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1. Introduction

In this paper, we study the approximate controllability of evolutionary hemivariational inequality
〈−u′(t) +N(t)u(t) + Bµ(t), ρ〉Y + J0(t, u(t); ρ) ≥ 0, ∀ t ∈ I, ∀ ρ ∈ Y,

u(0) =
m∑

k=1
dku(tk),

(1.1)

with under nonlocal conditions in Y, where Y is a Hilbert space whose scalar product is denoted by
〈·, ·〉Y , I = [0, b], b > 0, and {N(t) : t ∈ I} is a family of linear operators on Y such that the domain of
N(t) does not depend on t. B : U → Y is a bounded linear operator, where U is a Hilbert space. The
control function µ takes values in L2(I,U), 0 < t1 < t2 < t3 < · · · < tm < b,m ∈ N, and dk are real
numbers, dk , 0, k = 1, 2, . . . ,m. J0(t, ·, ; ·) represents the generalized directional derivative of a locally
Lipschitz function J(t, ·) : Y −→ R.

In recent years, hemivariational inequalities have been powerful tools for solving physics,
engineering, and optimization problems, and they are also an important and interesting topic in the
field of mathematics. Because of its important uniqueness, this field has received widespread attention.
At the same time, this has also led many scholars to obtain solutions to hemivariational inequality
problems under many conditions, see [1–3].
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Control problems are widely used in the fields of mechanics, physics, and aerodynamics. Therefore,
many research works focus on optimal control problems of hemivariational inequalities, and a series
of progress has been made. For example, when Necas and others studied friction problems, Malla
and Nassif used pseudo-variant results to overcome difficulties when studying crystal tube problems.
Not only that, hemivariational inequalities are also a powerful tool for studying game theory and
equilibrium theory in economics and transportation.

Problems with non-local conditions are driven by physical problems. The application of non-local
initial conditions in physics is significantly better than u(0) = u0 in terms of application range and
application effect. For example, Deng [4] discussed phenomenon of a very small amount of gas in
the tube under non-local conditions. In this scenario, we permit additional measurements at tk that
are more accurate than the measurement taken at t = 0. As a result, nonlocal conditions may be more
appropriate than the conventional initial condition u(0) = u0 for accurately characterizing specific
physical phenomena. For insights on the significance of nonlocal conditions, refer to [5–7].

In 2000, Migorski and Ochal [8] used the variational method to discuss the control problem of
parabolic hemivariational inequalities

w′(t) +N(t)w(t) + λ(t) = f (t) + B(t)µ(t), ∀ t ∈ (0,T ),
w(0) = w0,

λ(y, t) ∈ β̂(y, t, u(y, t),w(y, t)), ∀ (x, t) ∈ Ω × (0,T ),

where y and µ denote the control function, and Ω is subset of R3. The lower-order term β̂ is multivalued
and discontinuous.

Nonlinear control theory is a branch of control theory that primarily focuses on the control
of nonlinear systems. Nonlinear systems are widely prevalent in real-world applications, such as
mechanical systems, biological systems, electrical systems, and others; see references [9–11]. Fixed
point theorems are one of the powerful tools for solving control problems of nonlinear systems,
and good results have been obtained (see, e.g., [12–14]). At present, there are few studies on the
approximate controllability of hemivariational inequality control problems, and the earliest dates can
be traced back to [15]. In 2015, Liu Zhenhai and Liu Xiuwen [15] presented the notion of mild
solutions for hemivariational inequalities. By using the fixed point theorem of multivalued maps, the
approximate controllability of the hemivariational inequality{

〈−y′(t) +Ny(t) + Bu(t), ρ〉Y + J0(t, y(t); ρ) ≥ 0, ∀ t ∈ I = [0, b], ∀ ρ ∈ Y,
y(0) = y0,

is obtained, whereN : D(N) ⊆ Y → Y is the infinitesimal generator of a C0-semigroup T (t) on Y , and
Ω is a subset of R3. In the same year, Liu Zhenhai, Liu Xiuwen, and Motreanu [16] used unstable point
theory and non-smooth analysis to discuss the approximate controllability of the following variational
inequality: {

〈−y′(t) +N(t)y(t) + Bu(t), ρ〉Y + J0(t, y(t); ρ) ≥ 0, ∀ t ∈ I = [0, b], ∀ ρ ∈ Y,
y(0) = y0,

where N(t) is a linear operator on Y and is independent of time t.
Evolution inequalities with nonlocal conditions can better describe practical problems. Therefore,

based on [16], this paper further discusses the problem (1.1).
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In the second section, we give some necessary definitions and concepts. The first major result in
Section 3 obtains the existence of mild solutions to inclusion problem (2.1), which is more general than
inclusion problem (1.1). Then, we show that inclusion problem (2.1) is approximately controllable.
Finally, we use an example to show that our main result is appropriate.

2. Preliminaries and basic definitions

Below we will introduce some symbols, definitions, and some basic concepts as necessary.
Let || · ||X denote the norm of the Banach space X, X∗ represent the dual of X, and 〈·, ·〉 represents the

duality paring between X∗ and X. By C(I, X), denote the Banach space of continuous functions from
I into X equipped with the norm ||u||C(I,X) = sup

t∈J
||u(t)||X. L(E,H) denotes bounded linear operators

from E to H, where E and H are Banach spaces. Next, we give some definitions of multivalued maps.
Readers can refer to [17] for more details. The set of all non-empty subsets of X is represented by
P(X). We will use the notation

Pcp,cς(X) = {Π ∈ P(X) : Π is compact and convex}.

If, for any u ∈ X, Q(u) is closed (convex), then the multivalued map Q : E → P(X) is closed
(convex) valued. Q is u.s.c. (upper semicontinuous), Q(u) is a nonempty, closed subset of X, and the
set Λ containing Q(u), there is an open neighborhoodM of u such that Q(M) ⊆ Λ, where Λ is open
set of E. If Q(Λ) is relatively compact for any bounded subset Λ ⊂ X, then Q is said to be completely
continuous. For a given separable metric space (X, d) and measure space (Π,Σ), if for each closed set
V ⊆ X, Q−1(V) = {t ∈ Π : Q(t) ∩ V , ∅} ∈ Σ, then the multivalued mapping Q : Π → P(X) is called
measurable.

The following theorem appearing in [18] will be used to prove the main result.

Theorem 2.1. If Π is a subspace of Banach space X and Π is convex, closed, and nonempty, with 0 ∈ Π,

and Γ : Π→ Pcp,cς(Π) is an upper semicontinuous multivalued map from a bounded set to a relatively
compact set, then one of the two statements below is true:

(i) The set Λ = {u ∈ Π : u ∈ ηΓ(u), η ∈ (0, 1)} is unbounded.
(ii) There is a u ∈ Π such that u ∈ Γ(u), i.e., Γ has a fixed point.

Let us understand some basic concepts of non-smooth analysis (for more concepts, readers can refer
to [19]). We suppose that the function l : X → R is locally Lipschitz. Let

l0(u; g) := lim sup
λ→0+,ξ→u

l(ξ + λg) − l(ξ)
λ

represent the definition of the generalized directional derivative of l in the direction g at u ∈ X.
The Clarke’s subdifferential or generalized gradient of l at u ∈ X is the subset of X∗ given by

∂l(u) := {u∗ ∈ X∗ : l0(u; g) ≥ 〈u∗, g〉, ∀ g ∈ X}.

Lemma 2.1. [19] If the function l : X → R is locally Lipschitz, then the follwing conditions are
satisfied:

(i) for any u, g ∈ X, one has l0(u, g) = max{〈u∗, g〉 : x∗ ∈ ∂l(u)};
(ii) for all u ∈ X, ∂l(u) is a convex, nonempty, and weak-compact subset of X∗ and ||u∗||X∗ ≤ α for

any u∗ ∈ ∂l(u), where α > 0 is the Lipschitz constant of l near u.
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Next, we consider the hemivariational inclusion problem under nonlocal conditions:
u′(t) ∈ N(t)u(t) + Bµ(t) + K(t, u(t)), t ∈ I = [0, b],

u(0) =
m∑

k=1
dku(tk),

(2.1)

where K : I × Y → 2Y is a multivalued map. 2Y represents the power set of Y, which means that 2Y is
the set composed of all subsets of Y.

Below, we will suppose that the conditions from [20] hold:
(B1) the domain D(N(t)) of N(t)(t ∈ I) is independent of time t and it is dense in Y;
(B2) for all t ∈ I, κ ∈ C, the resolvent R(κ,N(t)) of N(t) exists, with Re κ ≤ 0, and there exists a

positive number C1 such that

||R(κ,N(t))|| ≤
C1

|κ| + 1
;

(B3) there exist δ ∈ (0, 1] and C2 > 0 such that

||N(t) − N(γ)N−1(ξ)|| ≤ C2|t − γ|δ, ∀ t, γ, ξ ∈ I;

(B4) for all t ∈ I, there is a κ ∈ ρ(N(t)) such that the resolvent R(κ,N(t)) is a compact operator,
where ρ(N(t)) is the resolvent set of N(t).

Definition 2.1. If the following conditions are satisfied:
(i) T (s, s) = I,T (t, r)T (r, s) = T (t, s) for 0 ≤ s ≤ r ≤ t ≤ b,
(ii) (t, s) 7→ T (t, s) is strongly continuous for 0 ≤ s ≤ t ≤ b,

then family of bounded linear operators T (t, s) on Banach space X is called evolution system,
where 0 ≤ s ≤ t ≤ b.

Lemma 2.2. [16] If conditions (B1)–(B3) are satisfied, then there exists a unique evolution system
T (t, s) that satisfies the following conditions:

(i) ||T (t, s)|| ≤ M and M is a positive constant.
(ii) T (t, s) : Y → D(N(t)) and t → T (t, s) is strongly differentiable in Y, ∂

∂tT (t, s) is strongly
continuous, where 0 ≤ s ≤ t ≤ b.

In addition,
∂

∂t
T (t, s) +N(t)T (t, s) = 0,

||
∂

∂t
T (t, s)|| = ||N(t)T (t, s)|| ≤

M
t − s

,

||N(t)T (t, s)N−(s)|| ≤ M.

(iii) For any g ∈ D(N(t)),
∂

∂s
T (t, s)g = T (t, s)N(s)g,

and T (t, s)g is differentiable with respect to s.

Lemma 2.3. [21] IfN(t) satisfies hypotheses (B1)–(B4) and T (t, s) is the evolution system generated
by N(t), then T (t, s) is a compact operator whenever t − s > 0.
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The following conditions will be used to prove the main results:

(C1)
m∑

k=1
|dk| <

1
M .

(C2) ||B|| ≤ M1, where M1 > 0 is a constant.
From Lemma 2.2 and conditions (C1), we get that

||

m∑
k=1

dkT (tk, 0)|| ≤ M
m∑

k=1

|dk| < 1.

From the above formula and operator spectrum theorem, we get that

O :=
(
I −

m∑
k=1

dkT (tk, 0)
)−1

is bounded and D(O) = X. Using Neumann expression,

O =

∞∑
n=0

( m∑
k=1

dkT (tk, 0)
)n
.

Hence,

||O|| ≤

∞∑
n=0

||

m∑
k=1

dkT (tk, 0)||n =
1

1 − ||
m∑

k=1
dkT (tk, 0)||

≤
1

1 − M
m∑

k=1
|dk|

. (2.2)

For everyH ∈ L2(I,Y),we discuss the following nonlocal problem for linear evolutionary equation:
u′(t) = N(t)u(t) +H(t), t ∈ I,

u(0) =
m∑

k=1
dku(tk).

(2.3)

Lemma 2.4. [20] If the conditions (B1)–(B3) are satisfied, then system (2.3) has a unique mild
solution u ∈ C(I,Y), expressed by the following formula:

u(t) =

∫ b

0
G(t, s)H(s)ds,

where

G(t, s) =

m∑
k=1

Ytk(s)T (t, 0)OT (tk, s) +Yt(s)T (t, s), t, s ∈ [0, b], (2.4)

Ytk(s) =

dk, s ∈ [0, tk),
0, s ∈ [tk, b],

Yt(s) =

1, s ∈ [0, t),
0, s ∈ [t, b].

(2.5)

Definition 2.2. Given µ ∈ L2(I,U). If there exists f ∈ L2(I,Y) such that f (t) ∈ K(t, u(t)) for all t ∈ I
and

u(t) =

∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds,

then u ∈ C(I,Y) is called the mild solution of problem (2.1).
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In fact, from the generalized gradient, we know that problem (1.1) is equivalent to the problemu′(t) ∈ N(t)u(t) + Bµ(t) + ∂J(t, u(t)), ∀ t ∈ I,

u(0) =
m∑

k=1
dku(tk),

(2.6)

where ∂J denotes the generalized Clarke’s subdifferential of J(t, ·) : Y → R.

Definition 2.3. Given µ ∈ L2(I,U), if there exists f ∈ L2(I,Y) such that f (t) ∈ ∂J(t, u(t)) for all t ∈ I
and

u(t) =

∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds,

then u ∈ C(I,Y) is called the mild solution of inequality (1.1).

Let Kb(K) = {u(b) ∈ Y : u(·) be a mild solution of system (2.1), control function µ ∈ L2(I,U) with
u(0) ∈ Y}.

Definition 2.4. If Kb(K) = Y, then problem (2.1) is called approximately controllable on I, where
Kb(K) is the closure of Kb(K).

3. Existence of mild solutions

For convenience, make the following three assumptions for the multivalued map K : I × Y → 2Y :
H1(K) K is jointly measurable on I × Y and has convex, nonempty, and weakly compact values.
H2(K) For all t ∈ I, if un → u in Y and hn → h weakly in Y with hn ∈ K(t, un), i.e., K(t, ·) has a

strongly-weakly closed graph, then h ∈ K(t, u).
H3(K) There is a positive constant c and a function a ∈ L2(I,R) such that

||K(t, u)||Y := sup{||χ||Y : χ ∈ K(t, u)} ≤ a(t) + c||u||Y , ∀ t ∈ I, u ∈ Y.

Now we define the multivalued mapM : L2(I,Y)→ 2L2(I,Y) as

M(u) = { f ∈ L2(I,Y) : f (t) ∈ K(t, u(t)), ∀ t ∈ I, u ∈ L2(I,Y)}.

Lemma 3.1. [22] If the conditions H1(K)–H3(K) are satisfied, then for any function u ∈ L2(I,Y), the
setM(u) is convex, nonempty, and weakly compact.

Lemma 3.2. [23] If the conditions H1(K)–H3(K) are satisfied, then operatorM satisfies the following:
if un → u in L2(I,Y), fn → f weakly in L2(I,Y), and fn ∈ M(un), then f ∈ M(u).

Theorem 3.1. Assume that conditions (B1)–(B4), (C1)–(C2) and H1(K)–H3(K) are satisfied. Then,
for every µ ∈ L2(I,U), the system (2.1) has a mild solution on I.

Proof. Based on Lemma 3.1, define a multivalued mapping Γ : C(I,Y)→ 2C(I,Y),

Γ(u) = {h ∈ C(I,Y) : h(t) =

∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds, f ∈ M(u)}. (3.1)

Step 1. Γ is bounded, i.e., it maps bounded sets into bounded sets in C(I,Y).

AIMS Mathematics Volume 10, Issue 2, 3581–3596.
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For each r ≥ MN2(MN1 + 1), let Br := {u ∈ C(I,Y) : ||u||C(I,Y) ≤ r}. Set ϕ ∈ Γ(u) with u ∈ Br. Then,
there exists f ∈ M(u) such that

ϕ(t) =

∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds, ∀ t ∈ I, (3.2)

where

N1 =

m∑
k=1
|dk|

1 − M
m∑

k=1
|dk|

, N2 =

∫ b

0

(
||a||L2(I,R) + cr + M1 · ||µ||L2(I,U)

)
ds. (3.3)

By Lemma 2.2 and H3(K), for any t ∈ I, we know that

||ϕ(t)||Y ≤
∫ b

0
||G(t, s)|| · ||Bµ(s) + f (s)||Yds

=

∫ b

0
||

m∑
k=1

Ytk(s)T (t, 0)OT (tk, s) +YtT (t, s)|| · ||Bµ(s) + f (s)||Yds

≤M · ||O|| ·
∫ b

0

m∑
k=1

|Ytk(s)| · ||T (tk, s)|| · || f (s) + Bµ(s)||Yds

≤M2N1

∫ tk

0

(
(||a||L2(I,R) + c||u(s))||Y + M1 · ||µ||L2(I,U)

)
ds

+ M
∫ t

0

(
(||a||L2(I,R) + c||u(s))||Y + M1 · ||µ||L2(I,U)

)
ds

≤M2N1

∫ tk

0

(
(||a||L2(I,R) + cr + M1 · ||µ||L2(I,U)

)
ds

+ M
∫ t

0

(
(||a||L2(I,R) + cr + M1 · ||µ||L2(I,U)

)
ds

≤MN2(MN1 + 1)
≤r.

Step 2. For any r > 0,Γ(Br) := ∪{Γ(u) : x ∈ Br} is equicontinuous. Using condition H3(K), for 0 <

t1 < t2 ≤ b and ε > 0,

||ϕ(t2) − ϕ(t1)||Y =||

∫ b

0

(
G(t2, s) − G(t1, s)

)
·
(
Bµ(s) + f (s)

)
ds||Y

=||

∫ b

0

(
T (t2, 0) − T (t1, 0)

) m∑
k=1

Ytk(s)OT (tk, s)
(
Bµ(s) + f (s)

)
ds

+

∫ b

0

(
Yt2(s)T (t2, s) − Yt1(s)T (t1, s)

)
(Bµ(s) + f (s)

)
ds

+

∫ b

0
Yt1(s)T (t2, s)

(
Bµ(s) + f (s)

)
ds −

∫ b

0
Yt2(s)T (t2, s)

(
Bµ(s) + f (s)

)
ds||Y

=||

∫ b

0

(
T (t2, 0) − T (t1, 0)

) m∑
k=1

Ytk(s)OT (tk, s)
(
Bµ(s) + f (s)

)
ds

AIMS Mathematics Volume 10, Issue 2, 3581–3596.
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+

∫ b

0
Yt1(s)

(
T (t2, s) − T (t1, s)

)(
Bµ(s) + f (s)

)
ds

+

∫ b

0

(
Yt2(s) − Yt1(s)

)
T (t2, s)

(
Bµ(s) + f (s)

)
ds||Y

≤||
(
T (t2, 0) − T (t1, 0)

) ∫ b

0

m∑
k=1

Ytk(s)OT (t, s)
(
Bµ(s) + f (s)

)
ds||Y

+

∫ t1

0
||T (t2, s) − T (t1, s)|| ·

(
||a||L2(I,R) + c||u(s)||H + M1 · ||µ||L2(I,U)

)
ds

+ M
∫ t2

t1

(
||a||L2(I,R) + c||u(s)||Y M1 · ||µ||L2(I,U)

)
ds

=I1 + I2 + I3,

where

I1 = ||
(
T (t2, 0) − T (t1, 0)

) ∫ b

0

m∑
k=1

Ytk(s)OT (t, s)
(
Bµ(s) + f (s)

)
ds||Y ,

I2 =

∫ t1

0
||
(
T (t2, s) − T (t1, s)

)
|| ·

(
||a||L2(I,R) + c||u(s)||Y + ||µ||L2(I,U)

)
ds,

I3 = M
∫ t2

t1

(
||a||L2(I,R) + c||u(s)||Y M1||µ||L2(I,U)

)
ds.

(3.4)

For I1, applying Lemma 2.2, and Eqs (2.2), (2.4), (2.5), (3.3), and (3.4) along with hypothesis
H3(K), we know that

||

∫ b

0

m∑
k=1

Ytk(s)OT (tk, s)
(
Bµ(s) + f (s)

)
ds||Y ≤ MN1

∫ tk

0

(
||a||L2(I,R) + c||u||L2(I,Y) + M1||µ||L2(I,U)

)
ds

≤ MN1N2. (3.5)

Therefore, we get that I1 → 0 as t2 − t1 → 0. According to the compactness of T (t, s), we can easily
get that I2, I3 → 0 as t2 → t1.

Setp 3. Γ is completely continuous.
First, we will prove Γ(Br) is relatively compact in C(I,Y). Let

Φ(t) := {ϕ(t) : ϕ ∈ Γ(Br), ∀ t ∈ I}.

From (3.1), we can see that

(Γϕ)(0) =

∫ b

0
G(0, s) ·

(
Bµ(s) + f (s)

)
ds

=

∫ b

0

m∑
k=1

YtkT (0, 0)OT (tk, s)
(
Bµ(s) + f (s)

)
ds

=

m∑
k=1

dkO

∫ tk

0
T (tk, s)

(
Bµ(s) + f (s)

)
ds. (3.6)
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For every 0 < ε < tk and ϕ ∈ Γ(Br), we can define the operator

(Γεϕ)(0) = T (tk, tk −
ε

2
)T (tk −

ε

2
, tk − ε)

m∑
k=1

dkO

∫ tk−ε

0
T (tk − ε, s)(Bµ(s) + f (s))ds,

From the compactness of T (tk −
ε
2 , tk − ε), {(Γεϕ)(0)} is relatively compact in Y . In addition,

||(Γεϕ)(0) − (Γϕ)(0)||H ≤||T (tk, tk −
ε

2
)T (tk −

ε

2
, tk − ε)

m∑
k=1

dkO

∫ tk−ε

0
T (tk − ε, s)

(
Bµ(s) + f (s)

)
ds

−

m∑
k=1

dkO

∫ tk−ε

0
T (tk, s)

(
Bµ(s) + f (s)

)
ds||Y

+ ||

m∑
k=1

dkO

∫ tk

tk−ε
T (tk, ε)

(
Bµ(s) + f (s)

)
ds||Y

≤MN1

∫ tk

tk−ε
||Bµ(s) + f (s)||Yds

≤MN1
( ∫ tk

tk−ε
||a||L2(I,R)ds + cr + M1||µ||L2(I,U)ds

)
→ 0 as (ε→ 0). (3.7)

Therefore, we prove the existence of relatively compact sets {(Γεϕ)}(0) that are arbitrarily close to
{(Γϕ)(0) : ϕ ∈ Γ(Br)}, and we can easily see that (Γϕ)(0) is relatively compact in Y. We define the
operator Γεϕ as

(Γεϕ)(t)=

m∑
k=1

dkT(t,0)O
∫ tk

0
T (tk,s)

(
Bµ(s)+ f (s)

)
ds+T (t,t−

ε

2
)T (t−

ε

2
,t−ε)

∫ t−ε

0
T (t−ε, s)

(
Bµ(s)+ f (s)

)
ds.

From the compactness T (t − ε
2 , t − ε) and T (t, 0) in Y, we can see that {(Γεϕ)(t) : ϕ ∈ Br} is relatively

compact in Y for any ε ∈ (0, t).Using the same method as (3.7), we get that there are relatively compact
sets {(Γεϕ)(t) : ϕ ∈ Br} arbitrarily close to {(Γϕ) : ϕ ∈ Br} that are also relatively compact in Y. Hence,
{(Γϕ)(t) : ϕ ∈ Br} is also relatively compact in Y for t ∈ I. Therefore, the set {(Γϕ)(t) : ϕ ∈ Br} is
relatively compact in Y for t ∈ I. Moreover, this means that Φ(t) is relatively compact in Y . The proof
of this step can be completed by using the Arzela-Ascoli theorem combined with step 2.
Step 4. Γ has a closed graph.

We suppose that un → u in C(I,Y) and ϕn → ϕ∗ in C(I,Y) with ϕn ∈ Γ(un). If ϕn ∈ Γ(u) and there
exists fn ∈ M(un) such that

ϕn(t) =

∫ b

0
G(t, s)

(
Bµ(s) + fn(s)

)
ds, (3.8)

then we can see from condition H3(K) that { fn}n≥1 is bounded in L2(I,Y). Therefore, we can assume
that

fn → f ∗ weakly in L2(I,Y). (3.9)
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By the compactness of T (t, s), (3.8), and (3.9), we know that

ϕn(t)→
∫ b

0
G(t, s)

(
Bµ(s) + f ∗(s)

)
ds. (3.10)

Because ϕn → ϕ∗ in C(I,Y) and fn ∈ M(un), from Lemma 3.2 and (3.10), we know that f ∗ ∈ M(u∗).
Therefore, we can prove that ϕ∗ ∈ Γ(u∗).
Step 5. A priori estimate.

It can be seen from [23, Proposition 3.1.2] that Γ is u.s.c. From the above four steps, it can be
concluded that Γ satisfies all the conditions of Theorem 2.1.

We assume that
Λ := {T ∈ C(I,Y) : u ∈ ηΓ(u), 0 < η < 1}.

Let u ∈ Λ, 0 < η < 1. There is an f ∈ M(u) such that

u(t) = η

∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds.

By condition H3(K),

||u(t)||Y ≤ ||η
∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds||Y ≤ ||

∫ b

0
G(t, s)

(
Bµ(s) + f (s)

)
ds||Y ≤ MN2(MN1 + 1),

for all t ∈ J.
From Theorem 2.1, Γ has a fixed point, which means that this fixed point is the mild solution of

system (2.1). �

4. Approximate controllability results

For convenience, we first introduce the non-bounded linear operator

Γb
0 =

∫ b

0
G(b, s)BB∗G∗(b, s)ds

on Y, where B∗ is the adjoint operator of B,

G∗(b, s) =

m∑
k=1

Ytk(s)T ∗(b, 0)O∗T ∗(tk, s) +Yb(s)T ∗(b, s), s ∈ [0, b],

where O∗ and T ∗(t, s) denote the adjoint operators of O and T (t, s). Hence, the inverse of εI + Γb
0

exists, i.e., the resolvent
R(ε,−Γb

0) = (εI + Γb
0)−1, ∀ ε > 0.

From Lemma 3.1, it easy to see that for each u ∈ C(I,Y) ⊂ L2(I,Y), M(u) , ∅ is satisfied.
Therefore, for any ε > 0, let Γε : C(I,Y)→ 2C(I,Y) as follows:

Γε(u) = {h ∈ C(I,Y) : h(t) =

∫ b

0
G(t, s)

(
Bµε(s) + f (s)

)
ds, f ∈ M(u)},
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where the control function µε(t) = B∗G∗(b, s)R(ε,Γb
0)p(uε(·)) with

p(uε(·)) = ub −

∫ b

0
G(b, s) f ε(s)ds. (4.1)

The following assumptions will be used in the subsequent proof process.
H4(K): There exists a function a ∈ L2(J,R) such that

||K(t, u)||Y := sup{||χ||Y H : χ ∈ K(t, u) ≤ a(t),∀ t ∈ I}.

Theorem 4.1. Assume that conditions (B1)–(B4), (C1)–(C2), H1(K), H2(K), and H4(K) are satisfied.
Then, system (2.1) is approximately controllable on I.

Proof. Since condition H4(K) implies condition H3(K), it follows from Theorem 3.1 that Γε has a fixed
point uε ∈ C(I,Y). This means that uε ∈ C(I,Y) is a mild solution of (2.1) for every ε > 0. Hence there
exists f ε ∈ M(uε) such that

uε(t) =

∫ b

0
G(t, s)

(
f ε(s) + BB∗G∗(b, t)R(ε,−Γb

0 p(uε(·)))
)
ds. (4.2)

Hence,

uε(b) =

∫ b

0
G(a, s)

(
f ε(s) + BB∗G∗(b, t)R(ε,−Γb

0 p(uε(·)))
)
ds

= ub − p(uε(·)) +

∫ b

0
G(b, s)BB∗G∗(b, s)R(ε,Γb

0)p(uε(·))ds

= ub − p(uε(·)) +

∫ b

0
G(b, s)BB∗G∗(b, s)R(ε,Γb

0)p(uε(·))ds

= ub − (εI + Γb
0)R(ε,Γb

0)p(uε(·)) + Γb
0R(ε,Γb

0)p(uε(·))
= ub − εR(ε,Γb

0)p(uε(·)) (4.3)

with p(uε(·)) = ub −
∫ b

0
G(b, s) f ε(s)ds.

From condition H4(K), we can see∫ b

0
|| f ε(s)||Yds ≤ ||a||L2(I,R)

√
b.

Using (4.2) and Gronwall’s inequality, it is easy to see that { f ε} ∈ L2(I,Y) is bounded. Therefore, there
exists a subsequence converging weakly to f in L2(I,Y).

Let

z := ub −

∫ b

0
G(b, s) f (s)ds. (4.4)

Therefore, from (4.1) and (4.4), we get that

||p(uε) − z||)Y ≤ ||

∫ b

0
G(b, s)

(
f ε(s) − f (s)

)
ds||Y . (4.5)
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Because T (t, s) is compact, G(t, s) is also compact. This means that

g(t)→
∫ t

0
G(t, s)g(s)ds, ∀ t ∈ I

is compact and ∫ b

0
G(t, s)

(
f ε(s) − f (s)

)
ds→ 0 (as ε→ 0). (4.6)

Hence, from (4.5) and (4.6), we have

||p(uε) − z||Y → 0, as ε→ 0. (4.7)

Hence, from (4.3) and (4.7), we get that

||uε(b) − ub||Y = ||εR(ε,Γb
0)p(uε)||Y .

≤||εR(ε,Γb
0)z||Y + ||εR(ε,Γb

0)|| · ||p(uε) − z||Y
≤||εR(ε,Γb

0)z||Y + ||p(uε) − z||Y
→ 0, as ε→ 0. (4.8)

Consider the arbitrariness of ub ∈ Y , such that problem (2.1) is approximately controllable on I. �

Now we consider the controlling inequality (1.1). Assume that the function J : I × Y → R is as
follows:

B1(J) For every u ∈ Y , the function t 7→ J(t, u) is measurable.
B2(J) For any t ∈ I, the function t 7→ J(t, u) is locally Lipshitz.
B3(J) There exists the function a ∈ L2(I,R), for ∀ t ∈ I, u ∈ Y, such that

||∂J(t, u)||Y := sup{|| f ||Y : f ∈ ∂J(t, u)} ≤ a(t).

Corollary 4.1. If the conditions (B1)–(B4), (C1)–(C2), and B1(J)–B3(J) are satisfied, then
inequality (1.1) is approximately controllable on J.

Proof. Conditions B1(J)–B3(J) imply conditions H1(K), H2(K), and H4(K) for K(t, u) = ∂J(t, u).
Hence, the proof of this inference can be completed by Theorem 4.1 and Definitions 2.3. �

5. Application

Byszewski studied the existence and uniqueness of moderate solutions for evolutionary equations
with non-local initial conditions in [6]. The author pointed out that evolutionary equations with non-
local initial conditions can more realistically depict the diffusion phenomena of gases in a heavy
tube. In the context of practical problems, non-local initial conditions have a better application
effect compared to conventional initial conditions. Therefore, it is necessary to discuss the non-local
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condition. To demonstrate that our main results can solve practical problems, we consider the following
non local condition problem:

〈− ∂
∂t w(y, t) + ∂2

∂y2 w(y, t) − b1(t)w(y, t) + kϑ(y, t), ρ〉H + J0(w(y, t), t; ρ) ≥ 0, ∀ ρ ∈ Y,
w(0, t) = w(π, t) = 0, ∀ t ∈ P,

w(y, 0) =
n∑

k=1
dkw(tk), ∀ y ∈ [0, π],

(5.1)

where w(y, t) represents temperature, t represents time, and ∂
∂t w(y, t) represents the rate of change of

temperature versus time. The function b1(t) is a continuously differentiable, Y is a Hilbert space,

bmin = min
t∈P

b1(t) > −1,

a1 is a constants, P = [0, a1], ϑ ∈ L2(J, L2(0, π;R)), and dk ∈ R, k = 1, 2, · · · ,m.
Inequality (5.1) can be transformed into the following evolutionary inclusion problem with non-

local conditions.
∂
∂t w(y, t) ∈ ∂2

∂y2 w(y, t) − b1(t)w(y, t) + kϑ(y, t) + ∂J(w(y, t), t), ∀ t ∈ P = [0, a1],
w(0, t) = w(π, t) = 0, ∀ t ∈ P,

w(y, 0) =
n∑

k=1
dkw(tk), ∀ y ∈ [0, π].

(5.2)

Let Y = L2((0, π);R). We define the operator Q

Qw :=
∂2

∂y2 w, w ∈ D(Q), (5.3)

where
D(Q) := {w ∈ Y,w′′ ∈ Y,w(0) = w(π) = 0}.

According to Pazy [20], we can conclude that Q generates a compact and analytic C0-semigroup in

Y , with eigenvalues −n2, and eigenvectors vn =

√
2
π

sin(ny), n ∈ N+.

We define the operator N on Y as

N(t)w = Qw − b1(t)w.

The domain
D(N(t)) = D(Q), ∀ t ∈ P.

It is known from [24] that there is a constants C1 ≥ 0 and there exists λ ∈ C such that N(t) satisfies
the condition (B2). Additionally, using the coefficient b1 and results from [20], we know that there
exists constants C2 > 0 and β ∈ (0, 1] such that condition (B3) is satisfied. Because the operator
Q generates a compact semigroup, it is easy to verify, and condition (B4) holds. Hence, the N(t)
generates a strongly continuous evolution family

T (t, s)w =

∞∑
n=1

e−(
∫ t

s b(τ)dτ+n2(t−s))〈w, vn〉vn, 0 ≤ s ≤ t ≤ 1, w ∈ Y.
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It is easy to know that

||T (t, s)|| ≤ e−(1+bmin)(t−s), (5.4)

and we have
M := sup

0≤s≤t≤a1

||T (t, s)|| = 1.

From [20], we know that T (t, s) is compact. The bounded linear operator

Bϑ(t) = kϑ(·, t).

At this point, we can easily see that the partial differential and variational inequality problem (5.1)
is transformed into an abstract that includes problem (2.6).

Theorem 5.1. If condition B3(J) and
m∑

k=1
|dk| < 1 are satisfied, then the hemivariational evolution

inequality with nonlocal condition (5.1) is approximately controllable on P .

Proof. We can see that conditions (B1), B1(J), and B2(J) are satisfied. Because M :=

sup
0≤s≤t≤a1

||T (t, s)|| = 1, then 1
M = 1. From condition

m∑
k=1
|dk| < 1 we can know that

m∑
k=1

|dk| <
1
M
.

This means that condition (C1) holds. From the boundedness of linear operator B, we can verify that
condition (C2) is satisfied. Applying Corollary 4.1, we can see that problem (5.1) is approximately
controllable on P. �

6. Summary and outlook

The main work of this article is to discuss the near sighted controllability of the hemivariational
evolution inequality under a non-local condition in Hilbert space. Due to the limitations of Hilbert
space, we will consider extending the relevant results to ordinary Banach spaces in the future, which is
a challenging task.
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