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1. Introduction

This article studies the questions of existence and nonexistence of weak solutions to the system of
polyharmonic wave inequalities

 utt + (−∆)mu ≥ |x|a|v|p, (t, x) ∈ (0,∞) × RN\B1,

vtt + (−∆)mv ≥ |x|b|u|q, (t, x) ∈ (0,∞) × RN\B1.
(1.1)

Here, (u, v) = (u(t, x), v(t, x)), N ≥ 2, B1 is the open unit ball of RN , m ≥ 1 is an integer, a, b ≥ −2m,
(a, b) , (−2m,−2m), and p, q > 1. We will investigate (1.1) under the Navier-type boundary conditions (−∆)iu ≥ fi(x), i = 0, · · · ,m − 1, (t, x) ∈ (0,∞) × ∂B1,

(−∆)iv ≥ gi(x), i = 0, · · · ,m − 1, (t, x) ∈ (0,∞) × ∂B1,
(1.2)

where fi, gi ∈ L1(∂B1) and (−∆)0 is the identity operator. Notice that no restriction on the signs of fi or
gi is imposed.
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The study of semilinear wave inequalities in RN was firstly considered by Kato [1] and Pohozaev &
Véron [2]. It was shown that the problem

utt − ∆u ≥ |u|p, (t, x) ∈ (0,∞) × RN (1.3)

possesses a critical exponent pK =
N+1
N−1 in the following sense:

(i) If N ≥ 2 and 1 < p ≤ pK , then (1.3) possesses no global weak solution, provided∫
RN

ut(0, x) dx > 0. (1.4)

(ii) If p > pK , there are global positive solutions satisfying (1.4).
Caristi [3] studied the higher-order evolution polyharmonic inequality

∂ ju
∂t j − |x|

α∆mu ≥ |u|p, (t, x) ∈ (0,∞) × RN , (1.5)

where α ≤ 2m. Caristi discussed separately the cases α = 2m and α < 2m. For instance, when
j = 2 and α = 0, it was shown that, if N ≥ m + 1 and 1 < p ≤ N+m

N−m , then (1.5) possesses no global
weak solution, provided (1.4) holds. Other existence and nonexistence results for evolution inequalities
involving the polyharmonic operator in the whole space can be found in [4–6].

The study of the blow-up for semilinear wave equations in exterior domains was firstly considered
by Zhang [7]. Namely, among many other problems, Zhang investigated the equation

utt − ∆u = |x|a|u|p, (t, x) ∈ (0,∞) × RN\D, (1.6)

where N ≥ 3, a > −2, and D is a smooth bounded subset of RN . It was shown that (1.6) under the
Neumann boundary condition

∂u
∂ν
= f (x) ≥ 0, (t, x) ∈ (0,∞) × ∂D,

admits a critical exponent N+a
N−2 in the following sense:

(i) If 1 < p < N+a
N−2 , then (1.6) admits no global solution, provided f . 0.

(ii) If p > N+a
N−2 , then (1.6) admits global solutions for some f > 0.

In [8, 9], it was shown that the critical value p = N+a
N−2 belongs to case (i). Furthermore, the same

result holds true, if (1.6) is considered under the Dirichlet boundary condition

u = f (x) ≥ 0, (t, x) ∈ (0,∞) × ∂D,

where D = B1.
In [10], the authors considered the system of wave inequalities (1.1) in the case m = 1. The system

was studied under different types of inhomogeneous boundary conditions. In particular, under the
boundary conditions (1.2) with m = 1 (Dirichlet-type boundary conditions), the authors obtained the
following result: Assume that a, b ≥ −2, (a, b) , (−2,−2), I f0 :=

∫
∂B1

f0 dS x ≥ 0, Ig0 :=
∫
∂B1

g0 dS x ≥ 0,
(I f0 , Ig0) , (0, 0), and p, q > 1. If N = 2; or N ≥ 3 and

N < max
{

sgn(I f0)
2p(q + 1) + pb + a

pq − 1
, sgn(Ig0)

2q(p + 1) + qa + b
pq − 1

}
,
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then (1.1)-(1.2) (with m = 1) admits no weak solution. Moreover, the authors pointed out the sharpness
of the above condition.

In the case m = 2, the system (1.1) was recently studied in [11] under different types of boundary
conditions. In particular, under the boundary conditions (1.2) with f0 ≡ 0 and g0 ≡ 0, i.e., u ≥ 0, −∆u ≥ f1(x), (t, x) ∈ (0,∞) × ∂B1,

v ≥ 0, −∆v ≥ g1(x), (t, x) ∈ (0,∞) × ∂B1.
(1.7)

Namely, the following result was obtained: Let N ≥ 2, a, b ≥ −4, (a, b) , (−4,−4),
∫
∂B1

f1 dS x > 0,∫
∂B1

g1 dS x > 0, and p, q > 1. If N ∈ {2, 3, 4}; or

N ≥ 5, N < max
{

4p(q + 1) + pb + a
pq − 1

,
4q(p + 1) + qa + b

pq − 1

}
,

then (1.1) (with m = 2) under the boundary conditions (1.7) admits no weak solution. Moreover, it was
shown that the above condition is sharp.

Further results related to the existence and nonexistence of solutions for evolution problems in
exterior domains can be found in [12–17].

The present work aims to extend the obtained results in [10,11] from m ∈ {1, 2} to an arbitrary m ≥ 1.
Before presenting our main results, we need to define weak solutions to the considered problem.

Let
Q = (0,∞) × RN\B1, ΣQ = (0,∞) × ∂B1.

Notice that ΣQ ⊂ Q.

Definition 1.1. We say that φ is an admissible test function, if

(i) φ ∈ C2,2m
t,x (Q);

(ii) supp(φ) ⊂⊂ Q (φ is compactly supported in Q);
(iii) φ ≥ 0;
(iv) For all j = 0, 1, · · · ,m − 1,

∆ jφ|ΣQ = 0, (−1) j∂(∆
jφ)
∂ν
|ΣQ ≤ 0,

where ν denotes the outward unit normal vector on ∂B1, relative to RN\B1.

The set of all admissible test functions is denoted by Φ.

Definition 1.2. We say that the pair (u, v) is a weak solution to (1.1)-(1.2), if

(u, v) ∈ Lq
loc(Q) × Lp

loc(Q),∫
Q
|x|a|v|pφ dx dt −

m−1∑
i=0

∫
ΣQ

fi(x)
∂((−∆)m−1−iφ)

∂ν
dσ dt ≤

∫
Q

u(−∆)mφ dx dt +
∫

Q
uφtt dx dt (1.8)

and ∫
Q
|x|b|u|qφ dx dt −

m−1∑
i=0

∫
ΣQ

gi
∂((−∆)m−1−iφ)

∂ν
dσ dt ≤

∫
Q

v(−∆)mφ dx dt +
∫

Q
vφtt dx dt (1.9)

for every φ ∈ Φ.

AIMS Mathematics Volume 10, Issue 2, 2634–2651.



2637

Notice that, if (u, v) is a regular solution to (1.1)-(1.2), then (u, v) is a weak solution in the sense of
Definition 1.2.

For every function f ∈ L1(∂B1), we set

I f =

∫
∂B1

f (x) dσ.

Our first main result is stated in the following theorem.

Theorem 1.1. Let p, q > 1, N ≥ 2, and a, b ≥ −2m with (a, b) , (−2m,−2m). Let fi, gi ∈ L1(∂B1) for
every i = 0, · · · ,m − 1. Assume that I fm−1 , Igm−1 ≥ 0 and (I fm−1 , Igm−1) , (0, 0). If N ≤ 2m; or N ≥ 2m + 1
and

N < max
{

sgn(I fm−1) ×
2mp(q + 1) + pb + a

pq − 1
, sgn(Igm−1) ×

2mq(p + 1) + qa + b
pq − 1

}
, (1.10)

then (1.1)-(1.2) possesses no weak solution.

Remark 1.1. Notice that (1.10) is equivalent to

N − 2m < α, I fm−1 > 0; or N − 2m < β, Igm−1 > 0, (1.11)

where
α =

a + 2m + p(b + 2m)
pq − 1

(1.12)

and
β =

b + 2m + q(a + 2m)
pq − 1

. (1.13)

On the other hand, due to the condition a, b ≥ −2m and (a, b) , (−2m,−2m), we have α, β > 0, which
shows that, if N ≤ 2m, then (1.10) is always satisfied.

The proof of Theorem 1.1 is based on the construction of a suitable admissible test function
and integral estimates. The construction of the admissible test function is specifically adapted
to the polyharmonic operator (−∆)m, the geometry of the domain, and the Navier-type boundary
conditions (1.2).

Remark 1.2. By Theorem 1.1, we recover the nonexistence result obtained in [10] in the case m = 1.
We also recover the nonexistence result obtained in [11] in the case m = 2.

Next, we are concerned with the existence of solutions to (1.1)-(1.2). Our second main result shows
the sharpness of condition (1.10).

Theorem 1.2. Let p, q > 1 and a, b ≥ −2m with (a, b) , (−2m,−2m). If

N − 2m > max {α, β} , (1.14)

where α and β are given by (1.12) and (1.13), then (1.1)-(1.2) admits stationary solutions for some
fi, gi ∈ L1(∂B1) (i = 0, · · · ,m − 1) with I fm−1 , Igm−1 > 0.

Theorem 1.2 will be proved by the construction of explicit stationary solutions to (1.1)-(1.2).
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Remark 1.3. At this moment, we don’t know whether there is existence or nonexistence in the critical
case N ≥ 2m + 1,

N = max
{

sgn(I fm−1) ×
2mp(q + 1) + pb + a

pq − 1
, sgn(Igm−1) ×

2mq(p + 1) + qa + b
pq − 1

}
.

This question is left open.

From Theorem 1.1, we deduce the following nonexistence result for the corresponding stationary
polyharmonic system  (−∆)mu ≥ |x|a|v|p, x ∈ RN\B1,

(−∆)mv ≥ |x|b|u|q, x ∈ RN\B1,
(1.15)

under the Navier-type boundary conditions (−∆)iu ≥ fi(x), i = 0, · · · ,m − 1, x ∈ ∂B1,

(−∆)iv ≥ gi(x), i = 0, · · · ,m − 1, x ∈ ∂B1.
(1.16)

Corollary 1.1. Let p, q > 1, N ≥ 2, and a, b ≥ −2m with (a, b) , (−2m,−2m). Let fi, gi ∈ L1(∂B1) for
every i = 0, · · · ,m − 1. Assume that I fm−1 , Igm−1 ≥ 0 and (I fm−1 , Igm−1) , (0, 0). If N ≤ 2m; or N ≥ 2m + 1
and (1.10) holds, then (1.15)-(1.16) possesses no weak solution.

The rest of this manuscript is organized as follows: Section 2 is devoted to some auxiliary results.
Namely, we first construct an admissible test function in the sense of Definition 1.1. Next, we establish
some useful integral estimates involving the constructed test function. The proofs of Theorems 1.1
and 1.2 are provided in Section 3.

Throughout this paper, the letter C denotes a positive constant that is independent of the scaling
parameters T , τ, and the solution (u, v). The value of C is not necessarily the same from one line to
another.

2. Auxiliary results

In this section, we establish some auxiliary results that will be used later in the proof of our main
result.

2.1. Admissible test function

Let us introduce the radial function H defined in RN\B1 by

H(x) =
{

ln |x| if N = 2,
1 − |x|2−N if N ≥ 3.

(2.1)

We collect below some useful properties of the function H.

Lemma 2.1. The function H satisfies the following properties:

(i) H ≥ 0;
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(ii) H ∈ C2m(RN\B1);
(iii) H|∂B1 = 0;
(iv) ∆H = 0 in RN\B1;
(v) For all j ≥ 1,

∆ jH|∂B1 =
∂(∆ jH)
∂ν

|∂B1 = 0;

(vi)
∂H
∂ν
|∂B1 = −C.

Proof. (i)–(v) follow immediately from (2.1). On the other hand, we have

∂H
∂ν
|∂B1 =

{
−1 if N = 2,
−(N − 2) if N ≥ 3,

which proves (vi). □

We next consider a cut-off function ξ ∈ C∞(R) satisfying the following properties:

0 ≤ ξ ≤ 1, ξ(s) = 1 if |s| ≤ 1, ξ(s) = 0 if |s| ≥ 2. (2.2)

For all τ ≫ 1, let

ξτ(x) = ξ
(
|x|
τ

)
, x ∈ RN\B1,

that is (from (2.2)),

ξτ(x) =


1 if 1 ≤ |x| ≤ τ,
ξ
(
|x|
τ

)
if τ ≤ |x| ≤ 2τ,

0 if |x| ≥ 2τ.
(2.3)

For k ≫ 1, we introduce the function

ζτ(x) = H(x)ξk
τ(x), x ∈ RN\B1. (2.4)

We now introduce a second cut-off function G ∈ C∞(R) satisfying the following properties:

G ≥ 0, supp(G) ⊂⊂ (0, 1). (2.5)

For T > 0 and k ≫ 1, let

GT (t) = Gk
( t
T

)
, t ≥ 0. (2.6)

Let φ be the function defined by

φ(t, x) = GT (t)ζτ(x), (t, x) ∈ Q. (2.7)

By Lemma 2.1, (2.3)–(2.7), we obtain the following result.

Lemma 2.2. The function φ belongs to Φ.
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2.2. A priori estimates

For all λ > 1, µ ≥ −2m, and φ ∈ Φ, we consider the integral terms

J(λ, µ, φ) =
∫

Q
|x|

−µ
λ−1φ

−1
λ−1 |(−∆)mφ|

λ
λ−1 dx dt (2.8)

and
K(λ, µ, φ) =

∫
Q
|x|

−µ
λ−1φ

−1
λ−1 |φtt|

λ
λ−1 dx dt. (2.9)

Lemma 2.3. Let φ be the admissible test function defined by (2.7). Assume that

(i) J(p, a, φ), J(q, b, φ),K(p, a, φ),K(q, b, φ) < ∞;
(ii) I fm−1 , Igm−1 ≥ 0.

If (u, v) is a weak solution to (1.1)-(1.2), then

I fm−1 ≤ CT−1
([

J(p, a, φ)
] p−1

p +
[
K(p, a, φ)

] p−1
p

) p
pq−1

([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

) pq
pq−1

(2.10)

and

Igm−1 ≤ CT−1
([

J(q, b, φ)
] q−1

q +
[
K(q, b, φ)

] q−1
q

) q
pq−1

([
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

) pq
pq−1
. (2.11)

Proof. Let (u, v) be a weak solution to (1.1)-(1.2) and φ be the admissible test function defined by (2.7).
By (1.8), we have∫

Q
|x|a|v|pφ dx dt −

m−1∑
i=0

∫
ΣQ

fi(x)
∂((−∆)m−1−iφ)

∂ν
dσ dt ≤

∫
Q

u(−∆)mφ dx dt +
∫

Q
uφtt dx dt.

On the other hand, by Lemma 2.1: (v), (vi), (2.5)–(2.7), we have

m−1∑
i=0

∫
ΣQ

fi(x)
∂((−∆)m−1−iφ)

∂ν
dσ dt =

∫
ΣQ

fm−1(x)
∂φ

∂ν
dσ dt

= −C
∫
ΣQ

fm−1(x)GT (t) dσ dt

= −C
(∫ ∞

0
GT (t) dt

) ∫
∂B1

fm−1(x) dσ

= −C
(∫ ∞

0
Gk

( t
T

)
dt

)
I fm−1

= −CT
(∫ 1

0
Gk(s) ds

)
I fm−1

= −CT I fm−1 .

Consequently, we obtain∫
Q
|x|a|v|pφ dx dt +CT I fm−1 ≤

∫
Q

u(−∆)mφ dx dt +
∫

Q
uφtt dx dt. (2.12)
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Similarly, by (1.9), we obtain∫
Q
|x|b|u|qφ dx dt +CT Igm−1 ≤

∫
Q

v(−∆)mφ dx dt +
∫

Q
vφtt dx dt. (2.13)

Furthermore, by Hölder’s inequality, we have∫
Q

u(−∆)mφ dx dt ≤
∫

Q
|u| |(−∆)mφ| dx dt

=

∫
Q

(
|x|

b
q |u|φ

1
q
) (
|x|
−b
q |(−∆)mφ|φ

−1
q
)

dx dt

≤

(∫
Q
|x|b|u|qφ dx dt

) 1
q
(∫

Q
|x|

−b
q−1 |(−∆)mφ|

q
q−1 φ

−1
q−1 dx dt

) q−1
q

,

that is, ∫
Q

u(−∆)mφ dx dt ≤
(∫

Q
|x|b|u|qφ dx dt

) 1
q [

J(q, b, φ)
] q−1

q . (2.14)

Similarly, we obtain ∫
Q

uφtt dx dt ≤
(∫

Q
|x|b|u|qφ dx dt

) 1
q [

K(q, b, φ)
] q−1

q . (2.15)

Thus, it follows from (2.12), (2.14), and (2.15) that∫
Q
|x|a|v|pφ dx dt +CT I fm−1 ≤

(∫
Q
|x|b|u|qφ dx dt

) 1
q ([

J(q, b, φ)
] q−1

q +
[
K(q, b, φ)

] q−1
q

)
. (2.16)

Using (2.13) and proceeding as above, we obtain∫
Q
|x|b|u|qφ dx dt +CT Igm−1 ≤

(∫
Q
|x|a|v|pφ dx dt

) 1
p ([

J(p, a, φ)
] p−1

p +
[
K(p, a, φ)

] p−1
p

)
. (2.17)

Using (2.16)-(2.17), and taking into consideration that Igm−1 ≥ 0, we obtain∫
Q
|x|a|v|pφ dx dt +CT I fm−1

≤

(∫
Q
|x|a|v|pφ dx dt

) 1
pq ([

J(p, a, φ)
] p−1

p +
[
K(p, a, φ)

] p−1
p

) 1
q
([

J(q, b, φ)
] q−1

q +
[
K(q, b, φ)

] q−1
q

)
.

Then, by Young’s inequality, it holds that∫
Q
|x|a|v|pφ dx dt +CT I fm−1

≤
1
pq

∫
Q
|x|a|v|pφ dx dt

+
pq − 1

pq

([
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

) pq
q(pq−1)

([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

) pq
pq−1
.
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Consequently, we have(
1 −

1
pq

) ∫
Q
|x|a|v|pφ dx dt +CT I fm−1

≤
pq − 1

pq

([
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

) p
pq−1

([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

) pq
pq−1
,

which yields (2.10). Similarly, using (2.16)-(2.17), and taking into consideration that I fm−1 ≥ 0, we
obtain∫

Q
|x|b|u|qφ dx dt +CT Igm−1

≤

(∫
Q
|x|b|u|qφ dx dt

) 1
pq ([

J(q, b, φ)
] q−1

q +
[
K(q, b, φ)

] q−1
q

) 1
p
([

J(p, a, φ)
] p−1

p +
[
K(p, a, φ)

] p−1
p

)
,

which implies by Young’s inequality that∫
Q
|x|b|u|qφ dx dt +CT Igm−1

≤
1
pq

∫
Q
|x|b|u|qφ dx dt

+
pq − 1

pq

([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

) pq
p(pq−1)

([
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

) pq
pq−1
.

Thus, it holds that(
1 −

1
pq

) ∫
Q
|x|b|u|qφ dx dt +CT Igm−1

≤
pq − 1

pq

([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

) q
pq−1

([
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

) pq
pq−1
,

which yields (2.11). □

2.3. Estimates of J(λ, µ, φ) and K(λ, µ, φ)

The aim of this subsection is to estimate the integral terms J(λ, µ, φ) and K(λ, µ, φ), where λ > 1,
µ ≥ −2m, and φ is the admissible test function defined by (2.7) with τ, k ≫ 1.

The following result follows immediately from (2.5) and (2.6).

Lemma 2.4. We have ∫ ∞

0
GT (t) dt = CT.

Lemma 2.5. We have ∫ ∞

0
G
−1
λ−1
T

∣∣∣∣∣∣d2GT

dt2

∣∣∣∣∣∣
λ
λ−1

dt ≤ CT 1− 2λ
λ−1 . (2.18)
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Proof. By (2.5) and (2.6), we have∫ ∞

0
G
−1
λ−1
T

∣∣∣∣∣∣d2GT

dt2

∣∣∣∣∣∣
λ
λ−1

dt =
∫ T

0
G
−1
λ−1
T

∣∣∣∣∣∣d2GT

dt2

∣∣∣∣∣∣
λ
λ−1

dt (2.19)

and
d2GT

dt2 (t) = kT−2Gk−2
( t
T

) (
(k − 1)G′2

( t
T

)
+G

( t
T

)
G′′

( t
T

))
for all t ∈ (0,T ). The above inequality yields∣∣∣∣∣∣d2GT

dt2 (t)

∣∣∣∣∣∣ ≤ CT−2Gk−2
( t
T

)
, t ∈ (0,T ),

which implies that

G
−1
λ−1
T

∣∣∣∣∣∣d2GT

dt2

∣∣∣∣∣∣
λ
λ−1

≤ CT
−2λ
λ−1 Gk− 2λ

λ−1

( t
T

)
, t ∈ (0,T ).

Then, by (2.19), it holds that∫ ∞

0
G
−1
λ−1
T

∣∣∣∣∣∣d2GT

dt2

∣∣∣∣∣∣
λ
λ−1

dt ≤ CT
−2λ
λ−1

∫ T

0
Gk− 2λ

λ−1

( t
T

)
dt

= CT 1− 2λ
λ−1

∫ 1

0
Gk− 2λ

λ−1 (s) ds

= CT 1− 2λ
λ−1 ,

which proves (2.18). □

To estimate J(λ, µ, φ) and K(λ, µ, φ), we consider separately the cases N ≥ 3 and N = 2.

2.3.1. The case N ≥ 3

Lemma 2.6. We have ∫
RN\B1

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 dx ≤ CτN− µ+2mλ

λ−1 . (2.20)

Proof. Since H and ξτ are radial functions (see (2.1) and (2.3)), to simplify writing, we set

H(x) = H(r), ξτ(x) = ξτ(r),

where r = |x|. By (2.4) and making use of Lemma 2.1 (iv), one can show that for all x ∈ RN\B1, we
have

∆mζτ(x) = ∆m
(
H(x)ξk

τ(x)
)

=

2m−1∑
i=0

diH
dri (r)

2m−i∑
j=1

Ci, j
d jξk
τ

dr j (r)ri+ j−2m,

where Ci, j are some constants, which implies by (2.3) that

supp (∆mζτ) ⊂
{
x ∈ RN : τ ≤ |x| ≤ 2τ

}
(2.21)
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and

|∆mζτ(x)| ≤ C
2m−1∑
i=0

∣∣∣∣∣∣diH
dri (r)

∣∣∣∣∣∣ 2m−i∑
j=1

∣∣∣∣∣∣d jξk
τ

dr j (r)

∣∣∣∣∣∣ ri+ j−2m, x ∈ supp (∆mζτ) . (2.22)

On the other hand, for all x ∈ supp (∆mζτ), we have by (2.1) and (2.3) that∣∣∣∣∣∣diH
dri (r)

∣∣∣∣∣∣ =
 H(r) if i = 0,

Cr2−N−i if i = 1, · · · , 2m − 1
(2.23)

and (we recall that 0 ≤ ξτ ≤ 1)∣∣∣∣∣∣d jξk
τ

dr j (r)

∣∣∣∣∣∣ ≤ Cτ− jξk− j
τ (r)

≤ Cτ− jξk−2m
τ (r), j = 1, · · · , 2m − i.

(2.24)

Then, in view of (2.1), (2.21)–(2.24), we have

|∆mζτ(x)| ≤ Cξk−2m
τ (r)

H(r)
2m∑
j=1

τ− jr j−2m + r2−N
2m−1∑
i=1

2m−i∑
j=1

τ− jr j−2m


≤ Cξk−2m

τ (r)
(
τ−2m + τ2−N−2m

)
≤ Cτ−2mξk−2m

τ (x)

for all x ∈ supp (∆mζτ). Taking into consideration that H ≥ C for all x ∈ supp (∆mζτ), the above
estimate yields

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 ≤ Cτ

−2mλ−µ
λ−1 ξ

k− 2mλ
λ−1

τ (x), x ∈ supp (∆mζτ) . (2.25)

Finally, by (2.21) and (2.25), we obtain∫
RN\B1

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 dx =

∫
τ<|x|<2τ

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 dx

≤ Cτ
−2mλ−µ
λ−1

∫
τ<|x|<2τ

ξ
k− 2mλ
λ−1

τ (x) dx

≤ Cτ
−2mλ−µ
λ−1

∫ 2τ

r=τ
rN−1 dr

= CτN− µ+2mλ
λ−1 ,

which proves (2.20). □

Lemma 2.7. We have
J(λ, µ, φ) ≤ CTτN− µ+2mλ

λ−1 .

Proof. By (2.7) and (2.8), we have

J(λ, µ, φ) =
(∫ ∞

0
GT (t) dt

) (∫
RN\B1

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 dx

)
.

Then, using Lemmas 2.4 and 2.6, we obtain the desired estimate. □
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Lemma 2.8. We have ∫
RN\B1

|x|
−µ
λ−1 ζτ(x) dx ≤ C

(
τN− µ

λ−1 + ln τ
)
. (2.26)

Proof. By (2.1)–(2.4), we have∫
RN\B1

|x|
−µ
λ−1 ζτ(x) dx =

∫
1<|x|<2τ

|x|
−µ
λ−1

(
1 − |x|2−N

)
ξκ

(
|x|
τ

)
dx

≤

∫
1<|x|<2τ

|x|
−µ
λ−1 dx

= C
∫ 2τ

r=1
rN−1− µ

λ−1 dr

≤


CτN− µ

λ−1 if N − µ

λ−1 > 0,

C ln τ if N − µ

λ−1 = 0,

C if N − µ

λ−1 < 0

≤ C
(
τN− µ

λ−1 + ln τ
)
,

which proves (2.26). □

Lemma 2.9. We have
K(λ, µ, φ) ≤ CT 1− 2λ

λ−1
(
τN− µ

λ−1 + ln τ
)
.

Proof. By (2.7) and (2.9), we have

K(λ, µ, φ) =

∫ ∞

0
G
−1
λ−1
T

∣∣∣∣∣∣d2GT

dt2

∣∣∣∣∣∣
λ
λ−1

dt

 (∫
RN\B1

|x|
−µ
λ−1 ζτ(x) dx

)
.

Then, using Lemmas 2.5 and 2.7, we obtain the desired estimate. □

2.3.2. The case N = 2

Lemma 2.10. We have ∫
R2\B1

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 dx ≤ Cτ2− 2mλ+µ

λ−1 ln τ. (2.27)

Proof. Proceeding as in the proof of Lemma 2.6, we obtain

supp (∆mζτ) ⊂
{
x ∈ R2 : τ ≤ |x| ≤ 2τ

}
and

|∆mζτ(x)| ≤ Cτ−2m ln τ ξk−2m
τ (x), x ∈ supp (∆mζτ) .

The above estimate yields

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 ≤ Cτ

−2mλ−µ
λ−1 ln τ ξk− 2mλ

λ−1
τ (x), x ∈ supp (∆mζτ) .

AIMS Mathematics Volume 10, Issue 2, 2634–2651.



2646

Then, it holds that∫
R2\B1

|x|
−µ
λ−1 ζ

−1
λ−1
τ |(−∆)mζτ|

λ
λ−1 dx ≤ Cτ

−2mλ−µ
λ−1 ln τ

∫
τ<|x|<2τ

ξ
k− 2mλ
λ−1

τ (x) dx

≤ Cτ
−2mλ−µ
λ−1 ln τ

∫ 2τ

r=τ
r dr

≤ Cτ2− 2mλ+µ
λ−1 ln τ,

which proves (2.27). □

Using (2.7)-(2.8), Lemma 2.4, and Lemma 2.10, we obtain the following estimate of J(λ, µ, φ).

Lemma 2.11. We have

J(λ, µ, φ) ≤ CTτ2− 2mλ+µ
λ−1 ln τ.

Lemma 2.12. We have ∫
R2\B1

|x|
−µ
λ−1 ζτ(x) dx ≤ C ln τ

(
τ2− µ

λ−1 + ln τ
)
. (2.28)

Proof. By (2.1)–(2.4), we have∫
R2\B1

|x|
−µ
λ−1 ζτ(x) dx =

∫
1<|x|<2τ

|x|
−µ
λ−1 ln |x| ξκ

(
|x|
τ

)
dx

≤

∫
1<|x|<2τ

|x|
−µ
λ−1 ln |x| dx

= C
∫ 2τ

r=1
r1− µ

λ−1 ln r dr

≤


Cτ2− µ

λ−1 ln τ if 2 − µ

λ−1 > 0,

C(ln τ)2 if 2 − µ

λ−1 = 0,

C ln τ if 2 − µ

λ−1 < 0

≤ C ln τ
(
τ2− µ

λ−1 + ln τ
)
,

which proves (2.28). □

Using (2.7), (2.9), Lemma 2.5, and Lemma 2.12, we obtain the following estimate of K(λ, µ, φ).

Lemma 2.13. We have

K(λ, µ, φ) ≤ CT 1− 2λ
λ−1 ln τ

(
τ2− µ

λ−1 + ln τ
)
.

3. Proofs of the main results

This section is devoted to the proofs of Theorems 1.1 and 1.2.
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3.1. Proof of Theorem 1.1

By Remark 1.1, (1.10) is equivalent to (1.11). Without restriction of the generality, we assume that

N − 2m < α, I fm−1 > 0. (3.1)

Indeed, exchanging the roles of (I fm−1 , a, p) and (Igm−1 , b, q), the case

N − 2m < β, Igm−1 > 0

reduces to (3.1).
We use the contradiction argument. Namely, let us suppose that (u, v) is a weak solution to (1.1)-

(1.2) (in the sense of Definition 1.2). For k,T, τ ≫ 1, let φ be the admissible test function defined
by (2.7). Then, by Lemma 2.3, we have

I
pq−1

p

fm−1
≤ CT−

pq−1
p

([
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

) ([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

)q
. (3.2)

Making use of Lemmas 2.7 and 2.12, we obtain that for all N ≥ 2,

J(λ, µ, φ) ≤ CTτN− µ+2mλ
λ−1 ln τ, λ > 1, µ ≥ −2m. (3.3)

Similarly, by Lemmas 2.9 and 2.13, we obtain that for all N ≥ 2,

K(λ, µ, φ) ≤ CT 1− 2λ
λ−1

(
τN− µ

λ−1 + ln τ
)

ln τ, λ > 1, µ ≥ −2m. (3.4)

In particular, for (λ, µ) = (p, a), we obtain by (3.3) and (3.4) that[
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p

≤ C
[
T

p−1
p τ

(
N− a+2mp

p−1

) p−1
p (ln τ)

p−1
p + T

(
1− 2p

p−1

) p−1
p

(
τN− a

p−1 + ln τ
) p−1

p (ln τ)
p−1

p

]
= CT

p−1
p τ

(
N− a+2mp

p−1

) p−1
p (ln τ)

p−1
p

1 + T−2
(
τ

2mp
p−1 + τ−

(
N− a+2mp

p−1

)
ln τ

) p−1
p
 .

(3.5)

Furthermore, taking T = τθ, where

θ > max
{

m,
(
a + 2mp

p − 1
− N

)
p − 1

p

}
, (3.6)

we obtain

1 + T−2
(
τ

2mp
p−1 + τ−

(
N− a+2mp

p−1

)
ln τ

) p−1
p
≤ C.

Then, from (3.5), we deduce that

[
J(p, a, φ)

] p−1
p +

[
K(p, a, φ)

] p−1
p ≤ C

[
τθ+N− a+2mp

p−1 ln τ
] p−1

p
. (3.7)

Similarly, for

θ > max
{

m,
(
b + 2mq

q − 1
− N

)
q − 1

q

}
, (3.8)

AIMS Mathematics Volume 10, Issue 2, 2634–2651.



2648

we obtain ([
J(q, b, φ)

] q−1
q +

[
K(q, b, φ)

] q−1
q

)q
≤ C

[
τθ+N− b+2mq

q−1 ln τ
]q−1
. (3.9)

Thus, for T = τθ, where θ satisfies (3.6) and (3.8), we obtain by (3.2), (3.7), and (3.9) that

I
pq−1

p

fm−1
≤ Cτ−

θ(pq−1)
p

[
τθ+N− a+2mp

p−1 ln τ
] p−1

p
[
τθ+N− b+2mq

q−1 ln τ
]q−1
,

that is,

I
pq−1

p

fm−1
≤ Cτδ(ln τ)

pq−1
p , (3.10)

where

δ =
pq − 1

p

[
N −

(b + 2mq)p + a + 2mp
pq − 1

]
=

pq − 1
p

(N − 2m − α) .

Since N − 2m < α, we have δ < 0. Then, passing to the limit as τ → ∞ in (3.10), we reach a
contradiction with I fm−1 > 0. This completes the proof of Theorem 1.1. □

3.2. Proof of Theorem 1.2

Let us introduce the family of polynomial functions {Pi}0≤i≤m, where

Pi(z) =


1 if i = 0,

i−1∏
j=0

(z + 2 j)
i∏

j=1

(N − 2 j − z) if i = 1, · · · ,m.

From (1.14), we deduce that

N − 2 j > max {α, β} , j = 1, · · · ,m.

Furthermore, because a, b ≥ −2m and (a, b) , (−2m,−2m), we have α, β > 0. Then,

Pi(z) > 0, i = 0, 1, · · · ,m, z ∈ {α, β}. (3.11)

For all
0 < ε ≤ min

{
[Pm(α)]

1
p−1 , [Pm(β)]

1
q−1

}
, (3.12)

we consider functions of the forms

uε(x) = ε|x|−α, x ∈ RN\B1 (3.13)

and
vε(x) = ε|x|−β, x ∈ RN\B1. (3.14)

Since uε and vε are radial functions, elementary calculations show that

(−∆)iuε(x) = εPi(α)|x|−α−2i, i = 0, 1, · · · ,m, x ∈ RN\B1 (3.15)
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and
(−∆)ivε(x) = εPi(β)|x|−β−2i, i = 0, 1, · · · ,m, x ∈ RN\B1. (3.16)

Taking i = m in (3.15), using (3.11)–(3.14), we obtain

(−∆)muε(x) = εPm(α)|x|−α−2m

= |x|aεp|x|−βp
(
ε1−pPm(α)|x|−α−2m−a+βp

)
≥ |x|avp

ε (x)|x|−α−2m−a+βp.

On the other hand, by (1.12) and (1.13), one can show that

−α − 2m − a + βp = 0.

Then, we obtain
(−∆)muε(x) ≥ |x|avp

ε (x), x ∈ RN\B1. (3.17)

Similarly, taking m = i in (3.16), using (3.11)–(3.14), we obtain

(−∆)mvε(x) = εPm(β)|x|−β−2m

= |x|bεq|x|−αq
(
ε1−qPm(β)|x|−β−2m−b+αq

)
≥ |x|buq

ε(x)|x|−β−2m−b+αq.

Using that
−β − 2m − b + αq = 0,

we obtain
(−∆)mvε(x) ≥ |x|buq

ε(x), x ∈ RN\B1. (3.18)

Furthermore, by (3.11) and (3.15), for all i = 0, · · · ,m − 1, we have

(−∆)iuε(x) = εPi(α) > 0, x ∈ ∂B1. (3.19)

Similarly, by (3.11) and (3.16), for all i = 0, · · · ,m − 1, we have

(−∆)ivε(x) = εPi(β) > 0, x ∈ ∂B1. (3.20)

Finally, (3.17)–(3.20) show that for all ε satisfying (3.12), the pair of functions (uε, vε) given by (3.13)
and (3.14) is a stationary solution to (1.1)-(1.2) with fi ≡ εPi(α) and gi ≡ εPi(β) for all i = 0, · · · ,m−1.
The proof of Theorem 1.2 is then completed.

□

4. Conclusions

The system of polyharmonic wave inequalities (1.1) under the inhomogeneous Navier-type
boundary conditions (1.2) was investigated. First, we established a nonexistence criterium for the
nonexistence of weak solutions (see Theorem 1.1). Namely, under condition (1.10), we proved
that (1.1)-(1.2) possesses no weak solution, provided I fm−1 , Igm−1 ≥ 0 and (I fm−1 , Igm−1) , (0, 0). Next,
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we proved the sharpness of the obtained criterium (1.10) by showing that under condition (1.14), (1.1)-
(1.2) possesses weak solutions (stationary solutions) for some fi, gi ∈ L1(∂B1) (i = 0, · · · ,m − 1)
with I fm−1 , Igm−1 > 0 (see Theorem 1.2). From Theorem 1.1, we deduced an optimal criterium for the
nonexistence of weak solutions to the corresponding stationary polyharmonic system (1.15) under the
Navier-type boundary conditions (1.16) (see Corollary 1.1).

In this study, the critical case N ≥ 2m + 1,

N = max
{

sgn(I fm−1) ×
2mp(q + 1) + pb + a

pq − 1
, sgn(Igm−1) ×

2mq(p + 1) + qa + b
pq − 1

}
is not investigated. It would be interesting to know whether there is existence or nonexistence of weak
solutions in this case.
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