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Abstract: Group testing is an efficient screening method that reduces the number of tests by pooling
multiple samples, making it especially effective in low-prevalence settings. This strategy gained
significant attention during the COVID-19 pandemic, and has since been applied to detect various
infectious diseases, including HIV, chlamydia, gonorrhea, influenza, and Zika virus. In this paper,
we introduce a semi-parametric logistic single-index model for analyzing high-dimensional group
testing data, which is particularly flexible in capturing complex nonlinear relationships. The proposed
method achieves variable selection by parameter regularization, which proves especially beneficial for
extracting relevant information from high-dimensional data. The performance of the model is evaluated
through simulations across four group testing strategies: master pool testing, Dorfman testing, halving
testing, and array testing. Further validation is provided using real-world data. The results demonstrate
that our approach offers a flexible and robust tool for analyzing high-dimensional group testing data,
with important applications in epidemiology and public health.
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1. Introduction

Group testing, or pooled testing, was first introduced by Dorfman [1] to identify syphilis
infections among U.S. Army personnel during World War II. This approach involves combining
specimens (e.g., blood, plasma, urine, swabs) from multiple individuals and conducting a single
test to check for infection. According to Dorfman’s procedure, if the combined sample tests
negative, all individuals in this sample can be confirmed disease-free. Conversely, a positive result
necessitates further testing to identify the affected individuals. This strategy gained prominence during


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025163

3524

the COVID-19 pandemic [2-4] and has been applied to detect various infectious diseases, including
HIV [5,6], chlamydia and gonorrhea [7], influenza [8], and the Zika virus [9]. The primary motivation
for pooled testing lies in its economic efficiency; for instance, the State Hygienic Laboratory at the
University of Iowa saved approximately $3.1 million over five years by employing a modified Dorfman
protocol for testing chlamydia and gonorrhea among residents of Iowa [10, 11].

Despite its cost-effectiveness, group testing poses significant challenges for statistical analysis
due to the absence of individual response data [12]. However, advancements in digital technology
have provided access to rich covariate information, including demographic data, electronic health
records, genomic data, lifestyle data, physiological monitoring data, imaging data, and environmental
variables [13]. Integrating these covariates into various statistical models for group testing has been
shown to enhance accuracy and robustness, as evidenced by studies from Mokalled et al. [14], Huang
and Warasi [15], Haber et al. [16]. This integration leads to improved estimations of individual risk
probabilities, thereby reducing the number of tests required and overall costs.

In managing covariates, single-index models offer advantages, such as less restrictive assumptions,
good interpretability, and adaptability to high-dimensional data [17]. For high-dimensional single-
index models, Radchenko [18] proposed a novel estimation method based on L; regularization,
extending it to generalized linear models. Elmezouar et al. [19] developed a functional single index
expectile model with a nonparametric estimator to address spatial dependency in financial data,
showing strong consistency and practical applicability. Chen and Samworth [20] explored generalized
additive models, deriving non-parametric estimators for each additive component by maximizing
the likelihood function, and adapted this approach to generalized additive index models. Kereta
et al. [21] employed a k-nearest neighbor estimator, enhanced by geodesic metrics, to extend local
linear regression for single-index models. However, research on generalized semi-parametric single-
index models in high-dimensional contexts remains limited, particularly in group testing applications,
which are still underexplored.

Most current integrations of covariate information with group testing are developed based on
parametric regression models. For example, Wang et al. [22] introduced a comprehensive binary
regression framework, while McMahan et al. [11] developed a Bayesian regression framework.
Gregory et al. [23] adopted an adaptive elastic net method, which remains effective as data
dimensionality increases. Ko et al. [24] compared commonly used group testing procedures with
group lasso regarding true positive selection in high-dimensional genomic data analysis. Furthermore,
nonparametric regression methods have gained traction for applying covariates in group testing.
Delaigle and Hall [25] proposed a nonparametric method for estimating conditional probabilities and
testing specificity and sensitivity, addressing the unique dilution effects and complex data structures
inherent in group testing. Self et al. [26] introduced a Bayesian generalized additive regression
method to tackle dilution effects further, while Yuan et al. [12] developed a semiparametric monotone
regression model using the expectation-maximization (EM) algorithm to navigate the complexities of
group testing data. Zuo et al. [27] proposed a more flexible generalized nonparametric additive model,
utilizing B-splines and group lasso methods for model estimation in high-dimensional data.

This article proposes a generalized single-index group testing model aimed at enhancing flexibility
in addressing various nonlinear models and facilitating the selection of important variables. Given the
absence of individual disease testing results in group testing data, the EM algorithm is employed to
perform the necessary calculations for the model. B-spline functions are utilized to approximate the
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nonlinear unknown smooth functions, with model parameters estimated by maximizing the likelihood
function. In modern group testing, a substantial amount of individual covariate information is typically
collected during sample testing. Consequently, a penalty term is incorporated into the likelihood
function, promoting the construction of a sparse model and enabling effective variable selection. We
apply the method to four group testing strategies: master pool, Dorfman, halving, and array. The
method is evaluated using both simulated and real data.

The remaining sections are organized as follows. Section 2 introduces our model with B-spline
approximation, detailing the corresponding algorithm employing the EM algorithm. Section 3
elaborates on the E-step in the EM algorithm, facilitating the acceleration of our algorithm’s
convergence. Sections 4 and 5 present comprehensive simulations and real data application,
demonstrating the method’s robust performance. Finally, we conclude our findings and provide some
discussion in Section 6.

2. Primary results and methodological advancements

2.1. Logistic single-index model for high-dimensional covariates

Consider a dataset comprising n individuals. For each i € {1,2,...,n}, let the true disease status
of the i-th individual be denoted by Y. € {0,1}, where ¥; = 1 indicates disease presence, and
Y: = 0 indicates absence. Additionally, the dataset includes covariate information for each individual,
represented as X; = (X;,... ,Xiqn)T € R%, where R? denotes a g,-dimensional real vector space. We
assume the number of covariates g, is high-dimensional.

Let the risk probability for the i-th individual be defined as p; = Pr(¥; = 1 | X;), where i €
{1,2,...,n}. In many cases, the influence of covariates may be nonlinear; imposing linearity can result
in inaccurate estimations. This study explores nonlinear scenarios, assuming p; follows a flexible

logistic single-index model, expressed as

- ex XT
Pr(Y; = 11X;) = b e lli)] ; (2.1)
1 +exp [g(X]B)]
where B = (81,82, ...,8,,)" € R¥ represents the unknown parameters, and g(-) is an unknown smooth

function capturing the relationship between covariates and risk probabilities.
In semiparametric single-index models, the true parameters are generally considered non-
identifiable without imposed constraints. To ensure the identifiability of 8, we impose a classical

constraint: 8; = 1/1 —1B-1l?, where B_; = (52,83, . .. By € R%~! and || - ||, denotes the L,-norm.
Note that both the function g(-) and the coeflicient B in the single-index model are unknown. The
L,-norm constraint ||8]l, = 1 is crucial for the identifiability of B as shown by Carroll et al. [28], Zhu
et al. [29], Lin et al. [30], Cui et al. [31], and Guo et al. [32]. We assume that the true parameter B* is
sparse, defining the true model as M* = {j € {1,2,...,q,} B # 0}.

For i € {1,2,...,n}, Y follows a Binomial distribution with parameter p;, denoted as Y, ~
Binom(1, p;). In traditional single-index model studies, the true status Y = Y, i = 1,2,...,n},
is directly observable. However, in group testing, Y is unobservable [33]. This paper investigates
parameter estimation and statistical inference of single-index models based on group testing data.
Moreover, if a group test result is positive, further testing is required to identify infected individuals.
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These results may depend on shared characteristics, leading to correlations within group test outcomes,
complicating the modeling.

In group testing, we partition n individuals into J groups, denoted as Py 1, P21, ..., P,1. Here, P,
represents the initial index set of individuals for the j-th group, ensuring Ule?’j,l ={1,2,...,n}. For
J € {1,2,...,J}, if any testing result for #;; is positive, further testing may be warranted. Define

Zi=1{Z;;,1=1,2,...,L;} as the set of testing outcomes for the j-th group, where L; denotes the total
number of tests conducted within j-th group. Each Z;; € {0, 1}, where Z;; = 0 indicates a negative
result and Z;; = 1 indicates a positive result. If Z;; = 0, then L; = 1; otherwise, L; > 1. Let
Pi=1{Pjl=1,2,...,L;}, where P;; corresponds to the individuals associated with Z;;. Define Zz ;=
(Z 1 =1,2,...,L;} as the true status corresponding to Z;. The true statuses of individuals determine
the group’s true status, defined as Z =1 (Ziepﬂ 17,), where /(-) denotes the indicator function.

In practical applications, measurement error of the test kits exists. We define S, = Pr(Z;; = 1 |
Z; = 1) as sensitivity, representing the probability of correctly identifying positive samples, and S , =
Pr(Z;; = 0| Z;, = 0) as specificity, denoting the probability of correctly identifying negative samples,
where [ € {1,2,...,L;} and j € {1,2,...,J}. According to the definitions of S, and S ,, given the true
status Z;, the group’s testing results satisfy Z;,|Z;; ~ Binom (1, S.2(1 - Sp)l_Z"”).

Our approach is based on two widely accepted fundamental assumptions in group testing. The first
assumption is that S, and S, are independent of group size, supported by various studies [34—37]. The
second assumption posits that, given the true statuses of individuals in the j-th group {¥;,i € P i1}, the
group’s true statuses Z ; are mutually independent, as supported by previous research [23,34,35].

We apply our method to four group testing methods: master pool testing, Dorfman testing, halving
testing, and array testing. Figure 1 illustrates the process of four testing methods: (a) Master pool
testing, where a group of individuals (e.g., $;; consisting of individuals 1, 2, 3, and 4) is tested as a
whole to obtain the group testing result Z;; (b) Dorfman testing, where initially the same group testing
as in master pool testing is conducted, and if the result of the master pool testing is positive (Z;; = 1),
each individual in the group is then tested separately to obtain individual testing results Z;», Z;3, Z;4,
and Z;s; (c) Halving testing, where the entire group (e.g., ;1) is tested as a whole, and if the result is
positive (Z;; = 1), the group is divided into two subgroups (e.g., ;> and P, 3) for subgroup testing, and
if the result of subgroup testing is positive (e.g., Zj, = 1), individuals in the positive subgroup are then
tested individually; and (d) Array testing, where multiple individuals (e.g., 16 individuals) are arranged
in an array for group testing to obtain multiple group testing results such as Z;,, and if a specific group
testing result is positive (e.g., Z;; = 1), further subgroup testing is performed (e.g., obtaining results
Z;», Zj3), and if the group testing results for both the row and column where an individual is located
are positive (e.g., Z;3 = Z;4 = Z;7 = 1), the individuals (e.g., 6-th individual and 10-th individual) are
then tested.
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(a) Master pool testing (b) Dorfman testing (c) Halving testing
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Figure 1. A flowchart of four group testing procedure.

Due to the nature of group testing, the true status of individuals, denoted as NV , remains unknown.
Our objective is to estimate M*, B*, and g(-) based on observed data Z = {Z;, j = 1,2,...,J} and
covariate information X = (X, X,,...,X,)! € R™® to ascertain individual risk probabilities. The
likelihood function based on the observed data Z is defined as

PZX) = ), PZDHPIX), 22)
Yefo, 1)

where
L

J
P19y =] ]| P21 I»,),

j=1 I=1

~.

and %ﬁ, ={V.ice P;.} represents the set of true statuses for individuals in #;;. Furthermore, the
conditional probability P (Z i | ﬂpﬂ) is expressed as

Y Z; 1-2;,) % s
P(Zj,l | ij,,) = {Se/*[ (1 _ Sp) } {(1 _ SE)Z” Sp /,l}

The likelihood function for the true disease status Y can be written as

1-Zj;

PX) = | | pl'a - po'
i=1

Combining this with the logistic single-index model defined in (2.1), we obtain the log-likelihood

function for Y-
n

n P = ) {TigXTB) ~ n (1 + exp (X B)]). 23)

i=1
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Since the smooth function g(-) is unknown, we approximate it using B-spline functions. Let the
support interval of g(-) be [a, b]. We partition [a, b] at points a = dy < d; < ... < dy < b = dy4;
into several segments, referred to as knots or internal nodes. This division generates subintervals
Iy = [dy, diyq) for O < k < N — 1 and Iy = [dy, dy+1], ensuring that

maXo<i<y |di — dis 1]

o S M’
ming<<y |di — diy1l

where M € (0, ). The B-spline basis functions of order g are denoted as ®(-) =
T
(¢1('),¢2(-), . .,¢S(-)) € RS, with S = N + ¢. Thus, g(-) can be approximated as

N
HOEDI XS
s=1

where 7y, are the spline coefficients to be estimated [38]. Denote ¥ = (y1,%2,...,¥s)’ € RS. We
approximate g(X ) as
83X/ ) = @ (X Py,
where ®(X/B) = (¢1(Xl.Tﬁ), $(X[P), ..., s (XIT,B))T. Therefore, we approximate p; by using a spline
function, and denote the spline approximation of p; as p;g, which is defined as follows:
__exp[@T(X]B)]
1+ exp[®@T(X]B)y]
In the following, we use the spline approximation p;z of p; to construct the log-likelihood function and

the objective function in the subsequent EM algorithm. Thus, the log-likelihood function (2.3) for Y
can be reformulated as

(2.4)

PiB

n

InPyH0 = Y {T07 (XTB)y ~n (1 + exp [T (XTB)y] )}

i=1

Furthermore, the target likelihood function (2.2) can be represented as

PyZIX)= > PZY)PyIIX).
efo,1y
By employing spline approximation, we transform the estimation problem of B”, and g(-) into
estimating B8* | and y.
For high-dimensional group testing data, we aim to estimate 8, using the penalized approach
within a single-index model framework. The penalized log-likelihood function is defined as follows:

qn
InPR(ZIX) = > PaB), (2.5)

J=2

where P,(-) is the penalty function and A is a tuning parameter. We consider three common penalty
functions: LASSO [39], SCAD [40], and MCP [41]. Specifically, for LASSO, P,(x) = A|x|. For
SCAD, it is defined as

Alx| if x| < A4,
Py(x) = { 2L if ) < x| < 64,
@+ha if |x| > 64,

2
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where 6 > 2. In MCP, the penalty function is given by

Axl - % if x] < 64,

Pi(x) =
1 {%542 if [x] > 64,

with 6 > 1. The following section will detail the parameter estimation process.

2.2. EM algorithm for regularized single-index model in group testing

The penalized log-likelihood function (2.5) lacks the individual latent status /. The complete data
penalized log-likelihood function can be expressed as

qn qn
InP5(Z, Y1X) = > PaB)) = In P(ZIY) + In Pa(HIX) = > Pa(B)). (2.6)
J=2 j=2

Notably, In P(Z|Y) depends solely on known parameters S, and S »» allowing us to disregard it in
computations. The presence of the latent variable Y complicates direct maximization of the complete
data penalized log-likelihood function (2.6). Therefore, we employ the EM algorithm, comprising two
steps: the Expectation (E) step, and the Maximization (M) step.

In the E step, given the observed data Z and the parameters from the z-th iteration (ﬁ(_’)l,y(’)),
calculate the following function:

n qn
SOB-1,7) :E{ > {T@T (X7p)y - n(1+exp [@(XT ByY])}| 2.8, y“’} - > PaB)

i=1 j=2
2.7)

n

=S (W@ (KT8 y ~ (1 + exp[@7(TB)} - D PGB
=2

i=1

where wﬁt) = E[Y)|Z, ¥, ,B(_’)l], i = 1,2,...,n. The calculation of the wl@ varies among the four
grouping testing methods, which will be discussed in Section 3.
In the M step, we update /1" and y*+D, respectively. Initially, we update y*" by maximizing:

n

SOB Y =) {wﬁ”(lf (X78”)y —In(1 +exp [d)T(X?ﬁ(’))y])} - qZ P, @28
j=2

i=1

Subsequently, we maximize S ¥(8_,7*") to update the parameters 8"

n

SOB Y =) {wff)df (X7 B) 7" ~In(1 + exp [®T(X] .13)7(’“)])} - qz PaB).  (29)
j=2

i=1

Given that 5_; appears in each B-spline basis function ¢(X;' B), direct iteration presents challenges. Let
gUXTB) = ®T(X] B)yy"". We apply the approach by Guo et al. [42], approximating g*(X] ) via a
first-order Taylor expansion

§2X!B) ~ gXIBY) + 8V (X! BNOX! J(BYB-1 — B,
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-
where J(B) = OB/0B-; = (—ﬂ_l / / 1 —1B-1l12, an_l) represents the Jacobian matrix of size ¢, %(¢q,—1)
and I, _; denotes the (g, — 1)-dimensional identity matrix. This approximation is incorporated into
o (B-1, 7+D) to maximize the expression and update 87", Therefore, we approximate S ¥(8_;, ")
by SO(B_;,y"*) as follows:

n

4dn
$OB,y ") = (WX B) — In(1 + exp[3"(XTB)])} - > Pa(B))
j=2

i=1

=2 {Wﬁ” [0 XTB") + 2 X BOXTTB)B - BY)
i (2.10)

—1In (1 + exp [g(f)(Xf,B“)) +8(XTBXT J(B)(B-1 —ﬁ(_t)l)] )

dn

- Z P(B)).
=2

We employ stochastic gradient descent [43] and coordinate descent [44] to update ¥ and B,
respectively. Let 9 and B_, denote the estimated parameters, and M = {j € {1,2,...,q,} : B ; # 0}
represent the estimated model. Furthermore, ¥ and B_l can be used to calculate individual risk
probabilities and guide subsequent testing strategies. In summary, the EM algorithm offers a structured
approach to handle the latent variable V/ and estimate model parameters. The detailed steps of this
method are summarized in Algorithm 1.

Algorithm 1 Regularized single-index model for group testing.
Input: Z, X, .., and initialization (ﬁ(_ol) ,7'O).
For:t=0,1,2,...,

o Step 1 (E-step): In the E step, given the parameters (ﬁ(f)l,'y(’)) and Z, calculate the conditional
expectation S V(B_;,y) in (2.7).
o Step 2 (M-step): Update the iterative parameters 87" and "+ in two substeps:
1. Update P by maximizing S *(8“,y) in (2.8).
2. Update 87" by maximizing § (B_,,7“*D) in (2.10).

End for: Repeat steps 1 and 2 until parameters converge or reach the maximum number of iterations

tmax-

Output: The estimates 8_; and .

3. Calculation of conditional expectations

Implementing Algorithm 1 requires deriving formulas to calculate the conditional expectations of
individuals’ true statuses. These expressions are essential for the effective application of the EM
algorithm in various testing scenarios. Common group testing methods include master pool testing,
Dorfman testing, halving testing, and array testing. We have derived the conditional expectation

AIMS Mathematics Volume 10, Issue 2, 3523-3560.



3531

formula of these methods under our methodological framework, which will facilitate our other
calculations.

For master pool testing, samples are divided into J distinct groups, with each sample assigned to
only one group, and each group undergoes a single test without subsequent testing. When the i-th
individual is assigned to the j-th group, consider two cases for w(’)

While Z; = 0,

o _ PYi=1Z;=0) PZ;=0Y;=1PY;=1)
T PEZi=0) P(Z; = 0)

Due to
P(Z;=1)=P(Z;=1|Z;= DP(Z; = 1)+ P(Z; = 1|Z; = 0)P(Z,; = 0)

=S 1 -] [a-ppr+a-sy[ Ja-p

ieP; i€P;
=S, +(1-38, —Sp)l—[(l— 0y,
i€P;
letA;j =S, +(1-5.-5,) [T~ Eg), where p;p is an approximate result of p; in (2.4). Therefore,
i€P;
P(Zj:O):1—[Se+(1—Se—Sp)n(1 PN =1-A,
iEij
Then,
" (1-S.-ply _ (=50 pj
Wi =
1-[S.+(1-S5, —Sp)n(l— M (1-A))
ieP;
While Z; = 1,
=PY,=1Z;=1)
_p(Zj=11Y; = DP(¥; = 1)
B P(Z;=1)
S, p(f)
S +(1-S, —S,,)H(l— @
i€P;
S p(f)
A
In conclusion,
Lo [PTi=11Z;=0) = (1 =50)- P-4y, if Z;=0,
Co\PEi=1Z =) =S, pA,, if Z;=1.

We apply our method to four group testing algorithms: master pool testing, Dorfman testing, halving
testing, and array testing. For other algorithms, detailed expressions can be found in Appendix C. Using
these expressions, we apply the EM algorithm to estimate the model parameters.
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4. Simulation study

In this section, we assess the performance of the proposed method using simulated datasets. The
generation of covariates follows the approach described by Guo et al. [42]. Specifically, covariates
X € R™4 are drawn from a truncated multivariate normal distribution. We first generate covariates
from N(0, X), where X € R%*% and X;; = 0.5 for 1 < i, j < g,. These covariates are then truncated to
the range (-2, 2) to obtain X. We consider logistic single-index models to describe p; = Pr(¥; =11 X)),
with the function g(X; ) in the model (2.1) defined as follows,

Example 4.1. We set n = 500 and B* = (\/%725, \/12'5575, o,..., O)T. We consider two scenarios: g, = 50

and q, = 100. The model is described as follows:
8(XiB") =exp(X]B") - 7.
Under this setting, the disease prevalence is approximately 8.93%.

Example 4.2. We set n = 1000 and B* = (%, \%, %, 0,..., O)T. We consider two scenarios: g, = 100
and g, = 500. The model is described as follows:

§X7B) =X/ (1 - X/ B") +exp(X;B") - 6.
In this example, the disease prevalence is approximately 11.41%.

Example 4.3. We set g, = 50 and B* = (\/%, \/%, %81,0, ... ,O)T. We consider two scenarios:

n = 500 and n = 1000. The model is described as follows:

gXTB") =X/ B (1 - X7 B") +0.5 - sin (”Xéﬂ ) — 6.

In this example, the disease prevalence is approximately 9.42%.

Example 4.4. We set g, = 100 and B = (0.5,0.5,0.5,0.5,0,...,0)". Two scenarios are considered:
n =750 and n = 1000. The model is described as follows:

gXTB") = XTB°(1 - X7 B") + exp(X]B") + 0.1 - sin (”X" 'B*) ~6.

In this scenario, the disease prevalence is approximately 10.32%.

In our simulation study, we employed four group testing algorithms: master pool testing (MPT),
Dorfman testing (DT), halving testing (HT), and array testing (AT) to evaluate the model. For MPT,
DT, and HT, the group size was set to 4, while in AT, individuals were arranged in a 4 X 4 array.
Both sensitivity and specificity were fixed at §, = §, = 0.98. Based on the methodologies of Fan
and Li [40] and Zhang [41], we set ¢ values of 3.7 and 2 for SCAD and MCP, respectively. Each
scenario was simulated B = 100 times, where f?”’] denotes the estimated * in the b-th simulation, with
bef{l,2,...,B}.
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Following the approach of Guan et al. [45], we measured the estimation accuracy of f3 i (=
1,2,3,4) using the mean squared error (MSE), defined as

1< A
MSE =2 > (8~ B/, j=1.2.3.4.
b=1

We utilized average mean squared error (AMSE) to assess the accuracy of B, consistent with methods
employed by Wang and Yang [46]:

218" =B

T p=1

AMSE =

Average mean absolute error (AMAE) was used to evaluate the estimation performance of g(-) and
individual risk probabilities p; [42]. The AMAE for g(-) is defined as

B n
AMAE, = Bin > ‘g(X,»T B) - g(XT B,

b=1 i=1

. R ey LN
while the AMAE for pl[.b] = % is defined as
+e” i
1 B n
— * _ alb]
AMAEP - — pl‘ - pi s
Bn
b=1 i=1
« _ 8XBY
where p! = Tt

To evaluate variable selection performance, we employed true positive rate (TPR) and false positive
rate (FPR). The FPR represents the proportion of false positives among identified predictors, while the
TPR indicates the proportion of true positives among relevant predictors. Table 1 shows the results of
variable selection.

Table 1. Four outcomes of variable selection.

Metric Implication

True positive (TP) Actual positive and predicted positive

False positive (FP) Actual negative and predicted positive
False negative (FN) Actual positive and predicted negative
True negative (TN) Actual negative and predicted negative

TPR and FPR are defined as follows:

TP FP

TPR = ———, FPR= ———.
TP + FN FP + TN

The simulation results are summarized in Tables 2 to 5. As shown in the tables, the TPR was
approximately 97%, with a very low FPR. The result shows that the probability that M* is contained

in M is very close to 1. This demonstrates the notable performance of our model in variable selection.
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The AMAE for g(-) and p; was approximately 0.5 and 0.01, respectively. This shows that we have
accurately captured the form of the unknown smooth function g(-) and are able to precisely predict the
individual risk probability. The AMSE for the model parameters 8 was around 10~*, while the AMSE
for significant variables B; was approximately 1073, This demonstrates the accuracy of our model in
parameter estimation.

We set up two different sample sizes (n) or covariate scenarios (g,) for each example. Results
of Examples 4.1 and 4.2 suggest that our method maintains robust estimation performance as
dimensionality increases in small sample scenarios. Furthermore, results of Examples 4.3 and 4.4
demonstrate that estimation accuracy improves with increased sample size. Figure 2 illustrates the
estimation performance of g(-) and individual risk probabilities p;, confirming our method’s efficacy in
estimating unknown functions and risk probabilities.

Table 2. Simulation results for Example 4.1.

AMAE AMSE MSE

Model Setting Test Penalty TPR FPR  g() Prob B B o2
MPT 0.980 0.061 0.325 0.011 0.0003 0.0022 0.0015
HT MCP 0.985 0.003 0.413 0.007 0.0002 0.0068 0.0025
DT 0.968 0.062 0.295 0.011 0.0003 0.0001 0.0004
AT 0.987 0.035 0.388 0.009 0.0004 0.0019 0.0009
MPT 0.967 0.060 0.508 0.014 0.0003 0.0012 0.0021
g,=50 HT SCAD 0.988 0.001 0.479 0.008 0.0001 0.0021 0.0023
DT 0.980 0.051 0.511 0.012 0.0003 0.0005 0.0004
AT 0974 0.063 0.432 0.009 0.0003 0.0035 0.0024
MPT 0.964 0.060 0.337 0.011 0.0003 0.0038 0.0051
HT LASSO 0.986 0.003 0.436 0.006 0.0001 0.0003 0.0002
Example 4.1 DT 1.000 0.029 0.522 0.013 0.0001 0.0004 0.0003
(n=500) AT 0.981 0.034 0.320 0.007 0.0001 0.0006 0.0008
MPT 0.985 0.010 0.511 0.009 0.0001 0.0004 0.0004
HT MCP 0.973 0.038 0.374 0.009 0.0002 0.0022 0.0033
DT 0.986 0.023 0.338 0.010 0.0001 0.0004 0.0001
AT 0.982 0.023 0.470 0.005 0.0001 0.0004 0.0005
MPT 0.987 0.031 0.265 0.013 0.0002 0.0002 0.0003
g,=100 HT SCAD 0.988 0.038 0.458 0.015 0.0005 0.0017 0.0001
DT 0.978 0.051 0.451 0.011 0.0001 0.0008 0.0004
AT 0.985 0.010 0.422 0.009 0.0001 0.0058 0.0047
MPT 0.987 0.026 0.478 0.010 0.0001 0.0008 0.0012
HT LASSO 0.966 0.044 0.364 0.011 0.0003 0.0029 0.0052
DT 0.984 0.031 0.503 0.012 0.0001 0.0001 0.0003
AT 0.987 0.031 0.401 0.008 0.0001 0.0016 0.0014
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Table 3. Simulation results for Example 4.2.

AMAE AMSE MSE
Model Setting Test Penalty TPR FPR g() Prob B B B> B3
MPT 0.980 0.001 0.569 0.011 0.0001 0.0006 0.0025 0.0073
HT MCP 0.974 0.001 0.626 0.012 0.0003 0.0059 0.0167 0.0054
DT 0971 0.027 0.601 0.012 0.0002 0.0035 0.0022 0.0019
AT 0.986 0.010 0.582 0.011 0.0001 0.0059 0.0011 0.0032
MPT 0.970 0.019 0.551 0.010 2 0.0014 0.0006 0.0011
—100 HT 0964 0.029 0.588 0.011 0.0001 0.0021 0.0041 0.0001
an SCAD
DT 0972 0.021 0.572 0.011 0.0001 0.0037 0.0002 0.0034
AT 0971 0.021 0.575 0.011 0.0001 0.0057 0.0005 0.0042
MPT 0974 0.048 0.553 0.010 0.0001 0.0000 0.0002 0.0003
HT 0972 0.056 0.601 0.010 0.0001 0.0003 0.0001 0.0006
LASSO
DT 0.982 0.021 0.574 0.010 0.0001 0.0035 0.0001 0.0042
Example 4.2
AT 0.986 0.010 0.584 0.011 0.0001 0.0041 0.0002 0.0056
(n=1000)
MPT 0964 0.011 0.562 0.013 0.0001 0.0005 0.0015 0.0042
HT MCP 0972 0.010 0.670 0.018 0.0001 0.0056 0.0001 0.0115
DT 0.987 0.011 0.567 0.012 * 0.0044 0.0003 0.0058
AT 0.986 0.020 0.669 0.015 0.0001 0.0022 0.0108 0.0012
MPT 0.965 0.014 0.515 0.010 0.0001 0.0003 0.0055 0.0045
—500 HT 0.968 0.018 0.547 0.015 0.0001 0.0023 0.0112 0.0069
an SCAD
DT 0.989 0.007 0.534 0.011 0.0001 0.0048 0.0001 0.0047
AT 0.985 0.005 0.608 0.010 * 0.0042 0.0021 0.0007
MPT 0978 0.006 0.536 0.012 0.0001 0.0013 0.0132 0.0104
0.970 0.002 0.644 0.015 0.0001 0.0000 0.0092 0.0126
LASSO
DT 0.987 0.005 0.545 0.012 * 0.0015 0.0007 0.0019
AT 0.981 0.002 0.526 0.012 * 0.0011 0.0093 0.0045

Symbol * indicates value smaller than 0.0001.
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Table 4. Simulation results for Example 4.3.

AMAE AMSE MSE
Model Setting Test Penalty TPR FPR g() Prob B Bi B2 B3
MPT 0951 0.103 0.466 0.019 0.0003 0.0003 0.0009 0.0011
HT MCP 0.966 0.091 0.571 0.021 0.0005 0.0007 0.0036 0.0045
DT 0.982 0.043 0.360 0.006 0.0001 0.0002 0.0001 0.0001
AT 0981 0.021 0.464 0.012 0.0001 0.0005 0.0009 0.0006
MPT 0.957 0.139 0.527 0.023 0.0005 0.0001 0.0031 0.0098
n=500 HT SCAD 0.968 0.082 0.433 0.020 0.0004 0.0006 0.0001 0.0003
DT 0.954 0.140 0.411 0.013 0.0002 0.0011 0.0018 0.0012
AT 0972 0.064 0.793 0.018 0.0002 0.0038 0.0021 0.0004
MPT 0.981 0.024 0.604 0.021 0.0003 0.0042 0.0014 0.0019
HT LASSO 0.983 0.021 0.432 0.026 0.0001 0.0017 0.0005 0.0016
DT 0.971 0.094 0.470 0.013 0.0002 0.0004 0.0014 0.0023
Example 4.3
(@=50) AT 0.980 0.061 0.447 0.013 0.0002 0.0002 0.0004 0.0015
MPT 0.988 0.040 0.358 0.015 0.0002 0.0011 0.0024 0.0042
HT MCP 0.984 0.021 0.399 0.017 0.0006 0.0008 0.0009 0.0013
DT 0.989 0.000 0.583 0.014 0.0001 0.0001 0.0019 0.0024
AT 0.985 0.009 0.405 0.013 0.0001 0.0017 0.0041 0.0012
MPT 0.989 0.043 0.537 0.016 0.0002 0.0025 0.0004 0.0038
n=1000 HT SCAD 0.987 0.003 0.512 0.012 0.0001 0.0012 0.0032 0.0031
DT 0.986 0.003 0.515 0.012 0.0001 0.0001 0.0002 0.0004
AT 1.000 0.000 0.410 0.013 0.0001 0.0013 0.0022 0.0013
MPT 0.988 0.004 0.441 0.011 0.0002 0.0029 0.0012 0.0021
LASSO 0.982 0.007 0.326 0.007 0.0001 0.0002 0.0004 0.0002
DT 0.987 0.008 0.489 0.013 0.0001 0.0008 0.0001 0.0032
AT 0.977 0.043 0.283 0.007 0.0001 0.0012 0.0024 0.0034
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Table 5. Simulation results for Example 4.4.

AMAE AMSE MSE
Model Setting Test Penalty TPR FPR  g() Prob B B B2 B3 Ba
MPT 0.979 0.053 0.744 0.019 0.0004 0.0028 0.0015 0.0036 0.0076
HT MCP 0.959 0.100 0970 0.027 0.0011 0.0024 0.0005 0.0022 0.0018
DT 0986 0.035 0.611 0.011 0.0001 0.0001 0.0025 0.0034 0.0016
AT 0.984 0.043 0.789 0.013 0.0002 0.0012 0.0051 0.0026 0.0012
MPT 0.966 0.059 0.723 0.014 0.0003 0.0030 0.0078 0.0081 0.0001
n=750 HT SCAD 0978 0.069 0.576 0.014 0.0002 0.0004 0.0083 0.0052 0.0002
DT 0.989 0.063 0.698 0.013 0.0003 0.0034 0.0155 0.0011 0.0051
AT 0981 0.052 0.671 0.022 0.0005 0.0078 0.0023 0.0085 0.0073
MPT 0977 0.072 0.620 0.014 0.0003 0.0047 0.0041 0.0141 0.0002
HT LASSO 0.964 0.069 0.680 0.015 0.0003 0.0018 0.0071 0.0073 0.0007
DT 0986 0.041 0.581 0.016 0.0003 0.0034 0.0090 0.0014 0.0005
Example 4.4
(0,=100) AT 0984 0.065 0.679 0.016 0.0003 0.0001 0.0095 0.0065 0.0003
MPT 0.967 0.029 0.706 0.015 0.0002 0.0068 0.0097 0.0022 0.0015
HT MCP 0.986 0.001 0.818 0.012 0.0001 0.0035 0.0061 0.0007 0.0001
DT 0.987 0.032 0.872 0.012 0.0002 0.0007 0.0074 0.0017 0.0016
AT 0.988 0.037 0.800 0.027 0.0002 0.0013 0.0061 0.0002 0.0025
MPT 0961 0.059 0.724 0.015 0.0002 0.0081 0.0087 0.0030 0.0006
n=1000 HT SCAD 0974 0.010 0.779 0.013 0.0001 0.0036 0.0066 0.0012 0.0001
DT 0.983 0.071 0.405 0.010 0.0001 0.0013 0.0059 0.0008 0.0001
AT 0981 0.041 0422 0.010 0.0001 0.0003 0.0009 0.0020 0.0011
MPT 0.977 0.029 0.819 0.017 0.0004 0.0057 0.0012 0.0083 0.0079
LASSO 0.951 0.004 0.545 0.043 0.0001 0.0093 0.0004 0.0004 0.0025
DT 0.985 0.021 0.408 0.009 0.0001 0.0002 0.0011 0.0026 0.0007
AT 0.989 0.008 0.581 0.010 0.0001 0.0042 0.0003 0.0004 0.0008
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Figure 2. Estimation of unknown function (a) and risk probability (b) in Example 4.2, with
n = 1000 and g, = 500, using MPT and the SCAD penalty function.

Moreover, we aim to evaluate our method’s performance under different group sizes. Using
Example 4.4, we investigated group sizes of 2, 4, 6, and 8 with the Dorfman algorithm and LASSO
penalty function. Results are presented in Table 6, reporting the means of /3 jfor j = 1,2,3,4. The
simulation results indicate that our method consistently delivers strong estimation performance across
various group sizes. At the same time, we set up comparative experiments with different S, and S,
and the simulation results are shown in Tables 8 to 11 in Appendix A. As shown in these tables, our
model maintains a certain level of stability, ensuring that M is still contained within M.

Table 6. Simulation results for different group size.
AMAE MEAN

Model Setting Group Size TPR FPR  g() Prob S B> B3 on

2 0.970 0.015 0.611 0.011 0.452 0.465 0.478 0.460
0.965 0.020 0.581 0.016 0.445 0.405 0.464 0477
0.986 0.041 0.627 0.009 0.519 0.497 0.487 0.495
0973 0.020 0.594 0.012 0471 0.467 0.484 0477

0974 0.014 0.447 0.009 0.468 0.484 0.473 0.485
0.964 0.018 0.408 0.009 0.489 0.468 0.450 0.474
0.985 0.021 0.440 0.011 0.486 0.478 0.443 0471
0.974 0.010 0.466 0.009 0.494 0.494 0.447 0.437

n=750

Example 4
(4,=100)

n=1000

o o) W SN N I Be i@ N N

5. Application to real data

In this section, we validate the effectiveness of our method using the diabetes dataset from the
National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2004.
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NHANES is a probability-based cross-sectional survey representing the U.S. population, collecting
demographic, health history, and behavioral information through household interviews. Participants
were also invited to equip mobile examination centers for detailed physical, psychological, and
laboratory assessments. The dataset is accessible at https://wwwn.cdc.gov/Nchs/Nhanes/.

The dataset comprises n = 5515 records and 17 variables, categorizing individuals as diabetic or
non-diabetic. Covariates include age (X;), waist circumference (X,), BMI (X3), height (X,), weight
(Xs), smoking age (Xg), alcohol use (X7), leg length (Xy), total cholesterol (Xo), hypertension (X),
education level (X;;), household income (X},), family history (X;3), physical activity (Xy4), gender
(Xis), and race (X;6). Notably, nominal variables from Xy to X;¢ are transformed using one-hot
encoding, resulting in g, = 47 covariates per individual. The first nine variables are continuous,
while the remainder are binary. A detailed explanation of the variables as well as the content of
the questionnaire can be found athttps://wwwn.cdc.gov/Nchs/Nhanes/search/default.aspx.
For convenience, the nominal variables are explained in Table 12. in Appendix B.

Fori € {1,2,...,n}, we define ¥; = 1 for diabetes and ¥; = 0 for non-diabetes. Individual covariate
information is represented as X; = (X;1, X, . .., Xj;,) T We construct the following single-index model
for the probability of diabetes risk for the i-th individual:

- ex X'
Pr(F, = 1X,) = P [s(X]B)]

1 +expg(X7B)I

where the smooth function g(-) is unknown, and our objective is to estimate the coeflicients .

To verify the accuracy of our method, we compare the results with those obtained from two other
methods. The first method is penalized logistic regression (PLR), which uses the true individual
status, ¥;. This method is implemented using the R package “glmnet”. The second method is the
adaptive elastic net for group testing (aenetgt) data, as introduced by Gregory et al. [23]. This approach
utilizes group testing data and employs a penalized Expectation-Maximization (EM) algorithm to fit
an adaptive elastic net logistic regression model. The R package “aenetgt” is used for implementation.
We generate Dorfman group testing data with a group size of 6, setting both sensitivity and specificity
atS, =S5, =098

To ensure comparability, we adhere to the standardization techniques referenced in Cui et al. [31].
First, we center the covariates to facilitate the comparison of relative effects across different explanatory
variables. Second, we normalize the PLR and aenetgt coefficients by dividing them by their L,-norm,
as follows: ) R

pnorm __ BPLR ﬁnorm _ ﬁaenet

PLR — A ’ aenet — | A s
1BpLrll2 1Bacnetll2

thereby obtaining coefficients with unit norm. This enables a comparison of regression coeflicients
from PLR, aenetgt, and the single-index group testing model.
The estimated coeflicients from the three models are summarized in Table 7, and the parameter

estimation of our method is denoted as 3, In this study, the estimated coefficients for age, 5™

and f,,,, are 0.280 and 0.307, respectively, indicating that the risk of diabetes increases with age,
consistent with the findings of Turi et al. [47]. However, the coefficient Rrorm s close to zero. For

aenet

waist circumference, the coeflicients B’;(’L’I’e” Bour» and B are 0.178, 0.194, and 0.271, respectively,

suggesting a positive association between waist circumference and diabetes risk, which is supported
by Bai et al. [48] and Snijder et al. [49]. In addition, all three methods also identified leg length [50],
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hypertension [51], race [52], family history [53], and sex [54] as variables associated with diabetes.
These covariates are widely recognized as being related to diabetes in the biomedical field [55].

We found that the covariable physical activity is associated with diabetes, but the aenetgt method
failed to identify this association. The results of a study by Yu et al. [55], which used the same dataset
as ours, are consistent with this finding. In addition, we found that education level was also a covariable
associated with diabetes (5% and 3,,,, are -0.523 and -0.335). Evidence for this association can also be
found in the study by Aldossari et al. [56], and in this dataset, the probability that these participants will
not develop diabetes is 100%. We also identified that household income is associated with diabetes,
which is consistent with the study by Yen et al. [5S7]. In this dataset, the probability of developing
diabetes for those who refused to answer about their household income is 60%. Furthermore, our
model yields results similar to those obtained by the PLR method, which uses individual observations
), suggesting that our method is able to extract information from group observations.

Table 7. Estimated coefficients for the real data model.

: pnorm A pnorm : pnorm A pnorm : pnorm A pnorm
Variable PLR ﬁuur aenet Variable PLR ﬁuur aenet Variable PLR :Bour aenet

age 0.280 0.307 -0.085 Family history Household income

waist circumference  0.178  0.194  0.271  family historyl 0.000 0.000 0.000 household incomel  0.000 0.000 0.000

BMI 0.000 0.000 0.000 family history2 -0.492 -0.567 -0.466 household income2  0.024 0.000 0.000
height 0.000 0.000 0.000 family history9 0.000 0.000 0.000 household income3  0.000 0.000 0.000
weight 0.000 0.000 0.000 Physical activity household income4  0.000 -0.069 0.000
smoking age 0.000 0.007 0.000 physical activityl 0.000 0.056 0.000 household income5  0.000 0.000 0.000
alcohol use 0.009 0.013 0.000 physical activity2 -0.086 -0.018 0.000 household income6  0.000 0.000 0.000
leg length -0.048 -0.100 -0.043 physical activity3 -0.134 -0.039 0.000 household income7  0.000 0.000 0.000

total cholesterol 0.000 0.000 0.000 physical activity4 -0.088 0.000 0.000 household income8  0.001 0.065 0.000

Hypertension physical activity9  0.000 0.000 0.000 household income9  0.000 0.000 0.000
hypertension1 0.000 0.000 0.000 Sex household incomel10 0.000 0.000 0.000
hypertension2 -0.350 -0.372 -0.641 sexl -0.010 0.000 0.000 household incomell 0.000 0.000 0.000
Education sex2 -0.237 -0.225 -0.424 household incomel2 0.000 0.000  0.000
educationl 0.000 0.000 0.000 race household incomel13 0.000 0.000 0.000
education2 0.000 0.000 0.000 racel 0.000 0.000 0.000 household income77 0.000 0.231 0.000
education3 0.000 0.000 0.000 race2 -0.019 -0.073 0.000 household income99 0.000 0.000  0.000
education4 0.000 0.000 0.000 race3 -0.399 -0.380 -0.330

education5 -0.014 -0.052 0.000 race4 0.000  0.000 0.000

education7 -0.523 -0.335 0.000 race5 0.000 0.124  0.000

6. Conclusions and discussion

This study presents a group testing framework based on a logistic regression single-index model
for disease screening in low-prevalence environments. By employing B-splines to estimate unknown
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functions and incorporating penalty functions, our approach achieves high flexibility in capturing
the relationships between covariates and individual risk probabilities while accurately identifying
important variables. To address potential computational challenges in individual disease status
estimation, we implemented an iterative EM algorithm for model estimation. Our simulation
experiments demonstrate the proposed method’s performance in high-dimensional covariate contexts
with limited sample sizes, while application to real data confirms its efficacy. Our framework offers a
unified approach for various group testing methods, showcasing its practical application value.

Despite these promising outcomes, our study acknowledges several limitations. First, our model
assumes that sensitivity and specificity of testing are independent of group size, which may not always
hold in practical applications. Second, data quality and variations in the testing population can impact
the model’s applicability. Therefore, exploring how to integrate prior information to enhance model
accuracy and practical value remains a critical research direction. Furthermore, the potential high
dimensionality of individual covariates poses significant challenges, necessitating the development of
models capable of handling ultra-high-dimensional data.

Future research could explore the following directions. Firstly, examining model performance
under varying group testing configurations, such as changes in testing errors and group sizes, could
yield valuable insights. Secondly, investigating methods to incorporate additional prior knowledge
to improve estimation accuracy is a worthwhile endeavor. Additionally, considering computational
efficiency, developing faster algorithms for processing large-scale datasets will be a key focus for
future work.
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Appendix-A: Simulation results with different sensitivity and specificity settings

In this part, we tested the performance of four examples at different sensitivity and specificity, using

the Dofman algorithm and the LASSO penalty function. The simulation results are shown in Tables 8

to

11.
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Table 8. Example 4.1: Simulation results with different sensitivity and specificity settings.

AMAE AMSE MSE
Model Setting  (S.,S,) TPR FPR  g() Prob B Bi B2

(0.98,0.98) 1.000 0.029 0.522 0.013 0.0001 0.0004 0.0003

Example 4.1 =500 (0.95,0.95) 0987 0.020 0474 0.011 0.0001 0.0003 0.0003
(gn = 50) (0.90,0.90) 0.982 0.036 0.532 0.011 0.0001 0.0006 0.0007
(0.85,0.85) 0.984 0.040 0.578 0.016 0.0003 0.0001 0.0002

Table 9. Example 4.2: Simulation results with different sensitivity and specificity settings.

AMAE AMSE MSE
Model Setting (Se.Sp) TPR FPR  g() Prob B Bi B2 B3

(0.98,0.98) 0.982 0.021 0.574 0.010 0.0001 0.0035 0.0001 0.0042

Example 4.2 1=1000 (0.95,0.95) 0.975 0.030 0.612 0.011 0.0001 0.0047 0.0001 0.0069
(g, = 100) (0.90,0.90) 0.978 0.020 0.556 0.012 0.0001 0.0023 0.0002 0.0049
(0.85,0.85) 0.965 0.020 0.717 0.016 0.0004 0.0158 0.0002 0.0212

Table 10. Example 4.3: Simulation results with different sensitivity and specificity settings.
AMAE AMSE MSE

Model Setting (Se.Sp) TPR FPR  g() Prob B Bi B> B3
(0.98,0.98) 0.987 0.008 0.489 0.013 0.0001 0.0008 0.0001 0.0032
Example 4.3 1=1000 (0.95,0.95) 0.971 0.064 0.404 0.011 0.0003 0.0005 0.0033 0.0085
(gn = 50) (0.90,0.90) 0.963 0.048 0.465 0.011 0.0001 0.0002 0.0012 0.0055
(0.85,0.85) 0.966 0.018 0.377 0.015 0.0004 0.0016 0.0023 0.0007

Table 11. Example 4.4: Simulation results with different sensitivity and specificity settings.

AMAE AMSE MSE
Model Setting (S, S,) TPR FPR  g(-) Prob B Bi B2 B3 Ba
(0.98,0.98) 0.986 0.041 0.581 0.016 0.0003 0.0034 0.0090 0.0014 0.0005
Example 4.4 =750 (0.95,0.95) 0.981 0.026 0.534 0.018 0.0001 0.0016 0.0045 0.0018 0.0005
(g, = 100) (0.90,0.90) 0.974 0.018 0.546 0.016 0.0002 0.0004 0.0024 0.0014 0.0028
(0.85,0.85) 0.976 0.024 0.539 0.011 0.0002 0.0047 0.0085 0.0004 0.0039

B. Appendix-B: Meaning of the nominal variable
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C. Appendix-C: Calculation of conditional expectations

In this part, we derive the conditional expectation formulas for Dorfman testing, halving testing,
and array testing within the framework of our method. Before proceeding, it is necessary to clarify
some notations. Let #; \ {i} represent the set of individuals in #; excluding the i-th individual, and
|;| denotes the number of individuals in ;. Let Y; represent the test result of the i-th individual and
Yp, =1{Yi,i € P} represent the set of testing results of individuals in ;.

C.1. Dorfman testing

If the initial group testing result is negative, no re-testing is performed. However, if Z;; = 1, each
individual in the group needs to undergo a separate re-testing.
1) When Z;; = 0, the result is the same as the master poor testing:

o PT=12,=0) (1-50-pjy
0 P(Z;; = 0) 1-[S,+(1=S,-8,) [T -ph1
i€P;

2) When Z;; = 1, each individual in the group must undergo a separate re-test. In total, the group
has undergone |P;| + 1 tests.
" _ P(Yizlvzj,l’ypj) _ P(YIZI)P( lvyply _1)
b1 P(Zj,laypj) P(Zjl’*yp)

w

The denominator is

Z1,Yp) = Z P(Z;1, Y9 )\Yp)P(Yp)

= Z PZ1Zin) | | POAT)P(T)

i€P;

_Z /1(1 p)] ZJ] H[S:i(l _Se)(l—Yi)]f’i

i€P;
x[(l S S TR~ pip1' T
= DU =S ) B[ IS - 50 gl

i€P;
X [(1 =8 )N85 = piH1—".
Thus, the numerator is
P(Yi = 1,Z;1,Y9) =P(Z;1, Yp |Vi = DP(Ti = 1)
= > PZi1 Yp |V = 1, Yp \)P(Ip )P = 1)

:V?j\i
= > PZulZ; = DPYTi = 1) | | POUTHPEP(T; = 1)
.%’j\i P i}

AIMS Mathematics Volume 10, Issue 2, 3523-3560.



3549

— Z S, S i(1- )(1 Yi) l_[ [Szl'(l _Se)(l—Yi)]f/i

Ypai ieP\(i)
1-Y)q(1- Y Y, (l) 1- Y (1)
X [(1 =8 ST i1 — plor' =" plt
= Z Si+Y _ e)(l Y)pl(g)( l_l [Se'(l _ e)(l Y;) (t)]y
Yp i i€P\li)
X [(1 _ Sp)Y,'S;I—Yi)(l _ ng)](]_yi)-
Therefore, the final expression is

t
WE) :ij]WE’[i +(1 Jl)W(t)

C.2. Halving testing

Assume that the maximum number of partitions required during testing is two. Let the test result of
the first testing be Z; ;. At this time, the set of all unpartitioned individuals is #;;, which contains [P
individuals. After the first partition, the partitioning method is to divide into two equal parts, with the
two subsets of individuals being #;, and P; 3, respectively. The responses of the second testing are Z;»
and Z;3. There are five types of testing results in halving testing.

1) When Z;, = 0:

Only one testing is performed, and the process is the same as master pool testing. Since the result
of one testing is negative, no further partitioning and testing are performed. At this time,

P(¥; = 1,Z;, = 0)

= P(Yl = 1|Z]’1 = O) =

P(Z;; =0)
_P(Y;=1)P(Z;, = 0Y; = 1)
N P(Z;, = 0)

pu1-S,)

TS, +(1-S, -8, [T =ph
i€P;
2) When Zj,l = I,Zj’z = 0,Zj73 =0:
That is, the result of the first testing is Z;; = 1. Subsequently, the first partition is performed,
dividing into two equal parts #;, and P;3. Then, testings are performed on the two sets respectively,
with the testing results being Z;, = Z;3 = 0. At this time,

=PY,=11Z;,=1,Z,,=0,Z;3=0)
_ P(Zj,l = 1,Zj,2 = O,Zj,3 = 0|Yi = 1)P(Yi =1
B P(Zj,l = I,Zj,z = O,Zj,3 = O) '

The denominator is
P(Zj’] = I,Zj’z = O,Zj’_o, = O)
= P(Zj1 = 1,Zj2 = 0,Zj3 = 0Wp, )P, )P(Tp,,)
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= > P(Zjy = Wp, )P(Zjs = 0p,)P(Z;3 = 0 p )P p,,)P(p,,)

7
R e I A
i€Pjn
X [(1 - 89%8, Z”] 1_[ o ? m]
. 3 i ~
= Z [Sf“(l _ Sp)l—Z,-,l] l_zl(l S.) J“Sl Zju ]—7)[ [pgg]yi [1 _ pg]]_x
Yp, u= iep,;

Since the placement of the i-th individual in the sets #;, and #;3 is symmetric, assume that i-th
individual is placed in the set #;,. Then, the numerator is
P(Zj=1,Z,,=0,2;3=0,Y;=1)
=P(Z;1 =1,Z;2=0,Z;35=0Y; = HPY; = 1)
=Y PZi = 1,25 =0,Z5 = 0% = 1,¥p,) x PTp,,\)PIp, )P(F; = 1)

Yp i

= Z P(Z;y = 1Z;y = DP(Zja = 01Z;2 = 1)P(Z;5 = 0|Z;3) X P(ypj,z\i)P(yP,—,3)P(ﬁ =1)
y?’j\i

= st=so T (el [1-pil ™ =0ty T (el [1 - pil ™ ol
Yp i i€Pjp\i} i€Pj3

S sut-sa st [l 1]
Irpi zeva,-\{l

3) When Zj,l = 1,Zj’2 = O,Zj’3 =1:

At this time, the second partitions are performed. The first partition divides all individuals into
two sets, P, and P;3, with testing results Z;, = 0 and Z;3 = 1, respectively. Individual testings are
performed separately on the individuals in #;3, and the set of testing results is Yp ;. At this time,

W = P(Vi = 1121 = 1,2, = 0,Z;3 = 1, Yp,,)
P(Zi=1,Z,=0,Z;3= L,Yp |V, = DP(Yi = 1)
P(Zj1=1,2Z;2=0,Zj3=1,Yp,) '

The denominator is

P(Zj’l - I’Z/’Z = O’Z/}3 =1, y?j.,x)
= Z P(Zj1 =1,2j,=0,Z;5 = 1,Yp, |\Yp,,, Yp )P(Hp,,)P(Yp,,)

= > P(Zj1 = Wp)PZjr = OWp, )PZ;s = 11p,,)

I,
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X P(Yp, )P(Yp,)P(Yp | Yp,)

=Y PZj1 = WZ;)P(Zjz = 0Z2)P(Z;s = 112,;3)
T,
x| | POITIPWTp, )P,

i€Pj3

_Z ;1(1 S )1—2,;1][( e) ,251 Z,z][ ezﬂ(l _Sp)l—Zj,s]

x H IR e AN T

i€Pjr i€P;3
< [T[s3a-so [a-s,si] ™
i€P3

_Z 11+Z;3(1 S )2—213,1—}.3][( e) JZSI Z,z]

) ﬂ =] T s - sot] [ - s s ]

lE?D lEP,'g

Since an i-th individual may belong to either set $;, or #; 3, the numerator is discussed accordingly.
(a) Assume that i-th individual belongs to set #;,. Then, the numerator is

P(Yl = 1,Zj’] = 1,Zj,2 = O,Zj,3 = layip_,'g)

= Z P(Z[,l = I’Zj,z = O’Zj,3 = laypjgl?i = laypj,z\i’ypjg)
Yo

X P(Yp i Ip )P(Y; = 1)

= Z P(Zjy = 1Zj1y = DP(Z;2 = 01Z;5 = DP(Z;3 = 11Z;3)
:V?j\i

X P(ypjﬁnypﬂ)P(«y@j’z\i)P(y@ﬁQP(ﬁ =1

=Y sa-sasPa-s,y e [ (s -0

jp.\,- i€P s \{i}
(t) (0 0]
ll;[ plB ptB] Pip
« l—[ S i - e)l Y] [(1 _ Sp)Y,-S})_y[]l—Yi .
i€P3

(b) Assume that i-th individual belongs to set #;3. Then, the numerator is

P(?t = l’Z'l = 17Z'2 = 0 ZJ3 =1 «yPﬂ)

= Y PZin=1,2;=0,Z5 = LYp,IVi = 1,Yp,, Up,,1)
:V’Pj\i
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X P(yp}.’z, ypj,g\i)P(?i = 1)
= Z P(Zjy = 1|Zjys = DP(Zj5 = 0Z;n)P(Zj3 = 11Z;3 = 1)
y?’j\i
X P(Yyp. 3\,~|5/¢>,3\i)P(Y'|7 = DP(Yp, )P(Ip, )PT: = 1)
_ Z S (1 ]251 Zj2 (I)S (1 e)l_Yi

Fp i
X l_[ [SZ;‘(] - Se)l—Y,]Yi [(1 _ Sp)YiSIlJ_Yf]l_Yi
Pz \li)
(t) o
X lelp—\[ lB]

4) When Z;; = 1,Z;, = 1, and Z;3 = 0, the process is the same as when Z;; = 1,Z;, = 0, and
Z;3 = 1, and the numerator needs to be discussed accordingly. At this time,

w =P, =121 = 1.2, = 1,2;3=0,Yp,)

_ P(Z],l = 1’Zj,2 = 1’Zj,3 = O’yP,;zWi — 1)P(Yl — 1)
PZjy=1,Z;5=1,Z;3=0,Yp,) '

First, the denominator is
P(Zj1=1,Zjp=1,Z;3=0,Yp,)
= Z P(Zjy = 1,25 = 1,23 = 0,Yp \p,,, Up, )P, )P p,,)

= Z P(Zjy = 1Z;)PZio = UZ12)P(Z;3 = 012;3)
y

x | | POUTIPFp, ) P(Fp,)

i€Pjn

:ZSZJ',1+Z]‘,2(1 _ Sp)z_zj’l_~j’2(l e) J3S

X ﬂ[p(” =i | [IsEa = s - s ,)ts

i€P; i€Pjo

1-Z;3

Next, the numerator is discussed.
(a) Assume that i-th individual belongs to set #;,. Then, the numerator is
P(f]l = 1,Zj,l = lvzj,Z = lazj,3 = O"ypj,z)
= Z P(Zl = 1azj,2 = 1’Zj,3 = anpj,zlyi = 1’y7)j,2\i’ yPﬂ)P(ypj,z\i’ijJ)P(Yi = 1)
y?’ \i
= Z P(Z;y = 1Z;y = D)P(Zjo = 1|Z;5 = 1)P(Z;3 = 01Z;3)

y? kY
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X P(Yp il p ) P(YY; = 1>P(3p,2\i>P<3pj,3>P<Yi =1)

= > 8201 =858, S (1 - 50" pl)
y?_\x

% l_[ [S:i(l _Se)l—Y,-]f’,-[(l p) Sl Y 1- Y,>< l_[ [p(t) (t)]l Y

iEPjyz\{i} ZEP i\i}

(b) Assume that i-th individual belongs to set ;3. Then, the numerator is

P(Yl = I,Zj’] = I,Zj,Q = 1,Zj,3 = O,yfoj,z)
:P(Zj,l = I,Zj,z = l,Zj’3 = O,J/pjyzlffi = 1)P(Yl = 1)
= > PZi = 1,25 = 1,255 = 0,Yp Vi = 1, Vyp,,, Up, ()P, )P, = 1)
Yp i
= > P(Zjy = 112y = DPZjn = 12;)P(Z;3 = 01Zj5 = 1)
y?’ i
X P(‘ySDJZZ|‘~y701'.2)P(:ypj,z)P(‘ypjﬁ\il:ypj3\i)P(*~y7’j$3\i)P(Yi =1

= > 5.1 =89S0 =8, Eepl x [ 1821 - 50"

y? Ai i€Pja

x[(1-S,) Sl Y 1-%; n [p(t) pgg]l—y

i€P\{i}

5) When Z;; = 1,Z;; = 1, and Z;3 = 1, two similar partitions are performed as above, and
individual retests are conducted separately for all individuals in #;. At this time, Yp, = Yp, U Yp ,,
and we have

w? =P(Y; =12, =1,Zjp = 1,Zj3 = ,Yp,,. Yp,,)
PZj=1.2;p=1,2Z;3= 1L,Yp|V; = DP(J; = 1)
- PZjy=1,Z;,=1,Z;3=1,Yp) ‘

The denominator is

P(Zjy=1,Zjp=1,Z;3=1,Yp)
—ZP( 1 =12 =125 =1.Yp\Yp)P(p)

= Z P(Zjy = 1Z;)PZin = 1Z;)PZys = 11Z;) | | POITHP(T)

167)1'

u=2

= Y S =8,)! ﬂs (18,
y/'

x | IS5 =8 pp1T A = § )" (L= pipl' T

ieP;
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The results of i-th individual belonging to either set £, or #;3 are symmetric. Assume that i-th
individual belongs to set $;,. Then, the numerator is

P(Zj,l = I’Zj,Z = I’Zj,3 = laij, Yi = 1)
= Z P(Z],l = 15Zj,2 = 17Zj,3 = l’ijlyi = 1’ypj.z\i’y?jg)P(:dypj,z\iaypjg)P(f]i = 1)
Fp i
= Z P(Zjy = 1Z;1 = DP(Z;p = 1|2, = )P(Z;5 = 11Z;3)
:ij\i
x P(Y{|Y; = DP(Yp,ilIp, ) P(Hp))PY; = 1)
= ) SIS =8 ,) Fephs il -5,
Fp i

; ¥; o 1-¥;
x [ [sra-sopg| |a-srsia-pp
ieP \i)

C.3. Array testing

For convenience, assume that the set of all individuals is G, and all individuals can be arranged into
an R X C array, thatis, G = {(r,¢),r € R,c € C}. Define R = (R|,R,,--- ,Rg) and C = (C{,C5,--- ,C¢)
as the collections of row and column testing results, respectively. Let R = max R, and C = maxC.,.
Furthermore, define R, = max, Y,. and C, = max, ¥,. as the true result sets for rows and columns,
respectively. Let Y,. denote the testing result of the individual in the r-th row and c-th column of the
array, and Y,. represents the true disease status of the individual in the 7-th row and c-th column of the
array. Let

O0={(s,D|R;=1,C,=1,1<s<R1=<1t<C,
OI'RS:1,C1:"':CC:O,1SSSR,
orRi=---=Rg=0,C,=1,1<tr<C}.

Y, represents the collection of responses from all potentially positive individuals, and Y o denotes the
true disease statuses of all potentially positive individuals. Let Zs = (R, C) denote the group testing
responses. Since (r, ¢) € G, define

Yorre) = {ch/, reR\{rl,c € C\ {c}}.

Then,

P(Yrc = 19~ZG7~yQ)
P(Zs. Yo

1) When Z; = (0, 0), there is no need to retest individuals within the group. At this time,

WEIC) :P(?rc =1 |ZG’yQ) =

(Y, =1,Z5 = (0,0)
P(Zg =(0,0))

3 P
w = P(¥,. =1]Zs = (0,0)) =
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The denominator is

P(Zg = (0,0) = )" P(Ze = (0,0)l¥6)P(F)
Y

= PR = 0Y6)PC = 0Y6)P(Yc)
Y

R C
-y “_[ PRy = 011, Tras - yc)][ [TP(Ce = 01F1 o - YRC/)]
Vo

r'=1 o=
([) Yr o (l‘) 1—?}1(./
X l_[ Drep (1 Py c’B)
r'eR c’eC
- A 5 7. 1-%,
— I?,/ 1_Rr’ C'(/ l—C(J (f) e (I) !
_Zr[(l—Se) s [a-so%sr @) TT (" (- ps) ™)
Y =1 =1 (r',c"eG
- R, —C Y -7
Rr/+ccl 2—er—CC/ ([) ! (t) =X
=S -soreesi®=] T fpina () ™)
G r=1 =1 (F’,C’)GG

The numerator is

P(Z =(0,0),Y,.=1)= P(Zs = (0,0)[Y,. = )P(Y,. = 1)
= Z P(R=0,C = 0Y6\r0 Vre = DP(Y6709)

yG\(hC)

= ) PR=O0R = D| [] PR =0T, Ty T
Yoo r'eR\(r)
X PC.=0C.= 1) [] PCo=0lFie - . T

c’eC\{c}

0 Yre 0 =Ty 0
X rl l—[ pch (1 pch pch

r’eR\{r} c’eC\{c

Z (1 - e) n (1- e)f?rfsllj—l?r' n (1 _Se)@C,SII)_CC,

yc\(r() r'eR\{r} c'eC\{c}
0) Yn 0 =Ty
X l_l prc’B ’/B) pch
(r,c"eG

_ Z l_l l—[ (1 - Se)2+ki+CCS?J_Ri_CC

yc\(hc) reR\{r} ¢’€C\{c}

(t) Voo (t) 1~V (1)
X 1_[ rc’B (1 - ch pch'
(' ,c")eG\(r,c)

2) When Z; # (0,0), Zs = (R,C) has multiple scenarios, specifically Zs = (R,C) = (1,0),
(R,C) = (0,1), and (R,C) = (1, 1). Therefore, when Zs # (0, 0), the following classifications can be
discussed:
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(a) When (R,C) = (1,0),

P(Y,.=1,Zs=(1,0)

wl = P(V,e = 1| Zo = (1,0)) = P(Zg = (1,0))

The denominator is
P(Zg = (1,0) = > PR #0,C = 0,Y0l¥6)P(Yo)
Yo
R C
= 2 T PReATo T )| T PG = 01 T T
Yo =1 =1

r =

o[ [T Aram [ 11T

s,HEQ r'eR c’eC

S[lsra-so] fo-sesi]

y(, =1

1-R,

(s,H€Q

o Tro o e
X r Prep (1 Dy B) '
(r',c")eG

At this point, the numerator requires further discussion:
(1) If (r,c) e Qand R, = 1 and C, = 0, then
P(Yrc = 1,~ZG = (1’0))

= Z P(Zs = (1,0), Y|V = 1, Y6\00)P(Xre = 1, Y10

yG\(hf)
= > PR 0|V, = 1,Y6\00)P(C = 0F, = 1, Y r0)
:yG\(",f)
X P(Yo|Ve = 1.Yg\0)P(Yre = DP(Jo\r0)
= Z P(Rr = 1|Rr = 1)[ l—[ P(Rr’lyr’la ?r’Z"" ,Yr’C)]
Ye\iro r'eR\{r}
x P(C. = 0IC, = 1)[ [T #(ce =0fre. ,YRL.,)]P(Y,clf’rc - 1)
c’eC\{c}
X [ n ( ”lYS’)] o X [ l_[ l_[ pg)c»'B?r/C/(l B pg)c'B)l_?W]
(s,0)eQ\(r,c) r'eR\{r} c¢’eC\{c}
- S s
yG\(r,f) i
< 7 [s#0 —Se)l_Rr']erc[(l —s,rsh ]
r’eR\{r}

[ Co 1-Co Yo
xl—[ =505y T x [ [sta-sa ] |a=s sy

1_le
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X rl [(1 _Se)lCc,rc/[sé_ccl]kc},

c’eC\{c}
1Y, ¥ 1-Yy
X 1_[ SeY”(l -~ Se) ' ] [(1 —§,)Ns
(s,HeQ\{(r,0)}
v, ., =¥
X 1_[ pgl’)c'BY” (1 - pg)c'B) .
(" ,¢)eG\{(r,0)}
(i) If (r,c) ¢ Q,thenR=0,C #0,but R, =0and C, = 0:
P(?rc = 1’ZG = (1,0))
= Z P(R’ C’ lel’}rc = 19 yG\(r,c))P(Yrc = 17 yG\(r,c))
yG\(hC)
= Z P(Rl?rc = 1,L~yc\(r,c))P(C|f]rc = LyG\(r,c))P(yQL?Q)P(?rc = 1)P(~~yG\(r,C))
Yoo
= Z P(Rr = O|Rr = 1)[ rl P(Rr'lyr’l» Yr’2, T Yr’C):|
yG\(m) r’€R\{r}
x P(C. = 0C, = 1)[ [] P(ce =0, ,YRcf)]
c’eC\{c}
- Vo 1Y
X [ l_[ P(Ystlyst)]pi?za n pg)c'B (1 - pg’[’)c’B)
(s,N€Q (" ,cHeG\{(r,0)}
Ve e )
= Z Sem(l_Se) pch
yG\(hf)
Rr’c 1 —f(’,./ ¢
x [ [s&a-so= [ a-sywsy ™
r'eR\{r}
1=, 1 T e1-cui-Ce
<[] [(1 _S - ] [557]
c’eC\{c}
)N]s[ 1_?“
% 1—[ [SZ‘”(l _ Se)l—Ysr] [(1 _ Sp)y‘”SII,_Y‘"]
(s,NEQ
?,JC/ l_?r/c’
X 1—[ pg)c'B (1 - pg)c’B) ]
(" ,¢)EG\{(r,0)}

(b) When (R, C) = (0, 1), the denominator is

P(Zg = (0,1)) = Y P(R=0,C # 0,Y0l¥)P(Vs)
Yo
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[]‘[ P(CelTien Vo Vo)

x 1 POt [T] ]P0 1 = pp)'

(5,H)EQ r'eR c’eC

= Z ﬁ [(1 _ Se)l_Rr,]Rr, [S})_Rr’]l_kr,
g r=l
x H [s¢e 50| “[a-s s e

x| [S "(1-80)" Y“] Ta-srsi) o

(s,N€Q

® Yrc O N1-F¥po
X l—[ [rc’B ”B) ]

(r,c"eG

The numerator requires further discussion:
(1) If (r,c) e Qand R, =0 and C, = 1, then
P(Y,c=1,Z6 = (0.1) = P(Fc = LR.C.Hy)
= Z P(R,C,YlY,. = L Y6veo)PFre = 1, Y 6r0))

yG\(r,c) |
= 3 st s, [ [a-sote ] s
yG\(V,c) . eR\{r
X n [Secf’(l S)lC] [(1_ p)c lcc,] 1-C
c’€C\{c}
B
(s,HEQ

@ Y""" (t) 1- Y,/C/
X l—[ I:pr’c/B (l ’B) ]

(' ,c"eG\{(r,0)}
@) If (r,c¢) ¢ Q,thenR=0,C #0,but R, =0and C, = 0:
P(?rc = 17~ZG = (O, 1)) :P(Yrc = laRaCayQ)
= Z P(Ra C, leyrc = L«yG\(r,c))P(Yrc =1, yG\(r,c))

y G\(r,c)

Rr’c 1=K,
= > S -850"" Pl | ] [(1—56)“’“’] [S};Rr']

Yo r eR\{ }

< 1 [SC'(1—5)1C] [(1— OC slc]l_cc'

C/EC\{C}
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X 1—[ [Sz,w(l S )1 ys/] [(1 _ p) rtsl Yo
(s:N€Q
Yr'c’ 1-Y.
< TT w0
e\ o)}

(c) When (R, C) = (1, 1), the denominator is
P(Zg = (1,1) = ) PR,C, Yl )P(Y)
¥y

1-Y

R c
= Z [ l_[ PR)|Yy1, Y-, I7r/c)][ l_[ P(Co|Y10, Yo, -

Yf’C, t 1—)7/,/
< | | pavat¥o [ ] [pes ™0 = )™

(s,)EQ r'eR ¢'eC
Z R
v r-
¢ Cc' I—CC/
X 1_[[ eCc/(l _ Se)l—C(./:| [(1 _ Sp)CC/Sl])—CC/jl

=1

|21 -5 ]R |a=spesy|

—_

Af 1_Yst
X 1_[ [S n(l S )1 YJt] [(1 _Sp)Yer;—Ysr]

(s,N€Q
o Yro 0 NIV
X 1_[ {pch pr’c’B }
(r',c"eG

For the numerator, we provide the following derivations:
(1) If (r,c)e Qand R, = 1 and C, = 1, then
P(Y,.=1,Zg=(,1) =P, = 1,RC,Yp)
= Z PR,C.Yol¥,e = 1, Y,6:0)P( e = 1, Y\0)

*NVG\(",C)
= D, ST =89,
*NyG\(m')
Ryor 1-R,,
X ﬂ [Sff’(1—se)‘—Rr'] (l—S,,)Rf'Sll,_R"]
r'eR\{r} B
Cor 1-Cy
<[] [sfv’a—se)l—cr'] (1—5,))00/5},‘06']
c’eC\{c} B
1y 1-¥,
x [ [ska-so [(1—5,,)“5;—”“]
(s,D€0\{(r,0)} )
< 1 =)
(r',¢")eG\{(r,0)}

’ YRC’)

AIMS Mathematics Volume 10, Issue 2, 3523-3560.



3560

(1) If (r,c) ¢ Q,then R#0,C #0,but R, =0and C, = 0:

= >, (=880 (1 =8 p!)
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>

AIMS Mathematics

P(Y,.=1,Zs=(1,1)=P{,.=1,RC,Yp)
= Z P(R, C, leyrc =1, yG\(r,c))P(yrc =1, yG\(r,c))

yG\(r,c)

rcB
Y G\(r,0)

Rr’c
X ]—[ [sff’(l—se)l‘Rr'] [(1—Sp)Rr's,1,‘Rr']

r’eR\{r}

I_Rr’c

Cy
« n |:SeCC/(1 _Se)l—CC./:l [(1 _ Sp)CC/S;—Cc/]

c’eC\{c}

I_CU/

Yy
X n I:S:sr(l _ Se)l_y'”] [(1 _ Sp)ystSIl)—Y.w]
(s,NeQ

1-Y

Vs
< I

(l) 1—Yr/c/
{pr’c’B (1 - pr’c’B }
(',ceG\{(r,0)}
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