(
max

i∈L
∥xi(0) − g∥ ∨max

i, j∈L
∥xi(0) − x j(0)∥

)
.

(3.3)

Proof. Let N L
i = N L

i (t), αi = αi(t), xi = xi(t), x⋆i = xi(t + 1), yi = yi(t), y⋆i = yi(t + 1), E = E(t),
and E⋆ = E(t + 1). It turns out that

Wt −Wt+1 =
∑
i∈L

{ ∑
j∈N L

i

(∥xi − x j∥
2 − ∥x⋆i − x⋆j ∥

2 ∧ ϵ2)

+
∑

j∈(N L
i )c

[
ϵ2 − (∥x⋆i − x⋆j ∥

2 ∧ ϵ2) ∨ ϵ21{(i, j) < E⋆}
]}

≥
∑
i∈L

∑
j∈N L

i

(∥xi − x j∥
2 − ∥x⋆i − x⋆j ∥

2) =
∑
i∈L

∑
j∈N L

i

(∥yi − y j∥
2 − ∥y⋆i − y⋆j ∥

2)

=
∑
i∈L

∑
j∈N L

i

(
2 < yi − y⋆i , y

⋆
i − y j > −2 < y⋆i − y j, y j − y⋆j >

)
= 2

∑
i∈L

|N L
i | < yi − y⋆i , y

⋆
i > (1 − 1/αi) − 2

∑
i∈L

∑
j∈N L

i

< y⋆i − yi, y j − y⋆j >

− 2
∑
j∈L

∑
i∈N L

j

< yi − y j, y j − y⋆j >
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= 2
∑
i∈L

|N L
i | < yi − y⋆i , y

⋆
i > (1 − 1/αi) + 2

∑
i∈L

∥yi − y⋆i ∥
2

− 2
∑
i∈L

∑
j∈N L

i −{i}

< y⋆i − yi, y j − y⋆j > −2
∑
j∈L

|N L
j | < y⋆j /α j − y j, y j − y⋆j >

≥ 2
∑
i∈L

|N L
i | < yi − y⋆i , y

⋆
i > (1 − 1/αi) + 2

∑
i∈L

∥yi − y⋆i ∥
2

− 2
∑
i∈L

∑
j∈N L

i −{i}

∥y⋆i − yi∥∥y⋆j − y j∥

− 2
∑
j∈L

|N L
j |(1/α j − 1) < y⋆j , y j − y⋆j > +2

∑
j∈L

|N L
j |∥y j − y⋆j ∥

2

= −4
∑
i∈L

|N L
i |(1/αi − 1) < y⋆i , yi − y⋆i > +2

∑
i∈L

∥yi − y⋆i ∥
2

+
∑
i∈L

∑
j∈N L

i −{i}

[
(∥y⋆i − yi∥ − ∥y⋆j − y j∥)2 − ∥y⋆i − yi∥

2 − ∥y⋆j − y j∥
2]

+ 2
∑
j∈L

|N L
j |∥y j − y⋆j ∥

2

≥ −2
∑
i∈L

(|N L
i | − 1)∥y⋆i − yi∥

2 − 4
∑
i∈L

|N L
i |(1/αi − 1) < y⋆i , yi − y⋆i >

+ 2
∑
j∈L

|N L
j |∥y j − y⋆j ∥

2 + 2
∑
i∈L

∥yi − y⋆i ∥
2

= 4
∑
i∈L

∥yi − y⋆i ∥
2 − 4

∑
i∈L

|N L
i |(1/αi − 1) < y⋆i , yi − y⋆i >

≥ 4
∑
i∈L

∥yi − y⋆i ∥
2 − 4|L|2(1/min

i∈L
αi − 1) max

i∈L
∥xi(0) − g∥

×

(
max

i∈L
∥xi(0) − g∥ ∨max

i, j∈L
∥xi(0) − x j(0)∥

)
.

□

By finiteness of the social graph, the social graph monotone after some time is equivalent to the
social graph constant after some time.

Lemma 3.8. Cheeger’s inequality [22] Assume that G = (V, E) is an undirected graph with the
Laplacian L . Define

i(G) = min
{
|∂S |
|S |

: S ⊂ V, 0 < |S | ≤
|G|
2

}
,

where ∂S = {(u, v) ∈ E : u ∈ S , v ∈ S c}. Then,

2i(G) ≥ λ2(L ) ≥
i2(G)
2∆(G)

where ∆(G) = maximum degree of G.

Lemma 3.9. [13] Assume that Q is a real square matrix and that V is invertible such that the
matrix VQ = L is the Laplacian of some connected graph. Then, 0 is a simple eigenvalue of Q′Q
corresponding to the eigenvector 1 = (1, 1, . . . , 1)′. In particular, we have

λ2(Q′Q) = min{x′Q′Qx : ∥x∥ = 1 and x ⊥ 1}.
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Lemma 3.10. Assume that the social graph and opinion graph are undirected on L. If some component
H of the profile G(t) ∩ G (t) on L is δ-nontrivial, then,√∑

i∈L

∥xi(t) − xi(t + 1)∥2

≥
√

2δmin
i∈L
αi(t)/|L|4 − (1 −min

i∈L
αi(t))

√
|L|max

i∈L
∥xi(0) − g∥.

Proof. Letting V(H), the vertex set of H, be [h] and 1 = (1, . . . , 1)′ ∈ Rh, express Rh = W ⊕ W⊥ for
W = Span({1}). For y(t) = (y1(t), . . . , yh(t))′, write

y(t) = [c11 | c21 | · · · | cd1] +
[
ĉ1u(1) | ĉ2u(2) | · · · | ĉdu(d)

]
,

where ci and ĉi are constants and u(i) ∈ 1⊥ is a unit vector for all i ∈ [d]. Observe that

∥yi(t) − y j(t)∥2 =
∑
k∈[d]

ĉ2
k(u(k)

i − u(k)
j )2 ≤ 2

∑
k∈[d]

ĉ2
k
(
(u(k)

i )2 + (u(k)
j )2) ≤ 2

∑
k∈[d]

ĉ2
k

for all i, j ∈ [h]. Since xi − x j = yi − y j,

component H δ-nontrivial implies
∑
k∈[d]

ĉ2
k > δ

2/2.

Letting α(t) = (α1(t), . . . , αh(t))′ and B(t) = diag(α(t))A(t) for A(t) ∈ Rh×h with Ai, j(t) = 1{ j ∈
N L

i (t)}/|N L
i (t)|, we obtain

y(t) − y(t + 1) = (I − B(t))y(t) = [C(t) + F(t)L (t)] y(t),

where C(t) = I − diag(α(t)), F(t) = diag(α(t))
(
diag((di)h

i=1) + I
)−1

with di the degree of vertex i in
component H, and L (t) is the Laplacian of component H. It follows from Lemmas 3.8 and 3.9 that

λ2(L ) >
(2/h)2

2h
= 2/h3,

∥F(t)L (t)y(t)∥2 =
∑
k∈[d]

ĉ2
k∥F(t)L (t)u(k)∥2 ≥

∑
k∈[d]

ĉ2
kλ2

(
L (t)F2(t)L (t)

)
≥ (δ2/2)(min

i∈[h]
αi(t)/h)2λ2

2(L (t)) ≥ 2δ2 min
i∈[h]
α2

i (t)/h8.

On the other hand, we derive

∥C(t)y(t)∥ ≤ (1 −min
i∈[h]
αi(t))

√
h max

i∈[h]
∥xi(0) − g∥.

It follows from the triangle inequality that√∑
i∈L

∥xi(t) − xi(t + 1)∥2 ≥
√∑

i∈[h]

∥yi(t) − yi(t + 1)∥2 = ∥y(t) − y(t + 1)∥

AIMS Mathematics Volume 10, Issue 2, 3652–3671.



3661

= ∥ [F(t)L (t) +C(t)] y(t)∥ ≥ ∥F(t)L (t)y(t)∥ − ∥C(t)y(t)∥

≥
√

2δmin
i∈[h]
αi(t)/h4 − (1 −min

i∈[h]
αi(t))

√
h max

i∈[h]
∥xi(0) − g∥

≥
√

2δmin
i∈L
αi(t)/|L|4 − (1 −min

i∈L
αi(t))

√
|L|max

i∈L
∥xi(0) − g∥.

□

Proof of Theorem 2.2. We claim the following:

1) All components of profile G ∩ G on L are δ-trivial after some time for all δ > 0.
2) No components of profile G ∩ G on L interact with each other after some time.

Without loss of generality, we assume the social graph on L remains constant over time, saying
G(t)|L = G|L = (L, E) for all t ≥ 0. Observe that∑

t≥0

(1/min
i∈L
αi(t) − 1) < ∞ =⇒ lim

t→∞
min
i∈L
αi(t) = 1 ⇐⇒ lim

t→∞
αi(t) = 1 for all i ∈ L.

Hence, we derive
√

2δmin
i∈L
αi(t)/|L|4 →

√
2δ/|L|4 and (1 −min

i∈L
αi(t))

√
|L|max

i∈L
∥xi(0) − g∥ → 0

as t → ∞. There is t0 ≥ 0 such that
√

2δmin
i∈L
αi(t)/|L|4 − (1 −min

i∈L
αi(t))

√
|L|max

i∈L
∥xi(0) − g∥ ≥ δ/|L|4

for all t ≥ t0. Assume that asymptotic stability does not hold in (1.2). Then, there are δ > 0 and (sk)k≥0

increasing with s0 ≥ t0 and some component in profile G(tk) ∩ G (tk) on L δ-nontrivial for all k ≥ 0.
Letting

M0 = 4|L|2 max
i∈L
∥xi(0) − g∥

(
max

i∈L
∥xi(0) − g∥ ∨max

i, j∈L
∥xi(0) − x j(0)∥

)
,

it turns out from Lemma 3.7 that

W0 + M0

m∑
t=0

(1/min
i∈L
αi(t) − 1) ≥

m∑
t=0

(Wt −Wt+1) + M0

m∑
t=0

(1/min
i∈L
αi(t) − 1)

≥ 4
m∑

t=0

∑
i∈L

∥xi(t) − xi(t + 1)∥2 for all m ≥ 0.

As m→ ∞, we derive

∞ > W0 + M0

∑
t≥0

(1/min
i∈L
αi(t) − 1) ≥ 4

∑
t≥0

∑
i∈L

∥xi(t) − xi(t + 1)∥2

≥ 4
∑
k≥0

∑
i∈L

∥xi(sk) − xi(sk + 1)∥2 ≥ 4
∑
k≥0

δ2/|L|8 = ∞, a contradiction.

Hence, all components of profile G ∩ G on L are δ-trivial after some time for all δ > 0.
Next, we claim that no components of profile G ∩ G on L interact with each other after some time.

It follows from claim 1) that all components of profile G ∩ G on L are ϵ/4-trivial after some time s0.
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Assume that claim 2) is not the case. By finiteness of the social graph, there are edge (i, j) and (tk)k≥0

increasing with t0 ≥ s0 such that vertices i and j belong to distinct components of profile G ∩ G (tk) on
L,

(i, j) ∈ E ∩ E (tk)c and (i, j) ∈ E ∩ E (tk + 1).

Letting yi = yi(tk), y⋆i = yi(tk+1) and αi = αi(tk) for all i ∈ L and k ≥ 0, it turns out from the triangle
inequality that

ϵ < ∥yi − y j∥ ≤ ∥yi − y⋆i /αi∥ + ∥y⋆i /αi − y⋆i ∥ + ∥y
⋆
i − y⋆j ∥ + ∥y

⋆
j − y⋆j /α j∥

+ ∥y⋆j /α j − y j∥ ≤ ϵ/2 + ∥y⋆i /αi − y⋆i ∥ + ∥y
⋆
i − y⋆j ∥ + ∥y

⋆
j − y⋆j /α j∥

for the last inequality following from ∥yi − y⋆i /αi∥ ≤ ϵ/4 and ∥y⋆j /α j − y j∥ ≤ ϵ/4. Since
lim supk→∞ ∥y

⋆
i /αi − y⋆i ∥ = 0 = lim supk→∞ ∥y

⋆
j − y⋆j /α j∥, we derive

ϵ/2 ≤ lim inf
k→∞

∥y⋆i − y⋆j ∥ = lim inf
k→∞

∥x⋆i − x⋆j ∥, a contradiction.

□

Equation (1.2) reduces to the synchronous Hegselmann–Krause model when αi(t) = 1 for all i ∈ L
at all times. Therefore,

∑
t≥0 (1/mini∈L αi(t) − 1) = 0 < ∞. From Theorem 2.2, it follows that all

components of a profile on L become ϵ-trivial, and no components interact with each other after some
time under undirected social and opinion graphs. This indicates that all components achieve their
consensus at the next time step, substantiating the finite time convergence property of the synchronous
Hegselmann–Krause model under undirected social and opinion graphs.

4. The follower group model

Follower groups are independent. We first consider a leader group L and a follower group F. (1.3)
becomes

xi(t + 1) =
(1 − βi(t))
|N F

i (t)|

∑
j∈N F

i (t)

x j(t) +
βi(t)
|N L

i (t)|

∑
j∈N L

i (t)

x j(t), i ∈ F,

which is equivalent to

yi(t + 1) =
(1 − βi(t))
|N F

i (t)|

∑
j∈N F

i (t)

y j(t) +
βi(t)
|N L

i (t)|

∑
j∈N L

i (t)

y j(t), i ∈ F. (4.1)

Lemma 4.11. Assume that all followers have one social neighbor in leader group L with target g, that{
xi(t)

}
i∈L∪F ⊂ B(g,mini∈F ϵi) for some t ≥ 0 and that

sup
s≥t

{
max

i∈F
(1 − βi(s)), max

i∈L
αi(s)

}
< 1.

Then,
lim
t→∞

max
i∈L∪F
∥xi(t) − g∥ = 0.
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Proof.
{
xi(t)

}
i∈L∪F ⊂ B(g,mini∈F ϵi) for some t ≥ 0 implies

{
xi(s)

}
i∈L∪F ⊂ B(g,mini∈F ϵi) for all s ≥ t.

Via Theorem 2.1, limt→∞maxk∈L ∥yk(t)∥ = 0; therefore,

max
k∈L
∥yk(s)∥ < δ for all δ > 0, for some p ≥ t,

and for all s ≥ p. For all s ≥ p, δ > 0, i ∈ F and j ∈ L, we have

∥yi(s) − y j(s)∥ ≤ ∥yi(s)∥ + ∥y j(s)∥ < min
i∈F
ϵi + δ,

therefore, ∥xi(s) − x j(s)∥ = ∥yi(s) − y j(s)∥ ≤ mini∈F ϵi ≤ ϵi and N L
i (s) , ∅. Let αt = maxk∈L αk(t),

β̃t = maxk∈F(1 − βk(t)), γ = sups≥t{β̃s, αs}, At = maxk∈F ∥yk(t)∥ and Zt = maxk∈L ∥yk(t)∥. Applying the
triangle inequality on (4.1), for all i ∈ F and t > p,

At+1 ≤ β̃tAt + Zt

≤ β̃tβ̃t−1 . . . β̃pAp + β̃t . . . β̃p+1Zp + . . . + β̃tZt−1 + Zt

≤ γt−p+1Ap + (t − p + 1)γt−pZp,

therefore,
lim sup

t→∞
At+1 ≤ 0.

This completes the proof. □

We move on to the follower group model with m leader groups.

Proof of Theorem 2.3.
{
xi(t), gk

}
i∈(

⋃m
k=1 Lk)∪F, k∈[m] ⊂ B(g j,mini∈F ϵi) for some t ≥ 0 implies{

xi(s)
}
i∈(

⋃m
k=1 Lk)∪F ⊂ B(g j,min

i∈F
ϵi) for all s ≥ t.

It follows from Theorem 2.1 that limt→∞maxk∈[m] maxi∈Lk ∥xi(t) − gk∥ = 0; therefore,

max
k∈[m]

max
i∈Lk
∥xi(s) − gk∥ < δ for all δ > 0, for some p ≥ t and for all s ≥ p.

For all s ≥ p, δ > 0, i ∈ F and j ∈ Lk, we have

∥xi(s) − x j(s)∥ ≤ ∥xi(s) − gk∥ + ∥gk − x j(s)∥ < min
i∈F
ϵi + δ,

therefore, ∥xi(s) − x j(s)∥ ≤ mini∈F ϵi ≤ ϵi and N Lk
i (s) , ∅. Letting

β̃ = max
i∈F

(1 −
m∑

k=1

βk
i ), γ = sup

s≥t

{
max
k∈[m]

max
i∈Lk
αk

i (s), β̃
}
, g =

m∑
k=1

βk
i gk/

m∑
k=1

βk
i ,

At = max
i∈F
∥xi(t) − g∥/m, Ct =

m∑
k=1

max
i∈Lk
∥xi(t) − gk∥/m.

Letting

x̄F
i (t) =

1
|N F

i (t)|

∑
j∈N F

i (t)

x j(t) and x̄Lk
i (t) =

1

|N Lk
i (t)|

∑
j∈N

Lk
i (t)

x j(t),
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write (1.3) as
xi(t + 1) − g = (1 −

∑
k∈[m]

βk
i )(x̄F

i (t) − g) +
∑
k∈[m]

βk
i (x̄Lk

i (t) − gk),

and apply the triangle inequality, for all i ∈ F and t > p,

At+1 ≤ β̃tAt +Ct

≤ β̃tβ̃t−1 . . . β̃pAp + β̃t . . . β̃p+1Cp + . . . + β̃tCt−1 +Ct

≤ γt−p+1Ap + (t − p + 1)γt−pCp,

therefore,
lim sup

t→∞
At+1 ≤ 0.

This completes the proof. □

Lemma 4.12. Assume that the social graph is undirected on F, and the opinion graph is undirected
on F with a confidence threshold of ϵ. Let Xt =

∑
i, j∈F(∥xi(t) − x j(t)∥2 ∧ ϵ2) ∨ ϵ21{(i, j) < E(t)} and

E(t) ⊂ E(t + 1). Then,

Xt − Xt+1 ≥ 4
∑
i∈F

∥xi(t) − xi(t + 1)∥2 − 4m|F|2 max
i∈F;k∈[m]

βk
i (t)

×

(
max

i, j∈
⋃

k∈[m] Lk∪F
∥xi(0) − x j(0)∥ ∨ max

i∈
⋃

k∈[m] Lk∪F
∥xi(0) − g∥

)2

.

Proof. Let xi = xi(t), x⋆i = xi(t + 1), βk
i = β

k
i (t), N F

i = N F
i (t), N L

i = N L
i (t), x̄F

i =
∑

j∈N F
i

x j/|N F
i |

and x̄L
i =

∑
j∈N L

i
x j/|N L

i |. Observe that

Xt − Xt+1 ≥
∑
i∈F

∑
j∈N F

i

(∥xi − x j∥
2 − ∥x⋆i − x⋆j ∥

2)

= 2
∑
i∈F

∑
j∈N F

i

(< xi − x⋆i , x
⋆
i − x j > − < x⋆i − x j, x j − x⋆j >)

= 2
∑
i∈F

|N F
i | < xi − x⋆i , x

⋆
i − x̄F

i > +2
∑
i∈F

∑
j∈N F

i

< x⋆i − xi, x⋆j − x j >

− 2
∑
i∈F

∑
j∈N F

i

< xi − x j, x j − x⋆j >

≥ 2
∑
i∈F

|N F
i | < xi − x⋆i , x

⋆
i − x̄F

i > +2
∑
i∈F

∥x⋆i − xi∥
2

−
∑
i∈F

∑
j∈N F

i −{i}

(∥x⋆i − xi∥
2 + ∥x⋆j − x j∥

2) − 2
∑
j∈F

|N F
j | < x̄F

j − x j, x j − x⋆j >

= 4
∑
i∈F

|N F
i | < xi − x⋆i , x

⋆
i − x̄F

i > +2
∑
i∈F

∥x⋆i − xi∥
2

− 2
∑
i∈F

(|N F
i | − 1)∥xi − x⋆i ∥

2 + 2
∑
i∈F

|N F
i |∥xi − x⋆i ∥

2

= 4
∑
i∈F

∑
k∈[m]

βk
i |N

F
i | < xi − x⋆i , x̄

Lk
i − x̄F

i > +4
∑
i∈F

∥xi − x⋆i ∥
2
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≥ 4
∑
i∈F

∥xi − x⋆i ∥
2 − 4m|F|2 max

i∈F;k∈[m]
βk

i

×

(
max

i, j∈
⋃

k∈[m] Lk∪F
∥xi(0) − x j(0)∥ ∨ max

i∈
⋃

k∈[m] Lk∪F
∥xi(0) − g∥

)2

.

□

Lemma 4.13. Assume that the social graph and opinion graph are undirected on F. If some component
H of the profile G(t) ∩ G (t) on F is δ-nontrivial, then,√∑

i∈F

∥xi(t) − xi(t + 1)∥2 ≥
√

2δ(1 −max
i∈F

∑
k∈[m]

βk
i (t))/|F|

4 − 2m|F| max
k∈[m];i∈F

βk
i (t)

×

(
max

i∈
⋃

k∈[m] Lk∪F
∥xi(0)∥ ∨max

k∈[m]
∥gk∥

)
.

Proof. Letting V(H), the vertex set of H, be [h] and 1 = (1, . . . , 1)′ ∈ Rh, express Rh = W ⊕ W⊥ for
W = Span({1}). For x(t) = (x1(t), . . . , xh(t))′, write

x(t) = [c11 | c21 | · · · | cd1] +
[
ĉ1u(1) | ĉ2u(2) | · · · | ĉdu(d)

]
,

where ci and ĉi are constants and u(i) ∈ 1⊥ is a unit vector for all i ∈ [d]. Observe that

∥xi(t) − x j(t)∥2 =
∑
k∈[d]

ĉ2
k(u(k)

i − u(k)
j )2 ≤ 2

∑
k∈[d]

ĉ2
k
(
(u(k)

i )2 + (u(k)
j )2) ≤ 2

∑
k∈[d]

ĉ2
k

for all i, j ∈ [h]. Hence,

component H δ-nontrivial implies
∑
k∈[d]

ĉ2
k > δ

2/2.

Letting β̃(t) = (1 −
∑

k∈[m] β
k
1(t), . . . , 1 −

∑
k∈[m] β

k
h(t))′ and B(t) = diag(β̃(t))A(t) for A(t) ∈ Rh×h with

Ai, j(t) = 1{ j ∈ N F
i (t)}/|N F

i (t)|, we obtain

x(t) − x(t + 1) = (I − B(t))x(t) − O(t) = [C(t) + F(t)L (t)] x(t) − O(t),

where C(t) = I − diag(β̃(t)), F(t) = diag(β̃(t))
(
diag((di)h

i=1) + I
)−1

with di the degree of vertex i in
component H, O(t) =

∑
k∈[m] diag((βk

i (t))i∈[h])(x̄Lk
i )′i∈[h] and L (t) is the Laplacian of component H. It

follows from Lemmas 3.8 and 3.9 that

λ2(L ) >
(2/h)2

2h
= 2/h3,

∥F(t)L (t)x(t)∥2 =
∑
k∈[d]

ĉ2
k∥F(t)L (t)u(k)∥2 ≥

∑
k∈[d]

ĉ2
kλ2

(
L (t)F2(t)L (t)

)
≥ (δ2/2)(min

i∈[h]
β̃i(t)/h)2λ2

2(L (t)) ≥ 2δ2(1 −max
i∈[h]

∑
k∈[m]

βk
i )

2/h8.
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On the other hand, it follows from the triangle inequality that

∥C(t)x(t)∥ ≤
∑
i∈[h]

∑
k∈[m]

∥βk
i (t)xi(t)∥

≤ mh max
i∈[h];k∈[m]

βk
i (t)

(
max

i∈
⋃

k∈[m] Lk∪F
∥xi(0)∥ ∨max

k∈[m]
∥gk∥

)
,

∥O(t)∥ ≤
∑
i∈[h]

∑
k∈[m]

∥βk
i x̄Lk

i ∥

≤ mh max
k∈[m];i∈[h]

βk
i (t)

(
max

i∈
⋃

k∈[m] Lk
∥xi(0)∥ ∨max

k∈[m]
∥gk∥

)
,

therefore, √∑
i∈F

∥xi(t) − xi(t + 1)∥2 ≥
√∑

i∈[h]

∥xi(t) − xi(t + 1)∥2 = ∥x(t) − x(t + 1)∥

= ∥ [F(t)L (t) +C(t)] x(t) − O(t)∥ ≥ ∥F(t)L (t)y(t)∥ − ∥C(t)y(t)∥ − ∥O(t)∥

≥
√

2δ(1 −max
i∈[h]

∑
k∈[m]

βk
i )/h

4 − 2mh max
k∈[m];i∈[h]

βk
i (t)

×

(
max

i∈
⋃

k∈[m] Lk∪F
∥xi(0)∥ ∨max

k∈[m]
∥gk∥

)
≥
√

2δ(1 −max
i∈F

∑
k∈[m]

βk
i )/|F|

4 − 2m|F| max
k∈[m];i∈F

βk
i (t)

×

(
max

i∈
⋃

k∈[m] Lk∪F
∥xi(0)∥ ∨max

k∈[m]
∥gk∥

)
.

□

Proof of Theorem 2.4. We claim the following:

1) All components of profile G ∩ G on F are δ-trivial after some time for all δ > 0.
2) No components of profile G ∩ G on F interact with each other after some time.

Without loss of generality, we assume the social graph on F remains constant over time, saying
G(t)|F = G|F = (F, E) for all t ≥ 0. Observe that∑

t≥0

max
i∈F;k∈[m]

βk
i (t) < ∞ =⇒ lim

t→∞
βk

i (t) = 0 for all i ∈ F and k ∈ [m].

Hence, we derive

at =
√

2δ(1 −max
i∈F

∑
k∈[m]

βk
i (t))/|F|

4 →
√

2δ/|F|4,

bt = 2m|F| max
k∈[m];i∈F

βk
i (t)

(
max

i∈
⋃

k∈[m] Lk∪F
∥xi(0)∥ ∨max

k∈[m]
∥gk∥

)
→ 0 as t → ∞.

There is t0 ≥ 0 such that
at − bt ≥ δ/|F|4 for all t ≥ t0.
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Assume that asymptotic stability does not hold in (1.2). Then, there are δ > 0 and (sk)k≥0 increasing
with s0 ≥ t0 and some component in profile G(tk) ∩ G (tk) on F δ-nontrivial for all k ≥ 0. Letting

M0 = 4m|F|2
(

max
i, j∈

⋃
k∈[m] Lk∪F

∥xi(0) − x j(0)∥ ∨ max
i∈

⋃
k∈[m] Lk∪F

∥xi(0) − g∥
)2

,

it turns out from Lemma 4.12 that

X0 + M0

m̂∑
t=0

max
i∈F;k∈[m]

βk
i (t) ≥

m̂∑
t=0

(Xt − Xt+1) + M0

m̂∑
t=0

max
i∈F;k∈[m]

βk
i (t)

≥ 4
m̂∑

t=0

∑
i∈F

∥xi(t) − xi(t + 1)∥2 for all m̂ ≥ 0.

As m̂→ ∞, we derive

∞ > W0 + M0

∑
t≥0

max
i∈F;k∈[m]

βk
i (t) ≥ 4

∑
t≥0

∑
i∈F

∥xi(t) − xi(t + 1)∥2

≥ 4
∑
k≥0

∑
i∈F

∥xi(sk) − xi(sk + 1)∥2 ≥ 4
∑
k≥0

δ2/|F|8 = ∞, a contradiction.

Hence, all components of profile G ∩ G on F are δ-trivial after some time for all δ > 0.
Next, we claim that no components of profile G ∩ G on F interact with each other after some time.

It follows from claim 1) that all components of profile G ∩ G on F are ϵ/4-trivial after some time s0.

Assume that claim 2) is not the case. By finiteness of the social graph, there are edge (i, j) and (tk)k≥0

increasing with t0 ≥ s0 such that vertices i and j belong to distinct components of profile G ∩ G (tk) on
F,

(i, j) ∈ E ∩ E (tk)c and (i, j) ∈ E ∩ E (tk + 1).

Letting

x̄F
i =

1
|N F

i (tk)|

∑
j∈N F

i (tk)

x j(tk), xi = xi(tk), x⋆i = xi(tk + 1),

x̄L
i =

1
|N L

i (tk)|

∑
j∈N L

i (tk)

x j(tk), β̃
j
i = β

j
i (tk), β̃i = 1 −

∑
j∈[m]

β
j
i (tk)

for all i ∈ F and k ≥ 0, it turns out from the triangle inequality that

ϵ < ∥xi − x j∥ ≤ ∥xi − x⋆i ∥ + ∥x
⋆
i − x⋆j ∥ + ∥x

⋆
j − x j∥.

On top of that, we obtain

∥xi − x⋆i ∥ ≤ β̃i∥xi − x̄F
i ∥ + ∥

∑
j∈[m]

β
j
i (xi − x̄L

i )∥

≤ β̃iϵ/4 + m max
j∈[m];i∈F

β
j
i

×

(
max

i, j∈
⋃

k∈[m] Lk∪F
∥xi(0) − x j(0)∥ ∨ max

i∈
⋃

k∈[m] Lk∪F
∥xi(0) − g∥

)
,

AIMS Mathematics Volume 10, Issue 2, 3652–3671.



3668

similarly for ∥x j − x⋆j ∥, therefore,

lim inf
k→∞

∥xi − x⋆i ∥ ≤ ϵ/4 and lim inf
k→∞

∥x j − x⋆j ∥ ≤ ϵ/4.

This implies
ϵ/2 ≤ lim inf

k→∞
∥x⋆i − x⋆j ∥, a contradiction.

It follows from claims 1) and 2) that
∑

j∈N F
i (t) x j(t)/|N F

j (t)| converges to some random variable x̃i as
t → ∞ for all i ∈ F. Since maxk∈[m];i∈F β

k
i (t) → 0 as t → ∞ and

∑
j∈N L

i (t) x j(t)/|N L
i (t)| is bounded by

(maxi∈
⋃

k∈[m] Lk ∥xi(0)∥ ∨maxk∈[m] ∥gk∥), we get xi(t + 1)→ x̃i as t → ∞ for all i ∈ F. □

5. Simulations

We conduct a numerical analysis of the theorems. For Theorem 2.1, consider the leader group
L of size 2000 with a target g = 0.25. The initial opinions of all leaders are uniformly distributed
random variables with values in (0, 1). The threshold for each leader is a uniformly distributed random
variable with values in (0, 1). A directed social graph is randomly generated at each time step. αi(t) is
a uniformly distributed random variable with values in (0.99, 0.999) for all i ∈ L and t ≥ 0, indicating
that the leaders have little tendency toward their target. The result is shown in Figure 1(a), where all
leaders approach the target g = 0.25. The gray line indicates the opinion equal to 0.25.

For Theorem 2.2, consider a leader group of size 2000 with a target g = 0.25, a common threshold of
0.05, and a constant undirected social graph. The initial opinions of all leaders are uniformly distributed
random variables with values in (0, 1). To diversify αi(t), let αi(t) =

[
1 + (t2 + n(i, t))−1]−1 for all i ∈ L

and t ≥ 0, where n(i, t) is a uniformly distributed random variable with values in [2000]. The outcome
is shown in Figure 1(b).

For Theorem 2.3, consider three leader groups of sizes 10, 20, and 30, and a follower group of size
1940. The threshold for each individual is a uniformly distributed random variable with values in (0, 1).
Given g1 = 0.25, g2, g3, and the initial opinions of all individuals are uniformly distributed random
variables with values in (0.25 − mini∈F ϵi/2, 0.25 + mini∈F ϵi/2). A directed social graph is randomly
generated at each time step. It follows from Theorem 2.3 that all followers achieve a consensus if they
have the same propensity toward the average of their social and opinion neighbors in each of the leader
groups. Say β1

i = 0.01, β2
i = 0.02, and β3

i = 0.03 for all i ∈ F. αi(t) is a uniformly distributed random
variable with values in (0.99, 0.999) for all k ∈ [3], i ∈ Lk, and t ≥ 0. The result is shown in Figure 1(c),
where all followers approach the weighted average of the targets of the leader groups. The opinions of
the leaders are colored red, blue, or green, with each group sharing the same color. The opinions of the
followers are colored orange. The gray line indicates the opinion equal to the weighted average of the
targets of the leader groups.

For Theorem 2.4, consider three leader groups of sizes 10, 20, and 30 with targets 0.25, 0.5, and
0.75, respectively, and a follower group of size 1940. The threshold for each leader is a uniformly
distributed random variable with values in (0, 1). All followers share a common threshold of 0.05. The
opinions of all individuals are uniformly distributed random variables with values in (0, 1). The social
graph on F is undirected and constant, while other social relationships can be directed and vary over
time. αi(t) is a uniformly distributed random variable with values in (0.99, 0.999) for all k ∈ [3], i ∈ Lk

and t ≥ 0. To diversify βk
i (t), let βk

i (t) =
(
t2 + n(i, k, t)

)−1 for all i ∈ F, k ∈ [3], and t ≥ 0, where n(i, k, t)
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is a uniformly distributed random variable with values in 1940. The outcome is shown in Figure 1(d).
The opinions of the leaders are colored red, blue, or green, with each group sharing the same color.
The opinions of the followers are colored orange.

(a) (b)

(c) (d)

Figure 1. Demonstration of the theorems.
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