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Abstract: Following the research of Yang and Atef proposing new classes of fuzzy -covering via
rough sets types over 2-featured universes, we present some modern classes of fuzzy a-covering via
rough sets over two distinct finite sets using fuzzy a-neighborhoods for two distinct points over 2-
distinct finite universes. Throughout this research, we present the ideas of the fuzzy a-neighborhood
system and the fuzzy a-neighborhood for two distinct points over two distinct finite sets and investigate
the relations of the fuzzy a-neighborhood system, fuzzy a-minimal and @-maximal descriptions over
two distinct finite sets. Moreover, some kinds of fuzzy a-neighborhoods are proposed. In addition,
some new types of fuzzy a-coverings over two finite sets are established. Finally, numerous topological
characteristics of fuzzy a-covering via rough set types are investigated.
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1. Introduction

Pawlak [1, 2] was the first one who proposed the rough set theory (RST), which was written
in terms of a pair of sets giving the lower and the upper approximations of the conventional set.
The equivalence relations are used in the model of Pawlak’s rough set. A partition of a finite set
is formed by all equivalence classes. Some restrictions are imposed on different applications by an
equivalence relation [3-5]. Ideas such as general relations have replaced equivalence relations over
recent years [6-9]. In addition, some authors have used neighborhood systems [10-13] and coverings
of finite sets [14—16] instead of equivalence relations.

The evolution and application of some rough set models were made by the following examples.
Adaptive multi-granulation decision-theoretic rough sets represent an advanced and flexible approach
to decision-making under uncertainty, where multiple levels of abstraction (granulation) are used, and
the system adapts to the specific characteristics of the data or decision problem. By combining rough
set theory with decision theory and adaptive granulation, this framework provides a powerful tool
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for handling uncertainty in complex decision-making environments. If one is working on a research
project or application involving this concept, it would be useful to explore specific algorithms and
methodologies that implement these ideas, as well as their real-world applications in areas like machine
learning, artificial intelligence, and decision support systems [17]. Covering-based multi-granulation
rough fuzzy sets offer a robust framework for managing data characterized by uncertainty, imprecision,
and overlap. This approach integrates the versatility of covering relations, the adaptability of multi-
granulation, and the capability of rough and fuzzy sets in modeling uncertainty, making it highly
effective for applications such as feature selection, data mining, pattern recognition, and decision-
making in uncertain environments [18]. The matrix-based fast granularity reduction algorithm for
multi-granulation rough sets offers an innovative solution to minimize the computational demands
of rough set models while preserving their effectiveness in managing uncertainty and imprecision.
Leveraging matrix operations to streamline the model’s granularity, the algorithm enhances the speed
and efficiency of processing large datasets. This makes it especially valuable for applications such
as feature selection, data mining, pattern recognition, and decision support systems [19]. The multi-
scale information fusion-based multiple correlations method for unsupervised attribute selection offers
an effective strategy for identifying relevant features in complex datasets. By integrating multi-
scale analysis with multiple correlation techniques, it effectively captures both local and global data
patterns, enhancing feature selection and optimizing performance in subsequent tasks. This approach
is particularly advantageous in high-dimensional, noisy, or intricate data scenarios where conventional
feature selection techniques may struggle [20]. The concept of variable precision multi-granulation
covering rough intuitionistic fuzzy sets provides a robust framework for addressing uncertainty,
vagueness, and imprecision in complex datasets. By integrating multi-granulation, covering relations,
intuitionistic fuzzy sets, and variable precision, this approach enables a more flexible and detailed
representation of data. It is well-suited for various applications in machine learning, data mining, and
decision support systems. This framework effectively handles complex, uncertain, and noisy data,
offering valuable insights in scenarios where traditional methods may be less effective [21].

The evolution of the covering-based rough set (CBRS) and the fuzzy covering-based rough set
(FCBRS) is shown. CBRS is considered as an important subject to researchers since it can be applied to
extract data, particularly in incomplete information systems. CBRS patterns and the relations between
them were studied by Zhu [22], and Zhu and Wang [23-25]. Additional CBRS patterns were suggested
by Tsang et al. [26] and Xu and Zhang [27]. Liu and Sai [28] compared the CBRS patterns from Zhu
and the CBRS patterns from Xu and Zhang. The two ideas of a neighborhood and a complementary
neighborhood were used to evolve some neighborhood CBRS patterns by Ma [29].

Fuzzy set theory (FST) [30] can solve the problem of rough sets [9] which handles qualitative
(discrete) data by giving each element in the set a value between 0 and 1. The ideas of rough fuzzy
sets and fuzzy rough sets are explained [31]. General fuzzy rough sets can be made by using various
methods from many researchers. A new way to produce fuzzy rough sets using lattice theory was
presented by Deng et al. [32]. Two fuzzy rough approximation factors were structured by Li et al. [33].
Other researchers [34—36] presented an introduction of the subject (FCBRS). The authors of [37]
presented the definitions of fuzzy S-minimal description (FSmd) and fuzzy B-maximal description
(EBMD) over 2-finite sets and examined some of their properties. The motivation for writing this
research was to investigate the idea of Yang and Atef [37] on the neighborhood in the research of
Zhang et al. [38] and induce the results.
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This paper discusses the fuzzy a-neighborhood of x and v and the fuzzy a-neighborhood system
FaNS over two distinct finite sets, which provides us with the relation among FaNS, Famd, and
FaMD. Also in this section, we presents some kinds of fuzzy a-neighborhoods, FaNs, and a-
neighborhoods. The next section offers four types of fuzzy a-coverings over two finite sets and
the relationships between them. Finally, we display some topological features of fuzzy a-covering
depending on rough set patterns.

2. Preliminaries

In this section, we introduce some ideas on FST, fuzzy a-covering-based rough sets, and fuzzy
a-neighborhoods that are used in our study.

Definition 2.1. [22] Let W be a set and ‘B be a family of subsets of W. If B # ¢ and W = | )y €, then
B is called a covering of W, and the covering approximation space will be denoted (W, B).

Definition 2.2. [39] Let W be a finite set. 8 = {€, €, , €,} is called a fuzzy a-covering of W where
€€ FW),(i=1,2,---,m)and for each a € (0, 1], if (U!" €)(u) > a for each u € W. (W, B) is called
a fuzzy a-covering-based approximation space (FaCAS).

Definition 2.3. In [40], FST has the Zadeh’s extension principle as an important instrument. The
Sfamily of all functions from Wy to W, is denoted by Fun(W, W), and the family of all onto functions
from Wy to W, is denoted by Onto(W, W>). Let Wi, W, be two finite sets and let NV (W) and N (W>)
be the fuzzy power sets of Wy and W,, respectively; P € N (W)), Q € A (W,); and n € Fun(W;, W,).
Then a fuzzy function n can be induced from A (Wy) to N (W>), i.e.,

Vo P, yenWy;
n(P)(y) = {uer )
0, y & n(W)),

and a fuzzy function n~! can be induced from A4 (W,) to A (W), i.e., n7'(Q)(u) = (Q)(n(u)),u € W,.
Also, we use n(B) = {n(e),n(e), - ,n(e,)}, where B ={e, 6, - ,€,} S A (W)).

Definition 2.4. [37] Let (W, W,,8) be a FaCAS over two finite sets with ¥ = {€, &, ... -+ , €,} for
some a € (0,1] and f € Onto(Wy, W,). For each u € Wy, Famd and FaMD are defined as:

mdg(u) = {f(€) € f(B) : (e() = a) AN(Vf(K) € f(B)AKu) 2 aA f(K)C fle) = f(e) = f(K))},
MDG () ={f(e) € f(B) : (e(w) = a) A(Vf(K) € f(B)AKu) = aA f(K) 2 f(e) = f(e) = f(K))}.

Definition 2.5. [38] For all r\,r, € [0,1], we define an R-implication operator I as I(ry,r;) =
min(1,1 —r; + rp).

Definition 2.6. [37] Let (W, W,,8) be a FaCAS over two finite sets with B = {€|, &, - - , €,} for some
a € (0,1] and f € Onto(W, W,). For each u € W, the fuzzy a-neighborhood system FaNS is defined
as Ng(u) = {f(e) € f(D) : e(u) > a}.

Definition 2.7. [41] Let (W, W,,B) be a FaCAS on two finite sets with B = {€), &, -+ ,€,} C ﬁin)
for some a € (0,1] and f € Onto(W,,W,). For each u € W, the fuzzy a-neighborhood of u is N} =
(f(e) € f(B): &) = at
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Definition 2.8. [37] Let (W, W», ) be a FaCAS where a € (0,1] and f € Onto(W,, W,). For each
u € Wy, the four kinds of fuzzy a-neighborhood of u are:

@) 1N, = N{f(e) € f(B) : fle) € Ngu)}.

(ii) 2Ny = ULf(e) € f(B) : f(e) € mdy(u)}.
(i) 3Ny = M{f(€) € f(B) : fe) € MDG(u)}.
(iv) 4NV = Ul f(€) € f(B) : f(e) € MDg(u)}.

Definition 2.9. [41] Let (W, W,,%8) be a FaCAS on two finite sets where @ € (0,1] and f €
Onto(W,,W,). For each B € % (W,), Ly (Uy) is the symbol for the fuzzy covering lower (upper)
approximations, which are

Lo(BYw) = A ([1=N@)]V BQR),u € W,

€W,

Us(B)Yu) = \/ (N(2) A\ B(2)), u € W,.

ZEW,

B is called a FCBRS if Ly(B) # Uy(B); otherwise; it is definable.

3. Fuzzy a-neighborhood of x and v and the fuzzy o-neighborhood system FaNS over two
distinct finite sets

We introduce in this section the definitions of FaNS and fuzzy a-neighborhood of x and v on two
different finite sets W; and W,, in FaCAS (W;, W,, 8), and we point to some properties of them with
Famd and FaeMD. Furthermore, some kinds of fuzzy neighborhood operators are deduced from Famd,
FaMD, and FaNS on two different finite sets in FeCAS (W;, W,, B). In the end, the properties of these
fuzzy neighborhood operators are studied.

3.1. Relations among FaNS, Famd, and FaMD

To propose the fuzzy neighborhood operators in a given FeCAS (W, W,, 8), we define the FaNS
as an extension of the neighborhood of x,v € W; and f € Onto(W;, W,).

Definition 3.1. Let (W, W,,8) be FaCAS with B = {€, 6, - ,€,} S F(W)) for some a € (0,1]
and f € Onto(Wy, W). For each x,v € Wy, we define the faNS§ as Ng(x)(v) = {I[f(&)(y1), f(&)(y2)] :
f(&)(x) € mdy(x),y1 = f(x),y2 = f(v),i € {1,2,...m}}.

Definition 3.2. Let (W, W,,8) be a FaCAS with B = {e,6, - ,€6,} S F(W)) for some a
(0,11 and f € Onto(W,,W,). For each x,v € W), we define Famd and FaMD as mdg(x)(v)
{{(f(e(x)), f(e(v)) € Ng(0)() : (f(e(x)) = @) A (VI(f(K(x)), f(K(V)) € Ng(x)(v) A f(K(x))
a A (f(K(x), f(K(W)) < I(f(e(x)), f(e(v)) = I(f(K(x)), f(K())) = I(f(e(x)), f(e(m))},
MDg(x)(v) = {I(f(e(x)), f(e(v)) € Ng(x)(v) : (f(e(x)) = a) A (VI(f(K(x)), f(K(¥))) € Ng(x)(v) A
J(K() =2 a AN(f(K(x)), f(K(V)) = I(f(e(x)), f(e() = I(f(K(x)), f(K(v)) = I(f(e(x)), f(e(W)}

Definition 3.3. Let (W, W,, 8) be a FaCAS with B = {€|, 6, ..., €,} € .F (W) for some a € (0, 1] and
f € Onto(Wy, W,). For each x,v € Wi, we define the fuzzy a-neighborhood of x and v as follows:

vV I m

Na(x)() = A I(f(Ki(x)), f(Ki(v))),i € N = {1,2,3,...}.

F(Ki(x))emdg (x)(v)
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Example 3.4. Let X = {uy, uy, us, uy, us, ug} and Y = {y1, 2,3, y4} with f : X — Y such that

Y, u € {uy,uz};
Y2, UE {Ltz, MS};
Y3, U= Uy
Y4, U= Ug.
Let B = {¢€, 6, &, &}, where € = ettt

fu) =

6 =02 409 05 04,03, 05
uj Uy u3 Us us Ug

€ =04 06,07 1 02,07
up u u3 Uy us Ue

€ =03 1 04, 04 01 04,05

up u u3 Ug us ug
Then, by Zadeh’s extension principle, we have
fle) =2+ L 404 00
V1 Y2 Y3 Y4
fle)=2+52+ 30+ 02

Vi ¥2 ¥3 y4’
f(e)zol+%+L+M
3 i 2 3 y4

- 05,04, 0105
f(64)_Y1+y2+y3+)’4'

Now, let @ = 0.4. We then have (U?:1 €) = ?4—'15 + (1)729 + % + ;—4 + ul—i + %, 1.e., each member of

uy, Uy, U3, Uy, Us, and ug is greater than 0.4. Then, B is a fuzzy a-covering of X. Similarly, U?zl fle) =

%}7 + )% + y% + (;77, 1.e., each member of yy, y,, y3, and y, is greater than 0.4. So, f(¥) is a fuzzy a-covering

onY.
On the other hand, using Tables 1 and 2, we have:

Table 1. md?(x).

U; u 175 us Ug Us Ug

mdg(u;) — fla)  fle).fle)  fle).fla)  fle)fla)  fla).flea)  fla).fle)

Table 2. FaNS, Faemd, and FeMD, 1,j=1,2,3,4.5.6.

U Ng*(uu)) mdy (up)(uj) MDG () (u)

up I(fe(ur)), fe(u)))) I(f(ex(ur)), f(€a(u;))) 1(f(ex(u1)), f(€a(u;)))
uy  I(fle(w2), f(er(up)), I(f(&(u2), f(&x(uy)))  I(fle(u2)), fler(uy))) 1(f (e3(u2)), f (€3(u))))
us  I(f(e(us), f(er(u)), I(f(ea(us), fex(wy)))  I(f(€(us), flea(uy)) 1(f(er(u3)), f(€1(u)))
us  1(f(&@ua), fleu)), I(f(&(us)), f(&s(u)))  I(f(€3(ua)), f(e&3(u)))) 1(f(&(ua)), f(€2(u;)))
us  A(f(e(us)), f(&@))), I(f(&(us)), f(ex(u;))  1(fle(us)), fle(u))) 1(f (es(us)), f (€a(u))))

us  1(f(e(ue))), f(& (uj)))» I(f(€s(us)), f(fa(uj))) I(f(e1(us)), f(e (Mj))), I(f(&s(us)), f(€4(14j))) I(f (€& (us)), f(fl(uj)))v I(f(es(us)), f(€4(uj)))

N%A(i{l)(ul) = 1(f(&(u)), f(&4(u1))) = min(1, 1 = (f(e))(y1) + (f(€))(y1)) = min(1,1-0.5+0.5) =
= N (ur)(u3).

N%'4(MQ(M2) = 1(f(&(u)), f(&4(u2))) = min(1, 1 = (f(e))(y1) + (f(€))(y2)) = min(1,1 - 0.5+ 0.4) =
0.9 = N%“(ul)(us).
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JY%A(M)(M) = I(f(&(u1), f(&(ua))) = min(1, 1=(f(&))(y1)+(f(&))(y3)) = min(1,1-0.5+0.1) = 0.6.
Ng*(un)(ue) = I(f(€a(u)), f(&(us))) = min(1, 1= (f(&))(1) + (f(&))(v4)) = min(1,1-0.5+0.5) = 1.

AJO4 — 1 09,06 _ 1
SO’N% (1) = i + 2 + y3 +y4

In the same manner, using Tables 3 and 4, we have:

Table 3. mdg(x).

u; u 175 us Uy Us Ueq

mdg(w) — fla). fla)  fla)  fle)  fla).fla)  fla)f(e)fla)  fla).fle)

Table 4. FaNS, Famd and FaMD.

U N&u)(u)) mdy () (u ) MDY’ (u)(uj)

w I(f(e @), fler@))), I(f(€ur), flexu;) I(fea(u)), flea(up) — I(f(eun), fle(w))
o I(f(e), fle;))) I(f(esu). fl&u))  I(f(ean), flew;)))
s I(f(e(w)), fle()) I(f(es), fe)  I(fes)), f(ewu,))
g 1(f(e1(wa)), f(€1w))), 1(f(€x(us), f(es(u;)) I(f(es(ua)), fles(up)  I(f(e1(us)), fler(u))))

us I(f(e(us)), f(e(u)))), I(f(&(us)), f(e3(uy))), I(f(sus)), fes(u))) I(f(&(us)), fe3(u)))  I(f(&us)), f(esu;)))

us  I(f(e(us)), f(e1(u))), 1(f(e3(us)), f(e3(u;))) I(f(e3(up)), f(e3(u)))  I(f(er(ue)), f(€1(u})))

1V%4(uz):%+l+ﬂ+M ﬁ%-4(u3):yll+w+%+i

o 1 2 y3 ya’ o
0.4 _ 07 0.6 1 0. 0.4 _ 04 1 0.1 0.7
Ny*(ug) ==+ =2+ -+ N%(”5)‘y_1+_+_+_’

o iy oy oy 2y on
040,y 07 L 09 , 04 , 1
Ny (u) = i + »2 + »3 + ya©

Definition 3.5. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For each

B € F(W,), let R, be the fuzzy covering upper approximation and O, be the fuzzy covering lower
approximation, which are defined as:

RAB)O) = \/ Na0)@) A B2)), yew,
ZEW2

0.(BG) = N\ ([1-Ng»M@IV BR),  ye W
ZEW2

If 0.(A) + R.(A), then A is called a fuzzy covering via rough set theory; otherwise, it is definable.

Example 3.6. From Example 3.4, we assume that 3 = (;;12 + % + %4 + (;'79; therefore,

R.(B)(u1) = (NO*w)31) AB) 1)) V(NG 1) (32) AB)(32)) VINSH (1) (v3) A B)(¥3)) V(NG (1) (34) A
B)4)) = (1 A02)V(09A0.6)\/06A04)\V1A09)=02Vv06Vv04Vv09=009.
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In the same manner for u, to ug, we have U, (%) = (2“9 + % + ?{—‘39 + % + % + ?7(?.

L.(%)(u) = ([1-1]VO.2)A([1-0.9]V0.6)A([1-0.6]VO.4)A([1-1]v0.9) = 0.2A0.6A0.4A0.9 = 0.2.

In the same manner for u; to us, we have L,(%) = %+%+%+%+Z—f+%.

For# =¢ = 2+2+ 0+ wehave Uy(¢) = -+ 0+ 0+ 0+ ki and L) = 4 0+ 0+ 0+ 40k
)1 yz y3 M1 uz u3 ug Uy Uy U3z U4 Us  Ug

For# =V = S++5 + ,wehave U, (V) = -+ -4+t and L(V) = o+t
yroo»n uj up M Up U3 U4 Us  Ug

The following results explam the relations among N (x)(v) md% (x), and M Dy, (x) of x e Wi.

Proposition 3.7. Let (W, W,,8) be a FaCAS for some a € (0,1], f € Onto(W,W,), x,v € Wy, and
I(f(e(x)), f(e(v))) € Ng(x)(v). Then, some I1(f(&(x)), f(€1(v))) € mdy(x)(v) and I(f(&(x)), f(€(v))) €
MDg(x)(v) exist such l‘haf I(f(e1(x)), f(er(n)) < I(f(e(x)), f(e())) < I(f(&(x)) and f(&x(v))).

Proof. It I(f(&(x)), f(&(v) £ I(f(e(x)), f(e(v))) for any I(f(e(x)),f(€(v)) € mdy(x)(v) —
I(f(e(x)), f(e(v))), then it follows from f(e(x)) > «a that I(f(e(x)), f(e(v))) € md"(x)(v) Then
some I(f(€(x)), f(e(v)) € mdy(x)(v) exist such that I(f(e(x)), f(€(v) < I(f(e(x)), f(e(v))).
Similarly, if I(f(e(x)), f(e())) £ I(f(&.(x)), f(e.(v))) for any I(f(€.(x)), f(e.(v))) € MDG(x)(v) —
I(f(e(x)), f(€(v))), then it follows from f(e(x)) > a that I(f(e(x)), f(e(v))) € MDG(x)(v). Thus some
I[(f(&(x), f(e(v)) € MDg(x)(v) exists such that I(f(e(x)), f(e(v))) < I(f (fz(X)) f(&(v)). Hence,
I(f(e(x)), f(er(v)) < I(f (E(X)) f(eM)) < I(f(&(x)), f(&(v))).

Proposition 3.8. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
x,v € W, the following statements hold.

(1) mdg(x)(v) € Ng(x)(v) and MDg(x)(v) € Ng(x)(v).
(i) A Ng(x)(v) = A\ mdy(x)(v) and \/ N. (X)(V) =\ MDg(x)(v).

Proof. (i) Definitions 3.1 and 3.2 can be easily used to prove this item.

(ii) Using Proposition 3.8, if x,v € W, and I(f(e(x)), f(e(v))) € Ng(x)(v), then I(f(€(x)), f(e(v))) €
mdg(x)(v) and I(f(&(x)), f(e(v))) € MDg(x)(v) exist Such that I(f(e(x), f(e(»))) <
I(f(e(x)), f(e(v) < I(f(&(x)), f(&(V))). Then ANg()W) = Amdg(x)(v) and V Ng(x)(v) <
\/ MDg(x)(v). On the other hand, it follows from (1) that, A\ Ng(x)(v) < A mdg(x)(v) and \/ Ng(x)(v)
> \/MD%(x)(v). Hence, A\ Ng(x)(v) = A mdg(x)(v) and \/ (OO0 =\ MDg(x)(v) for any
x,ve W.

Corollary 3.9. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
x,v € Wy, if INg(x)(W)| = 1, then Ng(x)(v) = mdg(x)(v) = MDG(x)(v).

Proof. If [INg(x)(v)| = 1, then the number of implicators, say, I(f(€(x)), f(e(v))) in Ng(x)(v) equals 1.
But mdg(x)(v) € Ng(x)(v) and MDG(x)(v) € Ng(x)(v) by Proposition 3.10. Hence, Ng(x)(v) =
mdg(x)(v) = MDg (x)(v)

Proposition 3.10 shows some features of the Femd and the FeMD in the FeCAS (W, W5, B).

Proposition 3.10. Let (W, W,, B) be a FaCAS for some a € (0, 1] and f € Onto(W,, W,). If0 < a; <
ay < a, then

(i) Ny (x)(v) € Ng' (x)(v) for any x,v € Wy;
(i) mdy’ (x)(v) € mdy' (x)(v) for any x,v € Wy;

(iii) MD 2(x)(v) C MD“‘(x)(v) for any x,v € Wj.

AIMS Mathematics Volume 10, Issue 2, 2131-2162.
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Proof. (i) By Definition 3.1, N2 (x)(v) = I(f(Ki(x)), f(Ki(v))), f(K;) € mdy (x) where mdy (x) =
{fle)e f(B):(e(x) Zaza)A(Vf(K) e f(B)AK(X) Zazar A f(K) C f(e) = f(e) = f(K))}. On
the other hand, md%‘(x) ={fle) e f(B):(ex)z2aza=2ap)p ANVf(K)e f(B)ANKX)>a > a >
a1 A f(K) C f(e) = f(e) = f(K))} gives Ny (0)(v) = I(f(Ki(x)), f(Ki(v)), f(K;) € mdy(x). It is clear
that the number of f(€) in md%z(x) is less than the number of f(€) in md%‘ (x). Therefore, the number
of implicators of Ny (x)(v) is less than the number of the implicators of Ny'(x)(v). Hence, Ny’ (x)(v) €
Ngl (x)(v) for any x,v € Wy; (ii) and (iii) are proved in the same manner.

3.2. Some kinds of fuzzy a-neighborhoods FaNs and a-neighborhoods

In this subsection, some kinds of FaNs based on some concepts offered in the previous subsection
are suggested and their features are discussed.

Definition 3.11. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For each
x,v € Wy, we define the kinds of FaNs for x as

@) 1@ = ANU(f(e(x), f(e(v))) : I(f(e(x)), f(e(v))) € Ng(x)(v)}.
(i) 2Ny = VU(f(e(x)), f(€(v))) : I(f(e(x)), f(€(v))) € mdg(x)(v)}.
(iii) VY = AU(f(e(x)), f(e(v) = I(f(e(x)), f(e(v))) € MDG(x)(v)}.
(iv) 4Ny = VU (f(e(x)), f(e(n)) = I(f(e(x)), f(€(v))) € MDg(x)(v)}.

Example 3.12. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,) in Example
3.4. In this case,

(i) For the first kind of FoN, we have (N4 = L 4+ 09 4 06 L
1 Y1 y2 3 hZ)

(ii) For the second kind of FaN, we have ,NJ* = yil + % + (;;36 + yi4

(iii) For the third kind of FaN, we have 3ﬁ2i4 =1,09,06 1
V1 y2 V3 Y4

(iv) For the fourth kind of FaN, we have 4N3i4 = yil + %29 + %6 + i

The following proposition shows the properties of the FaNs ,-ij, (i=1,2,3,4)of x € W,.

Proposition 3.13. Let (W,,W,,8) be a FaCAS for some a € (0,1], €(x) € B and [ €
Onto(Wy, W»). Then, for all i, j € {1,2,3,4}, the following properties are hold. For any x € W),
iNY (A I(f(€i(x)), f(€j(x))) = a.

Proof. Fori =1, lﬁ)‘f = /\il(f(ej(x)),f(ej(x)))  I(f(€j(x)), f(€j(x))) € Ng(x)(x)} by Definition 3.11.
Then, by Definition 3.1, |Ny = Af{min(1,1 — f(€j(x)) + f(€i(x))) = 1 > a for j € {1,2,3,4}. For
i ={2,3,4}, we have a similar proof.

Remark 3.14. For any x,y,z € Wy, if iﬁ;’(ﬂ I(f(€i(x)), f(;()))) > a, and

NN IS0, f(€2)) = @, then NN I(f(€,(x), f(€1))) # . )

Example 3.15. From Table 5, 11"\722;4((1 I(f(€j(x2)), f(€;(x3)))) > 0.4, and
INYH OV I(f(e1(x3)), f(€,(x4)))) = 0.4, but {NYHN I(f(€/(x2)), f(€(x4)))) 2 0.4.

AIMS Mathematics Volume 10, Issue 2, 2131-2162.



2139

Table 5. | NO* (N I(f(€;(x). f(€0)))).

y INY xyy 1NV Ixpy NV Ixsy INYA gy 1NV Ixsy N> Ixy
X 1 04 1 0.7 04 0.7

X 0.9 1 0.9 0.6 1 0.9

X3 1 04 1 0.7 0.4 0.7

X4 0.6 0.1 0.6 1 0.1 0.4

X5 0.9 1 0.9 0.6 1 0.9

Xg 1 0.7 1 0.7 0.7 1

Depending on the four kinds of FaNs of x € W; in FaCAS (W, W,,8), four kinds of a-
neighborhoods of x € W; in FeCAS (W, W,, B) will be introduced.

Definition 3.16. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For each
x,v € Wy, four kinds of a-neighborhoods will be defined as follows

i) 1N? = {y € W, 1 N?(y) 2 a}.
(ii) 2N? = {y € W, 2N¥(y) > a}.
(iii) 3N¥ = {y € W, :3N2(y) 2 a}.
(iv) 4N = {y € W, 4N°(y) > a).

Example 3.17. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W;, W>) in Example
3.12. We then have

(1) 1N31'4 = 1&?54 = 11A\73f = 1&9&4 = {¥1,¥2,y3, ¥4} and 1&%“ = 1N3;4 = {y1,y2, ya};
(i) 2ﬁ,9i4 = 2ﬁ,93'4 = 2117’34;4 = 2ﬁ36'4 = {y1,¥2, 3, y4} and 2ﬁ32'4 = 2ﬁ,95'4 = {y1, 2, Y4k
(iii) sNp* = 3NpH = 3Nt = 3NRH = sNO2 = N4 = {y1, y2, 3, s

(iv) 4ﬁ3]~4 = 4N3;‘ = 4ﬁ,93'4 = 4&944 = 4NO* = ,N24 = {y1, y2, 3. ya}.

us ug

Proposition 3.18. Let (W, W5, B) be a FaCAS for some a € (O_,l] and f € Onto(W,, W,). Then, for
alli € {1,2,3,4} and for any x,v € Wy, (" I(f(e(x)), f(e(v))) € ,-]V;’.

Proof. We prove for i = 1 and the same proof for i = {2,3,4}. From Definition 3.11, we have
1ij = MI(f(e(x)), f(e(v))) : Iif(e(x)),f(e(v))) € Ng(x)(v)}. But, by Definition 3.16, lﬁ;’ ={a =
(MI(f(€i(x)), f(€;(v)))) € W ;1N (a) = at.

Remark 3.19. Let (W, W,, ) be a FaCAS for some a € (0, 1] and f € Onto(W,, W,),i = {1,2,3,4}.
Therefore,

(i) If () I(F(()), F(€(v))) € iN¢, then ;N* €N? for any x, v,y € W.
(ii) If N I(f(e(x)), f(e(v))) € ;N® and N I(f(e(y)), f((v))) € ;Ne, then (N I(f(€(x)), f(e(v))) & ;N for

any x,v,y,z € Wj.

(111) ;NY g,N;’ @ N® C N;Y for any x,v,y € W,.

x =i

Example 3.20. From Example 3.17 (i),
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() V(). Fe(v)) = 1 €1NG then N+ €N, B
(i) NIf(ews). fev) =y eNpt and NI(f(elwe). f€W) = ya  €NG  then
NI(f(eu)), f(e)) &N

355 A70.4 — C NO0.4 — A70.4 - 04,1 ,01_,07 C AJ0.4 -1 ,09,06_ 1
(ii1) (Nt =y y2. ¥4} SINGY = vy vyl 2N, = S5+ 5+ 55+ 20 QN = S+ T2+ T2 4+ -

Definition 3.21. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For any
a,l,a; € Wy, where s € o and o is a random index set, we define the following

(i) GNOXNOY@, 1) = (NE(@)) AGNE(1)), where (@, 1) € Wa X W;

(i) GNe X ;N9 = {(a, ') € Wa X Ws ;N%(@') > a;N*(I') > a);

(i) (GNO) N GND) = {a’ € W, :(N2(a)) A\GNE(@)) > a;

(iv) ((N9) U GND) = {a’ € Wa :GN2(@)) V(N (@) > al;

W) (NGND) = {a’ € Wa 2 AGNE (@) > a;

seo

(vi) (UGN2)) = {a’ € W : \/ (N%(a')) > @}, where i € {1,2,3,4}.

seT

Example 3.22. From Example 3.12, all the computations here are for when i = 1:

A70.4 A70.4 ’ /N — 04 1 0.1 0.7 04 0.9 0.1 0.7 0.4 0.6
D (IN’“ XINMZ )(ul’ u2) CIED) + 1:y2) + O01,y3) + 1.y4) + 2:1) + (y2.2) + (y2,y3) + (y2,y4) + »3.1) + (v3.y2) +
0.1 0.6 0.4 + 1 .1 0.7

(3.y3) + (v3.y4) + (ya.y1) (Va.y2) + ay3) — (aya)”

2) From (1), (1&%4 X 1ﬁ32'4) = {05y 01, 2), 01, ¥4), 72, Y1)s (2, ¥2), (02, ¥4), (3, Y1)s
(3, ¥2)5 (V35 Y4), V45 Y1)s 045 ¥2)5 (Va5 ya)}-
3) From (1), ((1N31‘4) N (11&%4)) = {)’1,y2,~y4}-
4) From Example 3.12, GNp* @) V GNYH ) = 5550 5550 5159 550 0 Tas 0005)” o
1

Oy On ¥3)” 1ya)” (2.y1)7 (2.y2)” (02.y3)” (v2.y4)°
0.6 1 0.6 0.7 1

1 1
73.51)” (13:52)” (73,93) (3.94) > 4.y1)> (V4.2)” (4,y3)° (Va,y4) We then have

((1N3;4) U (11F\73é4)) = {y1, y2, ¥3, ya}.
5) From Example 3.12, ((NMHNGN) = ((GNSHNOGNSY) = (GN2HNGNH) =

Ui u3

(N2 N GNEH) = (GNE N GN2) = (N2 (Y GNOD) = {y1, 32, 3, Yl

(GNZH N GNED NGNEH NGNS NGNED N GNED) =
Vi, y2,y4}. _ _ _ _ _ _

6) From Example 3.12, ((N24) U (N%4) = (GN24) U GNO4) = ((NO4) U (NO4) =
(GNOH U GN2H) = (GNO4) U GN2H) = (GN2H U GNE) = (N2 U ((NO4)) =
(N2 U GNOH) = (GN2H U GNOH) = (GN2H U (NO) = (N4 U (N24) =
(N2 U GNO9) = (GNH U GN2#) = (N2 U GNO) = {y1, 32, Y30 al.
(N2 U GNOH) = {y1,y2, ya)-

{y1,¥2, 3,4} 1s the answer for the other groups which contains three or four or five, or six
of elements, respectively, with the union operation among them.
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Proposition 3.23. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
a,l € Wy and forall i € {1,2,3,4}, the following properties hold:

(i) GNo x ;N®) = ;Ne x N?,
(i) GNg UNp) = iNg Uy,
(i) GNg MiNY) = iNg (N

Proof. (i) For any a,l € Wy, we have (a’,/') € (iﬁg X iﬁl") — ,ﬁgf(a’) > a, iﬁ;*(l’) >, d €
,Ng,l’ € ,ﬁl" — (@, ) € ,-ﬁg X ,Nl“. Thus, (iﬁg X iﬁl“) = ,-ﬁg X iﬁ{’ holds for any a,l € W, and
ie{1,2,3,4).

(i) For any a,/ € W, we have (N¢{J,N%) = {@' € W, :(N2(@))V(GNY(@)) = a} = {d €
W ((Ng(@)) = @ or (Nj(@)) 2 a) = (@ € Wo ((N;(@)) 2 a}Uld € W @ (Nj(@) = o)
iNe [ J;N¢. Thus, GN2 | ;N%) = ;Ne | J;N¢ holds for any a,/ € W, and i € {1,2,3,4}.

(iii) For any a,l € W;, we have (iﬁgm,-ﬁ;”) =1{d € W, :(iﬁg(a’)) A(,Nl“(a’)) > a} = {d €
Wa (GNS(@) 2 @ and (Np(@)) 2 o} = {a' € Wy «(N3@)) 2 e}’ € Wy 1 (N7(@) 2 el
iN¢ (;N¢. Thus, GN2 () ;N%) = ;Ne (" ;N¢ holds for any a,/ € W, and i € {1,2,3,4}.

Proposition 3.24. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
a;, € Wy, where s € o and o is a random index set and for all i € {1,2,3,4}, the following properties
hold

D (U iNg) = Uy iNg.

2) (Nt iNa) = M=y iNg.-
3) (Useo- iN,%) 2 UsEa' i%'
4) (ﬂsar iNﬁv) = mseo' iNf,i-

Proof. 1) By induction,

(a) By Proposition 3.23, the statement is true for two neighborhoods, that is
GNg UiNg) = iNg U iNg .

1 1

(b) Suppose that the statement is true for n = £, i.e. (Ulr‘:1 ,-ﬁgr) = Ulr‘zl ,ﬁfj
(c) We prove that it is true forn = k + 1, L L L
USTNG) = (Ui No)Y U NS = (U Ne) UiNg = ULy Ne U iNg = UsE NG

2) The same proof as 1) above.

3) Let x € User ,ﬁg Then s € o exists such that x € iﬁgs. Therefore, ,ﬁg > «a. Hence,
(User iNO(®) = Vyer iN% (x) 2 @. Therefore, x € (Uyer iN9), i€y (User iN)
satisfied for Vi € {1, 2, 3,4}

4) Forany x € W,, x € ﬂswiﬁgs — x¢€ iN;’S forevery s € 0 — ,']F\fv;’x > «a forevery s € o
— Ao ,-ﬁgx(x) >0 = x€ (o ,-]A\fdgy). Therefore, ([ e iﬁgy) = MNyeor lﬁg is satisfied for
Viell,2,3,4}.

USEO’ iNgs 18

()
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4. Four types of fuzzy a-coverings over 2-finite sets

Here, we discuss four kinds of fuzzy a-coverings depending on rough set theory for 2-finite sets,
and their properties will be studied, using Definition 3.11.

4.1. The first pattern

Definition 4.1. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For each
B € F (W), the first fuzzy a-lower L; and fuzzy a-upper Uy approximations will be defined as:

Li(B)Y) = Awew,([1 = 1N*()]V B(2), ye W,

UiB)Y) = Ve, (NS N\ BR), ¥y € W,
2 is definable, except if L;(#) # U;(A), when Z£ will be called the first kind of fuzzy a-covering
depending rough set.

Example 4.2. Using Example 3.12, let 2 = %13 + % + %5 + %. We then have,

Li(#)(u) = ([1 = NSV BO)) A1 = iNFH)1V B02) A1 = (NS B(s)

A1 - 1ﬁgi4(y4)] \ $B(y4)) =03 A07A05A02=0.2.

Continuing in the same manner for u, to ug, we get L;(%) = % + % + %2 + % + % + %.

U (B) () = (NS A\ BOD) VAN 2) A B(32) VN (v3) \ B(ys) V

(N () A B(y)) =03V 0.7V 0.5V 0.2 =0.7.

Continuing in the same manner for u, to ug, we get U;(A) = %7 S i el et
Proposition 4.3 provides the characteristics of the first fuzzy a-covering depending rough set

pattern.

07 L 07 4 06 4 07 | 07

Proposition 4.3. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W>). For each
A, € F(W,), we have

D) Li(«¢) = (U(Z))".

2) Ly (W) = W,

3) L/ N ) = Ly() N Ly( ).

4) If o C A, then L)(o/) C L(H).

5) Li(/ U ) 2 L) ULy ().

6) If 1 — |N%(2) < /() < {N%(2) for any z € W, then L;(«7) C Uy(7).

7) Un(€) = (Li())".

8) Us(¢) = ¢.

9) Uy(e/ U ) = Uy(d) U UK.
10) If o7 C A, then U (/) C U, ().
11) Ul N ) CU () NU(I).

Proof. 1) Forany y € Wi, L{)) = Azaw, (11 = INJ @]V 7)) = Aeewy ((NF @)V () =
Aeen, (NN A F @) = Moam GNC@QAF @) = 1 = Ve, _(NNQ A F ) = 1 -
Ui()(y) = (Ui(@)) (). N

2) For any y € Wi, Li(W2)(y) = Aew,([1 — 1Ny (2] V Wa(2)). Wa(z) = 1 for any z € W,; therefore,

LiW)) = Nsew,([1 = INC@IV 1) = 1 = Wi(y), ice. L(W,) = Wy,
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3) For any y € W, Li(o 0 )y = Neew,([1 = 1N} (@] VI 0 HN@) = Nwew, (1 =
INy@QIVIF (@) N\ @D = (Neew,([1 = 1N @]V (@) A(Nzew,([1 = INJ (DT () =
(L;(«?) N L(F))(y). Then, L)(oZ N ) =L () NL(F).

4 If o7 C I, then & (7) < ,%”(z) for any z € W,. For any y € W, we have (/\ .y, ([1 —
1N“(Z)] V A (2) < (New,([1 - 1N“(Z)] V H(2))). Thus, L(/)(y) < Li()(y) holds for any
y € Wi, ie., L(«) C L(J0).

5) Since & C &/ U and ¢ C o/ U I, by (4), we have L;(«/) C Ly(&/ U 5¢) and L (5¢) C
L;(«/ U ). Hence, L;(</ U jf) DL (F)U LI(%”)

6) Foranyy € W, thereis 1 — 1N (z) < A (2) < ]N (z), for anyz € W,; then &7 (2) = 1N;Z(z)/\u<2%(z) <
\/erZ(lNa(x) A (7)) = Ul()(y) and /(z) = ([1 - 1N @1V Z@) 2 Nsew,([1 =1 Ny(0O] V
o (x)) = Li()(y). Thus, (/) C o/ C U(H). B

7) For any y € Wy, Ul(&€) = V ew, (N} (@) A Z2) = Veew,((NJ (D) V F () = (Ncew,[1 —
1N;I(Z)] Vv (2)) = Li())".

8) Ui(@) = Vew, iNy@ AN P), yeW,
= \/zeWz ¢’ y € Wl
= ¢.

9) For any y € Wi, we have Ui(&/ U A)(y) = V ew, (N} () A (F U FH)2) = Voew, 1Ny (2) A
[(2) V A @D))) = (Voew, (1 Ny (@) A F(2)) V (V.ew, 1Ny (2) A H(2))) = (U() U UL(H))(Y).
Then, U;(« U ) = U() U U(F).

10) If o C S, then </ (z) < F(z) for any z € W,. For any y € W}, we have vzeWz(lﬁg(z) A (7)) <
vzewz(lﬁﬁ(z) A F(z)). Thus, U(27)(y) < U(F7)(y) holds for any y € Wy, i.e., Uj(?) C U (57).

11) Since &/ N C o and &/ N I C J, by (10), we have that U;(e/ N ) C Uy(«) and
U N ) C U (). Hence, U(Z N ) C U () ANU(F).

Proposition 4.4. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
K € F(W,) and k € [0, 1], the following hold:

1) Li(# U kW) = Li(H) U kW,.
2) Li(# N kWs) = L) N kW,

Proof. 1) For any y € W, we have L;(Z U kW))(y) = Aew,([1 - J\’}?(z)] V [ U EW,](2) =
Azews (1 = INS@TV H @)V kWa(2) = Acew,([1 = IN2 @1V H @)V E) = (Acews ([1 = 1NE@)] V
H NV (New,([1 = IN2(@)] V k) = L)) V k = Li(H) UKW,

2) For any y € W, we have U;(Z N kW,)(y) = \/zewz(lNa(Z) AN N EW](2)) = \/zeWZ(lN (@) A

H (@) NkWH(@) = Voem, (NS A H (@) AR = (V o, GNE@) A (@) A (V e, (NE(2) AK)) =
U ()3) Ak =U(A) N kW,

Proposition 4.5. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
ae W,ce Wy, and X C W,,

1) Uy(l)(@) = 1N
2) Li(ly,—i)(@) = 1 = | N2(c).
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3) Ur(I1x)(@) = Veex 1N(c).
4) Li(1x)(@) = Negx(1 = 1N2(0)).

Proof. 1) For any a € Wy, a’,c € W,, and from the definition of 1., we have 1.(a") = 0 for @’ # c.
Hence, U,(1.)(a) = \/zewz[lNa(Z) A 1.(2)] = |N2(c).

2) Lilwy—e)(@) = Azew, ([T = 1NG@DIV Twy(0)(2) = (Azew,—io([1 = NSV
@) A e[ = INS@TV g @) = TAL = (N2(OTV 0) = 1 — | N2(o).

3) For any ¢ € W,, X € W, and from the definition of 1y, we have 1y(c) = O if and only if
¢ ¢ X. Hence, for any x € W, we have Ul(lx)(a) = \/ceWZ[lNa(c) A Ix(0)] = (Veexl 1N“(c) A
1x(O)D V(Vegx[1N2(c) A Ix(o)]) = Veex 1N2(0).

4) Li(lx)(@) = Acew,(l - 1N“(C)]\/1x(6)) = (Neex([1 = INZOTV 1x(@) AlAcex([1 -
INYOTV 1x(0)) = T AlAegx([1 = INS(TV 0)) = Agx(1 = 1N2(c)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an a-neighborhood.

Definition 4.6. Let (Wli%’ B) be a Ea/CAS for some a € (0,1] and f € Onto(W,W,). For each
B C W, the first upper Uy and lower L; approximations are defined, respectively, as

U/(#) = {x € Wi : 1Ne() N B # ¢).

Li(#)={xe W, \N¢(y) €S A}

A is definable, except if U;(A) # L;(A). £ is called the first kind of fuzzy covering depending on
the rough set.

Example 4.7. Let (W, W,,8) be a FaCAS for some a € (0, 1]@ f E_Onto(W1 , W). From Example
3.17, we have 1N31‘4 =1ﬁ8_;4 :1ﬁ&4 :1&?54 = {1, ¥2,¥3, 4} and 1N354 :1ﬁ35‘4 = {y1, y2, ya}.

1) Let Z = {y1, ya}. Thﬂ@(@) = {ur, up, us, us, us, ug} = Wy and L/(%) = ¢.
2) Let # = {y3}. Then U)(AB) = {u,, u3, us, ug} and L;(A) = ¢.

4.2. The second pattern

Definition 4.8. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For each
B € F(W,), the second fuzzy a-lower Ly and fuzzy a-upper Uy approximations, respectively, are
defined as

Li(B)0) = Neaw,(I1 =2NJ @1V B), v € Wi,

Un(A)(y) = \/zeW2(2N;I(Z) N\ (), yeW,.
A is definable, except if L;;(A) # U (A). A is called the second kind of fuzzy a-covering depending
on the rough set.

Example 4.9. Let (W, W,,%8) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). Using the
information in Examples 3.12 and 4.2, we have

Li(B)u) = (11 =N 01V BO0) AT =2Ng 01V Z02) AL = N0 091V B0))
A1 - 2N3{4(V4)] V #(s) =03A07A05A02=0.2.
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In the same manner for u; to us, we get Ly (%) = 5 02 4 %3 + (;'—f + % + %3 + %.

Un(B) 1) = GN4 (1) A BoD) VN 32) A B(2) VNS (v3) A B(y3) V
N4 () A B(y)) =03V 0.7V 0.5V 0.2 =0.7.
In the same manner for u, to ug, we get U (%) = —1 + %7 + %7 + (;76 + %57 + %.

Proposition 4.10 provides the characteristics of the second fuzzy a-covering depending on the rough

set pattern.

Proposition 4.10. Let (W, W, 8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For each
A, € F(W,), we have

1) Ly(7€) = (Up())".

2) Ly(Wy) = Wy

3) Ly(/ N ) =Ly() N Ly (7).
4) If o7 C % then L[[(%) - L[[(jf)
5) Ly(e/ U %p) 2 Ly(a/) U LII(%)
6) If 1 - zNa(Z) < ,SZ{(Z) < zNa(Z) fOI' any Z € W2 then L]](%) - U[](ﬂ)
7 Un(€) = Ly()).

8) Un(d) = ¢.

9) U U ) =Uy(a) L Uu(2).
10) If &7 C 7, then U (&) C U (7).
11) Uy( N o) C Up() N U (7).

Proof. 1) For any y € W;, we have Ly (Z)y) = NAem(l - zﬁ;’(z)] \ () =
N (N @)V @) = NemeNJ@Q A @) = VeamCNf@Q A A @)Y = 1 -
Ve, N @ A () = 1 = Un()(y) = W) ©).

2) For any y € Wy, we have Ly(W2)(y) = Aew,([1 — 2Ny (2] V Wa(z)). Since Wy(z) = 1 for any
2 € Wo, LuWo)(y = Azew,([1 - zﬁ;’(Z)] V1=1=W),ie, LW, =

3) For any y € Wy, we have Li(s/ N )0 = Aews([1 = 2N2@IVI 01 AN@D) = ey (11 -
2Ny @DIVIL ()N A DD = (Neew,([1 = 2Ny DTV () A(New,([1 = 2Ny D]V H#(2) =
(Li() "Ly () (y). Then Ly(o/ N ) = Ly(2/) N Ly(57).

4 If o7 C I, then (7)) < %(z) for any z € W,. For any y € W, we have (/A .y, ([1 —
ZN“(z)] \/ A(2) < (Neew,([1 - 2N"(z) V (2))). Thus, Ly (/)(y) < Ly (F)(y) holds for any
y € Wy ie, L) C Liy(I0).

5) Since & C &/ U 5 and 7€ C o/ U 3, by (4), we have that L;;(&/) C L;(&/ U 5¢) and
L () € Ly(«/ U ). Hence, L/l(d U )2 Lu(»(’f) U Ly (7).

6) For any y € W, there is 1 — zN (z) < (7)) < 2N (z) for any z € W,; therefore, o/ (z) =
2N @ N2 < \/erZ(ZNa(x) AN (2)) = Uny()(y) and &(z) = ([1 - 2Ny @1V (2) 2
Asewy ([ =2 NETV 7 (x)) = Lyy(7)(y). Thus, Ly(«/) € & € Up().

7) For any y € Wy, Uy(/€) = \/zewz(zﬁf(z) A (7)) = \/zewz((Zﬁ;l(Z))c VA (2) = (Neewll -
2N, @IV (D) = L))

8) Upu(e) = \/zewz(zN;y(Z) ANp), yeW
= \/zewz ¢’ yE€ Wl
= ¢.

AIMS Mathematics Volume 10, Issue 2, 2131-2162.



2146

9) For any y € W), we have U (&7 U S£)(y) = \/ZGWZ(QNQ(Z) AN U HND) = Voaw, GNE@) A
[ (2) vV H(2)]) = (\/zeWZ(ZNa(Z) AN (2)V (\/zewz(zN“(Z) A H(2))) = (Up() VU (F))().
Then U[](JZ{ U %) = U[](bQ{) U U[[(%) .

10) If o C S, then @/(z) < H(z) for any z € W,. For any y € W;, we have \ oy, oNy(2) A
A (z)) < \/ZeWz(zﬁ;’(Z) A F€(z)). Thus, Uy(/)(y) < Uy(2)(y) holds for any y € Wy, ie.,
Up(2) € Up(57).

11) Since & N C of and &7 N 7 C I, by (10), we have U (& N ) C Uy (/) and Uy(/ N
%) - UU(%) Hence, U][(ﬂ N %) - U[](ﬂ) A U[](%)

Proposition 4.11. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
K € F(W,)andk € [0, 1],

1) L[](% U sz) = L[](%) U le
2) Ly NkWy) =Ly (%) N kW;.

Proof. 1) Forany y € Wy, Ly(J£ U kW)(y) = Aew,([1 - 2N“(Z)] V[ UKWL](2) = Aew,([1
zN“(Z)] VI (2) VEW(2)) = New,([1 2NQ(Z)] VA (@) V)= (New(1 - 2NQ(Z)] vV A (2)V
(Azew,([1 = zNQ(Z)] V) =Ly )y)Vk=Ly(J)UkW,.

2) Forany y € Wy, Uy (2" N kWo)(y) = \/zeW2(2Na(Z) A N EWL](2) = \/zeWZ(ZNa(Z) A A (2) A

kW2(2)) = Voew, GNEQ@AK (@A) = (V o, GNE QAL QDA 1w, GNE(RAK)) = Up(A)YGIA
k = U[[(%) N le

Proposition 4.12. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
a€W;,ceW, and X C W,,

D) Un(l)(a) =2Ng(0).

2) Lu(lw,—e)(@) =1 —_gNg(C)-
3) Un(lx)(@) =V cex 2Ng (©).

4) Lu(1x)(@) = Acex(1 = 2NG(0)).

Proof. 1) Forany a € Wy, a’,c~€ W>, and from the definition of 1., we have 1.(a’) = 0 for a’ # c.

Hence, Uy(1c)(a) = \/zeWZ NG (2) A 1(2)] = 2Ng (0). _

2) Liy(Lws(e)@ = Acew,([1 = 2NZ@TV L@ = (Acews 1o ([T =2NG ()] V
L)) AN s=e([1 = 2NS@DTV L)) = LA = zN"‘(C) 1V 0) = 1-,N0).

3) For any ¢ € W, and X C W,, from the definition of 1y, we have 1y(c) = O if and only if
c ¢ X. Hence, for T any x € W, we have U,I(lx)(a) = \/CeWz[zN"(c) A 1x(0)] = (\/Cex[zN"(c) A
LD V(V egx [2N2(0) A 1x(0)]) = Veex 2N(0). N

4) Lu(Ix)(@) = Acew,([1 - 2N¢(0)] V1x(e) = (Acex(I — 2NV 1x(0) A(Aex([1 -
NSOV 1x(©))) = T A(Agx ([T = 2NX@TV 0)) = A (1 = 2N2(C)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an a-neighborhood.
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Definition 4.13. Let (W, W,, ) be a Fafgé\Sfor some a € (0,1] and f € Onto(W;, W,). For each
B C W, the second upper Uy, and lower Ly approximations, respectively, are defined as:

U[](%) = {x e W : zNa(y) NAB + ¢}

LII(<@) = {X S W1 . Njf(y)_g %} o
2 is definable, except if Uy (A) # L (H). A is called the second kind of fuzzy covering depending
on the rough set.

Example 4.14. Let (W, W, B) be a FaCAS for some « € (0, 1] andf € Onto(Wl, W,). From Example
3.17, we have 2N04 = N04 = N04 = N04 {y1,¥2,y3, y4} and N04 = N04 {y1, ¥2, ya}.

1) Let Z = {1, y4}. Then, U;/(B) = {uy, ua, us, us, us, ug} = Wy, and L;;(B) = ¢.
2) Let # = {y3}. Then, U;(%) = {u1, us, us, ug}, and L;; (%) = ¢.

4.3. The third pattern

Definition 4.15. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For each
B € F(Wy), the third fuzzy a-lower Ly and fuzzy a-upper U approximations, respectively, are
defined as

Lu(B)x) = Nyaw, (11 = sNe IV BG)), x € Wi,

U(#)(x) = \/yewz(3fo(Y) A B©y), xeW.

2 is definable, except if L;;;(A) # U;(HB). A is called the third kind of fuzzy a-covering depending
on the rough set.

Example 4.16. Let (W, W,,%8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). Using the
information in Examples 3.12 and 4.2, we have

Lin(B)w) = (1 =3NI*001V BO0) AL =N 01V B02) AL =N 001V B(3))
AL = 3N )TV B(ya) =03 A0.7A 0.5 A 0. 2 0. 2

In the same manner for u, to ug, we get L;;;(%) = %2 + 22 B 24 %2 + % + (;'—52 + %.

Ui B) () = GN2A) A BO)) VGNZA(3) A %(yz)) \/(3N3;4(Y3) N B(y3) V
(3N04(y4)/\<@(y4)) 03v0.7v0.5v0.2=0.7.
In the same manner for u, to ug, we get U;;(A) = = &7 4 (;27 + % + % + % + %

Proposition 4.17 provides the characteristics of the third fuzzy a-covering depending on the rough
set pattern.

Proposition 4.17. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W>). For each
o, € F(W,), we have

1) Ly (7€) = (U ().

2) Lig(Wy) =W

3) Lin( N ) = Lyy() N Ly ().

4) If o7 C A, then Ly () C Ly ().

5) Ly(/ U ) 2 Lyy() U Ly (F0).

6) If 1 — 3N”(z) < () < N‘”(z) for any z € W,, then L;;(2/) C Uj;(F).
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) Ulu(@{c) = (Llu(«Q{))C-

8) Uin(o) = ¢.

9) Ui/ U ) = Up() U Uy ().
10) If &7 C 2, then U;(o/) C Upp(F2).
11) Uyy( ) € Upy(2?) N U (FF).

Proof. 1) Foranyy € Wi, L)) = Aew, (1=3N; @]V 7)) = Noewy (GNJ @)V #°(2)) =
NemsGNIQ A Z @) = VaamGNIQA @) = 1 = Vo, GNI@Q A F @) = 1 -
Ui (@) () = (U () (y). _

2) Forany y € Wi, Lip(W2)(y) = Azew,([1 = 3Ny (2)] V Wa(2)). Since Wi(z) = 1 for any z € Wy,
LinW2)(¥) = Azew,([1 - 3N§(Z)] V1) =1=W),ie L(W,) =W,

3) For any y € Wy, Lin(«/ 0 A)x) = Asew,([1 = sNy@IVLS 0 V@) = Neew,([1 -
3ﬁ§(1)] VIZ @) N\ A DD = (New,([1 - 3ﬁ§7(Z)] V A (2) AN(NAzew,([1 = 3Ny (D] H(2))) =
(Lin() O Ly (A))(y). Then Ly (o 0 H) = Lip() O Ly (). _

4) If o C A, then o/ (z) < H(z) for any z € W,. For any y € Wi, (A ew,([1 = 3Ny (2] V Z(2))) <
(Nzew,([1 - 3ﬁ§”(Z)] \V H(2))). Thus, Ly ()(y) < Ly (F)(y) holds for any y € Wi, ie,
Ly(e) C Ly ().

5) Since &7 C &/ U and S C o U I, by (4), Lyj(/) C Lo/ U ) and Ly () C
Ly(e/ U ). Hence, Ly (/' U e%p ) 2 Ly() U LIII(% ).

6) For any y € Wy, there is 1 — 3N (z) < A (z) < 3N (z), for any z € W, and therefore, <7 (z) =
3N (@) N F(2) < \/erz(3Na(x) AN (2) = Up(A)(y) and 7 (z) = ([1 - 3N @]V A () =2
Axew,([1 =3 NS(X)] V o (x)) = Lin (' )(y). Thus, Ly (/) € o7 C Up().

7) Forany y € Wi, Up(7) = Voem GNO@) A ) = Voewn (GNT@F V @) = (Nl -
N, (D] V 7 () = Lu()).

8) Ui(®) = Voen, GNI () A 4), ye W,
=Vew® YEW
= ¢.

9) For any y € Wi, we have Uy U A)5) = Voew, GNE(@) A (' U A)@D) = Voew, GNI@) A
[ () V A D] = (Vew, (3ﬁ;’(Z) A A (2)) V (\/zewz(3ﬁ;’(1) A () = U () U U (F))(y).
Then, Uy U ) = Upy() U Uy (). _

10) If &7 C 2, then &/(z) < H(z) for any z € W,. For any y € Wy, we have V y,GNy(2) A
(7)) < VZ€W2(3N§”(Z) A F(2)). Thus, Uy(e/)y) < Up(F€)(y) holds for any y € Wy, i.e.,
Upni(e?) € U (F).

11) Since &/ N C & and & N A C I, by (10) we have that U;;;(o/ N ) C Uj(e/) and
Upi(Z 0 ) C Upy(F€). Hence, Upy(/ N ) C Up(2?) A Up(F2).

Proposition 4.18. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W»). For any
K e F(W,) and k € [0, 1],

1) Ly(F UkW,) = Ly () U kW,.
2) Lin(# NkWy) =Ly () N kW,.
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Proof. 1) Forany y € Wy, Ly, (2" U kW2)() = Azew,([1 3ﬁ;’(z)] V[ UEW2](2) = Acew,([1 -
3N“(Z)] V(2 VEWy(2)) = Aew,([1 3N"(z)] VA () V k)= (New,([1 - 3ﬁ;’(z)] vV (2)) vV
(Azew,([1 = 3N;I(Z)] V k) =Ly ()Y Vk=Liyp( ) UkW,.

2) Forany y € Wy, Upy(Z N kW2)(Y) = Voew, GN2(2) A [Z N EW1](2)) = \/Z€W2(3N"(Z) A K (2) A

kWy(z)) = \/Zewz(zN‘”(Z) NF () Nk) = (Vz€W2(3Na(Z) N K (2)) A (\/zewz(aN“(Z) A k) =
Ui (Z)y) Ak = U () N kW,

Proposition 4.19. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
ae Wi,ce Wy, and X C W,,

1) Umn(1e)(a) = 3Nz (o). _

2) Lin(lwy—e)(@) = 1 —~3N;’(C).
3) Umn(1x)(@) =V cex 3N5(Q-

4 Lin(1x)(@) = Acex(1 = 3Nz (€)).

Proof. 1) For any a € Wy, a’,andc € W,, from the definition of 1., we have 1.(a") = 0 for a’ # c.
Hence, Uj;(1.)(a) = vzeW2[3Na(Z) A 1.(2)] = 3N (o).

2) Lin(wy—e)(@) = Agew, (11 = 3NG@DIV Twy101(2) = (Azew,—iey([1 = NC@D1V
L@ AN zze([1 = 3N2@1V Liy—g @) = L AL = 3N2()]V 0) = 1 = 3N%(c).

3) For any ¢ € W, and X C W,, from the definition of 1y, we have ly(c) = O if and only if
¢ ¢ X. Hence, for rany x € Wi, we have U,,,(lx)(a) = \/LeWz[gN“(c) A 1x(0)] = (\/Lex[gN“(c) A
1Lx()D) V(Vegx[3N2(c) A Ix(0)D) = Veex 3N(o). .

4) Lin(Ix)(@) = Acew,([1 = 3NV 1x(€)) = (Acex([1 = 3N (T V Lx(e) A(Acex([1 —
NGOV 1x(0)) = T A(Acgx([1 = 3NZ(TV 0)) = Acex(1 = 3N (0)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an a-neighborhood.

Definition 4.20. Let (W, ,_Wz, B) be a Fa_CAS for some a € (0,1] and f € Onto(W;, W,). For each
B C W,, the third upper Uy and lower Ly approximations, respectively, are defined as

Uni(B) = {x € Wy : 3N2(y) N B # ).

Liu(#) ={xe Wy :3N2(y) € B).
A 1is definable, except if U ;(#) # L (A). £ is called the third kind of fuzzy covering depending
on the rough set.

Example 4.21. Let (W, W, B) be a FaCAS for some a € (0, 1] and f € Onto(W;, W,). From Example
3.17, we have 3ﬁ,9;4 23&%4 =3N3§4 231@44 =3ﬁ,%4 %ﬁgf = {¥1, Y2, 3, ya}-

1) Let 2 = {y1,ya}. Then Uy1(B) = {uy, ua, u3, us, us, u) = Wy and Ly (B) = ¢.
2) Let # = {y3}. Then Uy;(%#) = {u1, uz, uz, us, us, ug} and Ly, (%) = ¢.
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4.4. The fourth pattern

Definition 4.22. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For each
B € F(W,), the fourth fuzzy a-lower Ly, and fuzzy a-upper Uy, approximations, respectively, are
defined as

Li(B)0) = Acew, (11 = aNy @1V B(2)), y € Wi,

Un(B)Y) = V.ew,aNy (@) \ B(2)), y € Wi.

2 is definable, except if L;y (%) # U;y(A). A is called the fourth kind of fuzzy a-covering depending
on the rough set.

Example 4.23. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W;, W,). Using the
information in Examples 3.12 and 4.2, we have

Liy(#B) ) = ([1 = N 0TV B AL = 4N o1V B2) A1 = aNoH 031V B3)
AL = sN2A )TV B(34) = 0.3 A 0.7 A 0.5 /\02 0.2.

In the same manner for u; to ug, we get L;y(A) = 92 4 02 4 02 4 .
Y1 y2 A Y4 Y5 Y6

Uw(%)(u1) = (4N314(Y1) A B(1)) \/(4N314(y2) A B(32)) VUGN (3) N\ B(3) V
(4N04(y4) N H(Hs)=03v07v05v02=0.7.
In the same manner for u, to ug, we get U;y(A) = y_1 + 327 + (;Z + (;47 + (;57 + (;67
Proposition 4.24 provides the characteristics of the fourth fuzzy a-covering depending on the rough

set pattern.

02 02 4 02 4 02

Proposition 4.24. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W>). For each
A, H € F(W,), we have

1) Lyy(27€) = (Up())".

2) Liv(Wy) = W,

3) Liv(e/ N ) = Liy() N Ly ().
4) If o - % then L]\/(ﬂ) c L]\/(%)
5) Liv(«/ U ) 2 Lyy(2/) U LIV(%)
6) If 1 — 4N"(z) < (7)< N"(z) for any z € W,, then L;y(&) C Uy ().
7) Up(€) = (Lyv(A))°.

8) Un(p) = ¢.

9) Up( U ) =Up () U U ().
10) If o C «%ﬂ, then Ujv(ﬂ{) - UIV(%)
11) Up( N ) C Upy() N U (F7).

Proof. 1) Foranyy € Wi, Li(/)) = Acew, (1 =aN{ @1V 7)) = Newy (N7 @)V #°(2)) =
N, GNf QN F @) = (Ve (N @A Z @) = 1 = Ve, Ny AN F @) = 1 -
Un()() = (U (@) (). _

2) For any y € Wy, Liy(W2)(y) = Aew,([1 — 4aNy(2)] V Wa(2)). Since Wz(z) = 1 for any z € W,,
Liy(W)O) = Acewy ([1 = 4Ny @1V D) = 1 = Wi(), e, L(Wy) =
3) For any y € Wi, Liy(/ 0 A)0) = NAew,(ll = 4N ()] vw* NAND) = Awews(ll

4]V}‘,’(z)] VIZ @) N\ DD = (New,([1 - 4ﬁ§’(z)] V 2 (2))) A(Nzew,([1 4N§’(Z) \V H(2)) =
Ly () N Liy(F€))(y). Then Lyy(Z N ) = Lyy() N Ly(F€).
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4) If o C H, then o/ (z) < J(z) for any z € W,. For any y € W, (A ew,([1 - 4ﬁy“(z)] \ A (2)) <
(Azew,([1 = 4Ny (21 V H(2))). Thus, Liy()(y) < Lyy(H)(y) holds for any y € Wi, ie.,
Lyv() C Liy(I).

5) Since & C &/ U and 5 C &/ U I, by (4), Liy(&/) C Lyy(&/ U ) and Ly () C
Lyy(a U %”) Hence, L;y(&/ U %”) DLy(e/)U L,V(%ﬂ)

6) For any y € Wy, there is 1 — 4N (z) < (7)) < 4N (z) for any z€W,, A(z) = 4N (z) A (7) <
\/x€W2(4Na(x) A (2)) = Up()(y) and (z) = ([1 - 4N @1V Z(2) 2 New,([1 —4 N"(x)] \%
4 (x)) = Liy(/)(y). Thus, Lyy(&/) € &/ C Upy().

7) For any y € Wy, Up(€) = Ve, 4N“(Z) A (7)) = \/zewz((th“(Z))c VT (2) = (Newll
4N @]V T 2) = L(L)).

8) Uv(®) = Voew, Ny @) A @), ye W,
=Vew @ YEW
= ¢.

9) For any y € W, we have Uiv(ﬂf VI = Vieew, 4Ny (2) A (A U IHND) = V.ew,aNy(2) A
[ (2) V A (D)) = (Vzew, aNy (@) A F () V (V zew, aNy (2) A H(2))) = (U () U Uy (F)().
Then Uy (o U ) = Upy(/) U Upy(F7).

10) If & C 22, then @/ (z) < J(z) for any z € W,. For any y € Wi, vz€W2(4ﬁy0‘(z) A (7)) <
vz€W2(4ﬁ;’(z) A F(2)). Thus, Up(2/)(y) < Up(F€)(y) holds for any y € Wy, i.e., Uy (o) C
U ().

11) Since &/ N C & and &7 N C 4, by (10), Up(/ N ) C Up() and Up(f N ) C
UIV(%)‘ Hence, Ulv(ﬂf N %) - UI‘/(W) A UIV(%)

Proposition 4.25. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
H € F(W,) and k € [0, 1], the following hold:

1) LIV(e%/ U sz) = le(%) U le
2) Lv(F N kW) = Liy() N kW,.

Proof. 1) Foranyy € Wy, Lyy(JF UkW))(y) = Azew, ([1 = 4NQ(Z)] V[ UEW,](2) = Azew,([1 —
iNC@IV H @)V EWa(2) = Acewy([1 = aNS@TV @) V) = (Ncews ([1 = N2 (@] V H (2))) V
(Ncews ([1 = aN2(@)] V k) = Liy()») V k = Liy(H) U kW,

2) Forany y € Wy, Upn(£ N kWD) = Voew, GN2(@) A [ N EW21(2) = Ve, GNZ(2) A K (2) A

kWa(2) = Veem,GNI@ A K@) AR = (Voen, GN2@) A @) A (Voew, GNR) A K) =
U ()3 Ak =Up (%) NkW;.

Proposition 4.26. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For any
a€eW;,ceW, and X C W,,

D Upn(1)@) = «N2©).

2) Liv(lyyoi)(@) = 1 = 4N2(0).
3) Un(1)(@) = Veex 4N2(0).

4) Liy(10(@) = Acgx(1 = sN2(©).
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Proof. 1) Foranya € Wl, a’,c € W,, from the definition of 1., we have 1.(a") = 0 for a’ # c¢. Hence,
Un(1)(@) =V oeys [4N2 (@) A L(2)] = N0 .

2) Liv(lwy—e)(@) = Acew,([1 = WNEDIV L@ = (Ncewy ([T =aNg (D] V
@) A ze([1 = sNE@TV Lwpog @) = AL = aN2(OTV 0) = 1 = 4N2(0).

3) For any ¢ € W,, X € W,, from the definition of 1x, we have 1x(c) = 0 if and only ifc ¢
X. Hence, for any x € W, we have Ulv(lx)(a) = \/C€W2[4N"(c) A 1x(0)] = (Veexl N"(c) A
1x(O)D V(V gx[4N2(c) A Ix(0)]) = Veex N0

4) Liy(Ix)(a) = Acew,([1 - 4N"(C)]\/1x(0)) = (Neex([1 = aN2(OTV 1x(©) Al cex([1 =
ANEOTV 1x()) = T AAegx([1 = aNZ(©1V 0)) = Agx(1 = 2N2(C)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an a-neighborhood.

Definition 4.27. Let (W, W,,B) be a Fafgﬁleor some a € (0,1] and f € Onto(W;, W,). For each
B C W,, the fourth upper Uy and lower Ly approximations, respectively, are defined as:

Ui(#B) = (x € Wi : sN20) N 2 # 9.

Liv(#) ={xe Wi :uNg(y) S A}.

A is definable, except if U;y(A) # L;y(H). £ is called the fourth kind of fuzzy covering depending
on the rough set.

Example 4.28. Let (W, W, B) be a FaCAS for some a € (0, 1] and f € Onto(W;, W,). From Example
3]7, we have 4]\7&4 :4N3é4 :4N354 :4]‘\7‘944 :4ﬁ195'4 :4N3é4 = {yl,yz,y3,y4}.

1) Let = {y1,y4}. ThEU_IV(e%)) = {ur, up, u3, us, us, ug} = Wy. and Liv(®) = ¢.
2) Let # = {y3}. Then U;y(B) = {u1, up, u3, us, us, u}. and Ly (H) = ¢.

We provide a definition of the accuracy degree to examine the four kinds of fuzzy a-covering
depending on the rough set patterns introduced in this research.

Definition 4.29. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For each
F (W), the accuracy degree of A is defined as
Zrew, Li(B)(x)
D /(P = s Soam

_ Zyew; Li(B)(x)
2) §i(AB) = e, D00

Zvew, L (2)(x)
3) g‘III(’@) Zvew, Un(#)(x)°

o Zrew; Liv(£)(x)
4 sp(#) = Zeew, U (B)(x)"

Example 4.30 illustrates the idea of the definition above.
Example 4.30. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(Wl, Wz) Using the

information in Examples 4.2, 4.9, 4.16, and 4.23, then the accuracy degrees for B = y1 327 + (;435 + 0742
are:

0.4 0.2+0.3+0.2+0.3+0.3+0.2 _
1) §1 (‘%) 0.7+0.7+0.7+0.6+0.7+0.7 — 0'37’
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2) S'] 4(%) 0.2+40.3+40.240.3+40.340.2 _ 037’

VR EA Y

+0.2+0.2+0.2+0.24+0. _

D = iarmnerane - 07
+0.2+0.24+0.24+0.24+0. .

4) 6y (PB) = 550570510 707505 = 0-29.

We provide a definition of the accuracy measure (am) for the four kinds of fuzzy a-covering
depending on the rough set patterns introduced in Definitions 4.6, 4.13,4.20, and 4.27.

Definition 4.31. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). For each
B € Wy, the am of B is defined as

o= B2

2) 05(B) = ;g:%

3) o) = FEZL,

4) o4 (AB) = %, where | %8| represents the cardinality of 4.

Example 4.32 illustrates the definition above.
Example 4.32. Let (W, W,, %) be a FaCAS for some a € (0,1] and f € Onto(W,, W,). Using the
information in Examples 4.7,4.14,4.21, and 4.28 we have

1) For 2 = {y1,y4},

(a) 0}(B) =2 =
(b) 05(B) =2 =0,
6

’

(c) 0y (A) =
(d) 07;/(A) =
2) For # = {ys},

(a) 07(A) = %= ;
2

0,
0.

(b) Q[[('%) =5=0,
©) 05 (B) =2 =0,
() o}, (#) = ¢ =0.

Definition 4.33. Let (W, W,,B) be a FaCAS for some a; € (0,1] and f € Onto(W,,W,). For each
B e F(W,) and 0 < ay < a, the fuzzy ai-covering depending on the rough set is defined as

D) "Li(B) = Neew, (1 = 1Ny DTV B(2), U B©) = Ve, 1Ny (2) N\ B(2)).

2) "LiB) = Neew,([1 =2NJ' @1V B(2), "Un(B)Y) = Ve, N (2) A B(2)).
3) "Lu(B) = Neew, (1 = 3N @1V B(2),  "Uni(B)y) = Voew, GNy'(2) \ Z(2)).
4) "Liv(B) = Neew,([1 = aNy' @1V (), U B)Y) = Vieew, Ny (2) N\ B(2).

4.5. The relationships among the four patterns

In this subsection, we introduce the connections between the patterns which are provided above.
Moreover, it gives a comparison of the patterns defined by Yao [42] and Yang and Hu [43].

The following propositions explain the relationships among different types of fuzzy a-
neighborhoods.
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Proposition 4.34. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,, W>). For each
u;, uj € Wy, the following statements hold:

D) Nmd?(u;)(u)) = N2

2) UMD (u)(u;)) = 4N

3) If md (u u;) # MD () (), then 2N“(u) - gNa(I/t)
4) mdg (u )(uj) C MDg (u )u;).

5) 1N2 C N2 C4Ne.

6) 1Na 3N(l 4Na

Proof. 1) From Definition 3.11, 1Ny, = NI(f(e(x)), f(e(v))) : I(f(e(x)), f(e(v))) € Ng(u)(u,)} =
() Ng(ui)(u;) = (" mdy(u;)(u;) by Proposition 3.10.
2) From Definition 3.11, 4N, = UU(f(e(x)), f(e(v)) : I(f(e(x)), f(e(v))) € MDGu)(u} =
U M DG (u;)(u)). ~
3) Let I(f(e(x), f(e(v))) € 2Ng(u;)(u;). Then I(f(e(x)), f(e(v))) € mdg(u;)(u;). However,
by the assumption mdg(u;)(u;) # MDGu)(u;), I(f(e(x)), f(e(v)) < I(f(e(x)), f(€(v))),
where I(f(€(x)), f(el(v))) € MDg(u;)(u j) by Proposition 3.8. Therefore, I(f(e(x)), f(e(v))) €
(M DG (u;)(u;). Thatis, I(f(€(x)), f(€(v))) € 3Ng(u;)(u;). Hence, 2N (u:)(u;) S 3Ng(u;)(u;).
4) This is clear from Proposition 3.8.
5) Let 1N, = MU(f(e(x)), f(e())) : I(f(e(x)), f(€(v))) € Ng(ui)(u)} = () Ng(u:)(u;) =
() mdg(u;)(u;) by Proposition 3.10. However, () mdg(u; )(u]) - U mdy, (u )(uj) =
UH(f(e(), fe)) : I(f(e(x)), f(e(v)) € mdi(u)(u))} = »N&. Therefore, |N¢ C
zﬁ;f, . Moreover, by Proposition 3.8, since I(f(€(x)), f(e(v)) C I(f(&(x)),f(e(v)))
where I(f(e(x)), f(e1(v))) € mdg(u)(u;) and I(f(e(x), f(€() €  MDgu)(u,),
U (f(&(x), f(e(w)) :
I(f(e()), f(e()) € mdy(u)(u))} € NI(f(&(x)), f(€v)) : [(f(€(x), f(&(v) €
MDg(u;)(u;)}. That is, 2N“ 4N" Hence, 1N“ QN" 4N“
6) By Proposition 3.8, since I(f(€(x)), f(e(v))) € I(f(&(x)), f(€(v))) where I(f(e(x)), f(e(v))) €
Ng ) (u;) and I(f(€2(x)), f(€2(v))) € MDG(u;)(u;). Therefore, M{I(f(e(x)), f(e(v))) :
I(f (e(x)), f(e(v) € Ny(ui)(up} € M(f(&W)), f(&(v)) : I(f(&(x)), f(&(v))) € MDG(u;)(u))}.
That is, |N? C ;NC. Moreover MI(f(e(x), f(e() : I(f(e(x), f(e(v)) € MDQ;(M )u))h <
UlI(f(&(), f(&W) : I(f(&)), f(€(v))) € MDg(u;)(u;)}. Thatis, e 4N" Hence, 1N" C
3Na C 4Na

Proposition 4.35. Let (W, W»,B) be a FaCAS and f € Onto(W,W,). If 0 < ay < a, < a. For any
u,u; € Wi, i,andj ={1,2,...,n}, we have

1) 1&3,-2 2 1&3,-1-

2) 2]Xa,-2 - 2%?,-1-

3) 4]\731.2 - 4N3il.

Proof. We will prove only 1), and the proof for the others is similar.
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1) If u; € Wy and o1 < a, then (N = ({I(f((x)), f(e())) : I(f(e(x)), f((v))) € Ny () (u)} €

NUF(e)), f(eM)) = I(f(€(x), fF(€(0)) € Ng2(up)(uy)} = N2, Therefore, |Nj;' € N> for any
U, U; € Wi.

The next proposition explains the relationships among four kinds of FaCAS, which are given in
Definitions 4.1, 4.8, 4.15, and 4.22 with the four types of the fuzzy «;-covering based on the rough set
in Definition 4.33.

Proposition 4.36. Let (W, W,,8) be a FaCAS for some a; € (0, 1] and f € Onto(W,, W,). If a; < «,
then for any # € F(W,), we have

1) Ly(%) € "Li(A), “U(#) € U(A).
2) Li(A) € "Ly(A), “U(#) € Up(A).
3) Lin(B) € " Liyn(B),  *Ui(B) € Upi(A).
4) Liy(B) < 'Liv(%B),  "Uw(B) < U(A).

Proof. We will prove only 1), and the proof for the others is similar.

1) If @; < a, then, by Proposition 4.35, we have that lﬁﬁi‘ C lﬁl‘j Thus, we have L;(#) C
Li(AB),” U(A) € U(A) by their definitions.

5. Some topological features of fuzzy a-covering depending on the rough set patterns

Here, we investigate some topological characteristics of the fuzzy a-covering depending on the
rough set patterns.

Definition 5.1. Let (W, W,,8B) be a FaCAS with B = {e€, €, ..., €} for some a € (0,1] and [ €
Onto(W, W,). For each u € Wy, the kinds of sub-base for the fuzzy topology are

D) §i=1{f(e) € f(B) : 1Ny < flo),
2) §2=1{f(e) € f(B) : 1N, C f(e)},
3) §3=1{f(e) € f(B) : 3N, < f(e)},
4) S4=1{f(e) € f(B) : 4N; C f(O)}.

Example 5.2. Let (W, W,,8) be a FaCAS for some a € (0, 1] and f € Onto(W,, W,) in Example 3.12.
Then we have the following sub-bases

= (NG, MO NOA, NDA),
:{2N04,2N324, N1944’ NO4},
S3 = {3NSI4,3N324, Nf,)f, 3N,
Sa = {aNOA, NO#, ANO4, L NOH,

Therefore, the bases will be:

BI:{1,1N04,1N L NO4  NO4 04,094 01,07 07, 06,06,07 04,06 01,07 07,406, 04,07y
U2 U4 U ° yi »2 y3 7 »2 y3 ya’ yi »2 ¥3 Y4’ n »2 3 Y4

B2:{1,2N04,2N04 N04 NO4 04 09+(£+M 0.7 %_'_% 0.7 04 %+u+0.7},

w22y 02 o Sy T S T S T ey T Ty Ty T s T e
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B; :{1’3ﬁo4 N04 NO'4},

uz’
_ ~0.4 AN04  AJ0.4 704
B4_{1’4Nu1 94Nu2 >4 Nu4 ’ 4 Nu(, }'
Hence, the topologies will be
T = {0, 1, NO4, (NOA, (NOA, NO4, Ly L 060 4 Lol g 004 Ly 1074 Ly L0707, 1,04,
U2 g Us > yy ¥ y3 y4 y1 2 Y3 o ya’ ) 2 )3 Y4’y yz y3
LM+M+L R el e e Sl S e el Sl St el el g B
Ya© Y2 )3 )4 Y1 y2 Y3 a4’ yi Y2 )’3 y4 Y1 »2 V3 V1 y2 )’3 }4
7 = {0, 1,,N>4, ,NO4 , NO- ,2N°~4,—+09+ +i 07 141 +M 907 4 L +—+M M+ + + }
U U U > yr = y2 = y3 Yooy » yroooy2 o y3
N04 04 304
T3 _{O 1’3Nu1 Nuz ’ 3 Nu6 }’

Ty = {0, 1, 4N04, 4NOA, JNOAY.

uz >4
where 0 = Q+Q+Q+Q,1 =1lililil e zw,) are two fuzzy sets forany y; € W,,i € {1,2,3,4}.
Y1 y2 y3 Y4 Y1 2 V3 pZ!

Definition 5.3. Let (W, W,,8) be a FaCAS with B = {e€, €, ..., €} for some a € (0,1] and f €
Onto(W, W,). The complement of the open set which is an element in 7 is called a closed set and is

denoted by C, = {f(e) € f(B) : (f(e)) € 1,}, where r € {1,2,3,4}.

Example 5.4. Let (W, W,,8) be a FaCAS for some a € (0, 1] and f € Onto(W,, W,) in Example 5.2.
The closed sets will be

C, ={1,0, —+01+ 44006, 0,09,03°03,04,0,0303,01,06,0°0,0_,04,0"0

, 1,0
Y2 )3 ya’ yi Y2 y3 Y4

0
Yioooy2 oyso o oya’yr o y2 o yso oya’yt Y2 y3  ya’yr Y2 ¥3
0 03+0+0+03 03,0,06,0 03,01,0,0 03,0_,04,03 03,0 06,03 M+M+(;J

+29
Y42y ooy2 oy3 oy’ yt o oy2 y3 oya’n Y2 y3ooya’yt o Y2 ¥3s o ya’yr Y2 Y3 o ya’yi » 3 ya’
C:{102+M+M+2% 0,09,0303,04,0,0350,0,04,00_,01,0_,0 03
2 > Y3 oya’ Y o o» Y4’ yi Y2 ¥3 o oya’yt o ya o ¥z ya’yi Y2 ¥z oya’ oy
0 0 0.3 0.3 0 0.4 03 0.3 0.1 0 3
—t =+, + -+, ot -+ —},
2 y3 Y4 y1 y2 y3 Y4 1 Y2 y3 4
C;={1,0,2 4+ 21 4 044 0 0+Q+@+003+u+0—'6+2}
3 yl yz y3 y4 y1 yz yz y {) yz )3 0)74 :
Cy {10—+—+ +——+—+ 34000, 0,04, 0y

y3 ya’ yi y3 ya’yr o o» )3 V4

Definition 5.5. Let (W, W,,B) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For any
B e F(W,) and s € {1,2,3,4}, the fuzzy interior and fuzzy closure, respectively, are defined as

1(B)=J{Per,: PC B,
C{(%)=NIGeC,: BCG).

Example 5.6. Let (W, W,,B) be a FaCAS for some a € (0, 1] and f € Onto(W,, W,) in Example 5.2.
If # = % +1i4 %6 + y%, then for s = {1}, we have the following:

Y2

1) The fuzzy interior of % is [;(#) = 57 + 5 + 52 + .
2) The fuzzy closure of A is C{(A) = ¢.

Theorem 5.7. Let (W, W,,8) be a FaCAS for some a € (0,1] and f € Onto(W,,W,). For any
L, 24,2 € FWy) and s € {1,2,3,4}, we have the following properties:

1) I(¢) = ¢, I,(Wo) = W,

) I(Z)C Z.

3) Zisanopenset = [(Z) =<
5) If 21 € 25, then I(2)) C I,(25).
6) I,(Z1 N 25) = I,(Z) N 1(2).

T I(Z) VUI(2) C1(Z U 2).
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8) Cs(¢) = ¢, Cs(Wl) = Wi

9) ¥ CCy(2D).
10) ' isaclosed set — C((%) = Z.
11) C(C(Z)) = C(Z).
12) If Z, € 25, then C(Z)) C C(25).
13) Cy(21 N 25) € C(Z7) N Cy(22).
14) C(Z2)VC(23) = C(Z1 U 2).

Proof. The following proof is for s = 1, and the same proof will be applicable to the others.

1) From Definition 5.5, we have
L(@)=U{PeT : PC ¢} =9,
LW2)=U{Pet : PC W} =Ws.
2) Definition 5.5 illustrates the proof.
3) If Z is an open set, then the biggest open set contained in 2 is 2 itself. Therefore, I;(2) = Z.
Moreover, let [,(Z) = Z. As [,(Z) is an open set, Z is an open set.
4) From Definition 5.5, for any 2 € .%(W,), we have
LX) =UlPer:PC () =UlPeri:PCU[PeT :PCZ}=U{Per : PC
Y =1L(Z).
5) From Definition 5.5, for any 2, 25 € .7 (W,) we have
AL =>0(Z)=UPer:PCZ)CUPeT : PC ) =1(2).
6) From Definition 5.5, for any 2, 25 € .7 (W,) we have
LN = U{Per - PC(O N =UPery:PC X andPC 5} =(J{PeT:PC
ZDNUP et : PC ) = L(Z) NL(ZL).
7) Since 2 C 21\ J 25, by 5), we have I,(27) C I,(Z1 | 25). Moreover, as %5 C 2| £, by 5),
we have 1,(25) C 1;)(27 U £3). Thus, 1,(25) U 1I(Z,) € LI(Z1 U 25).
8) From Definition 5.5, we have Ci(¢) = (G € Ci: ¢ C G} =¢, Ci(W) = (G e Cy: W, CG} =
W].
9) Definition 5.5 illustrates the proof.
10) If Z is a closed set, then the smallest closed set containing 2 is % itself. Therefore, C1(2) =
Z . Moreover, let C{(Z) = 2. As C1(Z) is a closed set, Z is a closed set.
11) By Definition 5.5, for any 2 € .% (W), we have C{(C{(Z)) = ({G € C, : C(Z) C G} =
(G eC:NGeC:W,CGlICG}=NGeC,: W, CG}=C|(%).
12) From Definition 5.5, for any %, 25 € .%(W;), we have 2, C 25 = C1(Z]) = (G € C, : £ C
G} MG eC,: 2 C Gl =Ci(£).
13) Since 21 (%> C 21, by (12), we have C1(Z1 (N 25) C C1(Z7). Moreover, as 2 (| 25 C 25, by
(12), we have C,(Z (N Z£3) € C1(23). Hence, Ci(Z1 (N 23) € C1(Z21) N Ci(2).
14) By Definition 5.5, for any 2, 25 € .%(W;), we have C1(Z)JCi(Z) = (G € C, : 27 C
GHU(WGeC,: cGhH=NGeC: Z1CGor 5 CG=NGeC (/LU CG =
Cil(Zh U 22).

Definition 5.8. Let (W, W,, B) be a FaCAS for some a € (0, 1] and f € Onto(W,, W>). For each % €
F(W,), the fuzzy boundary of P will be defined as By(B) = C{(B) () C(H°), where s € {1,2,3,4}.

AIMS Mathematics Volume 10, Issue 2, 2131-2162.



2158

Example 5.9. From the information in Examples 5.4 and 5.6, we have C{(%) = ¢. Moreover, B =

93 4 0 4 08 4 0 Then C((#°) = 1N 4+ 2409, 03703 L 01,06, 0nR03, 0,06,
Y1 »2 Y3 2z Y1 y2 y3 Y4 Y1 y2 y3 Y4 Y1 2 y3

03,0 ,04,03~03,0,06,03~03,00,04,0 _03, 0,04, 0 7pepfore
Y4 Y1 2 y3 ya Y1 YZ03 y30 y‘64 y(l) »2 y3 Y4 1 Y2 y3 y4. ’
B(#) = Ci(B)NCUB) =N (T + -+ 35+ 70) =0

Theorem 5.10. Let (W, W,,8) be a FaCAS for some a € (0,1], and f € Onto(W,,W,). For each
¥ e F(W,) and s € {1,2,3,4}, we have

1) C(Z) = Z U B(Z).
2) I(Z) = Z N(B(Z))".

Proof. We will prove the case for s = 1, and the proof will be the same for the others.

1) For any 2 € #(W,), we have & C C(Z), and thus Z U B|(Z) = Z U (C(ZL)NC(Z°)) =
(ZUC(2)D)N(ZVUCH(Z) =C(Z)N(ZVUC(Z9)) = Ci(2D).

2) For any & € #(W,), we have (C((Z))" = [(Z°). Then Z N (B(Z)) = Z N (C(ZL)N
Cil(Z)) = Z N UCU(L)) U (CH(Z))] = (Z N (CU()) VU (Z N (C(Z9)) = (Z N
L(ZNDU(ZN1I(Z)) =9V L(Z)=1(2).

Remark 5.11. Figure 1 shows that the reversal of stocks is not achieved, and this has been made clear
through Examples 3.15 and 3.20.

Multi-criteria decision-
Novel class of fuzzy - making method based on
covering-based rough set a fuzzy rough set model
over two distinct with fﬁzzy o

universes neighborhoods

Modern classes
of fuzzy
a-covering via
rough sets over
two distinct finite

Figure 1. Comparison between results.

6. Conclusions and future work
In this research, the idea of the fuzzy a neighborhood N“(x) of x, which was defined by Zhang et
al. [38] for FaeCAS was investigated over two finite sets (W;, W,). First, we introduced the definitions

of FaNS, the fuzzy a-neighborhood of x, and v, Femd and FeMD. Then, the relations among FaNS,
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Famd, and FeMD were discussed. After that, we suggested some kinds of FaNs. On the other hand,
four patterns of fuzzy a-covering over two finite sets were provided and the relationships among them
were studied. Finally, we proposed some topological features of fuzzy a-covering depending on the
rough set patterns. Future work could explore several key areas:

1) Expanding the framework of fuzzy a-neighborhoods (FaNS):

Investigate the properties of FeNS in more intricate or dynamic systems.

Explore applications in multi-dimensional or real-time data environments.

Develop efficient algorithms for computing FaNS in large-scale datasets.

2) Enhancing the understanding of relationships:

Broaden the analysis of the relationships among FaNS, Famd, and FeMD, including scenarios with
non-linear or stochastic characteristics.

Assess the implications of these relationships in practical contexts like decision-making systems and
pattern recognition.

3) Introducing variants of fuzzy a-neighborhoods:

Propose and evaluate new variants or modifications of FaNs to tackle specific challenges or
requirements.

Test the effectiveness of these variants in applications such as clustering and classification.

4) Generalizing fuzzy a-coverings:

Extend the four patterns of fuzzy a-coverings to larger, more complex finite or infinite sets.

Study fuzzy a-coverings in relation to other mathematical structures, including lattices and graphs.

5) Advancing topological features in fuzzy rough sets:

Develop more detailed topological features of fuzzy a-coverings based on rough set theory.

Examine their practical applications in areas such as image processing and knowledge representation.
6) Exploring real-world applications:

Apply the proposed concepts in fields like artificial intelligence, machine learning, and data analysis.
Investigate the integration of fuzzy a-coverings into real-time systems, including dynamic decision-
making frameworks.

7) Building interdisciplinary connections:

Establish links between fuzzy a-coverings and fields such as fuzzy logic, neural networks, and
optimization.

Collaborate with experts to customize fuzzy a-concepts for industries like healthcare and finance.

Author contributions
Amal T. Abushaaban: Methodology, Writing the original draft preparation, Formal analysis; O. A.
Embaby: Supervision, Formal analysis; Abdelfattah A. El-Atik: Methodology, Supervision, Formal

analysis. All authors provided critical feedback and helped shape the research, analysis and manuscript.
All authors have read and approved the final version of the manuscript for publication.

Use of Generative Al tools declaration

The authors declare that they have not used Artificial Intelligence (Al) tools in the creation of this
article.

AIMS Mathematics Volume 10, Issue 2, 2131-2162.



2160

Contflict of interest

The authors declare no conflicts of interest.

References

1. Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982),
341-356. https://doi.org/10.1007/BF01001956

2. Z.Pawlak, Rough concept analysis, Bull. Pol. Acad. Sci., Math., 33 (1985), 9-10.

3. J. H. Dai, Q. Xu, Approximations and uncertainty measures in incomplete information systems,
Inform. Sciences, 198 (2012), 62—80. https://doi.org/10.1016/.ins.2012.02.032

4. Q. H. Hu, L. Zhang, D. G. Chen, W. Pedrycz, D. R. Yu, Gaussian kernel based fuzzy rough
sets: model, uncertainty measures and applications, Int. J. Approx. Reason., 51 (2010), 453—-471.
https://doi.org/10.1016/j.ijar.2010.01.004

5. W. Wei, J. Y. Liang, Y. H. Qian, A comparative study of rough sets for hybrid data, Inform.
Sciences, 190 (2012), 1-16. https://doi.org/10.1016/j.ins.2011.12.006

6. H M. Abu-Donia, Comparison between different kinds of approximations by
using a family of binary relations, Knowl.-Based Syst., 21 (2008), 911-919.
https://doi.org/10.1016/j.knosys.2008.03.046

7. S. Greco, B. Matarazzo, R. Slowinski, Rough approximation by dominance relations, Int. J. Intell.
Syst., 17 (2002), 153-171. https://doi.org/10.1002/int.10014

8. T. Herawan, M. M. Deris, J. H. Abawajy, A rough set approach for selecting clustering attribute,
Knowl.-Based Syst., 23 (2010), 220-231. https://doi.org/10.1016/j.knosys.2009.12.003

9. R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction: rough and
fuzzy-rough-based approaches, IEEE T. Knowl. Data FEn., 16 (2004), 1457-1471.
https://doi.org/10.1109/TKDE.2004.96

10. M. Atef, A. M. Khalil, S. G. Li, A. A. Azzam, A. F. El Atik, Comparison of six types of rough
approximations based on j-neighborhood space and j-adhesion neighborhood space, J. Intell. Fuzzy
Syst., 39 (2020), 4515-4531. https://doi.org/10.3233/JIFS-200482

11. K. Y. Huang, T. H. Chang, T. C. Chang, Determination of the threshold value 8 of variable
precision rough set by fuzzy algorithms, Int. J. Approx. Reason., 52 (2011), 1056-1072.
https://doi.org/10.1016/j.1ijar.2011.05.001

12. W. Ziarko, Variable precision rough set model, J. Comput. Syst. Sci., 46 (1993), 39-59.
https://doi.org/10.1016/0022-0000(93)90048-2

13. Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation
operators, Inform. Sciences, 111 (1998), 239-259. https://doi.org/10.1016/S0020-0255(98)10006-
3

14. Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska, Extensions and intentions in rough set
theory, Inform. Sciences, 107 (1998), 149-167. https://doi.org/10.1016/S0020-0255(97)10046-9

AIMS Mathematics Volume 10, Issue 2, 2131-2162.


http://dx.doi.org/https://doi.org/10.1007/BF01001956
http://dx.doi.org/https://doi.org/10.1016/j.ins.2012.02.032
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2010.01.004
http://dx.doi.org/https://doi.org/10.1016/j.ins.2011.12.006
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2008.03.046
http://dx.doi.org/https://doi.org/10.1002/int.10014
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2009.12.003
http://dx.doi.org/https://doi.org/10.1109/TKDE.2004.96
http://dx.doi.org/https://doi.org/10.3233/JIFS-200482
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2011.05.001
http://dx.doi.org/https://doi.org/10.1016/0022-0000(93)90048-2
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(98)10006-3
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(98)10006-3
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(97)10046-9

2161

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. J. A. Pomykala, Approximation operations in approximation space, Bulletin of the Polish Academy
of Sciences, Mathematics, 35 (1987), 653-662.

J. A. Pomykala, On definability in the nondeterministic information system, Bulletin of the Polish
Academy of Sciences, Mathematics, 36 (1988), 193-210.

P. F Zhang, T. R. Li, C. Luo, G. Q. Wang, AMG-DTRS: Adaptive multi-
granulation decision-theoretic rough sets, Int. J. Approx. Reason., 140 (2022), 7-30.
https://doi.org/10.1016/j.ijar.2021.09.017

Z.H. Huang, J.J. Li, Covering based multi-granulation rough fuzzy sets with applications to feature
selection, Expert Syst. Appl., 238 (2024), 121908. https://doi.org/10.1016/j.eswa.2023.121908

Y. Xu, M. Wang, S. Z. Hu, Matrix-based fast granularity reduction algorithm of multi-granulation
rough set, Artif. Intell. Rev., 56 (2023), 4113-4135. https://doi.org/10.1007/s10462-022-10276-4

P. F. Zhang, D. X. Wang, Z. Yu, Y. J. Zhang, T. Jiang, T. R. Li, A multi-scale information
fusion-based multiple correlations for unsupervised attribute selection, Inform. Fusion, 106 (2024),
102276. https://doi.org/10.1016/j.inffus.2024.102276

Z. A. Xue, M. M. Jing, Y. X. Li, Y. Zheng, Variable precision multi-granulation covering rough
intuitionistic fuzzy sets, Granul. Comput., 8 (2023), 577-596. https://doi.org/10.1007/s41066-022-
00342-1

W. Zhu, Topological approaches to covering rough sets, Inform. Sciences, 177 (2007), 1499—-1508.
https://doi.org/10.1016/].ins.2006.06.009

W. Zhu, F. Y. Wang, Reduction and axiomization of covering generalized rough sets, Inform.
Sciences, 152 (2003), 217-230. https://doi.org/10.1016/S0020-0255(03)00056-2

W. Zhu, E. Y. Wang, On three types of covering rough sets, IEEE T. Knowl. Data En., 19 (2007),
1131-1144. https://doi.org/10.1109/TKDE.2007.1044

W. Zhu, F. Y. Wang, The fourth types of covering-based rough sets, Inform. Sciences, 201 (2012),
80-92. https://doi.org/10.1016/j.ins.2012.01.026

E. C. C. Tsang, D. G. Chen, D. S. Yeung, Approximations and reducts with
covering generalized rough sets, Comput. Math. Appl., 56 (2008), 279-289.
https://doi.org/10.1016/j.camwa.2006.12.104

W. H. Xu, W. X. Zhang, Measuring roughness of generalized rough sets induced a covering, Fuzzy
Set. Syst., 158 (2007), 2443-2455. https://doi.org/10.1016/j.fss.2007.03.018

G. L. Liu, Y. Sai, A comparison of two types of rough sets induced by coverings, Int. J. Approx.
Reason., 50 (2009), 521-528. https://doi.org/10.1016/j.ijar.2008.11.001

L. W. Ma, On some types of neighborhood related covering rough sets, Int. J. Approx. Reason., 53
(2012), 901-911. https://doi.org/10.1016/j.1jar.2012.03.004

G. J. Klir, B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh,
Singapore: World Scientific, 1996.

D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191-209.
https://doi.org/10.1080/03081079008935107

AIMS Mathematics Volume 10, Issue 2, 2131-2162.


http://dx.doi.org/https://doi.org/10.1016/j.ijar.2021.09.017
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.121908
http://dx.doi.org/https://doi.org/10.1007/s10462-022-10276-4
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2024.102276
http://dx.doi.org/https://doi.org/10.1007/s41066-022-00342-1
http://dx.doi.org/https://doi.org/10.1007/s41066-022-00342-1
http://dx.doi.org/https://doi.org/10.1016/j.ins.2006.06.009
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(03)00056-2
http://dx.doi.org/https://doi.org/10.1109/TKDE.2007.1044
http://dx.doi.org/https://doi.org/10.1016/j.ins.2012.01.026
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2006.12.104
http://dx.doi.org/https://doi.org/10.1016/j.fss.2007.03.018
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2008.11.001
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2012.03.004
http://dx.doi.org/https://doi.org/10.1080/03081079008935107

2162

32.
33.

34.

35.
36.
37.

38.

39.
40.
41.
42.

43.

% AIMS Press

T. Q. Deng, Y. M. Chen, W. L. Xu, Q. H. Dai, A novel approach to fuzzy rough sets based on a fuzzy
covering, Inform. Sciences, 177 (2007), 2308-2326. https://doi.org/10.1016/].ins.2006.11.013

T.J. L1, Y. Leung, W. X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy
covering, Int. J. Approx. Reason., 48 (2008), 836—856. https://doi.org/10.1016/j.ijar.2008.01.006

T. Feng, S. P. Zhang, J. S. Mi, The reduction and fusion of fuzzy covering
systems based on the evidence theory, Int. J. Approx. Reason., 53 (2012), 87-103.
https://doi.org/10.1016/j.ijar.2011.10.002

B. SeSelja, L-fuzzy covering relation, Fuzzy Set. Syst, 158 (2007), 2456-2465.
https://doi.org/10.1016/].fss.2007.05.019

C.Z. Wang, D. G. Chen, Q. H. Hu, Fuzzy information systems and their homomorphisms, Fuzzy
Set. Syst., 249 (2014), 128-138. https://doi.org/10.1016/j.fss.2014.02.009

B. Yang, M. Atef, Novel classes of fuzzy f—covering-based rough set over two distinct universes,
Fuzzy Set. Syst., 461 (2023), 108350. https://doi.org/10.1016/j.s5.2022.06.024

K. Zhang, J. M. Zhan, W.-Z. Wu, On multi-criteria decision making method based on a fuzzy
rough set model with fuzzy a—neighborhoods, IEEE T. Fuzzy Syst., 29 (2021), 2491-2505.
http://doi.org/10.1109/TFUZZ.2020.3001670

L. W. Ma, Two fuzzy covering rough set models and their generalizations over fuzzy lattices, Fuzzy
Set. Syst., 294 (2016), 1-17. https://doi.org/10.1016/j.£s5.2015.05.002

L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning,
Inform. Sciences, 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

B. Yang, Fuzzy covering-based rough set on two different universes and its application, Artif. Intell.
Rev., 55 (2022), 4717-4753. https://doi.org/10.1007/s10462-021-10115-y

Y. Y. Yao, B. X. Yao, Covering based rough set approximations, Inform. Sciences, 200 (2012),
91-107. https://doi.org/10.1016/j.ins.2012.02.065

B. Yang, B. Q. Hu, Fuzzy neighborhood operators and derived fuzzy coverings, Fuzzy Set. Syst.,
370 (2019), 1-33. https://doi.org/10.1016/j.£ss.2018.05.017

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 2, 2131-2162.


http://dx.doi.org/https://doi.org/10.1016/j.ins.2006.11.013
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2008.01.006
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2011.10.002
http://dx.doi.org/https://doi.org/10.1016/j.fss.2007.05.019
http://dx.doi.org/https://doi.org/10.1016/j.fss.2014.02.009
http://dx.doi.org/https://doi.org/10.1016/j.fss.2022.06.024
http://dx.doi.org/http://doi.org/10.1109/TFUZZ.2020.3001670
http://dx.doi.org/https://doi.org/10.1016/j.fss.2015.05.002
http://dx.doi.org/https://doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/https://doi.org/10.1007/s10462-021-10115-y
http://dx.doi.org/https://doi.org/10.1016/j.ins.2012.02.065
http://dx.doi.org/https://doi.org/10.1016/j.fss.2018.05.017
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Fuzzy -neighborhood of x and v and the fuzzy -neighborhood system FNS over two distinct finite sets
	Relations among FNS, Fmd, and FMD
	Some kinds of fuzzy -neighborhoods FNs and -neighborhoods

	Four types of fuzzy -coverings over 2-finite sets
	The first pattern
	The second pattern
	The third pattern
	The fourth pattern
	The relationships among the four patterns

	Some topological features of fuzzy -covering depending on the rough set patterns
	Conclusions and future work

