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Abstract: Let F, be a finite field of ¢ elements. For n € N* with n > 2, let M,, := Mat,(F,) be the
ring of matrices of order n over F,, G, := S[,(F,) be the special linear group over FF,. In this paper, by
using the technique of Fourier transformation, we obtain a formula for the number of representations
of any element of M, as the sum of k£ matrices in G, ;. As a corollary, we give another proof of the
number of the third power moment of the classic Kloosterman sum.
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1. Introduction

Let R be a finite ring with 1 € R, and let R* denote the multiplicative group of units in R. Let k be
an integer with k > 2 and let S denote the cardinality of any finite set S. For any ¢ € R, we define

k
g Xi=Cgq,
i=1

S«(R,c) := {(xl,xz, X)) € (RO

and
Ni(R, ¢) := #Si(R, ©).

For a positive integer n, let Z/nZ be the ring of residue classes modulo 7. In 2000, Deaconescu [3]
obtained a formula for N,(Z/nZ, c). In 2009, Sander [13] gave a generalization of the above result. In
fact, for any integer c, he determined the number of representations of ¢ as a sum of two units, two
nonunits, a unit and a nonunit, respectively, in Z/nZ .

For a positive integer n with divisors ki, k,, ..., k,(t > 2) and c € Z, let

1 S Xi S n/ki’(xi’n/ki) = 1’ l: 1’2""’t’
Sl’l;k|,k2,...,k1(c) = (xla X2seens xl) i kx =c (mod n)
i=1
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We define Ny, s,....x (€)= 8BS nit sy....k, (C)-

In 2013, Sander and Sander [14] gave a formula for N, +,(c). In 2014, Sun and Yang [15] obtained
a formula for N, x,... 4,(C).

In 2017, Ji and Zhang [17] extended Sander’s results to the residue ring of a Dedekind ring.

For a finite ring R with identity 1, a unit u € R* is called an exunit if 1 —u € R*. We write R** for the
set of all exunits of R. We define N/(R, c¢) to be the number of representations of any ¢ € R as a sum of
k exunits of R. Namely,

N/(R,c) := Ii{(xl, Xy ..., X)) € (R™

k
Z Xi = C} .
i=1

In 2017, Yang and Zhao [16] gave an explicit formula for N/ (R,c) with R = Z/nZ. In 2018,
Miguel [11] generalized the Yang-Zhao results to any finite commutative ring R with identity.

In this paper, we shall extend the above results to the ring of matrices over a finite field F, of ¢
elements. The theory of matrices used in this paper can be found in [5]. What we focus on is the
number of representations of a matrix as a sum of k£ matrices. Readers who are interested in algorithms
can refer to [12]. The theory of matrices also has many applications in other fields, such as graph
theory, for example, [1, 6, 8].

Let M, := Mat,(F,), G, := Gl,(F,), 1.e., the general linear group over F,. For any u € F, and
0 < r < n, define

Ghy = {x eEM,

det(x) = u} , My, = {x eEM,

rank(x) = r} .

Specifically, G, = M, ,, G, = SI,(F,), i.e., the special linear group over F,. For any matrix A € M,

and k € N*, we define
k
Z X = A} s
i=1

S.ux(A) = {(xl, X2,..., %) € Gh |

and

Niui(A) = BS,i(A).

Let a, b be non-negative integers with a > b. The g-binomial coefficient is defined as:

(a) B (a),!
b),  (b)y(a—Db),"

where (0),! = 1,(a), = ";%11 and (a),! = (1)4(2),---(a); whena > 1. Let ¢ be a fixed nontrivial additive
character of F,, e.g., take

i
Y(x) = exp (%tr]Fq/Fp(X)), V x €F,.

Define
KW.y)i= ), dln+x+--+x,), foryeF,

X1 X2 Xp=Yy

be the Kloosterman sum over F,. Our first main result is:

AIMS Mathematics Volume 10, Issue 2, 3642-3651.



3644

Theorem 1.1. Let k € N* and A € M, , with determinant u. Then, we have

k(' n—l
Nox(A) = ﬁ[zmeWKan ]VZ(MMw%yﬂmqﬂ,
M, veF* q i=1
ifu #0and
1) () n=r
MM)ﬁ f)q[]’1>ZKwW
veF*
S DE ) k RSl (&)+r-i)
+1_0 (q—l)kl:[(q_l) : ~ Z ( 1)q2 () ﬁMnrlt
= i= i=max{0,l—n+r} q
if u =0.

Let k be a positive integer and g be an odd prime power. Define

V() = > Ko, w)f

k.
uely

to be the k-th power moment of the classic Kloosterman sum. Let (—) be the Legendre symbol over
IF,. We also give another proof of the number of V(3) (see [7], Section 4.4):

Theorem 1.2. V(3) = 17(‘73) g*+2q+ 1.

This paper is organized as follows: In Section 2, we shall prove some lemmas that will be used
in the proofs of our main results. In Sections 3 and 4, we shall give the proofs of Theorem 1.1 and
Theorem 1.2, respectively.

2. Preliminaries

Lemma 2.1. Let A,B € M, and k € N*. If there exist C,D € M, such that B = CAD and det(C) -
det(D) = 1, then, we have N, (A) = N, x(B).
Consider the map
J i Sni(A) = Sux(B),
(xl, XDyoovy )Ck) = (C)C]D, CXz, D, ey CXkD).
Clearly, f is bijective. So we have N, x(A) = N, x(B).

Corollary 2.2. Let k € N* and A, B € M, with det(A) = det(B) = u # 0. Then, we have N, ;(A) =
Nn,k(B)-

The following two results (Lemma 2.3 and Theorem 2.4) are well-known.

Lemma 2.3. [9] Forany u € F; and 1 < r < n, we have

n—1 r—1 i

n #G, (q" — ')

ﬁGn = l_[(q —q ), ﬁGn,u = —1’ ﬂMn,r = 1—[ %
i=0 q- i=0 q9 —q
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Theorem 2.4. Let A € M,. Then there exist P,Q € G, (F,) such that
PAQ = diag(d,, d,, ...,d,,0,...,0),

where r = rank(A).

Lemma 2.5. Let A,B € M, with r < n. Then, there exist P, Q € G, such that PAQ = B. Hence, we
have N, x(A) = N,x(B) for any k € N*.

By Theorem 2.4, there exist Py, Qy, P>, Q> € Sl,(F,), such that
PIAQ, = A’ .= diag(d,,d>, .. .,d,.0,...,0),

PzBQQ =B := diag(el,ez,. .. ,e,,O, .. .,O),
where ¢;,d; # 0,i = 1,...,r. Set

C = diag(e,d;, exd;", ..., e,d [quhLm

Then, C € G,;, A’C = B'.Let P = P,'P;, Q = 0,CQ;"'. Then P,Q € G, and PAQ = B. Then, by
Lemma 2.1, we have N, x(A) = N, «(B).

Next, we consider the Gauss sum over some matrix groups. Let S be a subset of M,, and let ¢ be a
fixed nontrivial additive character of ;. For any A € M, define

Ga(, A) := ) (tr(xA)).

xes

If there exist P, Q € G, such that A = PBQ, then, for any r < n, we have

Gu,, (W, A) = ) w(tr(xPBQ))

XeEM, ,

D, w(tr(QxPB))

XeM, ,

> wr(yB)

YEM,

=Gy, (U, B).
Similarly, if there exist P, Q € G, such that A = PBQ, then we have Gg, (¥, A) = Gg,, (¥, B).
Theorem 2.6. ([10], Theorem 2.4) Let A € M,,, with det(A) = u. Then, we have

4O Ky, w), ifr=n,
Gg,, (), A) = N =
%ﬁwg@—ugﬁ<n

Theorem 2.7. ([2], Theorem 1.1) Let A € M,,, and 0 < s < n. Then, we have

min{r,s}

GM,“(w A) - Z ( 1) C](Z)H(S l)( ) : ﬁMn—r,s—i-

i=max{0,s—n+r} q
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In particular, if r = n, then, we have

Gu, (), A) = (—1)‘Vq(5)(2) .

q

Next, we recall some facts on the Fourier transformation. Let H be a finite abelian group, and let

H =: Hom(H, C*) be the character group of H. Clearly, H = H. For any function f : H — C, the
function

FH-C xm Y fax@), YyeH

xeH

is called the Fourier transformation of f.

Lemma 2.8. ( [4], Proposition 2.1.1.2) Let fbe the Fourier transformation of f : H — C. Then, we
have

1 —_
f==> foow.
tH 5
Now, we consider the case n = k = 2 and ¢ is odd.

Lemma 2.9. Let A € M, with det(A) = u and O be the zero matrix of M,. Assume q is odd. Then, we

have
glg—D(g+1), ifA=0,
Naa(A) =1 a(g = 1), i ifu=0, A#O,
q(q+n(*5"), ifu+o.

Consider the equation
X1 +x=A, X,x € GZ,I’A e M,.

Case 1. A = O. For any x; € Gy, O — x; = x; € G,,;. By Lemma 2.3, we have

N2 (0) = G2y = q(g — (g + 1).

Case 2. u =0, A # O. By Lemma 2.5, it is sufficient to compute NQ,Z([(I) 8]) Let x; = [CCZ Z] . Then,

X = [1__6" :Z] . We have det(x;) = 1,det(x,) = 1, i.e.,
ad —bc=1,ad —d—-bc =1.

So, we have d = 0. For any a € F, and b € F,, then c is uniquely determined by b. Hence,
N2o(A) = q(g = D).
0 a b
1

Case 3. u # 0. By Corollary 2.2, it is sufficient to compute Nz,z([g }). Let x; = [c d]' Then,

Xy = [u_—ca __b d] . We have

ad—bc=1,u—ud—-a+ad—->bc=1.
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So,
a=u—-ud, bc=ad-1=—ud®+ud- 1.

Let us consider the equation about d:
—ud® +ud -1 =0. (2.1)

The determinant of Eq (2.1) is u?> — 4u.

Assume 7](”2;4”) =0, i.e., u> —4u = 0, u = 4. Then, Eq (2.1) has only one solution + e F,. If d = 1,
7 q y 2 q 2

there are 2q — 1 such pairs (b, c). If d # %, for any b € F, c is uniquely determined by b. So,
Noa(A) =2g -1+ (g-1g-1) = ¢

Assume n(%) = 1,1.e., Eq (2.1) has two solutions d,,d, € F,. If d = d,, d,, there are 2q — 1 pairs
(b,c). It d # d,, d,, there are g — 1 pairs (b, ¢). So,

Nop(A) =22 -1+ (g -2)(g—-1) =q(g+1).
Assume 17("2‘#4”) = —1, i.e., Eq (2.1) has no solutions. It is obvious that
Noo(A) = g(g - 1).

3. Proof of Theorem 1.1

Let S be a finite set. For any map f : § — M, and x € M,,, we define

B (0
AN

Pf(X) =

where f~!(x) is the set of all the inverse images of x. Let ZT/I\n := Hom(M,,, C*) be the additive character
group of M,. Then, we have

— -1 - _
Prl0) = D Proox() = 55 D X(FO). x & M, (3.1)
xeM, seS
By Lemma 2.8, we have
1 - _
Py(x) = — Z P Oox (). (3.2)
ﬁMn A
XEM,
Fixk > 1.Let¢ : G, — M, be the inclusion map, and
@ Glfm > M, (X1,X, ..., %) > X1+ X2+ + Xy
Clearly,
Nui(A) = HG,1)' - Py(A), ¥ A€ M, (3.3)
By Eq (3.1), for all y € M,, we have
-~ 1
Pw(/\/):m Z XX +2x + -+ X))

(x1,%2,0.,20)EGE |
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1
= D, XOD X)X ()

Next, we consider F,,;(X). Let ¢ be the canonical additive character of F,. Then the map
(L) M, XM, - F; — C,(x1, x2) = tr(x1x) = Y(tr(x1x2))
is a non-degenerated symmetric bilinear map. Hence, (_, ) induces an group isomorphism:
P My = My x, = ().

So, we have

1
P“”%)‘ﬁanl D o = ﬁG 2 60 = g 76 Cou W)

x€Gp 1 nl xeG, 1

Define
I, := diag(u. 1,...,1) € G,,. u€eF,

Jy :=diag(l,...,1,0,...,00 e M,,;, 0<I<n.
By Theorem 2.6, we have

Ga,, W L) = D WlrGL) = > wlr(xLL) = Gg,, (0, L) = qO K, wv), (34)
yeGp,y x€Gy 1
Ga,, W, 1)) = Ga,, W, 1J,) = —q<2> H(q (3.5)

By Corollary 2.2 and Lemma 2.5, it is sufficient to consider A as one of the [, and J, with u €
FZ, r<n.LetA =1, or J,. Then, we have

AIMS Mathematics Volume 10, Issue 2, 3642-3651.
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Nousx(A)
LD 4G, - P,(A)
L2 W) 5 P (0x(A)
)(GM
_ (Gu)* B — nl =
—W'(Z Y P A+ Y T Pylrn) xx(m]
Ve, xeG,, 1=0 xeMp,

= () '(z % (G, .0) x:4)

veIF’,; x€Gp,y

+Y 3 (=G, W) xx(A))

=0 XEM,,[

= o -(Z (G, @ 1) S xulA) + z Ga,, W, )" % XX<A))

veF} x€Gp,y xeM,,

= o (z (Ge,, (.1 )) Ga,, (0, A) + z Ge,, W, J) Gy, (0, A))

veF}

Theorem 2.6 1

o ( 5 (1OKaw, 0) Ga,, W, 4)

k
+ z (< DZERY H( i ) G, (w,A)]

e ( 2 4K K )

e 1)k Z( l)l(k+l)q(z)( ) H(q ), if u#0,

Theorem 2.7

(3.4)3.5) 4@
tjM

- 1)*q(2> ~ (i k (=D
H( - 1) Z K (‘ﬁ V) +Z (q—l)k

vely
min{r,/}

<l - 1)"( S (=1 q@T() BM, ) if u = 0.
i=1

i=max{0,l-n+r}

4. Proof of Theorem 1.2

Let O be the zero matrix of M, and I be the identity matrix of M,. By Theorem 1.1, we have

k
Ni(0) = ﬂMz [(q D+ (=D g = D@+ 1 +qlg = Dig+ D ) Ko, u)"],
uely

i.e.,

V() = ) Ky, w)

k.
uely
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= ! .M_ 2 1vk 1V B )
Tglg-D(g+ D) (Nz,k(O) 7 (@-1D)"-(C1)"(g-g+1) )
1

=D N0 = (@ - D - D g - Dig + DY),

Consider the equation
X1+x+ -+ x5 =0-x, x€Gy,i=1,...,k
For any x; € G, we have O — x; € G,;. So, we have
N2i+1(0) = #Ga1 - Noy(D).

By Lemmas 2.9 and 2.3, we have
2 _3
N23(0) = §Gay - Nop(D) = g (g — 1)(g+ D|g+7n 7 .

Hence, we obtain

Pg- g+ (q+n(2))- @ -1 - (1D (g- (g +1)
g(g—D(g+1)

VQi3) =
-3
:n(—)qz +2q+1.
q
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