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Abstract: This paper was concerned with stabilization in distribution by feedback controls based
on discrete-time state observations for a class of nonlinear stochastic differential delay equations
with Markovian switching and Lévy noise (SDDEs-MS-LN). Compared with previous literature, we
employed Lévy noise in the discussion about stabilization in distribution for hybrid stochastic delay
systems and we considered using a discrete-time linear feedback control which is more realistic and
costs less. In addition, by constructing a new Lyapunov functional, stabilization in distribution of
controlled systems can be achieved with the coefficients satisfying globally Lipschitz conditions.
In particular, we discussed the design of feedback controls in two structure cases: state feedback
and output injection. At the same time, the lower bound for the duration between two consecutive
observations 7 (7*) was obtained as well. Finally, a numerical experiment with some computer
simulations was given to illustrate the new results.
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1. Introduction

Stochastic differential equations (SDEs) with Markovian switching (also known as hybrid SDEs)
has been widely used to model many systems in biological systems, financial systems, and other
fields. A field of common interest in the study of hybrid SDEs is automatic control, taking subsequent
emphasis on the stability analysis [1,2]. Most of the literature, such as [3—7], only consider Brown
motions. However, Brown motions are continuous and cannot describe discontinuous noises like
jump-type noises. Compared with Brown motions, Lévy noise, which contains both continuous
Brown motions and discontinuous Poisson jumps, can model the extreme sudden events, such as
earthquakes, storms, floods, wars, and so on. For example, in [8] some sufficient conditions were put
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forward to achieve almost surely exponential stability of neural networks with Markovian switching
and Lévy noise. Therefore, with the development of stochastic analysis, stochastic differential
equations with Markovian switching and Lévy noise are considered by many researchers, see [9—12].

It is well known that time delays are often and inevitably encountered for various reasons in many
fields such as population systems, manufacturing, chemistry and chemical engineering, finance, etc.
Meanwhile, a time delay is often one of the main causes of poor performance in systems, see [13, 14].
Hence, taking time delays into account is reasonable and necessary when studying the stability of
SDDEs-MS-LN. Nowadays, stability and stabilization of such SDDEs have been studied, see [15-17].
For example, Yuan et al. in [16] investigated sufficient conditions for stability of delay jump diffusion
processes. Liin [17] focused on the mean square stability of stochastic differential equations with Lévy
noise.

A common feature in these papers is that most of the research is focused on the stability of the trivial
solutions. However, many hybrid systems do not have an equilibrium state or their solutions do not
converge to zero, see [18,19]. It is not sufficient to only study the stability of trivial solutions in the real
world. For example, for many population systems under realistic backdrops, stochastic permanence is
a more suitable control goal than extinction (see [20-22]). In this case, it is of great significance to
know whether the solution will converge to some distribution or not (but not necessarily to zero). This
property is known as asymptotic stability in distribution. Stability in distribution of SDEs-MS with
Brownian motion has attracted some attention of scholars recently, for example, Yuan et al. [19] and
You et al. [23]. In 2010, Yuan et al. [16] studied stability in distribution of hybrid delay systems with
jumps. As a classical area of stability of hybrid systems, Li et al. [24] recently considered to employ
delay feedback controls to stabilize a given SDEs-MS-LN in distribution. But for the stabilization in
distribution of SDDEs-MS-LN, the discussion is still open. In addition, to reduce the practical cost
of control design, feedback controls based on discrite-time state observations [1, 14] are considered in
this paper.

Mathematically speaking, let us consider an unstable SDDE-MS-LN

dX(®) = f(X(1),X(t = h), r(2))dt + g(X(1), X(¢ = h), r(t))dB()
+ | HX@), X = k), r(0),2) N(dr, da), (1.1)

B

where X(¢) € RY, h is a time delay of the system, () is a Markov chain, B(f) is a Brownian motion,
N(dz, dz)is a compensated Poisson random measure, and Rj = R" — {0} (For formal definitions, see
Section 2.) Such a regular feedback control requires the continuous observations of the state X(7) for all
t > 0. This is of course expensive and sometimes not possible as the observations are often of discrete
time. Now we can design a feedback control u(X([#/7]7), r(¢)) based on the discrete-time observations
of the state X(¢) at times 0, 7, 27,..., so that the controlled system

dX(r) =[f(X(®), X(t = h), r(1)) + u(X([t/7]7), r(t))]ds
+ g(X(1), X(t = h), r(1))dB(1)

+ f H (X)), X((t—h)),r(t),z) N(dt, dz), (1.2)
Ry
becomes stable in distribution.
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The main aim of this paper is to explore how to use feedback control u(X([¢/7]7), r(?)) to stabilize a
given unstable SDDE-MS-LN in distribution. The key points of this paper are as follows.

e We introduce Lévy noise to remodel hybrid stochastic delay systems and study the stability in
distribution for controlled SDDEs-MS-LN.

e Due to the discontinuity of Lévy noise, we need to study the stability in distribution for SDDEs-
MS-LN in functional space D), (for formal definitions, see Section 2) rather than Cj, in [23].

e Making use of the generalized Ito formula for Lévy-type stochastic integrals [25], we construct
a special Lyapunov functional based on Lévy noise, the property of stability and discrete-time
feedback control to achieve the asymptotic stability in distribution for controlled SDDEs-MS-
LN.

e In order to reduce the cost of the continuous working time of the controller, feedback control
u(X([t/7]7), r(¢)) based on the discrete-time observations is an efficient strategy to stabilize the
unstable systems. Moreover, we show that there is a positive number 7* such that the feedback
control u(X([¢/7]7),r(¢)) will make the controlled system (1.2) asymptotically stable in
distribution provided 7 < 7*. We will also give a lower bound on 7" which is computable
numerically.

The structure of this paper is organized as follows. In Section 2, we present some notations,
definitions, and assumptions related to Eq (1.1). In Section 3, we study the stability in distribution of
the solution to Eq (1.2) based on the Lyapunov functionl and It6 formula. In Section 4, the method for
designing the control function is discussed. In Section 5, we provide a numerical example to verify
the effectiveness of the new results. Finally, this article is concluded in Section 6.

2. Notations and assumptions

Throughout this paper, unless otherwise specified, we use the following notations. Let R? be the
d-dimensional Euclidean space and B(R") denote the family of all Borel measurable sets in R
Let | - | denote the Euclidean norm or the matric trace norm, respectively. For a matrix A,
|A| = +/trace (ATA) denotes its trace norm and ||A|| = max{|Ax| : |x| = 1} denotes its operator norm. If
A is a symmetric matrix, the largest and smallest eigenvalue are denoted by Aj.x(A) and Apin(A),
respectively. In general, (Q,F,{¥:};s0,P) signifies a complete probability space whose filtration
{F:}is0 satisfies the usual conditions. Denote by D), (or D ([—h, 0]; Rd)) the family of all cadlag (i.e.,
right continuous with left limits) functions & : [-h,0] — R in the Skorokhod topology. For any
&1,& € Dy, define the Skorohod metric ds (£1,&,) = infaep {||A° V [I€1 — & o 4]|,}, where A denotes
the class of strictly increasing, continuous mappings of [—h,0] onto itself, & o A denotes the
composition of two functions & and A, [|AlI° = sup_j, ..« |10g % , and ||€]l, = sup_,<,<0 E(S)I.
Under the Skorohod metric dS,D([—h, 0];Rd) is complete and separable ( [26], Theorem 12.2,
p. 128). In addition, B(D,) denotes the family of all Borel measurable sets in D,. Let
B(t) = (By,...,B,,) be an m-dimensional Brownian motion. Denote by N(#,z) an n-dimensional
Poisson process, and denote the compensated Poisson random measure by

N(dt, d2)" = N(dt, dz) — v(dz)ds
= (N, (dt,dzy) — v, (dzy) dt,...,N, (dt,dz,) — v, (dz,) di),
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where {Ny,k = 1,...,n} are independent 1-dimensional Poisson random measures with characteristic
measure {v,k = 1,...,n} coming from n independent 1-dimensional Poisson point processes.

Let r(¢), t > 0, be a right-continuous irreducible Markov chain on the probability space taking values
in a finite state space S = {1,2,..., N} with the generator I = (y,- j)NxN given by

yiA+o(A) ifi#

P{r(t+A):j|r(t):i}:{1+)/~~A+0(A) iti=)
ij = J

where A > 0 satisfies EE(I) %A) = 0 and y;; is the transition rate from i to j satisfying y;; > 0 if i # j
while y;; = — 3.,;; vij- We assume that r(¢), B(¢), and N(z, z) are independent of each other.

Let us consider a d-dimension SDDE-MS-LN (1.1), where f : RIxRYxS — RY g : RIxRIx S —
R>™ and H : RY X R? x § X R? — R®" are Borel measurable functions, X(¢) = limg, X(s). We note

that each column H® of the d x n matrix H = [H, j] depends on z only through the kth coordinate z,
that is
HYX,i,2) = HY(X,i,2); 2= (z1,...,2) € R,

We refer to [16,27] where this type of dependence is discussed and investigated for SDDEs-MS-LN.
We can rewrite out in detail component X;(7), 1 </ <d, in (1.1), that is

dX,(t) = fuX(®), X(z = h), r(1))dr + Z (X (), X(t — h), r(1))dB;(1)
j=1

+ Z f Hy (X(), X((t = b)), r (1), z) Ny (dt, dzp).
=1 YR\{0}

Next we will state an assumption about the coefficients of SDDE-MS-LN (1.1).

Assumption 2.1. There exist positive constants a,, a,, and az such that
f(x. X0 = fO. 5D < ar(x—yP +1x =3, lg(x. X% i) — g0, 3. D < ax(lx — yI* + 1% = 31°),

and
n

. - . 2 - -
>, f [HY (x, %,i,20 = HY (0,3, 1, 20| vic (dz) < s =y + 15— 5P,
= JR\{0}

forall x,x,y,y€Rand i € S.
It is easy to see from Assumption (2.1) that

1fCx, % DI < 2ar (5 + 5) + a0, lg(x, X, D < 2ax(1x + 13) + ao (2.1)
and .
3 f [HO (x, %, 20 vi (dzo) < 2as(? + 15) + ao 2.2)
=1 YR\{0}
for all (x,x,i) € R x R! xS and i € S, where ay = 2maXi€§(|f(O,0,i)|2V

. n . 2
120,0,)P) v Ti, f [H® (0,0, i, 20| i (dzo)
R\{0}
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By Assumption 2.1, it is known (see [16]) that the SDDE-MS-LN (1.1) has a unique global solution
X(¢) for all t > 0. Assume that the original SDDE-MS-LN (1.1) does not have the desired property of
stability in distribution. Therefore we need to design a feedback control to stabilize the system (1.1). To
make the design more concise and simple, we use the linear form of feedback control u(X(6(¢)), r(¢)) =
A(r(1))X(6(2)), where A(i) = A; € R™4(1 < i < N), () = [t/7]r. In addition, throughout this paper, we
will set a; = maxes||A;||>. The controlled system (1.2) therefore becomes

dX(n) = [f(X(0), X(t = h), (1) + A(r(1))X(6(r))]dz
+ g(X(1), X(r = h), r(1))dB(r)

+ f H(X(), X((t = h)),r(t),z) N(dt, dz) (2.3)
g

with the initial data as

{ {X(s): =h < s <0} =¢& €Dy, 2.4)

r(0)=i€S.
It is well known to all (see [28]), under Assumption 2.1, SDDE-MS-LN (2.3) has a unique global
solution for any initial data (2.4). Define X, = {X(¢ + 5) : —h < s < 0} for ¢t > 0, which is a D-valued
process. X%/(f) denotes the solution of SDDE-MS-LN (2.3) with initial data (2.4). /() denotes the
Markov chain starting from i. It is also known that (see [29])

B[ x| < e (1+ i) vexo, 2.5)

where C; is a positive constant that depends on ¢ but is independent of the initial data (&, 7).

We notice that the joint process (X;, r(¢)) is not a time-homogeneous Markov process. But when
h can be divisible by 7, for k > 0, we can easily get that the joint process (X, r(k7)) is a time-
homogeneous Markov process with transition probability p(k, &, i;d{ X {j}), where p(k,&,i;d{ X {j})
denotes the transition probability measure on D), X S, that is

P((X5 P (k) e ExJ)= ) fE plk, &, i;d¢ X {j}) (2.6)

jeJ
for any E € B(D,) and J € S.

Denote by P (D)) the family of probability measures on the measurable space (D, B(D},)). For
Py, P, € P (D), metric dy, is given by

dp, (P1,P,) = sup
¢ellL

where L = {¢ : D, — R satisfying [¢p(€) — ¢(0)| < ds(&,¢) and |p(€)| < 1 for &, € D). In addition, let
L (X;) denote the probability measure generated by X, on (Dy,, B (Dy)).

Definition 2.1. The SDDE-MS-LN (2.3) is said to be asymptotically stable in distribution if there exists
a probability measure u, € P (Dy,) such that

lim dy (£(X5) . 1) = 0

k—o0

2

f@ B(E)P( d&) - f B(E)P( &)

Dy,

for all (¢,i) € Dy, X S.
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3. Stabilization in distribution

Let C? (Rd X S; R+) denote the family of all non-negative continuous functions ¥(x, i) defined on

RY x S which are twice continuously differentiable in x for all i € S. Assume that there exists one
Y eC? (Rd X S; R+), and define an operator L¥ from R? x RY x S to R by:

LY(x, x,1)
= lI")c(x’ l) [f(x’ x9 l) + Aix]

1
+ 5 trace |gx, 2 D)W (x, D)g(x, %) |

n 3.1
i V[R\{O} Z [\P (x +HY (x, %,1,2) i) - ¥

k=1

N
“W, (e, HY (6, %, 6,20 | ve (dz) + Y i ¥(x, ),

j=1
o _ (0¥ (xD) O¥(x.D) AY(x,i) o [ 0%¥(xD)
where  Wy(x,i) = ( Ox; 7 dxy ’77 dxg ) o Palxd) = ( 0xi0x; )dxd‘

The difference between two solutions of the system (2.3) with different initial values is as follows:

XE(r) — X4 (n)
= -0+ fo [ (X550 X5 = . P9) = £ (XE05), X5 = ), P (9)
+ A(F®) (XF6@) - X46@)| ds
+ f [ (X905 X545 = . £9) =  (XE905), XE¥Cs = . ) dBC)

ff [H (X5, X5 (s = )7, (5),2)
-

—H (X%(s7), X5'((s = )), 7 ((s = 1) ,2) | N(ds, d2).

(3.2)

Let ® € C? (Rd X S; R+), and define an operator L® : R/x R x R? x RY x S — R concerning Eq (3.2)
by
LO(x,y, X, ¥,1)

= O(x—y,0)[f(x 50— f,5.0) +Alx - y)]

1
5 trace [(g(x, %.1) = 80,3, 1) Pu(x = 3, )(8(x. X, 1) = 8. 5.1)]

f Z O(x — y+H(k) (%, X,0,2) — H(k)(y V,1,2) , ) 3.3)

R\(0} %=1
= O(x—y, i) = Dux =y, ) (HY (x, %1, 20 —HY (3,5, 4,20) | vi ( dzo)
N
+ Z YijP(x =y, j)-
j=1

To study stabilization in distribution of system (2.3), we need the following assumptions.
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Assumption 3.1. There exist positive constants c;, 6,, by, and by > by, > 0, function
W(x,i) € C2 (R x S;R.), and Qy(x) € C (R%;R,) such that

cilx® < W(x, i) < Q1(%),

_ P i, (3.4
LY (x, X,0) + 6, [¥o(x, D" < =boQ1(x) + b1 Q1(X) + by

forall (x,%,i) € R“xR? x S.
Assumption 3.2. There exist positive constants c;, 6,, and bs; > by > 0, function

®(x,i) € C*(R? x S;R.), and Qa(x) € C (R%:; R, ) such that

colx =y < ®(x,y,i) < Or(x - y),

. 2 o (3.5)
LO(x,y, X, ¥,0) + 6, [P (x —y, DI < =b302(x — y) + b4 Q2 (X — §)

forall (x,y,X,y,1) eRIXRIxRYxRYxS.

3.1. Lyapunov functionals

To obtain our results, we need to establish the Lyapunov functional on the segments X, := {X(¢+5) :
—T—-h<s<O0land 7 ={r(t+s): —t—h < s <0}forr >t Letr(s) =r0) for—r—h < s <0.
Evidently, X, isD ([—T - h,0]; Rd)—valued which is different with X;. The Lyapunov functional will be
of the form

V(X fint) o= WX, r(0) + V (R t), fort>h, (3.6)

where

A

V(X.int)= @ f, t f t |7 F(X). FXO = ), () + A XE)[
+ 1gOXO), 8K — ), rO)?
+ f JHE )X (@ =m).r) 2| v(d2)|dv ds
and  is a positive constant celected later

Remark 3.1. Since our feedback control is based on discrete-time state observations, the Lyapunov
Jfunctional in [23, 24] is not appropriate which is employed for the stabilization in distribution problem
by delay feedback control. Therefore, we consider to employ a new Lyapunov functional motivated
by [14, 24] to prove the stability in distribution of controlled system (2.3).

We can observe that
alX(P <V (X, #1,1) < QX)) + V(R 74, 1). (3.7)

For convenience, X(¢) denotes X%/(f) and we fix the initial data (&,i) arbitrarily. Applying the
generalized functional Ito formula to the Lyapunov functional defined by (3.6) yields

dv (Xt, 7, z) =LV (X,, 7, r) dt + dM(©)
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for t > 7, where M(t) is a martingale with M(0) = 0, and

LV (Xz, i, t) = LY(X(), X(1 = h), (1)) = Yx(X (@), r(1) A, (X (1) = X(6(1)))

| [ FOX0, X = ), 1(0) + Ay XG)[ + 8K, Xt = ), )

+ f |H (X(), X((t = b)), r (1), 2)| o dz)]
R

s
‘“f
-7

+|g(X(s), X(s — h), r(s))I* + fn |H (X(s7), X((s —h)),r(s), z)|2 v(dz)]ds

R

7| F(X(5), X (s = ), r(s)) + Ay X(B(s)|

0

< LYX®®),X(t - h), r(0) + 6; [Px(X(©), r(1))] (3.8)

+ 21X (1) - X(B(@)P

Arr)

46,
 at| T FOXO, X0 = ), 1) + Ay XN + 18X, Xt = D, )P

+ f |H (X(), X((t = b)), r (1), )| o dz)]
-

0

- Ozf [T |f(X(S),X(s — h), r(s)) + A,(S)X(é(s))|2

-7

+1g(X(5), X(s — h), r(s))* + f |H (X(s7), X((s = 1)), 7 (), 2)|] v(dz)]ds.
R
By Assumption 2.1, we can derive

m’[‘r |fX@), X(t = ), r(1)) + Ar(z>X(5(t))|2 +18(X (1), X(t = h), r(0)I”

+ f |H (X)), X((t—h)), r(), z)|2 v(dx)]
R

< at[4an(X@)P + Xt = D) + 2a07 + 2a,71X(6(1)
+ 20X + |X(t = W) + ao + 2as(X@OF + Xt = P + ap

< at[2Qait+a + a3) X0 (3.9)
+ a2+ 1) +2QaT + ay + a3) IX(t - W) + 2a,7IX(6(0)

< ar [2 Qa\T + ar + a3) | X ()]
+ a2+ 1) +2Qart + ay + a3) IX(t = W + 4astIXO)P + dast|X (1) - X(6(1)P ]

< ar|2Qait +a + a3 + 2a47) IX()P

+ a2+ 1) +2QaiT + ay + a3) IX(t - W) + 4asTIX (1) - XO(0)P].
Under Assumption 3.1, we get from Eqs (3.8) and (3.9) that
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LV (X,, 7, t)
< —=byQi1(X(®) +b101(X(t—h)) + by + (Z—; + dasat)|X(1) — X(6(D))P
+ar [2 a7 + ay + as + 2a,7) | X(0)

+ a2+ 1) +2QaiT + ay + a3) IX(t - b

-« f [T |F(X(9), X(s = ), r(s5)) + Iax,(S))(((S(s))|2

+ |g(X(5), X(s — h), r(s))|* + f |H (X(s7),X((s = h)),r(s) ,Z)|2 v(dz)]ds (3.10)
R}

<=b0\(X(®) + b1 Q1(X(E—h)) + by + (%1 + 4asat)|X(1) — X(S6(1)F
+ataot + 1) + 2a1 Qa7 + ar + a3) |X(t — h)|?

— a/f [T |f(X(s),X(s —h),r(s)) + Ar(s)X(é(s))|2

+1g(X (), X(s = h), () + f |H (X(s7), X((s = b)), 7 (5),2)| v(da)|ds
Rg
fort > 7, where b = by — 2at Qa7 + ar + az + 2a47) /c;.

3.2. Lemmas

Before proving the key theorem, we need to prove two lemmas, where Lemma 3.1 will prove the
uniform boundedness and Lemma 3.2 will prove the exponential convergence.

Lemma 3.1. Let Assumptions 2.1 and 3.1 hold. If T > 0 is sufficiently small for

1
b=by—-2arQait+a, +az +2a47)/c1 >0 and 1< = 3.11)
ay

then the solution of Eq (2.3) with initial data (2.4) satisfies
in2
E [x;||” < € (1+ Ig1P) (3.12)

forallt > 0, where C is a positive constant.

Proof. Applying the functional Ito formula to e%(V(X,, ,, 1)), we can show that
FE(V(X,, 7, 1) — TE(V(X:, 7, T))
= E f t P BV (X, 7y, 8) + LV(X,, 7y, ))ds,
for t > 7, where £ is a positive numeer to be chosen later. Using Eqs (2.5) and (3.7), one can see that

e BIX(OF - i (1 + 11€1P)

< Ef s [,BO(Ql(X(s)) + V(X,, #y,5)) +LV(X,, 7, S)] ds, (3.13)
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where f; is a positive number. Moreover, we note that

B(V(X, . 5))
< atE f AT |7 | /XY, X0 = b, 7)) + A, X@EOD| (3.14)
+|Anaxw—mnww+LJH@@1X@—M3¢M¢$W&WN
Substituting Eqs (3.10) and (3.14) into Eq (3.13), we can obtain
1 BIX(OP ~ B (1 + 1161P)
gff%ﬁ@mmmﬁ+f?wm@fE&MﬂﬂmwwwmnAmnwﬂz
+T lg(X(v), X(v — h), r(v))|2T+ fR n |H(X(;‘T), X(v =) ), rm), )| v(dz))dvdss
+ teﬁosE LV(X,, 7, 5)ds 0
gff%£@mmmw+f?Mm(fE&MﬂmmwmmwwAwmmﬂz
;|amwxw—mmwwlLgng;mw—mmrmJﬁwwmmn o
+ f t & = bEQ|(X(s)) + blEQlo (X(s—h) + by + (%‘1 + 4asat)EIX(s) — X(6(s)
+  atayt + 1) + 2at QayT + ay + a3) EIX(s — h)?
- f _ E(t|f(X(v), X(v = h), r(v)) + A,(V)X(d(v))|2
+ MQ&XW—MKWW+LJH@WWXW—MWJMJﬁW&WMw-
It follows from Eq (2.3) that
EIX(1) - X(6())
= E‘ 5;)[f(X(S)’ X(s —h), r(s)) + A(r(s))X(6(s))]ds
+ fé( tt) 8(X(s), X(s — h), r(s))dB(s)
! - 2
o [, L)X w9 s a0 516

< 3TEf |f(X(s), X(s — h), r(s)) + A(r(s))X(é(s))I2 ds

+ 3E

‘f ¢(X(s), X(s — h), r())dB(s)|

+ 3E

f f H(X(s7),X((s—h)"),r(s),z) N(ds, dz)‘z.
-1 JRG
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By It6 isometry,
E|X(1) — X(5(n))?

< 372 [ 1A X(5 = h.r(5) + ACEXEE)E ds
+3E f 1g(X(s5), X(s — h), r(s))[* ds (3.17)

+3E f f [ (X(s7). X((s = ). ()2 vid)ds.

Seta = 15“4 and 7 < —5 and we have that 3( 44 + 4asa1?) — a < 0. Then we can find a sufficiently

small By Wthh satisfies the following condition:

Boat + 3(ﬂ +4dasat?) —a < 0,
46,

(3.18)
Bo—b+ Alby + 201" Qayt + ar + az) /ey < 0.
Using Eqgs (3.17) and (3.18), we derive that
f P oart f E(r | (X 1), XOv = ), () + A,y X@V)[
+ |g(X(), X(v = h), r(v)* + f |H (X7, X((v=h) ), r (v), z)|2 v(dz))dvds
+ f JOS(% + dayat™E|X(s) — X(8(s))Pds 519)

_ f o [a f E(t|f(X(v), X(v - h), r(v))+Ar(V)X(6(v))|2

+ 1g(X(v), X(v = h), r(m)* + f |H (X)), X((v=h)"), r(V),Z)|2 V(dz))dVl ds
RS
< 0.

It follows from Eq (3.15) that one gains
A BIXOF - (1 + 11€17)
!

< f BB (Q1(X(5)) ds + f & [DEQ\(X(5)) + bIEQ1(X(s — h)) + by

T

+ atagt+ 1) + 2at Qai;t + a; + a3) E|X(s — h)|2] ds
Note thatt

f & |[DIEQI(X(s — b)) + 207 2417 + az + a3) BIX(s — W) | ds,
T ek
< oo f & |bIBQI(X(5)) + 207 QarT + az + a3) BIX(s) | ds
T=h
< eﬁohf P [(by + 2a1 Qait + ay + az) /c))EQ 1 (X(s))] ds,

T

+ePoh f P’ [(by + 201 Qa1T + ar + a3) [c1)EQ1(X(s))] ds.
T—h
By condition (3.18), we derive that
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P BIX(@)P - B (1 +1€1P)
5By — b + by + 2a1™" 2aiT + ay + az) /c))E (Q1(X(s5)) ds

+ f P [by +atag2t + 1)]ds + 2" f ' P [(by + 2at QayT + ay + a3) /c1)EQ(X(s))] ds

Tt T—h
S Bzeﬁ() s
where 3, is a positive number. Hence

EX(OP < (1+1€7). t>7. (3.20)

After that, we can make an estimate of the segment process X,. Lett > 7+ h and 6 € [0, 7]. According
to the It6 formula and Eq (2.3), we obtain that

1X(t - O)F
t—0

= IX@t-0F + Zf X7 () [f(X (), X(s = h), () + Ay X(6(5))] ds

-7

t—6

r—0
+ 2f XT(s)g(X(s), X(s — h), r(s))dB(s) + f lg(X(s), X(s — h), r(s))l2 ds

-7

f f Z [|X(s) + H® (X(57), X((s = 1)), 7 (), z0)|
t— R\{0
- IX(s)P - 2XT<s>H<’<> (X7 X((s = )7, 7 (), 26) i (dza) ds

n 16
+ f f 1% () + HO (X)X = )79, 20
=1 Yi-T JR\{0}

— x| N (ds, dzo).

According to Kunita’s inequality ( [30], Corollary 2.12, p. 332),

E supyy.. X (1 — O)*
< e {Ef [lf(X(s), X(s = h), r(s) +

!

+ EBX(t-1]P+E |g(X(s), X(s —h), r(s))l2 ds

" Ef f Z|H(k) (X(7). X((s = B, r(s). )| Vk(de)dS}

R0} %=1

A,(S)X(é(s))|2] ds

where cj is a positive constant. It follows from Eqs (2.1) and (2.2) that

E sup |X(t — 0)]

0<6<t

< c4(E|X(t—T)|2+ f E|X(s)]* ds + f EIX(6(s))]* ds

-7

!
+ f E|X(s — h)|? ds+c5)
-7
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-7

< o (EIX(t—T)|2+ f E|X(s)* ds + f EIX(6(s))I* ds
—h
¥ f E|X(s)]? ds+c5),
t—1-h

(3.21)

where ¢4 and c¢s are positive numbers. By Eqgs (3.20) and (3.21), it is easy to show

EIXI” < s (1 + 1€17)

where S, is a positive number. Together with Eq (2.5), the assertion (3.12) holds. The proof is hence
complete.

O
Lemma 3.2. Let Assumptions 2.1 and 3.2 hold. If T > 0 is sufficiently small enough for
_ [ 2
b=by;—artQait+a,+az +2as7)/c; >0 and 1< Tsar (3.22)
4
then for any (¢,{,1) € Dy X Dy, X S,
i il|2 —a
E[IXF - X" < anllg - glP e (3.23)
forall t > T+ h, where a; and a, are positive constants.
Proof. Denote by O(t) = X%i(t) — X%i(¢) for any (&,7,i) € Dj, X Dy, X S. Moreover, O, = {O(t + ) :
—7<s<0fortr>0and O, = {O(t+5s): -t—h<s<0}fort>T1+h. Design a new Lyapunov
functional V (O,, 7, t):

V(0 #1)

= O (X5 - X5, (1) + f t f t |71 £ (X5 ), X590 = ), r(v))
~ F(XE), X4 = h), 1)) + Ay OGO

+[o (X510, X = ), 1) — g (X900, X¥4v = ), r(v))'2 G2
+ f | H (X400), X5 = b)), r (9),2)
-

0

~ H(X¥07), X9 = by ). r (), z)'2 v(dz)] dv ds

for t > 7. Applying the functional Ito formula, we have

dV (0. #,,1) = LV (O, 7, 1) dt + dM ()
for t > 7, where M(?) is a martingale with M(0) = 0, and
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LV (0.1
= L (X54(r), X44(1), XE4(t = h), X54( = ), r(2)
= Oy (XE(D), XEU(1), (1) Ay (O(1) = O(6(2))
+ at|t| £ (X500, X = h), r(1) = f (XE90), Xt = h), r(D))
+ Ay OG0 + ‘ g (XE(0), XEi(t — ), r(r)) — g (X(), X4t — ), r(t))‘z

+ f H (XS, X5t = b)), r (1) ,2) = H (X5(0), X5 = b)), r (1), z)\2 v(dz)|
R}

- af [ (0. X5 s ) = (X0, X s — . )

-7

+ Ay OGS + ‘ g (X¥i(s), X54(s = h), 7(s)) — g (X¥i(s), X¥(s = h), r(s))'z
+ f | H(X5(57), X5((s = 1) ). 7 () .2)
Rg
- H (Xg“,i(s—), X%((s = h)),r(s), z)‘z v(dz)]ds.
By Assumptions (2.1) and (3.2), we have

LV(0,.#.1)
< b0y (0(D) + bsQa(O(t — ) + (%2 + 2a,07°)|0(1) — OS(1)
+ a1t QayT + ar + a3) |0t — h)
—a f (el (X105). X515 = h). 1)) = f (X405, XE4Gs = B r(s)
. . . . 2
+ A OG()[ + ‘ g (X59(5), X54(s = ), r(s)) — g (X“1(s), X¥(s = ), r(s))|
+ f |H (X5(s7), X5 ((s = h)), 7 (9),2)
- H (Xg’i(s_), X&i((s - ), r(s), Z) Izv(dz)]ds (3.25)

for t > 7, where b = by — a1t Qa7 + ar + az + 2a47) /5.
Applying the functional Ito formula to e**'E (\7 (O,, 7, t)), we have

e ElOM* — aullé = {1
= B (7 (O t)) - BV (0,7 7)) 526
= E ft e’ (042‘7 (05, s, s) +LV (05, s, s)) ds,

where a4 is a positive number and «; is a positive number to be determined. Substituting Eq (3.25)
into Eq (3.26) yields

B [ (0 (0urs))ds + [ e LV(00 1) ds
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< Efte"” (CL’QV(OAX,;\”S,S))dS

+E f t e[ = BOAO()) + b4 Qx(O(s — h)) + (:‘Tj‘z + 2a,07%)|0(s) — O3(s))
+ a1 QaiT + ax + a3) |0(s — )|
~a f (s (X5 W), X5 = ), 1)) = f (X4 0), X5 = ), r(v)
+ A,(V)OT(d(v))|2 + |8 (X1, X5 = h), 1)) = g (X¥w), X4 = by, () [
+ fR JH (X 07X (@ =1 r).2)
~H (OX@ (7). X9 (= B)).r (). 2) | v(da))dv|ds. (3.27)
Moreover, by Assumption 3.2, one can see that
5(V(0.55)
< EQ»(O(s)) + Eart f 7] £ (X5 ), X5 = ), r(v))

— f (XEi(r), XEi(y = n, r(v)) + A0
+ o (X5, XEw = h), r(v)) - g (X59(0), X4 (v = ), r(v)) |2
- f |H (X507), X5 = b)), r (0),2)

-

(3.28)

0

— H(XE). X5 = b)), r (v),2) [ W(d2)|dv.

Substituting Eq (3.28) into Eq (3.27), we can get

E f o (2V (0s. 7y, 5))ds + B f LY (01 71.1)ds
<[ B 00()
+ Eata; f S (el (X570, X5 = b, r(1) = £ (XS 0), X5 = B, 7)) + Ay OGO
+ e (Xf”(v;,_;ff”'(v = ), r(») - g (X¥), X4 = by, r ) [
+ jl; JH (X500, X5 = i) (0.2
- HEXG(V-), XA = by ). r (v),2) [ W(d2))dv]ds

+E f e"”[ = b0(O(s)) + b4 0>(0(s — h)) + (%2 +2a,a7)|0(s) — O(8(5))?

+atQaT + ar + a3) |0(s — h)?

o f (el (X0 X5 = ) = f (X0, X0 = . 1)
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+ A OGON| + [g (XE W), X = by, r(v) = g (X510, X5 = ), r(v) |
+ fR H (X 07) X (=) r ().2)
~H Exéf (7). XS (v =h)),r(v).2) |2v(dz))dv]ds
Moreover, we can obtain that
E|O(t) - O(S(D)
<E| L ; | (X540, X545 = b, r(s)) = £ (XE(), X (s = ), 7(9)) + A(r(9)O(6(s))1ds

+ f [ (X9, X5 = i, 1) — ¢ (X950, XE¥Cs — y, () dBCs)

o(1)
+ f f [H (XE(57), XE((s = ) ). (s).2) —H (X¥(s7), X4 (s = h)). 7 (s) . 2)| N( ds, dz)‘z
<3 f (XE1(5), XE4(s = ), r(5)) = f (X54(5), X5 = b, 1(9)) + A(r()O@(5)| ds
f XE1(5), X545 = h), 1(5)) — g (X(5), X545 = ), r(9)) | ds

f f H (XE(s7), X5 (s = 1)) 7 () .2) = H (XS5, X9(s = by ). 7 (9).2) [ v(da)ds.

(3.29)
Seta = 159“24 and 7 < /-2 53> and we have that 3(44 + 2a4a7?) — a < 0. Then we can find a sufficiently
small @, which satisfies the following condition:

aaT + 3(ﬂ + 2a,07%) —a < 0,
. 46, (3.30)
—b+ay + by + ate™ QayT + ar + a3) /¢, < 0.

By Eq (3.30), we can show that

ft e(ﬂs[afra/zE fs [T|f (Xf’i(v)’Xf’i(V_h)’ r(v))

— £ (X501, X9 = h), 1)) + Ay 0G|
+ g (X)X = h), 1)) - g (X0, X9 = b, r) |
+ f |H (Xg’i ), X (v =h)),r(v) ,z)
R}
-H (X(’i V), X ((v=h)),r(v), ) |2v(dz)]dv
(E + 2a407*)E|O(s) — O(5(5)I°
~aE f (7] (X5 @), X5 = b, rv)) = f (X5 ), X4 (v = ), r(v))

+ A OGO| + [g (XEW). XEw = ), r(v)) = g (X410, X5 = ), r(v) |
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+f Xf’(v , X ((v—h)_),r(v),z)
R

o3

_ H(Xf’i V), X ((v=h)),rv), z) |2v(dz))dv]ds
< 0.
Following the condition (3.30), we derive that
e B0 — aullé - <117
¢B(V (0. 71.1)) = e B(V (Or. 7. 7))

B [ (wf (0n 7)) ds+ [ e LV(00701)ds

< f e (EQ»(0O(s)) ds + E f e’ [-b0>(O(s))
+ (by+artQait+ax+az)/c)0,(0(s — h)] ds

IA

(3.31)

!
< Ef e [-D + ay + €"by + ate™" Qa1T + ay + a3) /¢2)02(0(s)1ds

+ e“zth e [by + at Qayt + ar + az) /¢2]0,0(s)ds
T-h

< as.
This implies that
ElO(0) < asllé = Zl2e™ (3.32)

for t > T, where as, a3, and @, are positive constants. However, for ¢ > 7 + h, we have that

sup O(7 - O)F°

0<o<t

< ¢ {]ElO(t ~ )P +E f t [I7 (X57s), X5 (s = h), #(s))
—f (X4(s), X545 = b, r(9)) [ +

A,(S)0(5(s))|2] ds

r 3.33
+E f | (XE9(s), X54(s = ). 1(s)) = g (XE(s), X445 = ), 1)) | ds 339

E l n HO (X5 (s7), X5 (s =) ), r (s),
+ foR\{O}kZ:;| ( (s ((s=h)),r(s Zk)

H® (Xé’i(s‘), XS (s = h)),r(s), zk) |2vk (dzy) ds} :

From Assumption 2.1, one can see that

! !
sup |0t — O)* < ¢; (ElO(t —P + f E|O(s)* ds + f
-7

0<6<t

E|O(S(s))* ds + f

t—T -7

E|O(s — h)|? ds) ,

where c¢ and ¢ are all positive numbers. By Eq (3.32), we have

ENON < ayllé - LPe™, Yzt +h,
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where «a; is a positive number. Therefore, the required assertion (3.23) holds. This completes the
proof. O

3.3. Key theorem

Next, let us prove that the SDDE-MS-LN (2.3) is stable in distribution by Lemmas 3.1 and 3.2.

Theorem 3.1. Let Assumptions 2.1 and 3.2 hold. Let 77,7}, 73, and t, be the unique positive roots to
the following equations

15a4 1
boc = —71, Qa\7] + ay + az + 2a47]) , 75 = ,
0C = 3 7'1( a\T] + ax + az +2a41)) , 75 .

(3.34)

15614 - 2
byc = 9 3 Qaty +ay + az + 2a475) , Ty = 4 /FCM’

respectively, and set T = 7] A 75 A 75 A T,. Then for each T < 7" and where h can be divisible by T,
there exists a unique probability measure u;, € P (D) such that

lim d. (£ (X)) = 0 (3.35)

forall (¢,i) € Dy, X S.

Proof. Step 1: We first claim that for any compact set K C Dy,

lim dy (£ (X)), £(x5/)) =0 (3.36)

k—oo

uniformly in (£,4,i,j) € K x K x S X S. Define the sequence of the stopping time
kijj = inf {kT :ri(kT) = rikT), k > 0}. Using the ergodicity of the Markov chain, we can obtain that
kij < oo a.s. Consequently, for any € € (0, 1), there exists a number 7'; > 0 such that

P(Kij < T1) > 1 —g.

Recalling a known result that

sup E( sup |X§’i(t)|) <00

(EDEKXS  \-T<I<T;

we can find enough large 7, > 0 such that

P(Qe)> 1~ % V(i) € K XS,

where Q;; = {a) €Q:sup_.q, |X§’i(t, w)| < q}. For any ¢ € L and kT > T, we obtain

B0 (X5) - Eop (X5)| <

g +p(1),
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where p(?) := ( {x <T1 '¢ Xfl ¢(X§’j)') Set Q) =Q:; N N {Kij < Tl} By the Markov property

of joint process ( s (kT)) and the property of conditional expectation, we derive

o)
= B (I{KijSTl}E(| ¢(X§’i) - </)(X§ J)I

)

= B(ljer,) X BUSXEL, ) — 6L, D), ! 2o i)
1] 1] 1]
2 Zl Zl
< § + E(IQI x E(l(ﬁ()(k‘r —Kij )= ¢(Xk‘r KJ)|)|§ X";' { X,f”’l q,(”—q,(u)
€ &l Zl
S 3 + E( IQlEdS(XkT Kij ’XkT_Kij) E:Xi’ Z X(/l un_qk )

Kjj>

It is known (see [31]) that ds (&1,&) < || —&ll, for any &;,& € Dy,. Using this and the
Proposition 1.17 in [32], we derive that

It is easy to observe that ||€]| V |||l < ¢, for any w € Q,. By using Lemma 3.2, we are able to find
positive number 7 such that

o(f) < g 4 E(IQIE(' x& X

kt—Kij kt—Kij

&l €
(kaT X ) <Z k=TT

for any given w € Q;. Then we have that
o (XL, ) -Bo (XL, )| <& VkT2Ti+Tn
Due to the arbitrariness of ¢, for all (£,Z,1, j) € K X KX S X S, we get
do(L(X). L(X)) <8, Vhkr2T+T.
Our claim is proved.

Step 2: Next, we claim that for any (£,7) € D), X S, {L (X,f’:)}keN is a Cauchy sequence in P (D)) with
metric dr.. That is, we need to show that for any £ > 0, there is a positive number k, such that

d(L(X5,.). L(X&) <& (3.37)

for all integers s > ko and v > 1. Let € € (0, 1) be arbitrary. By Lemma 3.1, there is a g > 0 such that

P{weQ:|

XS <ql>1-2/4 Wzl (3.38)
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For any ¢ € L and integers s > 1, we can then derive, using (2.6) and (3.38), that

B (xEr) - B0 (X))

Zf]Efb X:J p(V,§, i;d(X{j})_]E¢(X§;i)

jes

<3 f [ (X5) - Bo (x5

jes
< -+Zde LX), £(XE) o .12 x ()

where Z; = {{ € Dy, : ||{l| £ g}. But, by (3.36), there is a posmve integer k( such that

pv, &, i:dE X {j})

di (L(X%)). £(xE)) < 2 5 sk

whenever (¢, j) € Z; X S. We, therefore, obtain
& £
‘qu; (x5,.)-Ee (x5 <&

for s > ky and v > 1. As this holds for any ¢ € L, we must have (3.37) as claimed.
Step 3: By Eq (3.37), there exists a unique y; € P (9),) such that

lim dy (LX) ) = .

which together with Eq (3.36) gains
i (£(85). ) < fm . (45). £(62) + fim . (£(02) ) =0

for all (¢,i) € D), x S. That is assertion (3.35). The proof is, hence, complete. O
4. Design of matrices A’s

To simplify the calculation and design of matrices, we choose the forms of the function as follows:
W(x,i) = O(x,i) = x* Wix
for some N symmetric positive definite matrices W;(i € S). It follows easily from Eqs (3.1) and (3.3)

that
LY¥(x, x,1)

= 2T Wi [f(x. % i) + Adx)] + trace | g(x, %, 1) Wig(x, %.1) |

Z T
+ f Z[(H(") (6, i, 20) WiH® (x,%,1,2)
R\(0) 45

( H® (x, x,1, zk)) Wix — xl WiH(k) (x,x,1, zk)] vi (dzp)
N
+ Z ’)/inTWj.X,
=1
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and
L(D(-x7 y9 X-’ )_)’ l)

= 2= )W [f(x, %) — f(,3,0) + Ai(x — y)]
+ trace | (g(x, %, 1) = 0,3, D) Wi(g(x, %, i) — g 3, )]

n T
+ f Z [(H(k) (x, %, i,21) — H® (3,9, 1, Zk))
R\(0} 4=

X Wi (H(k) (.x, )_C, i, Zk) - H(k) (y9 )_)’ i’ Zk))
T
+ (H(k) (.x, )_C, i, Zk) - H(k) (yu)_}a i9 Zk)) Wi(x - y)
— = 'Wi(HY (x, % 1,20 = HY (3,5, 1,20 vie (do)
N
+ Z Yiji(x = y)TWj(x - ).
=1

Assumption 4.1. Let Assumption 2.1 hold. There exist positive numbers jo, by, js, by, bs, jo = by,
J3 = by, and positive definite matrices W; such that

L¥(x, %) < = jolxl® + b3 + by,
L(D(-x’y’ x,)_]7 l) < _.]'3|x - )’|2 + b4lx - )_)|2

forall x, y € Re andi € S.

If we set by = jo — 4¢20,, by = j3 — 426, it reaches the desired conditions (3.4) and (3.5). That is
to say, we have shown that Assumption 4.1 implies Assumptions 3.1 and 3.2.

By Lemmas 3.1, 3.2, and Theorem 3.1, the following corollary therefore follows.

Corollary 4.1. Let Assumptions 3.1 and 3.2 be replaced by Assumption 4.1. If h can be divisible by T
and is small enough for

. v) A 1
Joc —4¢70c — 2at QayT + ax + az + 2a47) >0, 1< T

Jac =480 —at QarT + ay + a3 +2a47) > 0, T < [

e 15
where € (0, 221 A £234), ¢ = minjes Ain Wi, & = maxies [|Wil|, and o = 4;4. Then the SDDE-MS-LN

> 482

(2.3) is stable in distribution.

The key to the problem of stabilization in distribution lies in the design of the matrices A;(i € S).
Therefore we need to find the matrices of the form A; = F,G; with F; € R™! and G; € R™ for some
positive integer [. The two cases of state feedback and output injection are discussed below.

(1) State feedback

When G;’s are given, we need to seek suitable F;’s to make SDDE-MS-LN (2.3) stable in

distribution. The matrices are designed in two steps.
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Step 1: Seek N couples of positive-definite symmetric matrices (Wi, R, S i) such that
2(.X - y)TWi[f(x’ X, l) - f(y’.)_), l)]

+ trace [(g(x % 0) = g0 3, 1) Wilg(x X.) = 8(v. 3. )|

f Z H()(xx1zk) H()(yy,zzk))

R\0} =1

X Wi (HO (x, %1, 20 = HY (03,1, 2)) @D
+(HY (x50 - HY (0.5.0,2) Wile—)
— (=))W (HY (x, %,i,20 — HY (3,9, 20 | ve (dzi)
< (= Rix—y)+x-»'Six-y),
and then
LO(x,y,X,y,0)
< @=-YRx-y)+E-8(x -3 +2x - Widi(x—y) + Z] Yii(x = ») Wi(x - y) w
= .

N
< (=) Ri+ WiFGi + GIFT Wi+ Yy W)(x = y) + (& = 5)$i(% - 9.
j=1

Step 2: Seek a solution of matrices F; to the following linear matrix inequalities ensuring that j; > by:

N
ﬁl+W1F1GI+GTFTW+ZYIJWJ+SAI<O, i €S. (43)

J=1

Corollary 4.2. Under Assumption 2.1, seek matrices Fi(i € S) with the above Steps 1 and 2. Then
Corollary 4.1 holds with A; = F;G; and

j3 = —MaXes /lma:\x (I/é, + W;F,G; + GlTFlTW, + Z?]:l '}/ijo) ,
b4 = maXes Amax$ ;.

(i1) Output injection
When F;’s are given, we need to seek G;’s. This case is similar to the case of state feedback, and
therefore we can get another corollary.

Corollary 4.3. Under Assumption 2.1, find matrices W;, R, S, and G,(i € S) with the above Steps 1
and 2. Then Corollary 4.1 holds with A; = F;G;, and moreover j; and b, are the same as in
Corollary 4.2.

J3 = — MaXeg /lmz}\x (iéi +W,F.G;+G/FIW; + Z?lzl %‘jo) ,
by = maxes AmaxS ;.
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5. Example

In this section, we will give an example to illustrate our results.
Example 5.1. Let us consider the following unstable SDDE-MS-LN:
dX(®) = f(X(@),X(— h), r(t))dt + g(X(t), X(t — h), r(t))dB(r)
+H (X)), X(t—h)), r@®) dN(@)
with initial value X(0) = 1, r(0) = 1, and N(0) = 0, where the coefficients f, g, and H are defined by

f(x,x%1)=04+02x-0.1%x, f(x,%x,2)=03+0.1x—-0.3%,
gx,x,1)=03+02x+0.1x, g, x2)=04+0.1x+0.2x,
H(x,x,1)=05x+x, H(xXx2)=x+0.5%,

5.1

forall x, X € R, B(t) is a scalar Brownian motion, N(t) is a scalar Poisson process with intensity A, N(t)
denotes its compensated Poisson random measure, r(t) is a Markov chain on the state space S = {1, 2}

with its generator
-2 2
-(33)
and the time delay h = 0.01.
From Figure 1, we know the SDDE-MS-LN (5.1) is unstable. Let us now apply our new theory

to design a linear feedback control to make the SDDE-MS-LN (5.1) stable in distribution. Suppose
that the type of linear feedback control is —k(i)X(5(t)), where k(i) will be computed later. Then the

controlled system becomes
dX(n) = [f(X(®),X(t - h), r(t)) — k(r(1)X(6(0)]dt + g(X (1), X(¢ — h), r(1))dB(t)

_ _ - 5.2)
+ H(X(),X((t—h)),r () dN().

0 R0 T T

| |
0 2 4 6 8 10
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~
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=
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XJ,
2
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)
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Figure 1. The sample path of SDDE-MS-LN (5.1) with the initial data X(0) = 1.
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Let Wi(i € 1,2) be the identity matrix. Set A = 1. After the calculation, we can get that by = 2.12.
Next, we need to choose a number j; which satisfies j;3 > by and — j;3 = — maX,es (1.08 — 2k(7)) < 0 for
i € S. Hence, Corollary 4.1 holds for j; = 6. Then we can deduce that k(1) = 3.54 and k(2) = 4.26.
It is easy to verify that Assumption 2.1 holds for a; = 0.18, a, = 0.08, and a; = 2. Furthermore, by
as = max,es ||k(i)||>, we can get a, = 18.1476 and ¢ = 1. Thus, setting c = 1, 0 = 0.1, we can derive

77 =0.00158, 75 =0.0606, 75=0.00371, 1, =0.0857.

Consequently, T = 0.00158. By Corollary 4.1, the controlled system (5.2) is stable in distribution
when T < 0.00158 and h can be divisible by .

In addition, we plot the marginal density function of X(t) by using of the Euler-Maruyama method
with step size 0.001 in Figure 2. From the figure, as t increases, the change in distribution becomes
smaller and smaller. This show that the controlled system (5.2) is stable in distribution.

t=0.6
t=9.6
t=10

0.8 — -

0.6 — =

Probability density function

0.4 - -

02— B

0 ! ] L L L
-1 0 1 2 3 4 5

Value of Y

Figure 2. Distribution numerical solution of the controlled SDDE-MS-LN (5.2).

6. Conclusions

In this paper, stabilization in distribution for given unstable SDDEs-MS-LN whose drift and
diffusion coeflicients are globally Lipshitz continuous has been investigated. We successfully showed
that the stability in distribution of controlled SDDE-MS-LN can be achieved by linear feedback
controls based on discrete-time state observations. A lower bound on duration 7" is given so that the
controlled SDDEs-MS-LN is stable in distribution as long as 7 < 7" and A can be divisible by 7. We
specifically discussed how to design the linear feedback control in two structure cases. Finally, a
numerical example is illustrated to support our theory. But the system coeflicients are still under a
linear growth condition, and the stochastic systems are driven by Markovian switching. Hence we
will devote our future work to releasing the linear growth condition on f, g [5] and investigating

AIMS Mathematics Volume 10, Issue 2, 3457-3483.
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stabilization in distribution for nonlinear stochastic differential delay equations with semi-Markovian
switching and Lévy noise (SDDEs-SMS-LN) controlled by discrete feedback controls [33, 34].
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