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Abstract: We propose a new approach to enhancing the efficiency of the differential evolution (DE)
algorithm, specifically targeting rotational invariance. The performance of the DE algorithm can
be hampered by the crossover’s dependency on the coordinate system, particularly in optimization
problems involving strongly correlated variables. Previous attempts to achieve rotational invariance in
the DE algorithm have involved estimating the covariance matrix using the population’s distribution
information and executing the crossover operation in an eigen coordinate system. However, these
methods are computationally intensive. Our approach exclusively employs the rank-one update
method, estimating the covariance matrix using the means of the current and previous generations’
populations. This lightweight technique reduces the computational costs from O(N p · D2) to O(D2)
(where N p is the population size and D is the dimension) operations, yet still preserves the critical
rotational invariance property. Experiments conducted on 57 benchmark functions demonstrated that
our method finds quicker and more accurate solutions than previous methods. This represents a
substantial improvement in achieving rotational invariance in the DE algorithm.
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1. Introduction

Differential evolution (DE) [35, 39–41] is a widely used evolutionary algorithm (EA) designed to
tackle optimization problems, particularly continuous optimization challenges. Compared with other
EAs, DE is more straightforward and involves fewer control parameters, making it relatively easy to
implement. Its high flexibility also allows for enhanced performance by integrating various techniques.

The DE algorithm operates through three main processes: mutation, crossover, and selection. These
processes are governed by three control parameters: the amplification factor, crossover probability, and
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population size. The performance of DE substantially depends on the interplay of these operations and
parameters. The binomial crossover is commonly utilized due to its advantageous performance [1, 11,
12,33,34]. However, its heavy reliance on the coordinate system can limit the algorithm’s effectiveness
in solving problems involving variables with strong correlations [3, 22, 42].

Some researchers have proposed methods to make the DE algorithm rotationally invariant to address
this limitation. These methods involve estimating the covariance matrix using population distribution
information and conducting the crossover operation in an eigen coordinate system [15, 16, 28, 43, 44].
The underlying premise is that the population’s distribution information highlights the promising
regions of the function landscape. However, these techniques have not yet incorporated the rank-one
update [20,21,23–25] for covariance matrix estimation and require extensive computational resources,
which presents practical challenges. Consequently, further improvements are necessary for these
approaches to be more effective and efficient.

This study proposes a straightforward yet effective method employing the rank-one update for
estimating the covariance matrix. The method calculates a rank-one matrix using the means of
the current previous generation’s populations, which is then used to update the covariance matrix.
This approach makes the DE algorithm rotationally invariant by forming a new eigen coordinate
system based on the updated covariance matrix and applying this system to the crossover operation.
Consequently, this method allows quicker updates of the covariance matrix, enabling faster crossover
operations than previous methods.

We conducted experiments using 57 IEEE CEC benchmark functions [2, 27] to demonstrate the
proposed method’s performance. The proposed method was applied to two state-of-the-art DE
algorithms [37,38] in these experiments and compared against previous techniques. The results showed
that the proposed method finds solutions faster and discovers more accurate or similar solutions than
previous methods. Consequently, it was confirmed that using the rank-one update to make the DE
algorithm rotationally invariant is more efficient than earlier approaches.

The main contributions of this study are as follows:

• While previous methods require O(N p · D2) operations to estimate the covariance matrix, the
proposed method exclusively uses the rank-one update, thus requiring O(D2) operations. N p and
D denote the population size and dimensionality, respectively.
• The proposed method can be easily applied to the crossover operation of the DE algorithm.
• The performance of the proposed method was demonstrated by applying it to two state-of-the-art

DE algorithms, NL-SHADE-LBC and NL-SHADE-RSP.

The structure of this paper is outlined as follows: Section 2 delves into related work, exploring
the DE algorithm and eigenvector-based crossover operators. Section 3 introduces our proposed
method, detailing its motivation and the procedures of the proposed eigenvector-based crossover
operator. Section 4 describes the experimental settings, benchmark functions, and test algorithms.
Section 5 discusses the results of our experiments, featuring comparisons with NL-SHADE-LBC and
NL-SHADE-RSP, along with an algorithm complexity analysis. The paper concludes in Section 6,
where we summarize our findings.
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2. Related work

2.1. Differential evolution

The DE algorithm [35, 39–41] starts by initializing a population of N p target vectors, each with
D real-valued parameters, represented as ~xi,g = (x1,i,g, · · · , xD,i,g) for i = 1, · · · ,N p. The subscript g
denotes the generation to which the target vectors belong. After initialization, the algorithm randomly
mutates the target vectors to produce a population of N p mutant vectors, ~vi,g = (v1,i,g, · · · , vD,i,g) for
i = 1, · · · ,N p. These mutant vectors then undergo recombination with their corresponding target
vectors, creating a population of N p trial vectors, ~ui,g = (u1,i,g, · · · , uD,i,g) for i = 1, · · · ,N p. If a
trial vector has a function error value that is less than or equal to that of its target vector, it replaces
the target vector. This process repeats until one of the termination criteria is met. The DE algorithm
is highly flexible for optimizing continuous problems and can integrate various techniques to enhance
performance [4–10,17–19,32,46]. DE has been successfully applied to a variety of problems, including
the development of a three-stage dynamic false data injection attack model for cyber-physical power
systems [30], a stealthy sparse cyber-attack model for AC smart grids [29], and a multi-objective
feature selection [45]. For a more comprehensive description of recent advancements in DE, please
refer to the following survey papers [1, 11, 12, 33, 34, 36].

2.1.1. Mutation

A mutant vector ~vi,g is generated for each target vector ~xi,g by forming a linear combination of other
target vectors. Two commonly used mutation operators are described as follows:

• The DE/rand/1 is defined as ~vi,g = ~xr1,g + F · (~xr2,g − ~xr3,g).
• The DE/best/1 is defined as ~vi,g = ~xbest,g + F · (~xr1,g − ~xr2,g).

Here, the subscripts r1, r2, and r3 denote distinct random integers selected from the set {1, · · · ,N p},
each of which is different from i, and ~xbest,g represents the target vector with the lowest function error
value at generation g. The amplification factor F adjusts the magnitude of the mutation.

2.1.2. Crossover

The DE algorithm commonly utilizes binomial crossover to generate a trial vector ~ui,g:

u j,i,g =

v j,i,g, if rand j(0, 1) ≤ Cr or j == jrand

x j,i,g, otherwise.
(2.1)

jrand and rand j(0, 1) refer to a random integer selected from the set {1, · · · ,D} and a random number
uniformly sampled from the interval [0, 1], respectively. Cr denotes the crossover probability.

2.1.3. Selection

When the error value of a trial vector is less than or equal to that of its corresponding target vector,
the trial vector replaces the target vector. Otherwise, the target vector remains unchanged.

~xi,g+1 =

~ui,g, if f (ui,g) ≤ f (xi,g)
~xi,g, otherwise.

(2.2)
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2.2. Eigenvector-based crossover operators

The DE algorithm may encounter difficulties when optimizing problems with strongly correlated
variables [3, 22, 42]. Researchers have introduced techniques that estimate the covariance matrix from
the population’s distribution information to overcome this. These techniques utilize an eigen coordinate
system for the crossover operation, ensuring the rotational invariance of the algorithm. This approach
is grounded in the observation that the population’s distribution information reflects promising regions
within the function’s landscape [3]. By establishing an eigen coordinate system derived from the
covariance matrix, these methods effectively mitigate correlations among variables [16]. These
strategies yield offspring distributions aligned with the function landscape, guiding the evolution of
the population toward the global optimum [16]. Figure 1 illustrates the benefits of eigenvector-based
crossover operators. These operators can be categorized according to three perspectives:

(1) Whether they utilize the cumulative distribution information of the population to estimate the
covariance matrix;

(2) Whether they incorporate all individuals when utilizing the population’s distribution information;

(3) Whether the eigenvector ratio remains fixed or varies.

(a) Trial vectors generated in standard coordinate system. (b) Trial vectors generated in the eigen coordinate system.

Figure 1. Eigenvector-based crossover operators can eliminate correlations between
variables by constructing an eigen coordinate system using the covariance matrix.
Consequently, such methods can generate an offspring distribution that aligns with the
function’s landscape, guiding the population’s evolution toward the global optimum.

DE/eig [16] estimates the covariance matrix using the distribution information of the population
in the current generation. When computing the population’s distribution information, this method
incorporates all individuals and employs a fixed eigenvector ratio. CoBiDE [43] estimates the
covariance matrix using the distribution information of the current generation’s population. This
method includes the top ps% individuals when calculating the population’s distribution information
and utilizes a fixed eigenvector ratio. CPI-DE [44] estimates the covariance matrix using the rank-N p
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update, leveraging the cumulative distribution information of the population. This method incorporates
the top half of all offspring when computing the distribution information. It generates offspring, half
within the standard coordinate system and half within an eigen coordinate system, without relying on
control parameters such as the eigenvector ratio. ACoS [28] also employs the rank-N p update for
covariance matrix estimation. This method includes offerings stored in the archive when calculating
the population distribution information. Each individual has an eigenvector ratio, with these control
parameters adjusted based on adaptive parameter control. STCS [15] utilizes the rank-N p update
to estimate the covariance matrix, incorporating superior individuals stored in the archive when
computing the population distribution information. Each individual has an eigenvector ratio, and these
control parameters are adjusted according to the policy gradient.

3. Proposed method

3.1. Motivation

In the DE algorithm, the crossover operation is critical for generating offspring. However, the
commonly used binomial crossover heavily depends on the coordinate system [3,22,42], necessitating
improved rotational invariance to solve optimization problems involving highly correlated variables
effectively. Previous methods [15, 16, 28, 43, 44] have attempted to address this by estimating the
covariance matrix using the population’s distribution information, applying eigen-decomposition to
create a new eigen coordinate system, and performing the crossover operation within this system.
Despite these efforts, several limitations persist:

• DE/eig and CoBiDE: These methods estimate the covariance matrix on the basis of the
population’s distribution information at the current generation, which may not accurately capture
promising regions of the function landscape. Additionally, they require substantial computational
resources (O(N p · D2)), limiting their practicality.
• CPI-DE, ACoS, and STCS: These methods use the rank-N p update to estimate the covariance

matrix, better reflecting promising regions of the function landscape compared with DE/eig and
CoBiDE. However, they do not utilize the rank-one update for covariance matrix estimation
and still demand substantial computational resources (O(N p · D2)). Moreover, ACoS and STCS
maintain an archive to store individuals, requiring considerable memory space.

Therefore, a more efficient method is needed to update the covariance matrix and perform the
crossover operation rapidly.

3.2. Proposed eigenvector-based crossover operator

The proposed method uses the eigenvector ratio P as a control parameter to determine the proportion
of crossover operations performed in the eigen coordinate system versus the standard coordinate
system. When a random number uniformly sampled from [0, 1] is less than the eigenvector ratio,
the eigen coordinate system performs the crossover operation. Otherwise, it is performed in the
standard coordinate system. The proposed method executes the rank-one update following the selection
operation. Figure 2 shows the flowchart of the proposed method, and Algorithm 1 presents the pseudo-
code.

AIMS Mathematics Volume 10, Issue 2, 3500–3522.
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Algorithm 1: DE/r1

Input : Amplification factor F, Crossover probability Cr, Population size N p, Eigenvector
ratio P

Output: Best target vector ~xbest

1 Initialize target vectors;
2 for i = 1; i ≤ N p; i = i + 1 do
3 w′i = ln(N p + 0.5) − ln(i);
4 end
5 for i = 1; i ≤ N p; i = i + 1 do
6 wi =

w′i∑N p
i=1 w′i

;

7 end

8 ~C0 = ~I and ~m0 =
∑N p

i=1 ~xbesti ,0

N p ;

9 µeff =

(∑N p
i=1 wi

)2∑N p
i=1 w2

i
, c1 = 2

(D+1.3)2+µeff
, and cc =

4+µeff/D
D+4+2·µeff/D

;

10 g = 0;
11 while None of the termination criteria is met do
12 Generate mutant vectors (Mutation);
13 if rand(0, 1) ≤ P then

// Eigen coordinate system

14 Factor ~Cg = ~B~D2~Bᵀ;
15 for i = 1; i ≤ N p; i = i + 1 do
16 Rotate ~x′i,g = ~Bᵀ~xi,g and ~v′i,g = ~Bᵀ~vi,g;
17 end
18 Generate trial vectors (Crossover);
19 for i = 1; i ≤ N p; i = i + 1 do
20 Rotate ~ui,g = ~B~u′i,g;
21 end
22 else

// Standard coordinate system

23 Generate trial vectors (Crossover);
24 end
25 Select target vectors at g + 1 (Selection);

26 ~mg+1 =
∑N p

i=1 wi·~xbesti ,g+1∑N p
i=1 wi

;

27 ~pg+1 = (1 − cc) · ~pg +
√

cc · (2 − cc) · µeff ·
~mg+1−~mg

σg
;

28 ~Cg+1 = (1 − c1) · ~Cg + c1 · ~pg+1 · ~p
ᵀ
g+1;

29 g = g + 1;
30 end
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Figure 2. Flowchart of DE with the proposed eigenvector-based crossover operator.

3.2.1. Rank-one update of the covariance matrix

The proposed method starts by initializing the covariance matrix ~Cg as an identity matrix ~I ∈ IRd×d

and the search distribution’s mean vector ~mg as the arithmetic mean of the population. After the
selection operation, the mean vector is updated by taking the weighted arithmetic mean of the
population as follows:

~mg+1 =

∑N p
i=1 wi · ~xbesti,g+1∑N p

i=1 wi

(3.1)

wi =
w′i∑N p

i=1 w′i
(3.2)

w′i = ln(N p + 0.5) − ln(i) (3.3)

where ~xbesti,g+1 and wi are the ith best individual in the population and the ith weight coefficient,
respectively. The weight coefficient is set according to the information provided in [20, 21, 23–25].
Assigning different values to the weight coefficient introduces a search bias toward promising regions.

The rank-one update of the covariance matrix is as follows:

~Cg+1 = (1 − c1) · ~Cg + c1 · ~pg+1 · ~p
ᵀ
g+1 (3.4)

~pg+1 = (1 − cc) · ~pg +
√

cc · (2 − cc) · µeff ·
~mg+1 − ~mg

σg
(3.5)

where µeff =

(∑N p
i=1 wi

)2∑N p
i=1 w2

i
is the variance effective selection mass, c1 = 2

(D+1.3)2+µeff
and cc =

4+µeff/D
D+4+2·µeff/D

are

the learning rates, and σg = 1 is the overall standard deviation. CMA-ES [20, 21, 23–25] involves
step-size control to adjust the overall distribution scale. However, the proposed method does not
require approximating the overall step size, as it generates offspring using the mutation and crossover
operations. Therefore, the covariance matrix at each generation holds equal importance in the proposed
method.

3.2.2. Eigenvector-based crossover operator

The proposed method establishes an eigen coordinate system by identifying an eigenvector basis.
This process involves performing eigendecomposition on the covariance matrix. Since the covariance
matrix is both symmetric and positive semi-definite, eigendecomposition allows the covariance matrix
to be factored into a canonical form, represented as follows:
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~Cg = ~B~D2~Bᵀ (3.6)

where ~B denotes an orthogonal matrix with its columns being eigenvectors, while ~D2 represents a
diagonal matrix with eigenvalues along its diagonal. These eigenvectors define the principal axes
of the covariance matrix, indicating the directions of maximum variance in the evolutionary path.
Simultaneously, the eigenvalues quantify the variance accounted for by each respective eigenvector
along this path.

The proposed method transforms the target and mutant vectors into the eigen coordinate system
using the orthogonal matrix in the following manner:

~x′i,g = ~Bᵀ~xi,g (3.7)

~v′i,g = ~Bᵀ~vi,g (3.8)

where ~x′i,g and ~v′i,g represent the transformed target and mutant vectors into the eigen coordinate system,
respectively. After this transformation, a trial vector is created through the crossover operation. To
convert the trial vector back to the standard coordinate system, the proposed method utilizes the
orthogonal matrix once again in the following manner:

~ui,g = ~B~u′i,g (3.9)

where ~u′i,g denotes the transformed trial vector into the eigen coordinate system.

3.3. Remarks

In this section, we present a method for updating the covariance matrix in a simple yet effective
manner when establishing a new eigen coordinate system. Whereas previous methods require
O(N p · D2) operations to update the covariance matrix, our proposed method achieves this with
O(D2) operations. This substantially speeds up crossover operations, even with a large population
size in the DE algorithm. Figure 3 compares the performance of the proposed method and previous
approaches on a shifted Rastrigin function. In Figure 3(a), the sample covariance matrix is derived
directly from the current population to guide eigenvector-based crossover; here, red dots represent
candidate solutions, while the color map indicates the objective function’s contour. Figures 3(b)–
3(d) illustrate three different covariance update strategies—rank-N p, rank-one, and a combination
of both, respectively—each offering a distinct way of incrementally estimating and refining the
covariance matrix based on the population’s performance. Although they differ in methodology, all
strategies successfully guide the population toward promising regions of the search space, ultimately
converging to the same optimal region. Thus, while their final results show no significant differences
in performance, the key conclusion is that the proposed rank-one approach effectively captures the
principal directions of the landscape with notably less computational cost.

AIMS Mathematics Volume 10, Issue 2, 3500–3522.
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(a) DE with the eigenvector-based crossover operator via a sample covariance matrix.

(b) DE with the eigenvector-based crossover operator via rank-N p update.

(c) DE with the eigenvector-based crossover operator via rank-one update.

(d) DE with the eigenvector-based crossover operator via rank-N p and rank-one updates.

Figure 3. Comparison of the proposed method with existing eigenvector-based DE variants
on a shifted Rastrigin function. In (a), the covariance matrix is estimated from the current
population (DE/eig, CoBiDE), while (b), (c), and (d) employ rank-N p, rank-one, and
combined rank updates (CPI-DE, ACoS, STCS, and CMA-ES), respectively. Despite the
differing update strategies, all converge to the same region, confirming that the proposed
rank-one approach effectively captures promising areas in the landscape with a lower
computational cost.
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4. Experimental settings

4.1. Benchmark functions

A test algorithm’s performance is assessed using two widely recognized test suites: CEC2013 and
CEC2017. The CEC2013 test suite [27] comprises 28 benchmark functions categorized into three
types: unimodal functions (f1–f5), essential multimodal functions (f6–f20), and composition functions
(f21–f28). Similarly, the CEC2017 test suite [2] includes 29 benchmark functions categorized as
unimodal functions (g1 and g2), simple multimodal functions (g4–g10), hybrid functions (g11–g20),
and composition functions (g21–g30). For more detailed information on the CEC2013 and CEC2017
test suites, please refer to [2, 27].

The test algorithm is executed independently 51 times for each benchmark function, with recorded
outcomes including the average function error value (labeled as the mean) and the standard deviation
(std).

To validate the statistical reliability of our findings, we conducted the Wilcoxon rank-sum [31] and
Friedman tests [13,14], followed by Hochberg’s post hoc analysis [26] for all comparative assessments.
Substantial improvements identified by these tests are highlighted in bold text.

4.2. Test algorithms

We compared the proposed method with five selected methods: DE/eig [16], CoBiDE [43], CPI-
DE [44], the proposed framework with rank-N p update (DE/rN p), and the proposed framework with
rank-N p and rank-one updates (DE/rN p+1). The rationale for selecting these methods is as follows.

• DE/eig and CoBiDE: These methods allow us to compare the difference in performance between
using the rank-one update and utilizing the distribution information of the current population
generation.
• CPI-DE: This method compares the difference in performance between the rank-one and rank-N p

updates. Notably, it employs the CPI framework, which removes problem-dependent parameters.
• DE/rN p and DE/rN p+1: These methods compare the rank-one update, the rank-N p update, and the

combined rank-N p and rank-one updates for covariance matrix estimation. CPI-DE and DE/rN p

use the rank-N p update, but a direct comparison of the rank-one update versus the rank-N p update
is challenging due to CPI-DE’s use of the CPI framework.

We excluded ACoS [28] and STCS [15] in our experiments because they employ adaptive parameter
control methods similar to DE/rN p. Our primary objective was to evaluate various covariance matrix
estimation techniques rather than comparing adaptive parameter control methods for eigenvector ratios.

The control parameters of the compared methods are set to the default values as specified in their
respective references. The proposed methods, DE/rN p and DE/rN p+1, utilize the eigenvector ratio as
a control parameter set to 0.05. Table 1 presents the parameter configurations of the proposed and
compared methods. It is important to note that CPI-DE does not employ control parameters such as
the eigenvector ratio.
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Table 1. Parameter configurations of proposed and compared methods.

Algorithm Parameter settings

DE/r1 P = 0.05
DE/eig P = 0.5
CoBiDE pb = 0.5, ps = 0.4
DE/rN p P = 0.05
DE/rN p+1 P = 0.05

We applied the proposed and compared methods to two state-of-the-art DE algorithms, NL-
SHADE-LBC [38] and NL-SHADE-RSP [37], which were the winners of the CEC and GECCO
competitions in 2022 and 2021, respectively. The control parameters of NL-SHADE-LBC and NL-
SHADE-RSP were set to the default values specified in their references. Table 2 presents the parameter
configurations of NL-SHADE-LBC and NL-SHADE-RSP.

Table 2. Parameter configurations of NL-SHADE-LBC and NL-SHADE-RSP.

Algorithm Parameter settings

NL-SHADE-LBC N pmax = 23D, MF,r = 0.5, MCr,r = 0.9
H = 20D, k = 1, NA = 1.0 · N p, nA = 0.5

NL-SHADE-RSP N pmax = 30D, MF,r = 0.2, MCr,r = 0.2
H = 20D, k = 1, NA = 2.1 · N p, nA = 0.5

All comparative assessments were conducted on a Ubuntu 20.04.5 LTS PC equipped with an AMD
Ryzen Threadripper 2990WX CPU and 64 GB of RAM. All test algorithms were implemented in C++.

5. Experimental results

This section presents comparative assessments demonstrating the effectiveness of DE/r1 in solving
optimization problems. Section 5.1 compares NL-SHADE-LBC using DE/r1 and NL-SHADE-LBC,
employing the compared methods on the CEC2013 and CEC2017 test suites across three different
dimensional settings. Subsequently, Section 5.2 offers an extensive comparison between NL-SHADE-
RSP using DE/r1 and NL-SHADE-RSP with the compared methods on the CEC2013 and CEC2017
test suites across three different dimensional settings.

5.1. Comparative assessments with NL-SHADE-LBC

Tables 3 and 6 present the aggregated comparison results derived from the Friedman test on the
CEC’2013 and CEC’2017 test suites, respectively. Additionally, Tables 4 and 5 present the aggregated
comparison results derived from the Wilcoxon rank-sum test on the CEC’2013 and CEC’2017 test
suites, respectively. The symbols “+/=/-” indicate that NL-SHADE-LBC with the corresponding
method performed substantially better (+), similar (=), or substantially worse (-) compared with NL-
SHADE-LBC with DE/r1 based on the Wilcoxon rank-sum test with an α = 0.05 significance level.

AIMS Mathematics Volume 10, Issue 2, 3500–3522.
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• Comparison of the results on CEC2013: Table 3 summarizes the results derived from Tables S2,
S4, and S6 in the supplementary material. The proposed method outperformed all the compared
methods at all dimensionalities. The Friedman test rankings for the proposed method were 3.45
for 10D, 3.57 for 30D, and 3.36 for 50D, resulting in an average ranking of 3.32, the highest
observed. Hochberg’s post hoc analysis revealed substantial differences in performance favoring
the proposed method at the 30D and 50D dimensions, with adjusted P-values of 2.27e-03 and
7.74e-05, respectively, below the 0.05 significance threshold. The average rankings for the
proposed framework with the rank-N p update (DE/rN p) and the rank-N p and rank-one updates
(DE/rN p+1) were 3.72 and 3.75, placing them in second and third positions, respectively.

Table 3. Aggregated comparison results between NL-SHADE-LBC with DE/r1 and NL-
SHADE-LBC with the compared methods derived from the Friedman test with Hochberg’s
post hoc analysis on the CEC2013 test suite.

NL-SHADE-LBC

Rank 10D 30D 50D Mean

DE/r1 3.45 3.57 3.36 3.46
DE-eig 4.05 3.57 4.07 3.90
CoBiDE 4.00 3.79 3.48 3.76
CPI-DE 5.00 5.57 5.54 5.37
DE/rN p 3.71 4.05 3.39 3.72
DE/rN p+1 4.14 3.66 3.45 3.75
Original 3.64 3.79 4.71 4.05

P-value 7.10.E-02 2.27.E-03 7.74.E-05

Table 4, derived from Tables S1, S3, and S5 in the supplementary material, supports the Friedman
test’s conclusions. For example, comparing DE-eig vs. DE/r1, the total result is 3/65/16, meaning
that NL-SHADE-LBC with the proposed method outperformed NL-SHADE-LBC with DE-eig
in 16 cases and was outperformed in 3 cases. The proposed method substantially enhances
NL-SHADE-LBC’s performance from both the statistical and accuracy perspectives, with NL-
SHADE-LBC with DE/r1 outperforming its original version in 28 cases and being outperformed
in 12 cases. The most notable differences in performance are between DE/r1 and CPI-DE, where
NL-SHADE-LBC with DE/r1 outperformed NL-SHADE-LBC with CPI-DE on 44 functions and
was outperformed on 5 functions. No substantial differences in performance were observed
between the proposed method and the proposed framework with the rank-N p update (DE/rN p)
and the rank-N p and rank-one updates (DE/rN p+1).
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Table 4. Aggregated comparison results between NL-SHADE-LBC with DE/r1 and NL-
SHADE-LBC with the compared methods derived from the Wilcoxon rank-sum test with the
α = 0.05 significance level on the CEC2013 test suite.

NL-SHADE-LBC

+/=/- 10D 30D 50D Total

DE-eig vs. DE/r1 0/24/4 2/20/6 1/21/6 3/65/16
CoBiDE vs. DE/r1 0/26/2 1/22/5 2/23/3 3/71/10
CPI-DE vs. DE/r1 1/12/15 3/9/16 1/14/13 5/35/44
DE/rN p vs. DE/r1 0/26/2 1/26/1 0/28/0 1/80/3
DE/rN p+1 vs. DE/r1 0/26/2 0/28/0 1/26/1 1/80/3
Original vs. DE/r1 8/11/9 6/14/8 2/15/11 16/40/28

• Comparison of the results on CEC2017: Table 6, derived from Tables S8, S10, and S12 in
the supplementary material, indicates that the proposed method was more effective than most
compared methods across all tested dimensions. The Friedman test results showed rankings
of 3.36 for 10D, 3.53 for 30D, and 3.07 for 50D, with an average ranking of 3.32, the best
among the compared methods. Hochberg’s post hoc analysis identified substantial differences in
performance across all tested dimensions, with adjusted P-values of 1.79e-04 for 10D, 1.78e-04
for 30D, and 3.34e-06 for 50D, all below the 0.05 significance level. The average rankings for the
proposed framework combined with the rank-N p update (DE/rN p) and the rank-N p and rank-one
updates (DE/rN p+1) were 3.45 and 3.56, respectively, securing the second and third positions.
Table 5, derived from Tables S7, S9, and S11 in the supplementary material, supports the
Friedman test’s conclusion. The proposed method substantially enhances NL-SHADE-LBC’s
performance from both the statistical and accuracy perspectives, with the proposed method
outperforming its original version in 25 cases and 12 cases. The most notable differences
in performance are between DE/r1 and CPI-DE, where NL-SHADE-LBC with the proposed
method outperformed NL-SHADE-LBC with CPI-DE on 46 functions and was outperformed
on 3 functions. No substantial differences in performance were observed between the proposed
method and the proposed framework with the rank-N p update (DE/rN p) and the rank-N p and
rank-one updates (DE/rN p+1).
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Table 5. Aggregated comparison results between NL-SHADE-LBC with DE/r1 and NL-
SHADE-LBC with the compared methods derived from the Wilcoxon rank-sum test with the
α = 0.05 significance level on the CEC2017 test suite.

NL-SHADE-LBC

+/=/- 10D 30D 50D Total

DE-eig vs. DE/r1 1/18/10 2/15/12 3/12/14 6/45/36
CoBiDE vs. DE/r1 0/25/4 2/19/8 4/11/14 6/55/26
CPI-DE vs. DE/r1 2/16/11 1/11/17 0/11/18 3/38/46
DE/rN p vs. DE/r1 1/25/3 1/26/2 0/29/0 2/80/5
DE/rN p+1 vs. DE/r1 1/28/0 0/29/0 0/29/0 1/86/0
Original vs. DE/r1 4/20/5 6/10/13 2/20/7 12/50/25

Table 6. Aggregated comparison results between NL-SHADE-LBC with DE/r1 and NL-
SHADE-LBC with the compared methods derived from the Friedman test with Hochberg’s
post hoc analysis on the CEC2017 test suite.

NL-SHADE-LBC

Rank 10D 30D 50D Mean

DE/r1 3.36 3.53 3.07 3.32
DE-eig 5.38 4.31 4.72 4.80
CoBiDE 4.31 3.93 4.21 4.15
CPI-DE 4.33 5.34 5.69 5.12
DE/rN p 3.83 3.31 3.21 3.45
DE/rN p+1 3.53 3.53 3.62 3.56
Original 3.26 4.03 3.48 3.59

P-value 1.79.E-04 1.78.E-04 3.34.E-06

The experimental results demonstrate the proposed method’s superiority over various other
methods. According to the Friedman test, it consistently achieved the best average ranking, with
substantial differences in performance identified via the Wilcoxon rank-sum test, particularly at higher
dimensionalities. The proposed method substantially improved NL-SHADE-LBC’s performance in
many cases, outperforming methods like DE-eig and CPI-DE across various functions. Despite
these achievements, no substantial differences were observed between the proposed method and the
proposed framework with either the rank-N p update (DE/rN p) or the rank-N p and rank-one updates
(DE/rN p+1). Notably, the proposed method requires substantially fewer computational resources than
these approaches.

5.2. Comparative assessments with NL-SHADE-RSP

Tables 7 and 9 present the aggregated comparison results derived from the Friedman test on the
CEC2013 and CEC2017 test suites, respectively. Additionally, Tables 8 and 10 present the aggregated
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comparison results derived from the Wilcoxon rank-sum test on the CEC2013 and CEC2017 test suites,
respectively.

Table 7. Aggregated comparison results between NL-SHADE-RSP with DE/r1 and NL-
SHADE-RSP with the compared methods derived from the Friedman test with Hochberg’s
post hoc analysis on the CEC2013 test suite.

NL-SHADE-RSP

Rank 10D 30D 50D Mean

DE/r1 3.34 3.89 3.63 3.62
DE-eig 3.64 3.54 3.09 3.42
CoBiDE 3.86 3.18 3.34 3.46
CPI-DE 5.34 4.79 5.71 5.28
DE/rN p 4.23 4.07 3.39 3.90
DE/rN p+1 4.00 3.89 3.79 3.89
Original 3.59 4.64 5.05 4.43

P-value 6.87.E-03 2.17.E-02 7.52.E-07

Table 8. Aggregated comparison results between NL-SHADE-RSP with DE/r1 and NL-
SHADE-RSP with the compared methods derived from the Wilcoxon rank-sum test with the
α = 0.05 significance level on the CEC2013 test suite.

NL-SHADE-RSP

+/=/- 10D 30D 50D Total

DE-eig vs. DE/r1 2/22/4 6/15/7 7/15/6 15/52/17
CoBiDE vs. DE/r1 4/20/4 4/18/6 4/19/5 12/57/15
CPI-DE vs. DE/r1 2/12/14 4/14/10 0/13/15 6/39/39
DE/rN p vs. DE/r1 0/26/2 1/24/3 1/26/1 2/76/6
DE/rN p+1 vs. DE/r1 0/27/1 0/28/0 0/28/0 0/83/1
Original vs. DE/r1 6/14/8 3/13/12 4/12/12 13/39/32

AIMS Mathematics Volume 10, Issue 2, 3500–3522.



3515

Table 9. Aggregated comparison results between NL-SHADE-RSP with DE/r1 and NL-
SHADE-RSP with the compared methods derived from the Friedman test with Hochberg’s
post hoc analysis on the CEC2017 test suite.

NL-SHADE-RSP

Rank 10D 30D 50D Mean

DE/r1 3.21 2.95 2.34 2.83
DE-eig 4.57 5.17 5.19 4.98
CoBiDE 4.66 4.50 4.45 4.53
CPI-DE 4.53 6.19 5.84 5.52
DE/rN p 3.91 2.98 3.10 3.33
DE/rN p+1 3.69 2.86 3.00 3.18
Original 3.43 3.34 4.07 3.61

P-value 1.62.E-02 2.51.E-12 5.70.E-11

Table 10. Aggregated comparison results between NL-SHADE-RSP with DE/r1 and NL-
SHADE-RSP with the compared methods derived from the Wilcoxon rank-sum test with the
α = 0.05 significance level on the CEC2017 test suite.

NL-SHADE-RSP

+/=/- 10D 30D 50D Total

DE-eig vs. DE/r1 1/15/13 2/5/22 2/7/20 5/27/55
CoBiDE vs. DE/r1 1/18/10 2/7/20 3/9/17 6/34/47
CPI-DE vs. DE/r1 5/13/11 1/6/22 2/6/21 8/25/54
DE/rN p vs. DE/r1 0/27/2 2/27/0 0/28/1 2/82/3
DE/rN p+1 vs. DE/r1 0/27/2 0/29/0 0/28/1 0/84/3
Original vs. DE/r1 7/15/7 5/13/11 1/20/8 13/48/26

• Comparison of the results on CEC2013: The results in Table 7 were obtained from Tables S14,
S16, and S18 in the supplementary material. In light of the results presented in Table 7, it can
be observed that the proposed method outperformed all the compared methods except for DE-
eig and CoBiDE at all dimensionalities. As obtained by the Friedman test, the final rankings of
the proposed method were 3.34 at 10D, 3.89 at 30D, and 3.63 at 50D, with a mean ranking of
3.62, the third best. The mean rankings of DE-eig and CoBiDE were 3.42 and 3.46, respectively,
and ranked first and second best, respectively. Hochberg’s post hoc analysis revealed significant
differences in performance between the proposed and compared methods at all dimensionalities,
with adjusted P-values of 6.87e-03 at 10D, 2.17e-02 at 30D, and 7.52e-07 at 50D; all values are
less than the significance level of 0.05.
The results presented in Table 8, derived from Tables S13, S15, and S17 in the supplementary
material, support the conclusions of the Friedman test. It is evident that the proposed method
significantly improves NL-SHADE-RSP’s effectiveness, as seen from both the statistical analyses
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and the accuracy measures. Specifically, in 32 cases, NL-SHADE-RSP enhanced by the proposed
method surpassed its original form, whereas in 13 cases, it did not perform as well. Compared
with DE-eig, the proposed method yielded better results in 17 cases while underperforming in 15
cases. Similarly, compared with CoBiDE, the proposed method yielded better results in 15 cases
while underperforming in 12 cases. Therefore, no notable performance disparities were observed
between the proposed method and either DE-eig or CoBiDE despite these having better final
rankings than the proposed method.

• Comparison of the results on CEC2017: The results in Table 9 were obtained from Tables S20,
S22, and S24 in the supplementary material. According to the results presented in Table 9, the
proposed method outperformed all the compared methods at most of the dimensionalities. As
obtained by the Friedman test, the final rankings of the proposed method were 3.21 at 10D, 2.95
at 30D, and 2.34 at 50D, with a mean ranking of 2.83, the best. Hochberg’s post hoc analysis
revealed significant differences in performance between the proposed and compared methods at
all dimensionalities, with adjusted P-values of 1.62e-02 at 10D, 2.51e-12 at 30D, and 5.70e-
11 at 50D; all values are less than the significance level of 0.05. Notably, the mean rankings
of the proposed framework with the rank-N p and rank-one updates (DE/rN p+1) and the proposed
framework with the rank-N p update (DE/rN p) were 3.18 and 3.33, respectively, and ranked second
and third best, respectively.
The results in Table 10 were obtained from Tables S19, S21, and S23 in the supplementary
material, supporting the Friedman test’s conclusion. The proposed method can observably
enhance the performance of NL-SHADE-RSP from both the statistical and accuracy perspectives,
where NL-SHADE-RSP with the proposed method outperformed its corresponding original
version in 26 cases, whereas it was outperformed in 13 cases. The differences in
performance between DE/r1 and DE-eig are the most obvious, where NL-SHADE-RSP with the
proposed method outperformed NL-SHADE-RSP with DE-eig on 55 functions, whereas it was
outperformed on 5 functions. In addition, we observed no significant differences in performance
between the proposed method and the proposed framework with the rank-N p update (DE/rN p)
and the rank-N p and rank-one updates (DE/rN p+1).

The experimental results highlight the proposed method’s effectiveness, showing it outperforms
most of the compared methods across several dimensions. Despite achieving the third-highest average
ranking on the CEC2013 suite according to the Friedman test, individual comparisons using the
Wilcoxon rank-sum test revealed its performance was on par with DE-eig and CoBiDE, the top
two performers. On the CEC2017 suite, the proposed method distinguished itself as the leading
performer. Additionally, it significantly improved the performance of NL-SHADE-RSP, exceeding
the achievements of its original version.

5.3. Algorithm complexity

The proposed method is designed to be computationally more efficient than the compared methods.
We evaluated its algorithmic complexity using the CEC2017 test suite to substantiate this claim. The
computing time T0 is measured by executing the test program outlined below.
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1 x=0.55;
2 for i = 1; i < 1000000; i = i + 1 do
3 x=x+x; x=x/2; x=x*x; x=sqrt(x);
4 x=log(x); x=exp(x); x=x/(x+2);
5 end

The computing time T1 is determined by running the function g18 for 200,000 evaluations.
Similarly, computing time T2 is obtained by executing the same function, g18, under an algorithm
that also performs 200,000 evaluations. The average computing time, T̂2, is calculated as the mean of
five instances of T2 measurements.

Table 11 presents the algorithm complexity results comparing NL-SHADE-LBC with DE/r1 against
NL-SHADE-LBC with other methods. As shown in this table, except for the original algorithm, the
proposed method requires the least computational time relative to the compared methods. The proposed
method exhibits complexities of 4.133 for 10D, 20.830 for 30D, and 42.282 for 50D. Compared with
DE-eig, the proposed method requires three times less computation time for 10D, six times less
for 30D, and eight times less for 50D. Similarly, CoBiDE requires approximately three times more
computational time for all dimensions (10D, 30D, and 50 D) than the proposed method. CPI-DE
requires less computation time than the other methods because it consistently generates N p offspring
in each generation’s standard coordinate system. However, CPI-DE still requires more computational
time than the proposed method. Lastly, DE/rN p and DE/rN p+1 consume more computational time than
the proposed method due to their additional use of the rank-N p update. Overall, the proposed method
performs better and requires less computational time than the other methods.

Table 12 presents the algorithm complexity results comparing NL-SHADE-RSP with DE/r1 against
NL-SHADE-RSP with other methods. This table illustrates that, except for the original algorithm,
the proposed method demands the least computational time relative to the compared methods. It has
a complexity of 4.069 for 10D, 23.095 for 30D, and 42.903 for 50D. Compared with DE-eig, the
computational time needed by the proposed method is three times less for 10D, five times less for 30D,
and eight times less for 50D. Compared with CoBiDE, the computational time needed by the proposed
method is three times less for 10D, three times less for 30D, and four times less for 50D. CPI-DE,
DE/rN p, and DE/rN p+1 also require greater computational time than the proposed method. Overall, the
proposed method requires less computational time while maintaining superior performance compared
with the other methods.
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Table 11. Algorithm complexity results between NL-SHADE-LBC with DE/r1 and NL-
SHADE-LBC with the compared methods on the CEC2017 test suite.

DE/r1 DE-eig CoBiDE CPI-DE

D 10 30 50 10 30 50 10 30 50 10 30 50

T̂2 0.156 0.784 1.830 0.320 2.577 6.887 0.314 1.618 3.958 0.241 1.035 2.294
T̂2−T1

T0
4.133 20.830 42.282 13.886 127.298 342.669 13.507 70.370 168.674 9.181 35.718 69.868

DE/rN p DE/rN p+1 Original

D 10 30 50 10 30 50 10 30 50

T̂2 0.311 2.095 5.490 0.364 2.120 5.550 0.120 0.527 1.399
T̂2−T1

T0
13.363 98.671 259.671 16.476 100.199 263.221 2.002 5.551 16.719

T0 = 0.016837s, T1(10D) = 0.086452s, T1(30D) = 0.433232s, and T1(50D) = 1.117972s.

Table 12. Algorithm complexity results between NL-SHADE-RSP with DE/r1 and NL-
SHADE-RSP with the compared methods on the CEC2017 test suite.

DE/r1 DE-eig CoBiDE CPI-DE

D 10 30 50 10 30 50 10 30 50 10 30 50

T̂2 0.150 0.798 1.802 0.314 2.276 6.861 0.366 1.747 4.142 0.272 1.107 2.405
T̂2−T1

T0
4.069 23.095 42.903 14.232 114.649 356.367 17.490 81.858 187.857 11.680 42.255 80.294

DE/rN p DE/rN p+1 Original

D 10 30 50 10 30 50 10 30 50

T̂2 0.315 2.140 5.573 0.353 2.722 6.888 0.116 0.505 1.222
T̂2−T1

T0
14.351 106.236 276.562 16.684 142.311 358.025 1.966 4.948 7.000

T0 = 0.01614s, T1(10D) = 0.083841s, T1(30D) = 0.425319s, and T1(50D) = 1.109502s.

6. Conclusions

We have introduced DE/r1, a simple yet effective eigenvector-based crossover operator, to enhance
the capability of the DE algorithm in tackling optimization problems with variables exhibiting strong
correlations. Like other eigenvector-based crossover operators, this method calculates the covariance
matrix, applies eigendecomposition to establish a new eigen coordinate system, and performs crossover
operations within this system. The main innovation of our approach lies in exclusively using the
rank-one update for covariance matrix estimation, substantially reducing the computational costs.
Specifically, while the previous methods require O(N p · D2) computational operations for covariance
matrix estimation, our method only requires O(D2) computational operations. Despite concerns that
our method’s covariance matrix may not capture the function’s landscape as precisely as previous
operators, our experimental analysis reveals no noticeable decline in performance. Our method
discovered solutions more quickly and accurately than previous methods.

We did not include ACoS [28] and STCS [15] in our experiments, as they are similar to DE/rN p

but use adaptive parameter control methods. Our focus was on evaluating different techniques for
estimating the covariance matrix within an eigenvector-based crossover operator rather than assessing
adaptive parameter control methods for the eigenvector ratio. However, future research will explore
efficient adaptive parameter control methods for our approach.

Additionally, we aim to examine the applicability and effectiveness of our method in tackling
various other types of optimization problems, including dynamic and multi-objective optimization,
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in subsequent studies.
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