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Abstract: Following the research of Yang and Atef proposing new classes of fuzzy β-covering via
rough sets types over 2-featured universes, we present some modern classes of fuzzy α-covering via
rough sets over two distinct finite sets using fuzzy α-neighborhoods for two distinct points over 2-
distinct finite universes. Throughout this research, we present the ideas of the fuzzy α-neighborhood
system and the fuzzy α-neighborhood for two distinct points over two distinct finite sets and investigate
the relations of the fuzzy α-neighborhood system, fuzzy α-minimal and α-maximal descriptions over
two distinct finite sets. Moreover, some kinds of fuzzy α-neighborhoods are proposed. In addition,
some new types of fuzzy α-coverings over two finite sets are established. Finally, numerous topological
characteristics of fuzzy α-covering via rough set types are investigated.
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1. Introduction

Pawlak [1, 2] was the first one who proposed the rough set theory (RST), which was written
in terms of a pair of sets giving the lower and the upper approximations of the conventional set.
The equivalence relations are used in the model of Pawlak’s rough set. A partition of a finite set
is formed by all equivalence classes. Some restrictions are imposed on different applications by an
equivalence relation [3–5]. Ideas such as general relations have replaced equivalence relations over
recent years [6–9]. In addition, some authors have used neighborhood systems [10–13] and coverings
of finite sets [14–16] instead of equivalence relations.

The evolution and application of some rough set models were made by the following examples.
Adaptive multi-granulation decision-theoretic rough sets represent an advanced and flexible approach
to decision-making under uncertainty, where multiple levels of abstraction (granulation) are used, and
the system adapts to the specific characteristics of the data or decision problem. By combining rough
set theory with decision theory and adaptive granulation, this framework provides a powerful tool
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for handling uncertainty in complex decision-making environments. If one is working on a research
project or application involving this concept, it would be useful to explore specific algorithms and
methodologies that implement these ideas, as well as their real-world applications in areas like machine
learning, artificial intelligence, and decision support systems [17]. Covering-based multi-granulation
rough fuzzy sets offer a robust framework for managing data characterized by uncertainty, imprecision,
and overlap. This approach integrates the versatility of covering relations, the adaptability of multi-
granulation, and the capability of rough and fuzzy sets in modeling uncertainty, making it highly
effective for applications such as feature selection, data mining, pattern recognition, and decision-
making in uncertain environments [18]. The matrix-based fast granularity reduction algorithm for
multi-granulation rough sets offers an innovative solution to minimize the computational demands
of rough set models while preserving their effectiveness in managing uncertainty and imprecision.
Leveraging matrix operations to streamline the model’s granularity, the algorithm enhances the speed
and efficiency of processing large datasets. This makes it especially valuable for applications such
as feature selection, data mining, pattern recognition, and decision support systems [19]. The multi-
scale information fusion-based multiple correlations method for unsupervised attribute selection offers
an effective strategy for identifying relevant features in complex datasets. By integrating multi-
scale analysis with multiple correlation techniques, it effectively captures both local and global data
patterns, enhancing feature selection and optimizing performance in subsequent tasks. This approach
is particularly advantageous in high-dimensional, noisy, or intricate data scenarios where conventional
feature selection techniques may struggle [20]. The concept of variable precision multi-granulation
covering rough intuitionistic fuzzy sets provides a robust framework for addressing uncertainty,
vagueness, and imprecision in complex datasets. By integrating multi-granulation, covering relations,
intuitionistic fuzzy sets, and variable precision, this approach enables a more flexible and detailed
representation of data. It is well-suited for various applications in machine learning, data mining, and
decision support systems. This framework effectively handles complex, uncertain, and noisy data,
offering valuable insights in scenarios where traditional methods may be less effective [21].

The evolution of the covering-based rough set (CBRS) and the fuzzy covering-based rough set
(FCBRS) is shown. CBRS is considered as an important subject to researchers since it can be applied to
extract data, particularly in incomplete information systems. CBRS patterns and the relations between
them were studied by Zhu [22], and Zhu and Wang [23–25]. Additional CBRS patterns were suggested
by Tsang et al. [26] and Xu and Zhang [27]. Liu and Sai [28] compared the CBRS patterns from Zhu
and the CBRS patterns from Xu and Zhang. The two ideas of a neighborhood and a complementary
neighborhood were used to evolve some neighborhood CBRS patterns by Ma [29].

Fuzzy set theory (FST) [30] can solve the problem of rough sets [9] which handles qualitative
(discrete) data by giving each element in the set a value between 0 and 1. The ideas of rough fuzzy
sets and fuzzy rough sets are explained [31]. General fuzzy rough sets can be made by using various
methods from many researchers. A new way to produce fuzzy rough sets using lattice theory was
presented by Deng et al. [32]. Two fuzzy rough approximation factors were structured by Li et al. [33].
Other researchers [34–36] presented an introduction of the subject (FCBRS). The authors of [37]
presented the definitions of fuzzy β-minimal description (Fβmd) and fuzzy β-maximal description
(FβMD) over 2-finite sets and examined some of their properties. The motivation for writing this
research was to investigate the idea of Yang and Atef [37] on the neighborhood in the research of
Zhang et al. [38] and induce the results.
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This paper discusses the fuzzy α-neighborhood of x and v and the fuzzy α-neighborhood system
FαNS over two distinct finite sets, which provides us with the relation among FαNS, Fαmd, and
FαMD. Also in this section, we presents some kinds of fuzzy α-neighborhoods, FαNs, and α-
neighborhoods. The next section offers four types of fuzzy α-coverings over two finite sets and
the relationships between them. Finally, we display some topological features of fuzzy α-covering
depending on rough set patterns.

2. Preliminaries

In this section, we introduce some ideas on FST, fuzzy α-covering-based rough sets, and fuzzy
α-neighborhoods that are used in our study.

Definition 2.1. [22] Let W be a set and V be a family of subsets of W. If V , ϕ and W =
⋃
ϵ∈V ϵ, then

V is called a covering of W, and the covering approximation space will be denoted (W,V).

Definition 2.2. [39] Let W be a finite set. V = {ϵ1, ϵ2, · · · , ϵm} is called a fuzzy α-covering of W where
ϵi ∈ F (W), (i = 1, 2, · · · ,m) and for each α ∈ (0, 1], if (

⋃m
i ϵi)(u) ≥ α for each u ∈ W. (W,V) is called

a fuzzy α-covering-based approximation space (FαCAS).

Definition 2.3. In [40], FST has the Zadeh’s extension principle as an important instrument. The
family of all functions from W1 to W2 is denoted by Fun(W1,W2), and the family of all onto functions
from W1 to W2 is denoted by Onto(W1,W2). Let W1,W2 be two finite sets and let N (W1) and N (W2)
be the fuzzy power sets of W1 and W2, respectively; P ∈ N (W1), Q ∈ N (W2); and n ∈ Fun(W1,W2).
Then a fuzzy function n can be induced from N (W1) to N (W2), i.e.,

n(P)(y) =


∨

u∈n−1(y)
P(u), y ∈ n(W1);

0, y < n(W1),

and a fuzzy function n−1 can be induced from N (W2) to N (W1), i.e., n−1(Q)(u) = (Q)(n(u)), u ∈ W1.
Also, we use n(V) = {n(ϵ1), n(ϵ2), · · · , n(ϵm)}, where V = {ϵ1, ϵ2, · · · , ϵm} ⊆ N (W1).

Definition 2.4. [37] Let (W1,W2,V) be a FαCAS over two finite sets with V = {ϵ1, ϵ2, ... · · · , ϵm} for
some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each u ∈ W1, Fαmd and FαMD are defined as:
mdα
V

(u) = { f (ϵ) ∈ f (V) : (ϵ(u) ≥ α) ∧ (∀ f (K) ∈ f (V) ∧ K(u) ≥ α ∧ f (K) ⊆ f (ϵ)⇒ f (ϵ) = f (K))},
MDα

V
(u) = { f (ϵ) ∈ f (V) : (ϵ(u) ≥ α) ∧ (∀ f (K) ∈ f (V) ∧ K(u) ≥ α ∧ f (K) ⊇ f (ϵ)⇒ f (ϵ) = f (K))}.

Definition 2.5. [38] For all r1, r2 ∈ [0, 1], we define an R-implication operator I as I(r1, r2) =
min(1, 1 − r1 + r2).

Definition 2.6. [37] Let (W1,W2,V) be a FαCAS over two finite sets withV = {ϵ1, ϵ2, · · · , ϵm} for some
α ∈ (0, 1] and f ∈ Onto(W1,W2). For each u ∈ W1, the fuzzy α-neighborhood system FαNS is defined
as Ñα

V
(u) = { f (ϵ) ∈ f (V) : ϵ(u) ≥ α}.

Definition 2.7. [41] Let (W1,W2,V) be a FαCAS on two finite sets with V = {ϵ1, ϵ2, · · · , ϵm} ⊆ F (W1)
for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each u ∈ W1, the fuzzy α-neighborhood of u is Ñαu =⋂
{ f (ϵ) ∈ f (V) : ϵi(u) ≥ α}.
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Definition 2.8. [37] Let (W1,W2,V) be a FαCAS where α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
u ∈ W1, the four kinds of fuzzy α-neighborhood of u are:

(i) 1Nαu =
⋂
{ f (ϵ) ∈ f (V) : f (ϵ) ∈ Ñα

V
(u)}.

(ii) 2Nαu =
⋃
{ f (ϵ) ∈ f (V) : f (ϵ) ∈ mdα

V
(u)}.

(iii) 3Nαu =
⋂
{ f (ϵ) ∈ f (V) : f (ϵ) ∈ MDα

V
(u)}.

(iv) 4Nαu =
⋃
{ f (ϵ) ∈ f (V) : f (ϵ) ∈ MDα

V
(u)}.

Definition 2.9. [41] Let (W1,W2,V) be a FαCAS on two finite sets where α ∈ (0, 1] and f ∈
Onto(W1,W2). For each B ∈ F (W2), L0 (U0) is the symbol for the fuzzy covering lower (upper)
approximations, which are

L0(B)(u) =
∧

z∈W2

([1 − Ñαu (z)]
∨

B(z)), u ∈ W1,

U0(B)(u) =
∨

z∈W2

(Ñαu (z)
∧

B(z)), u ∈ W1.

B is called a FCBRS if L0(B) , U0(B); otherwise; it is definable.

3. Fuzzy α-neighborhood of x and v and the fuzzy α-neighborhood system FαNS over two
distinct finite sets

We introduce in this section the definitions of FαNS and fuzzy α-neighborhood of x and v on two
different finite sets W1 and W2, in FαCAS (W1,W2,V), and we point to some properties of them with
Fαmd and FαMD. Furthermore, some kinds of fuzzy neighborhood operators are deduced from Fαmd,
FαMD, and FαNS on two different finite sets in FαCAS (W1,W2,V). In the end, the properties of these
fuzzy neighborhood operators are studied.

3.1. Relations among FαNS, Fαmd, and FαMD

To propose the fuzzy neighborhood operators in a given FαCAS (W1,W2,V), we define the FαNS
as an extension of the neighborhood of x, v ∈ W1 and f ∈ Onto(W1,W2).

Definition 3.1. Let (W1,W2,V) be FαCAS with V = {ϵ1, ϵ2, · · · , ϵm} ⊆ F (W1) for some α ∈ (0, 1]
and f ∈ Onto(W1,W2). For each x, v ∈ W1, we define the fαNS as Nα

V
(x)(v) = {I[ f (ϵi)(y1), f (ϵi)(y2)] :

f (ϵi)(x)) ∈ mdα
V

(x), y1 = f (x), y2 = f (v), i ∈ {1, 2, ...,m}} .

Definition 3.2. Let (W1,W2,V) be a FαCAS with V = {ϵ1, ϵ2, · · · , ϵm} ⊆ F (W1) for some α ∈
(0, 1] and f ∈ Onto(W1,W2). For each x, v ∈ W1, we define Fαmd and FαMD as mdα

V
(x)(v) =

{I( f (ϵ(x)), f (ϵ(v))) ∈ Nα
V

(x)(v) : ( f (ϵ(x)) ≥ α) ∧ (∀I( f (K(x)), f (K(v))) ∈ Nα
V

(x)(v) ∧ f (K(x)) ≥
α ∧ I( f (K(x)), f (K(v))) ≤ I( f (ϵ(x)), f (ϵ(v)))⇒ I( f (K(x)), f (K(v))) = I( f (ϵ(x)), f (ϵ(v)))},
MDα

V
(x)(v) = {I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(x)(v) : ( f (ϵ(x)) ≥ α) ∧ (∀I( f (K(x)), f (K(v))) ∈ Nα

V
(x)(v) ∧

f (K(x)) ≥ α ∧ I( f (K(x)), f (K(v))) ≥ I( f (ϵ(x)), f (ϵ(v)))⇒ I( f (K(x)), f (K(v))) = I( f (ϵ(x)), f (ϵ(v)))}.

Definition 3.3. Let (W1,W2,V) be a FαCAS with V = {ϵ1, ϵ2, ..., ϵm} ⊆ F (W1) for some α ∈ (0, 1] and
f ∈ Onto(W1,W2). For each x, v ∈ W1, we define the fuzzy α-neighborhood of x and v as follows:

Ñα
V

(x)(v) =
∧

f (Ki(x))∈mdα
V

(x)(v)
I( f (Ki(x)), f (Ki(v))), i ∈ N = {1, 2, 3, ...}.

AIMS Mathematics Volume 10, Issue 2, 2131–2162.



2135

Example 3.4. Let X = {u1, u2, u3, u4, u5, u6} and Y = {y1, y2, y3, y4} with f : X −→ Y such that

f (u) =


y1, u ∈ {u1, u3};
y2, u ∈ {u2, u5};
y3, u = u4;
y4, u = u6.

Let V = {ϵ1, ϵ2, ϵ3, ϵ4}, where ϵ1 = 0.3
u1
+ 0.7

u2
+ 0.4

u3
+ 0.1

u4
+ 1

u5
+ 0.7

u6
,

ϵ2 =
0.2
u1
+ 0.9

u2
+ 0.5

u3
+ 0.4

u4
+ 0.3

u5
+ 0.5

u6
,

ϵ3 =
0.4
u1
+ 0.6

u2
+ 0.7

u3
+ 1

u4
+ 0.2

u5
+ 0.7

u6
,

ϵ4 =
0.5
u1
+ 0.4

u2
+ 0.4

u3
+ 0.1

u4
+ 0.4

u5
+ 0.5

u6
.

Then, by Zadeh’s extension principle, we have
f (ϵ1) = 0.4

y1
+ 1

y2
+ 0.1

y3
+ 0.7

y4
,

f (ϵ2) = 0.5
y1
+ 0.9

y2
+ 0.4

y3
+ 0.5

y4
,

f (ϵ3) = 0.7
y1
+ 0.6

y2
+ 1

y3
+ 0.7

y4
,

f (ϵ4) = 0.5
y1
+ 0.4

y2
+ 0.1

y3
+ 0.5

y4
.

Now, let α = 0.4. We then have (
⋃4

i=1 ϵi) =
0.5
u1
+ 0.9

u2
+ 0.7

u3
+ 1

u4
+ 1

u5
+ 0.7

u6
, i.e., each member of

u1, u2, u3, u4, u5, and u6 is greater than 0.4. Then, V is a fuzzy α-covering of X. Similarly,
⋃4

i=1 f (ϵi) =
0.7
y1
+ 1

y2
+ 1

y3
+ 0.7

y4
, i.e., each member of y1, y2, y3, and y4 is greater than 0.4. So, f (V) is a fuzzy α-covering

on Y .
On the other hand, using Tables 1 and 2, we have:

Table 1. mdα
V

(x).

ui u1 u2 u3 u4 u5 u6

mdα
V

(ui) f (ϵ4) f (ϵ1), f (ϵ4) f (ϵ1), f (ϵ4) f (ϵ2), f (ϵ3) f (ϵ1), f (ϵ4) f (ϵ1), f (ϵ4)

Table 2. FαNS, Fαmd, and FαMD, i,j=1,2,3,4.5.6.
U N0.4

V
(ui)(u j) md0.4

V (ui)(u j) MD0.4
V

(ui)(u j)

u1 I( f (ϵ4(u1)), f (ϵ4(u j))) I( f (ϵ4(u1)), f (ϵ4(u j))) I( f (ϵ4(u1)), f (ϵ4(u j)))

u2 I( f (ϵ1(u2)), f (ϵ1(u j))), I( f (ϵ4(u2)), f (ϵ4(u j))) I( f (ϵ1(u2)), f (ϵ1(u j))) I( f (ϵ4(u2)), f (ϵ4(u j)))

u3 I( f (ϵ1(u3)), f (ϵ1(u j))), I( f (ϵ4(u3)), f (ϵ4(u j))) I( f (ϵ4(u3)), f (ϵ4(u j))) I( f (ϵ1(u3)), f (ϵ1(u j)))

u4 I( f (ϵ2(u4)), f (ϵ2(u j))), I( f (ϵ3(u4)), f (ϵ3(u j))) I( f (ϵ3(u4)), f (ϵ3(u j))) I( f (ϵ2(u4)), f (ϵ2(u j)))

u5 I( f (ϵ1(u5)), f (ϵ1(u j))), I( f (ϵ4(u5)), f (ϵ4(u j))) I( f (ϵ1(u5)), f (ϵ1(u j))) I( f (ϵ4(u5)), f (ϵ4(u j)))

u6 I( f (ϵ1(u6))), f (ϵ1(u j))), I( f (ϵ4(u6)), f (ϵ4(u j))) I( f (ϵ1(u6)), f (ϵ1(u j))), I( f (ϵ4(u6)), f (ϵ4(u j))) I( f (ϵ1(u6)), f (ϵ1(u j))), I( f (ϵ4(u6)), f (ϵ4(u j)))

Ñ0.4
V

(u1)(u1) = I( f (ϵ4(u1)), f (ϵ4(u1))) = min(1, 1 − ( f (ϵ4))(y1) + ( f (ϵ4))(y1)) = min(1, 1 − 0.5 + 0.5) =
1 = Ñ0.4

V
(u1)(u3).

Ñ0.4
V

(u1)(u2) = I( f (ϵ4(u1)), f (ϵ4(u2))) = min(1, 1 − ( f (ϵ4))(y1) + ( f (ϵ4))(y2)) = min(1, 1 − 0.5 + 0.4) =
0.9 = Ñ0.4

V
(u1)(u5).
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Ñ0.4
V

(u1)(u4) = I( f (ϵ4(u1)), f (ϵ4(u4))) = min(1, 1−( f (ϵ4))(y1)+( f (ϵ4))(y3)) = min(1, 1−0.5+0.1) = 0.6.
Ñ0.4
V

(u1)(u6) = I( f (ϵ4(u1)), f (ϵ4(u6))) = min(1, 1− ( f (ϵ4))(y1)+ ( f (ϵ4))(y4)) = min(1, 1− 0.5+ 0.5) = 1.
So, Ñ0.4

V
(u1) = 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4

In the same manner, using Tables 3 and 4, we have:

Table 3. mdα
V

(x).

ui u1 u2 u3 u4 u5 u6

mdα
V

(ui) f (ϵ1), f (ϵ4) f (ϵ4) f (ϵ2) f (ϵ1), f (ϵ3) f (ϵ1), f (ϵ3), f (ϵ4) f (ϵ1), f (ϵ3)

Table 4. FαNS, Fαmd and FαMD.
U N0.5

V
(ui)(u j) md0.5

V (ui)(u j) MD0.5
V

(ui)(u j)

u1 I( f (ϵ1(u1)), f (ϵ1(u j))), I( f (ϵ4(u1)), f (ϵ4(u j))) I( f (ϵ4(u1)), f (ϵ4(u j))) I( f (ϵ1(u1)), f (ϵ1(u j)))

u2 I( f (ϵ4(u1)), f (ϵ4(u j))) I( f (ϵ4(u1)), f (ϵ4(u j)))) I( f (ϵ4(u1)), f (ϵ4(u j)))

u3 I( f (ϵ2(u3)), f (ϵ2(u j))) I( f (ϵ2(u3)), f (ϵ2(u j))) I( f (ϵ2(u3))), f (ϵ2(u j)))

u4 I( f (ϵ1(u4)), f (ϵ1(u j))), I( f (ϵ3(u4)), f (ϵ3(u j))) I( f (ϵ3(u4)), f (ϵ3(u j))) I( f (ϵ1(u4)), f (ϵ1(u j)))

u5 I( f (ϵ1(u5)), f (ϵ1(u j))), I( f (ϵ3(u5)), f (ϵ3(u j))), I( f (ϵ4(u5)), f (ϵ4(u j))) I( f (ϵ3(u5)), f (ϵ3(u j))) I( f (ϵ4(u5)), f (ϵ4(u j)))

u6 I( f (ϵ1(u6)), f (ϵ1(u j))), I( f (ϵ3(u6)), f (ϵ3(u j))) I( f (ϵ3(u6)), f (ϵ3(u j))) I( f (ϵ1(u6)), f (ϵ1(u j)))

Ñ0.4
V

(u2) = 0.4
y1
+ 1

y2
+ 0.1

y3
+ 0.7

y4
, Ñ0.4

V
(u3) = 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
,

Ñ0.4
V

(u4) = 0.7
y1
+ 0.6

y2
+ 1

y3
+ 0.7

y4
, Ñ0.4

V
(u5) = 0.4

y1
+ 1

y2
+ 0.1

y3
+ 0.7

y4
,

Ñ0.4
V

(u6) = 0.7
y1
+ 0.9

y2
+ 0.4

y3
+ 1

y4
.

Definition 3.5. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2), let R∗ be the fuzzy covering upper approximation and O∗ be the fuzzy covering lower
approximation, which are defined as:

R∗(B)(y) =
∨
z∈W2

(Ñα
V

(y)(z) ∧B(z)), y ∈ W1,

O∗(B)(y) =
∧
z∈W2

([1 − Ñα
V

(y)(z)] ∨B(z)), y ∈ W1.

If O∗(B) , R∗(B), then B is called a fuzzy covering via rough set theory; otherwise, it is definable.

Example 3.6. From Example 3.4, we assume that B = 0.2
y1
+ 0.6

y2
+ 0.4

y3
+ 0.9

y4
; therefore,

R∗(B)(u1) = (Ñ0.4
V

(u1)(y1)∧B)(y1))
∨

(Ñ0.4
V

(u1)(y2)∧B)(y2))
∨

(Ñ0.4
V

(u1)(y3)∧B)(y3))
∨

(Ñ0.4
V

(u1)(y4)∧
B)(y4)) = (1 ∧ 0.2)

∨
(0.9 ∧ 0.6)

∨
(0.6 ∧ 0.4)

∨
1 ∧ 0.9) = 0.2 ∨ 0.6 ∨ 0.4 ∨ 0.9 = 0.9.
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In the same manner for u2 to u6, we have U∗(B) = 0.9
u1
+ 0.7

u2
+ 0.9

u3
+ 0.7

u4
+ 0.7

u5
+ 0.9

u6
.

L∗(B)(u1) = ([1−1]∨0.2)∧([1−0.9]∨0.6)∧([1−0.6]∨0.4)∧([1−1]∨0.9) = 0.2∧0.6∧0.4∧0.9 = 0.2.
In the same manner for u2 to u6, we have L∗(B) = 0.2

u1
+ 0.6

u2
+ 0.2

u3
+ 0.3

u4
+ 0.6

u5
+ 0.3

u6
.

For B = ϕ = 0
y1
+ 0

y2
+ 0

y3
+ 0

y4
, we haveU∗(ϕ) = 0

u1
+ 0

u2
+ 0

u3
+ 0

u4
+ 0

u5
+ 0

u6
and L∗(ϕ) = 0

u1
+ 0

u2
+ 0

u3
+ 0

u4
+ 0

u5
+ 0

u6
.

For B = V = 1
y1
+ 1

y2
+ 1

y3
+ 1

y4
, we haveU∗(V) = 1

u1
+ 1

u2
+ 1

u3
+ 1

u4
+ 1

u5
+ 1

u6
and L∗(V) = 1

u1
+ 1

u2
+ 1

u3
+ 1

u4
+ 1

u5
+ 1

u6
.

The following results explain the relations among Nα
V

(x)(v),mdαV(x), and MDα
V

(x) of x ∈ W1.

Proposition 3.7. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1], f ∈ Onto(W1,W2), x, v ∈ W1, and
I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(x)(v). Then, some I( f (ϵ1(x)), f (ϵ1(v))) ∈ mdα

V
(x)(v) and I( f (ϵ2(x)), f (ϵ2(v))) ∈

MDα
V

(x)(v) exist such that I( f (ϵ1(x)), f (ϵ1(v))) ≤ I( f (ϵ(x)), f (ϵ(v))) ≤ I( f (ϵ2(x)) and f (ϵ2(v))).

Proof. If I( f (ϵ0(x)), f (ϵ0(v))) ≰ I( f (ϵ(x)), f (ϵ(v))) for any I( f (ϵ0(x)), f (ϵ0(v))) ∈ mdα
V

(x)(v) −
I( f (ϵ(x)), f (ϵ(v))), then it follows from f (ϵ(x)) ≥ α that I( f (ϵ(x)), f (ϵ(v))) ∈ mdα

V
(x)(v). Then

some I( f (ϵ1(x)), f (ϵ1(v))) ∈ mdα
V

(x)(v) exist such that I( f (ϵ1(x)), f (ϵ1(v))) ≤ I( f (ϵ(x)), f (ϵ(v))).
Similarly, if I( f (ϵ(x)), f (ϵ(v))) ≰ I( f (ϵ∗(x)), f (ϵ∗(v))) for any I( f (ϵ∗(x)), f (ϵ∗(v))) ∈ MDα

V
(x)(v) −

I( f (ϵ(x)), f (ϵ(v))), then it follows from f (ϵ(x)) ≥ α that I( f (ϵ(x)), f (ϵ(v))) ∈ MDα
V

(x)(v). Thus, some
I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα

V
(x)(v) exists such that I( f (ϵ(x)), f (ϵ(v))) ≤ I( f (ϵ2(x)), f (ϵ2(v)). Hence,

I( f (ϵ1(x)), f (ϵ1(v))) ≤ I( f (ϵ(x)), f (ϵ(v))) ≤ I( f (ϵ2(x)), f (ϵ2(v))).

Proposition 3.8. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
x, v ∈ W1, the following statements hold.

(i) mdα
V

(x)(v) ⊆ Nα
V

(x)(v) and MDα
V

(x)(v) ⊆ Nα
V

(x)(v).
(ii)
∧

Nα
V

(x)(v) =
∧

mdα
V

(x)(v) and
∨

Nα
V

(x)(v) =
∨

MDα
V

(x)(v).

Proof. (i) Definitions 3.1 and 3.2 can be easily used to prove this item.
(ii) Using Proposition 3.8, if x, v ∈ W1 and I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(x)(v), then I( f (ϵ1(x)), f (ϵ1(v))) ∈

mdα
V

(x)(v) and I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα
V

(x)(v) exist such that I( f (ϵ1(x)), f (ϵ1(v))) ≤

I( f (ϵ(x)), f (ϵ(v))) ≤ I( f (ϵ2(x)), f (ϵ2(v))). Then
∧

Nα
V

(x)(v) ≥
∧

mdα
V

(x)(v) and
∨

Nα
V

(x)(v) ≤∨
MDα

V
(x)(v). On the other hand, it follows from (1) that,

∧
Nα
V

(x)(v) ≤
∧

mdα
V

(x)(v) and
∨

Nα
V

(x)(v)
≥
∨

MDα
V

(x)(v). Hence,
∧

Nα
V

(x)(v) =
∧

mdα
V

(x)(v) and
∨

Nα
V

(x)(v) =
∨

MDα
V

(x)(v) for any
x, v ∈ W1.

Corollary 3.9. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
x, v ∈ W1, if |Nα

V
(x)(v)| = 1, then Nα

V
(x)(v) = mdα

V
(x)(v) = MDα

V
(x)(v).

Proof. If |Nα
V

(x)(v)| = 1, then the number of implicators, say, I( f (ϵ(x)), f (ϵ(v))) in Nα
V

(x)(v) equals 1.
But mdα

V
(x)(v) ⊆ Nα

V
(x)(v) and MDα

V
(x)(v) ⊆ Nα

V
(x)(v) by Proposition 3.10. Hence, Nα

V
(x)(v) =

mdα
V

(x)(v) = MDα
V

(x)(v).

Proposition 3.10 shows some features of the Fαmd and the FαMD in the FαCAS (W1,W2,V).

Proposition 3.10. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). If 0 < α1 ≤

α2 ≤ α, then

(i) Nα2
V

(x)(v) ⊆ Nα1
V

(x)(v) for any x, v ∈ W1;
(ii) mdα2

V
(x)(v) ⊆ mdα1

V
(x)(v) for any x, v ∈ W1;

(iii) MDα2
V

(x)(v) ⊆ MDα1
V

(x)(v) for any x, v ∈ W1.
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Proof. (i) By Definition 3.1, Nα2
V

(x)(v) = I( f (Ki(x)), f (Ki(v))), f (Ki) ∈ mdα2
V

(x) where mdα2
V

(x) =
{ f (ϵ) ∈ f (V) : (ϵ(x) ≥ α ≥ α2)∧ (∀ f (K) ∈ f (V)∧ K(x) ≥ α ≥ α2 ∧ f (K) ⊆ f (ϵ)⇒ f (ϵ) = f (K))}. On
the other hand, mdα1

V
(x) = { f (ϵ) ∈ f (V) : (ϵ(x) ≥ α ≥ α2 ≥ α1) ∧ (∀ f (K) ∈ f (V) ∧ K(x) ≥ α ≥ α2 ≥

α1 ∧ f (K) ⊆ f (ϵ)⇒ f (ϵ) = f (K))} gives Nα1
V

(x)(v) = I( f (Ki(x)), f (Ki(v))), f (Ki) ∈ mdα1
V

(x). It is clear
that the number of f (ϵ) in mdα2

V
(x) is less than the number of f (ϵ) in mdα1

V
(x). Therefore, the number

of implicators of Nα2
V

(x)(v) is less than the number of the implicators of Nα1
V

(x)(v). Hence, Nα2
V

(x)(v) ⊆
Nα1
V

(x)(v) for any x, v ∈ W1; (ii) and (iii) are proved in the same manner.

3.2. Some kinds of fuzzy α-neighborhoods FαNs and α-neighborhoods

In this subsection, some kinds of FαNs based on some concepts offered in the previous subsection
are suggested and their features are discussed.

Definition 3.11. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
x, v ∈ W1, we define the kinds of FαNs for x as

(i) 1Ñαx =
∧
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(x)(v)}.

(ii) 2Ñαx =
∨
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ mdα

V
(x)(v)}.

(iii) 3Ñαx =
∧
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ MDα

V
(x)(v)}.

(iv) 4Ñαx =
∨
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ MDα

V
(x)(v)}.

Example 3.12. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2) in Example
3.4. In this case,

(i) For the first kind of FαN, we have 1Ñ0.4
u1
= 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
.

(ii) For the second kind of FαN, we have 2Ñ0.4
u1
= 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
.

(iii) For the third kind of FαN, we have 3Ñ0.4
u1
= 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
.

(iv) For the fourth kind of FαN, we have 4Ñ0.4
u1
= 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
.

The following proposition shows the properties of the FαNs iÑαx , (i = 1, 2, 3, 4) of x ∈ W1.

Proposition 3.13. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1], ϵ j(x) ∈ V and f ∈
Onto(W1,W2). Then, for all i, j ∈ {1, 2, 3, 4}, the following properties are hold. For any x ∈ W1,
iÑαx (
∧

I( f (ϵ j(x)), f (ϵ j(x)))) ≥ α.

Proof. For i = 1, 1Ñαx =
∧
{I( f (ϵ j(x)), f (ϵ j(x))) : I( f (ϵ j(x)), f (ϵ j(x))) ∈ Nα

V
(x)(x)} by Definition 3.11.

Then, by Definition 3.1, 1Ñαx =
∧
{min(1, 1 − f (ϵ j(x)) + f (ϵ j(x))) = 1 ≥ α for j ∈ {1, 2, 3, 4}. For

i = {2, 3, 4}, we have a similar proof.

Remark 3.14. For any x, y, z ∈ W1, if iÑαx (
⋂

I( f (ϵ j(x)), f (ϵ j(y)))) ≥ α, and
iÑαy (
⋂

I( f (ϵ j(y)), f (ϵ j(z)))) ≥ α, then iÑαx (
⋂

I( f (ϵ j(x)), f (ϵ j(z)))) ≱ α.

Example 3.15. From Table 5, 1Ñ0.4
x2

(
⋂

I( f (ϵ j(x2)), f (ϵ j(x3)))) ≥ 0.4, and

1Ñ0.4
x3

(
⋂

I( f (ϵ j(x3)), f (ϵ j(x4)))) ≥ 0.4, but 1Ñ0.4
x2

(
⋂

I( f (ϵ j(x2)), f (ϵ j(x4)))) ≱ 0.4.
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Table 5. 1Ñ0.4
x (
⋂

I( f (ϵ j(x)), f (ϵ j(y)))).

y 1Ñ0.4
x1

Ix1y 1Ñ0.4
x2

Ix2y 1Ñ0.4
x3

Ix3y 1Ñ0.4
x4

Ix4y 1Ñ0.4
x5

Ix5y 1Ñ0.4
x6

Ix6y
x1 1 0.4 1 0.7 0.4 0.7
x2 0.9 1 0.9 0.6 1 0.9
x3 1 0.4 1 0.7 0.4 0.7
x4 0.6 0.1 0.6 1 0.1 0.4
x5 0.9 1 0.9 0.6 1 0.9
x6 1 0.7 1 0.7 0.7 1

Depending on the four kinds of FαNs of x ∈ W1 in FαCAS (W1,W2,V), four kinds of α-
neighborhoods of x ∈ W1 in FαCAS (W1,W2,V) will be introduced.

Definition 3.16. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
x, v ∈ W1, four kinds of α-neighborhoods will be defined as follows

(i) 1Ñαx = {y ∈ W2 :1Ñαx (y) ≥ α}.

(ii) 2Ñαx = {y ∈ W2 :2Ñαx (y) ≥ α}.

(iii) 3Ñαx = {y ∈ W2 :3Ñαx (y) ≥ α}.

(iv) 4Ñαx = {y ∈ W2 :4Ñαx (y) ≥ α}.

Example 3.17. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2) in Example
3.12. We then have

(i) 1Ñ0.4
u1
= 1Ñ0.4

u3
= 1Ñ0.4

u4
= 1Ñ0.4

u6
= {y1, y2, y3, y4} and 1Ñ0.4

u2
= 1Ñ0.4

u5
= {y1, y2, y4};

(ii) 2Ñ0.4
u1
= 2Ñ0.4

u3
= 2Ñ0.4

u4
= 2Ñ0.4

u6
= {y1, y2, y3, y4} and 2Ñ0.4

u2
= 2Ñ0.4

u5
= {y1, y2, y4};

(iii) 3Ñ0.4
u1
= 3Ñ0.4

u2
= 3Ñ0.4

u3
= 3Ñ0.4

u4
= 3Ñ0.4

u5
= 3Ñ0.4

u6
= {y1, y2, y3, y4};

(iv) 4Ñ0.4
u1
= 4Ñ0.4

u2
= 4Ñ0.4

u3
= 4Ñ0.4

u4
= 4Ñ0.4

u5
= 4Ñ0.4

u6
= {y1, y2, y3, y4}.

Proposition 3.18. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). Then, for

all i ∈ {1, 2, 3, 4} and for any x, v ∈ W1,
⋂

I( f (ϵ(x)), f (ϵ(v))) ∈ iÑαx .

Proof. We prove for i = 1 and the same proof for i = {2, 3, 4}. From Definition 3.11, we have

1Ñαx =
⋂
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(x)(v)}. But, by Definition 3.16, 1Ñαx = {a =

(
⋂

I( f (ϵ j(x)), f (ϵ j(v)))) ∈ W2 :1Ñαx (a) ≥ α}.

Remark 3.19. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2), i = {1, 2, 3, 4}.
Therefore,

(i) If
⋂

I( f (ϵ(x)), f (ϵ(v))) ∈ iÑαy , then iÑαx ⊈iÑαy for any x, v, y ∈ W1.

(ii) If
⋂

I( f (ϵ(x)), f (ϵ(v))) ∈ iÑαy and
⋂

I( f (ϵ(y)), f (ϵ(v))) ∈ iÑαz , then
⋂

I( f (ϵ(x)), f (ϵ(v))) < iÑαz for
any x, v, y, z ∈ W1.

(iii) iÑαx ⊆iÑαy ⇎iÑαx ⊆iÑαy for any x, v, y ∈ W1.

Example 3.20. From Example 3.17 (i),
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(i)
⋂

I( f (ϵ j(u1)), f (ϵ j(v))) = y1 ∈1Ñ0.4
u2

then 1Ñ0.4
u1
⊈1Ñ0.4

u2
.

(ii)
⋂

I( f (ϵ(u4)), f (ϵ(v))) = y3 ∈1Ñ0.4
u6

and
⋂

I( f (ϵ(u6)), f (ϵ(v))) = y4 ∈1Ñ0.4
u5

, then⋂
I( f (ϵ(u4)), f (ϵ(v))) <1Ñ0.4

u5
.

(iii) 1Ñ0.4
u2
= {y1, y2, y4} ⊆1Ñ0.4

u1
= {y1, y2, y3, y4}⇏1Ñ0.4

u2
= 0.4

y1
+ 1

y2
+ 0.1

y3
+ 0.7

y4
⊆1Ñ0.4

u1
= 1

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
.

Definition 3.21. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
a, l, as ∈ W1, where s ∈ σ and σ is a random index set, we define the following

(i) (iÑαa×iÑαl )(a′, l′) = (iÑαa (a′))
∧

(iÑαl (l′)), where (a′, l′) ∈ W2 ×W2;

(ii) (iÑαa × iÑαl ) = {(a′, l′) ∈ W2 ×W2 :iÑαa (a′) ≥ α,iÑαl (l′) ≥ α};

(iii) ((iÑαa )
⋂

(iÑαl )) = {a′ ∈ W2 :(iÑαa (a′))
∧

(iÑαl (a′)) ≥ α};

(iv) ((iÑαa )
⋃

(iÑαl )) = {a′ ∈ W2 :(iÑαa (a′))
∨

(iÑαl (a′)) ≥ α};

(v) (
⋂

(iÑαas
)) = {a′ ∈ W2 :

∧
s∈σ

(iÑαas
(a′)) ≥ α};

(vi) (
⋃

(iÑαas
)) = {a′ ∈ W2 :

∨
s∈σ

(iÑαas
(a′)) ≥ α}, where i ∈ {1, 2, 3, 4}.

Example 3.22. From Example 3.12, all the computations here are for when i = 1:

1) (1Ñ0.4
u1
×1Ñ0.4

u2
)(u′1, u

′
2) = 0.4

(y1,y1) +
1

(y1,y2) +
0.1

(y1,y3) +
0.7

(y1,y4) +
0.4

(y2,y1) +
0.9

(y2,y2) +
0.1

(y2,y3) +
0.7

(y2,y4) +
0.4

(y3,y1) +
0.6

(y3,y2) +
0.1

(y3,y3) +
0.6

(y3,y4) +
0.4

(y4,y1) +
1

(y4,y2) +
0.1

(y4,y3) +
0.7

(y4,y4) .

2) From (1), (1Ñ0.4
u1
× 1Ñ0.4

u2
) = {(y1, y1), (y1, y2), (y1, y4), (y2, y1), (y2, y2), (y2, y4), (y3, y1),

(y3, y2), (y3, y4), (y4, y1), (y4, y2), (y4, y4)}.

3) From (1), ((1Ñ0.4
u1

)
⋂

(1Ñ0.4
u2

)) = {y1, y2, y4}.
4) From Example 3.12, (1Ñ0.4

u1
(u′1))

∨
(1Ñ0.4

u2
(u′2)) = 1

(y1,y1) ,
1

(y1,y2) ,
1

(y1,y3) ,
1

(y1,y4) ,
0.9

(y2,y1) ,
1

(y2,y2) ,
0.9

(y2,y3) ,
0.9

(y2,y4) ,
0.6

(y3,y1) ,
1

(y3,y2) ,
0.6

(y3,y3) ,
0.7

(y3,y4) ,
1

(y4,y1) ,
1

(y4,y2) ,
1

(y4,y3) ,
1

(y4,y4) . We then have

((1Ñ0.4
u1

)
⋃

(1Ñ0.4
u2

)) = {y1, y2, y3, y4}.

5) From Example 3.12, ((1Ñ0.4
u1

)
⋂

(1Ñ0.4
u3

)) = ((1Ñ0.4
u1

)
⋂

(1Ñ0.4
u4

)) = ((1Ñ0.4
u1

)
⋂

(1Ñ0.4
u6

)) =

((1Ñ0.4
u3

)
⋂

(1Ñ0.4
u4

)) = ((1Ñ0.4
u3

)
⋂

(1Ñ0.4
u6

)) = ((1Ñ0.4
u4

)
⋂

(1Ñ0.4
u6

)) = {y1, y2, y3, y4};

((1Ñ0.4
u1

)
⋂

(1Ñ0.4
u2

)
⋂

(1Ñ0.4
u3

)
⋂

(1Ñ0.4
u4

)
⋂

(1Ñ0.4
u5

)
⋂

(1Ñ0.4
u6

)) =
{y1, y2, y4}.

6) From Example 3.12, ((1Ñ0.4
u1

)
⋃

(1Ñ0.4
u2

)) = ((1Ñ0.4
u1

)
⋃

(1Ñ0.4
u3

)) = ((1Ñ0.4
u1

)
⋃

(1Ñ0.4
u4

)) =

((1Ñ0.4
u1

)
⋃

(1Ñ0.4
u5

)) = ((1Ñ0.4
u1

)
⋃

(1Ñ0.4
u6

)) = ((1Ñ0.4
u2

)
⋃

(1Ñ0.4
u3

)) = ((1Ñ0.4
u2

)
⋃

(1Ñ0.4
u4

)) =

((1Ñ0.4
u2

)
⋃

(1Ñ0.4
u6

)) = ((1Ñ0.4
u3

)
⋃

(1Ñ0.4
u4

)) = ((1Ñ0.4
u3

)
⋃

(1Ñ0.4
u5

)) = ((1Ñ0.4
u3

)
⋃

(1Ñ0.4
u6

)) =

((1Ñ0.4
u4

)
⋃

(1Ñ0.4
u5

)) = ((1Ñ0.4
u4

)
⋃

(1Ñ0.4
u6

)) = ((1Ñ0.4
u5

)
⋃

(1Ñ0.4
u6

)) = {y1, y2, y3, y4}.

((1Ñ0.4
u2

)
⋃

(1Ñ0.4
u5

)) = {y1, y2, y4}.

{y1, y2, y3, y4} is the answer for the other groups which contains three or four or five, or six
of elements, respectively, with the union operation among them.
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Proposition 3.23. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
a, l ∈ W1 and for all i ∈ {1, 2, 3, 4}, the following properties hold:

(i) (iÑαa × iÑαl ) = iÑαa × iÑαl ,

(ii) (iÑαa
⋃

iÑαl ) = iÑαa
⋃

iÑαl ,

(iii) (iÑαa
⋂

iÑαl ) = iÑαa
⋂

iÑαl .

Proof. (i) For any a, l ∈ W1, we have (a′, l′) ∈ (iÑαa × iÑαl ) ⇐⇒ iÑαa (a′) ≥ α, iÑαl (l′) ≥ α,⇐⇒ a′ ∈

iÑαa , l
′ ∈ iÑαl ⇐⇒ (a′, l′) ∈ iÑαa × iÑαl . Thus, (iÑαa × iÑαl ) = iÑαa × iÑαl holds for any a, l ∈ W1 and

i ∈ {1, 2, 3, 4}.

(ii) For any a, l ∈ W1, we have (iÑαa
⋃

iÑαl ) = {a′ ∈ W2 :(iÑαa (a′))
∨

(iÑαl (a′)) ≥ α} = {a′ ∈
W2 :(iÑαa (a′)) ≥ α or (iÑαl (a′)) ≥ α} = {a′ ∈ W2 :(iÑαa (a′)) ≥ α}

⋃
{a′ ∈ W2 : (iÑαl (a′)) ≥ α} =

iÑαa
⋃

iÑαl . Thus, (iÑαa
⋃

iÑαl ) = iÑαa
⋃

iÑαl holds for any a, l ∈ W1 and i ∈ {1, 2, 3, 4}.

(iii) For any a, l ∈ W1, we have (iÑαa
⋂

iÑαl ) = {a′ ∈ W2 :(iÑαa (a′))
∧

(iÑαl (a′)) ≥ α} = {a′ ∈
W2 :(iÑαa (a′)) ≥ α and (iÑαl (a′)) ≥ α} = {a′ ∈ W2 :(iÑαa (a′)) ≥ α}

⋂
{a′ ∈ W2 : (iÑαl (a′)) ≥ α} =

iÑαa
⋂

iÑαl . Thus, (iÑαa
⋂

iÑαl ) = iÑαa
⋂

iÑαl holds for any a, l ∈ W1 and i ∈ {1, 2, 3, 4}.

Proposition 3.24. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
as ∈ W1, where s ∈ σ and σ is a random index set and for all i ∈ {1, 2, 3, 4}, the following properties
hold

1) (
⋃n

r=1 iÑαar
) =
⋃n

r=1 iÑαar
.

2) (
⋂n

r=1 iÑαar
) =
⋂n

r=1 iÑαar
.

3) (
⋃

s∈σ iÑαas
) ⊇
⋃

s∈σ iÑαas
.

4) (
⋂

s∈σ iÑαas
) =
⋂

s∈σ iÑαas
.

Proof. 1) By induction,

(a) By Proposition 3.23, the statement is true for two neighborhoods, that is

(iÑαa1

⋃
iÑαa2

) = iÑαa1

⋃
iÑαa2

.

(b) Suppose that the statement is true for n = k, i.e. (
⋃k

r=1 iÑαar
) =
⋃k

r=1 iÑαar
.

(c) We prove that it is true for n = k + 1,

(
⋃k+1

r=1 iÑαar
) = ((

⋃k
r=1 iÑαar

)
⋃

iÑαa ) = (
⋃k

r=1 iÑαar
)
⋃

iÑαa =
⋃k

r=1 iÑαar

⋃
iÑαa =

⋃k+1
r=1 iÑαar

.

2) The same proof as 1) above.

3) Let x ∈
⋃

s∈σ iÑαas
. Then s ∈ σ exists such that x ∈ iÑαas

. Therefore, iÑαas
≥ α. Hence,

(
⋃

s∈σ iÑαas
)(x) =

∨
s∈σ iÑαas

(x) ≥ α. Therefore, x ∈ (
⋃

s∈σ iÑαas
), i.e., (

⋃
s∈σ iÑαas

) ⊇
⋃

s∈σ iÑαas
is

satisfied for ∀ i ∈ {1, 2, 3, 4}.
4) For any x ∈ W2, x ∈

⋂
s∈σ iÑαas

⇐⇒ x ∈ iÑαas
for every s ∈ σ ⇐⇒ iÑαas

≥ α for every s ∈ σ

⇐⇒
∧

s∈σ iÑαas
(x) ≥ α ⇐⇒ x ∈ (

⋂
s∈σ iÑαas

). Therefore, (
⋂

s∈σ iÑαas
) =
⋂

s∈σ iÑαas
is satisfied for

∀ i ∈ {1, 2, 3, 4}.
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4. Four types of fuzzy α-coverings over 2-finite sets

Here, we discuss four kinds of fuzzy α-coverings depending on rough set theory for 2-finite sets,
and their properties will be studied, using Definition 3.11.

4.1. The first pattern

Definition 4.1. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2), the first fuzzy α-lower LI and fuzzy α-upper UI approximations will be defined as:

LI(B)(y) =
∧

z∈W2
([1 − 1Ñαy (z)]

∨
B(z)), y ∈ W1,

UI(B)(y) =
∨

z∈W2
(1Ñαy (z)

∧
B(z)), y ∈ W1.

B is definable, except if LI(B) , UI(B), when B will be called the first kind of fuzzy α-covering
depending rough set.

Example 4.2. Using Example 3.12, let B = 0.3
y1
+ 0.7

y2
+ 0.5

y3
+ 0.2

y4
. We then have,

LI(B)(u1) = ([1 − 1Ñ0.4
u1

(y1)]
∨

B(y1))
∧

([1 − 1Ñ0.4
u1

(y2)]
∨

B(y2))
∧

([1 − 1Ñ0.4
u1

(y3)]
∨

B(y3))∧
([1 − 1Ñ0.4

u1
(y4)]
∨

B(y4)) = 0.3 ∧ 0.7 ∧ 0.5 ∧ 0.2 = 0.2.
Continuing in the same manner for u2 to u6, we get LI(B) = 0.2

u1
+ 0.3

u2
+ 0.2

u3
+ 0.3

u4
+ 0.3

u5
+ 0.2

u6
.

UI(B)(u1) = (1Ñ0.4
u1

(y1)
∧

B(y1))
∨

(1Ñ0.4
u1

(y2)
∧

B(y2))
∨

(1Ñ0.4
u1

(y3)
∧

B(y3))
∨

(1Ñ0.4
u1

(y4)
∧

B(y4)) = 0.3 ∨ 0.7 ∨ 0.5 ∨ 0.2 = 0.7.
Continuing in the same manner for u2 to u6, we get UI(B) = 0.7

u1
+ 0.7

u2
+ 0.7

u3
+ 0.6

u4
+ 0.7

u5
+ 0.7

u6
.

Proposition 4.3 provides the characteristics of the first fuzzy α-covering depending rough set
pattern.

Proposition 4.3. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
A ,H ∈ F (W2), we have

1) LI(A c) = (UI(A ))c.
2) LI(W2) = W1.
3) LI(A ∩H ) = LI(A ) ∩ LI(H ).
4) If A ⊆H , then LI(A ) ⊆ LI(H ).
5) LI(A ∪H ) ⊇ LI(A ) ∪ LI(H ).
6) If 1 − 1Ñαy (z) ≤ A (z) ≤ 1Ñαy (z) for any z ∈ W2, then LI(A ) ⊆ UI(A ).
7) UI(A c) = (LI(A ))c.
8) UI(ϕ) = ϕ.
9) UI(A ∪H ) = UI(A ) ∪ UI(H ).

10) If A ⊆H , then UI(A ) ⊆ UI(H ).
11) UI(A ∩H ) ⊆ UI(A ) ∩ UI(H ).

Proof. 1) For any y ∈ W1, LI(A c)(y) =
∧

z∈W2
([1 − 1Ñαy (z)]

∨
A c(z)) =

∧
z∈W2

((1Ñαy (z))c∨A c(z)) =∧
z∈W2

(1Ñαy (z)
∧

A (z))c = (
∨

z∈W2
(1Ñαy (z)

∧
A (z)))c = 1 −

∨
z∈W2

(1Ñαy (z)
∧

A (z)) = 1 −
U1(A )(y) = (U1(A ))c(y).

2) For any y ∈ W1, LI(W2)(y) =
∧

z∈W2
([1 − 1Ñαy (z)]

∨
W2(z)). W2(z) = 1 for any z ∈ W2; therefore,

LI(W2)(y) =
∧

z∈W2
([1 − 1Ñαy (z)]

∨
1) = 1 = W1(y), i.e. L(W2) = W1.

AIMS Mathematics Volume 10, Issue 2, 2131–2162.



2143

3) For any y ∈ W1, LI(A ∩ H )(y) =
∧

z∈W2
([1 − 1Ñαy (z)]

∨
[A ∩ H ](z)) =

∧
z∈W2

([1 −

1Ñαy (z)]
∨

[A (z)
∧

H (z)]) = (
∧

z∈W2
([1 − 1Ñαy (z)]

∨
A (z)))

∧
(
∧

z∈W2
([1 − 1Ñαy (z)]

∨
H (z))) =

(LI(A ) ∩ LI(H ))(y). Then, LI(A ∩H ) = LI(A ) ∩ LI(H ).
4) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1, we have (

∧
z∈W2

([1 −
1Ñαy (z)]

∨
A (z))) ≤ (

∧
z∈W2

([1 − 1Ñαy (z)]
∨

H (z))). Thus, LI(A )(y) ≤ LI(H )(y) holds for any
y ∈ W1, i.e., LI(A ) ⊆ LI(H ).

5) Since A ⊆ A ∪H and H ⊆ A ∪H , by (4), we have LI(A ) ⊆ LI(A ∪H ) and LI(H ) ⊆
LI(A ∪H ). Hence, LI(A ∪H ) ⊇ LI(A ) ∪ LI(H ).

6) For any y ∈ W1, there is 1−1Ñ
α

y (z) ≤ A (z) ≤ 1Ñ
α

y (z), for any z ∈ W2; then A (z) = 1Ñ
α

y (z)∧A (z) ≤∨
x∈W2

(1Ñαy (x) ∧ A (z)) = UI(A )(y) and A (z) = ([1 − 1Ñ
α

y (z)] ∨ A (z)) ≥
∧

x∈W2
([1 −1 Ñαy (x)] ∨

A (x)) = LI(A )(y). Thus, LI(A ) ⊆ A ⊆ UI(A ).
7) For any y ∈ W1, UI(A c) =

∨
z∈W2

(1Ñαy (z) ∧ A c(z)) =
∨

z∈W2
((1Ñαy (z))c ∨ A (z))c = (

∧
z∈W2

[1 −

1Ñ
α

y (z)] ∨A (z))c = (LI(A ))c.
8) UI(ϕ) =

∨
z∈W2

(1Ñαy (z) ∧ ϕ), y ∈ W1

=
∨

z∈W2
ϕ, y ∈ W1

= ϕ.
9) For any y ∈ W1, we have UI(A ∪ H )(y) =

∨
z∈W2

(1Ñαy (z) ∧ (A ∪ H )(z)) =
∨

z∈W2
(1Ñαy (z) ∧

[A (z) ∨H (z)]) = (
∨

z∈W2
(1Ñαy (z) ∧ A (z))) ∨ (

∨
z∈W2

(1Ñαy (z) ∧H (z))) = (UI(A ) ∪ UI(H ))(y).
Then, UI(A ∪H ) = UI(A ) ∪ UI(H ).

10) If A ⊆H , then A (z) ≤H (z) for any z ∈ W2. For any y ∈ W1, we have
∨

z∈W2
(1Ñαy (z)∧A (z)) ≤∨

z∈W2
(1Ñαy (z)∧H (z)). Thus, UI(A )(y) ≤ UI(H )(y) holds for any y ∈ W1, i.e., UI(A ) ⊆ UI(H ).

11) Since A ∩ H ⊆ A and A ∩ H ⊆ H , by (10), we have that UI(A ∩ H ) ⊆ UI(A ) and
UI(A ∩H ) ⊆ UI(H ). Hence, UI(A ∩H ) ⊆ UI(A ) ∧ UI(H ).

Proposition 4.4. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
K ∈ F (W2) and k ∈ [0, 1], the following hold:

1) LI(K ∪ kW2) = LI(K ) ∪ kW1.
2) LI(K ∩ kW2) = LI(K ) ∩ kW1.

Proof. 1) For any y ∈ W1, we have LI(K ∪ kW2)(y) =
∧

z∈W2
([1 − 1Ñαy (z)] ∨ [K ∪ kW2](z)) =∧

z∈W2
([1 − 1Ñαy (z)] ∨K (z) ∨ kW2(z)) =

∧
z∈W2

([1 − 1Ñαy (z)] ∨K (z) ∨ k) = (
∧

z∈W2
([1 − 1Ñαy (z)] ∨

K (z))) ∨ (
∧

z∈W2
([1 − 1Ñαy (z)] ∨ k)) = LI(K )(y) ∨ k = LI(K ) ∪ kW1.

2) For any y ∈ W1, we have UI(K ∩ kW2)(y) =
∨

z∈W2
(1Ñαy (z) ∧ [K ∩ kW2](z)) =

∨
z∈W2

(1Ñαy (z) ∧
K (z) ∧ kW2(z)) =

∨
z∈W2

(1Ñαy (z) ∧K (z) ∧ k) = (
∨

z∈W2
(1Ñαy (z) ∧K (z))) ∧ (

∨
z∈W2

(1Ñαy (z) ∧ k)) =
UI(K )(y) ∧ k = UI(K ) ∩ kW1.

Proposition 4.5. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
a ∈ W1, c ∈ W2, and X ⊆ W2,

1) UI(1c)(a) = 1Ñαa (c).
2) LI(1W2−{c})(a) = 1 − 1Ñαa (c).
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3) UI(1X)(a) =
∨

c∈X 1Ñαa (c).
4) LI(1X)(a) =

∧
c<X(1 − 1Ñαa (c)).

Proof. 1) For any a ∈ W1, a′, c ∈ W2, and from the definition of 1c, we have 1c(a′) = 0 for a′ , c.
Hence, UI(1c)(a) =

∨
z∈W2

[1Ñαa (z) ∧ 1c(z)] = 1Ñαa (c).
2) LI(1W2−{c})(a) =

∧
z∈W2

([1 − 1Ñαa (z)]
∨

1W2−{c}(z)) = (
∧

z∈W2−{c}([1 − 1Ñαa (z)]
∨

1W2−{c}(z)))
∧

(
∧

z=c([1 − 1Ñαa (z)]
∨

1W2−{c}(z))) = 1
∧

([1 − 1Ñαa (c)]
∨

0) = 1 − 1Ñαa (c).
3) For any c ∈ W2, X ⊆ W2 and from the definition of 1X, we have 1X(c) = 0 if and only if

c < X. Hence, for any x ∈ W1, we have UI(1X)(a) =
∨

c∈W2
[1Ñαa (c) ∧ 1X(c)] = (

∨
c∈X[1Ñαa (c) ∧

1X(c)])
∨

(
∨

c<X[1Ñαa (c) ∧ 1X(c)]) =
∨

c∈X 1Ñαa (c).
4) LI(1X)(a) =

∧
c∈W2

([1 − 1Ñαa (c)]
∨

1X(c)) = (
∧

c∈X([1 − 1Ñαa (c)]
∨

1X(c)))
∧

(
∧

c<X([1 −
1Ñαa (c)]

∨
1X(c))) = 1

∧
(
∧

c<X([1 − 1Ñαa (c)]
∨

0)) =
∧

c<X(1 − 1Ñαa (c)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an α-neighborhood.

Definition 4.6. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ⊆ W2, the first upper UI and lower LI approximations are defined, respectively, as

UI(B) = {x ∈ W1 : 1Ñαx (y) ∩B , ϕ}.

LI(B) = {x ∈ W1 : 1Ñαx (y) ⊆ B}.
B is definable, except if UI(B) , LI(B). B is called the first kind of fuzzy covering depending on
the rough set.

Example 4.7. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). From Example

3.17, we have 1Ñ0.4
u1
=1Ñ0.4

u3
=1Ñ0.4

u4
=1Ñ0.4

u6
= {y1, y2, y3, y4} and 1Ñ0.4

u2
=1Ñ0.4

u5
= {y1, y2, y4}.

1) Let B = {y1, y4}. Then UI(B) = {u1, u2, u3, u4, u5, u6} = W1 and LI(B) = ϕ.
2) Let B = {y3}. Then UI(B) = {u1, u3, u4, u6} and LI(B) = ϕ.

4.2. The second pattern

Definition 4.8. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2), the second fuzzy α-lower LII and fuzzy α-upper UII approximations, respectively, are
defined as

LII(B)(y) =
∧

z∈W2
([1 − 2Ñαy (z)]

∨
B(z)), y ∈ W1,

UII(B)(y) =
∨

z∈W2
(2Ñαy (z)

∧
B(z)), y ∈ W1.

B is definable, except if LII(B) , UII(B). B is called the second kind of fuzzy α-covering depending
on the rough set.

Example 4.9. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). Using the
information in Examples 3.12 and 4.2, we have

LII(B)(u1) = ([1 − 2Ñ0.4
u1

(y1)]
∨

B(y1))
∧

([1 − 2Ñ0.4
u1

(y2)]
∨

B(y2))
∧

([1 − 2Ñ0.4
u1

(y3)]
∨

B(y3))∧
([1 − 2Ñ0.4

u1
(y4)]
∨

B(y4)) = 0.3 ∧ 0.7 ∧ 0.5 ∧ 0.2 = 0.2.
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In the same manner for u2 to u6, we get LII(B) = 0.2
y1
+ 0.3

y2
+ 0.2

y3
+ 0.3

y4
+ 0.3

y5
+ 0.2

y6
.

UII(B)(u1) = (2Ñ0.4
u1

(y1)
∧

B(y1))
∨

(2Ñ0.4
u1

(y2)
∧

B(y2))
∨

(2Ñ0.4
u1

(y3)
∧

B(y3))
∨

(2Ñ0.4
u1

(y4)
∧

B(y4)) = 0.3 ∨ 0.7 ∨ 0.5 ∨ 0.2 = 0.7.
In the same manner for u2 to u6, we get UII(B) = 0.7

y1
+ 0.7

y2
+ 0.7

y3
+ 0.6

y4
+ 0.7

y5
+ 0.7

y6
.

Proposition 4.10 provides the characteristics of the second fuzzy α-covering depending on the rough
set pattern.

Proposition 4.10. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
A ,H ∈ F (W2), we have

1) LII(A c) = (UII(A ))c.
2) LII(W2) = W1.
3) LII(A ∩H ) = LII(A ) ∩ LII(H ).
4) If A ⊆H , then LII(A ) ⊆ LII(H ).
5) LII(A ∪H ) ⊇ LII(A ) ∪ LII(H ).
6) If 1 − 2Ñαy (z) ≤ A (z) ≤ 2Ñαy (z) for any z ∈ W2, then LII(A ) ⊆ UII(A ).
7) UII(A c) = (LII(A ))c.
8) UII(ϕ) = ϕ.
9) UII(A ∪H ) = UII(A ) ∪ UII(H ).

10) If A ⊆H , then UII(A ) ⊆ UII(H ).
11) UII(A ∩H ) ⊆ UII(A ) ∩ UII(H ).

Proof. 1) For any y ∈ W1, we have LII(A c)(y) =
∧

z∈W2
([1 − 2Ñαy (z)]

∨
A c(z)) =∧

z∈W2
((2Ñαy (z))c∨A c(z)) =

∧
z∈W2

(2Ñαy (z)
∧

A (z))c = (
∨

z∈W2
(2Ñαy (z)

∧
A (z)))c = 1 −∨

z∈W2
(2Ñαy (z)

∧
A (z)) = 1 − UII(A )(y) = (UII(A ))c(y).

2) For any y ∈ W1, we have LII(W2)(y) =
∧

z∈W2
([1 − 2Ñαy (z)]

∨
W2(z)). Since W2(z) = 1 for any

z ∈ W2, LII(W2)(y =
∧

z∈W2
([1 − 2Ñαy (z)]

∨
1) = 1 = W1(y), i.e., L(W2) = W1.

3) For any y ∈ W1, we have LII(A ∩H )(y) =
∧

z∈W2
([1 − 2Ñαy (z)]

∨
[A ∩H ](z)) =

∧
z∈W2

([1 −

2Ñαy (z)]
∨

[A (z)
∧

H (z)]) = (
∧

z∈W2
([1 − 2Ñαy (z)]

∨
A (z)))

∧
(
∧

z∈W2
([1 − 2Ñαy (z)]

∨
H (z))) =

(LII(A ) ∩ LII(H ))(y). Then LII(A ∩H ) = LII(A ) ∩ LII(H ).
4) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1, we have (

∧
z∈W2

([1 −
2Ñαy (z)]

∨
A (z))) ≤ (

∧
z∈W2

([1 − 2Ñαy (z)]
∨

H (z))). Thus, LII(A )(y) ≤ LII(H )(y) holds for any
y ∈ W1, i.e., LII(A ) ⊆ LII(H ).

5) Since A ⊆ A ∪ H and H ⊆ A ∪ H , by (4), we have that LII(A ) ⊆ LII(A ∪ H ) and
LII(H ) ⊆ LII(A ∪H ). Hence, LII(A ∪H ) ⊇ LII(A ) ∪ LII(H ).

6) For any y ∈ W1, there is 1 − 2Ñ
α

y (z) ≤ A (z) ≤ 2Ñ
α

x (z) for any z ∈ W2; therefore, A (z) =

2Ñ
α

y (z) ∧ A (z) ≤
∨

x∈W2
(2Ñαy (x) ∧ A (z)) = UII(A )(y) and A (z) = ([1 − 2Ñ

α

y (z)] ∨ A (z)) ≥∧
x∈W2

([1 −2 Ñαy (x)] ∨A (x)) = LII(A )(y). Thus, LII(A ) ⊆ A ⊆ UII(A ).
7) For any y ∈ W1, UII(A c) =

∨
z∈W2

(2Ñαy (z) ∧ A c(z)) =
∨

z∈W2
((2Ñαy (z))c ∨ A (z))c = (

∧
z∈W2

[1 −

2Ñ
α

y (z)] ∨A (z))c = (LII(A ))c.
8) UII(ϕ) =

∨
z∈W2

(2Ñαy (z) ∧ ϕ), y ∈ W1

=
∨

z∈W2
ϕ, y ∈ W1

= ϕ.
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9) For any y ∈ W1, we have UII(A ∪H )(y) =
∨

z∈W2
(2Ñαy (z) ∧ (A ∪H )(z)) =

∨
z∈W2

(2Ñαy (z) ∧
[A (z) ∨H (z)]) = (

∨
z∈W2

(2Ñαy (z) ∧A (z))) ∨ (
∨

z∈W2
(2Ñαy (z) ∧H (z))) = (UII(A ) ∪ UII(H ))(y).

Then UII(A ∪H ) = UII(A ) ∪ UII(H ).
10) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1, we have

∨
z∈W2

(2Ñαy (z) ∧
A (z)) ≤

∨
z∈W2

(2Ñαy (z) ∧ H (z)). Thus, UII(A )(y) ≤ UII(H )(y) holds for any y ∈ W1, i.e.,
UII(A ) ⊆ UII(H ).

11) Since A ∩H ⊆ A and A ∩H ⊆ H , by (10), we have UII(A ∩H ) ⊆ UII(A ) and UII(A ∩
H ) ⊆ UII(H ). Hence, UII(A ∩H ) ⊆ UII(A ) ∧ UII(H ).

Proposition 4.11. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
K ∈ F (W2) and k ∈ [0, 1],

1) LII(K ∪ kW2) = LII(K ) ∪ kW1.
2) LII(K ∩ kW2) = LII(K ) ∩ kW1.

Proof. 1) For any y ∈ W1, LII(K ∪ kW2)(y) =
∧

z∈W2
([1 − 2Ñαy (z)] ∨ [K ∪ kW2](z)) =

∧
z∈W2

([1 −

2Ñαy (z)] ∨K (z) ∨ kW2(z)) =
∧

z∈W2
([1 − 2Ñαy (z)] ∨K (z) ∨ k) = (

∧
z∈W2

([1 − 2Ñαy (z)] ∨K (z))) ∨
(
∧

z∈W2
([1 − 2Ñαy (z)] ∨ k)) = LII(K )(y) ∨ k = LII(K ) ∪ kW1.

2) For any y ∈ W1, UII(K ∩ kW2)(y) =
∨

z∈W2
(2Ñαy (z) ∧ [K ∩ kW2](z)) =

∨
z∈W2

(2Ñαy (z) ∧K (z) ∧
kW2(z)) =

∨
z∈W2

(2Ñαy (z)∧K (z)∧k) = (
∨

z∈W2
(2Ñαy (z)∧K (z)))∧(

∨
z∈W2

(2Ñαy (z)∧k)) = UII(K )(y)∧
k = UII(K ) ∩ kW1.

Proposition 4.12. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
a ∈ W1, c ∈ W2, and X ⊆ W2,

1) UII(1c)(a) = 2Ñαa (c).
2) LII(1W2−{c})(a) = 1 − 2Ñαa (c).
3) UII(1X)(a) =

∨
c∈X 2Ñαa (c).

4) LII(1X)(a) =
∧

c<X(1 − 2Ñαa (c)).

Proof. 1) For any a ∈ W1, a′, c ∈ W2, and from the definition of 1c, we have 1c(a′) = 0 for a′ , c.
Hence, UII(1c)(a) =

∨
z∈W2

[2Ñαa (z) ∧ 1c(z)] = 2Ñαa (c).
2) LII(1W2−{c})(a) =

∧
z∈W2

([1 − 2Ñαa (z)]
∨

1W2−{c}(z)) = (
∧

z∈W2−{c}([1 − 2Ñαa (z)]
∨

1W2−{c}(z)))
∧

(
∧

z=c([1 − 2Ñαa (z)]
∨

1W2−{c}(z))) = 1
∧

([1 − 2Ñαa (c)]
∨

0) = 1 − 2Ñαa (c).
3) For any c ∈ W2 and X ⊆ W2, from the definition of 1X, we have 1X(c) = 0 if and only if

c < X. Hence, for any x ∈ W1, we have UII(1X)(a) =
∨

c∈W2
[2Ñαa (c) ∧ 1X(c)] = (

∨
c∈X[2Ñαa (c) ∧

1X(c)])
∨

(
∨

c<X[2Ñαa (c) ∧ 1X(c)]) =
∨

c∈X 2Ñαa (c).
4) LII(1X)(a) =

∧
c∈W2

([1 − 2Ñαa (c)]
∨

1X(c)) = (
∧

c∈X([1 − 2Ñαa (c)]
∨

1X(c)))
∧

(
∧

c<X([1 −
2Ñαa (c)]

∨
1X(c))) = 1

∧
(
∧

c<X([1 − 2Ñαa (c)]
∨

0)) =
∧

c<X(1 − 2Ñαa (c)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an α-neighborhood.
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Definition 4.13. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ⊆ W2, the second upper UII and lower LII approximations, respectively, are defined as:

UII(B) = {x ∈ W1 : 2Ñαx (y) ∩B , ϕ}.

LII(B) = {x ∈ W1 : 2Ñαx (y) ⊆ B}.
B is definable, except if UII(B) , LII(B). B is called the second kind of fuzzy covering depending
on the rough set.

Example 4.14. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). From Example

3.17, we have 2Ñ0.4
u1
=2Ñ0.4

u3
=2Ñ0.4

u4
=2Ñ0.4

u6
= {y1, y2, y3, y4} and 2Ñ0.4

u2
=2Ñ0.4

u5
= {y1, y2, y4}.

1) Let B = {y1, y4}. Then, UII(B) = {u1, u2, u3, u4, u5, u6} = W1, and LII(B) = ϕ.
2) Let B = {y3}. Then, UII(B) = {u1, u3, u4, u6}, and LII(B) = ϕ.

4.3. The third pattern

Definition 4.15. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2), the third fuzzy α-lower LIII and fuzzy α-upper UIII approximations, respectively, are
defined as

LIII(B)(x) =
∧

y∈W2
([1 − 3Ñαx (y)]

∨
B(y)), x ∈ W1,

UIII(B)(x) =
∨

y∈W2
(3Ñαx (y)

∧
B(y)), x ∈ W1.

B is definable, except if LIII(B) , UIII(B). B is called the third kind of fuzzy α-covering depending
on the rough set.

Example 4.16. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). Using the
information in Examples 3.12 and 4.2, we have

LIII(B)(u1) = ([1 − 3Ñ0.4
u1

(y1)]
∨

B(y1))
∧

([1 − 3Ñ0.4
u1

(y2)]
∨

B(y2))
∧

([1 − 3Ñ0.4
u1

(y3)]
∨

B(y3))∧
([1 − 3Ñ0.4

u1
(y4)]
∨

B(y4)) = 0.3 ∧ 0.7 ∧ 0.5 ∧ 0.2 = 0.2.
In the same manner for u2 to u6, we get LIII(B) = 0.2

y1
+ 0.2

y2
+ 0.2

y3
+ 0.2

y4
+ 0.2

y5
+ 0.2

y6
.

UIII(B)(u1) = (3Ñ0.4
u1

(y1)
∧

B(y1))
∨

(3Ñ0.4
u1

(y2)
∧

B(y2))
∨

(3Ñ0.4
u1

(y3)
∧

B(y3))
∨

(3Ñ0.4
u1

(y4)
∧

B(y4)) = 0.3 ∨ 0.7 ∨ 0.5 ∨ 0.2 = 0.7.
In the same manner for u2 to u6, we get UIII(B) = 0.7

y1
+ 0.7

y2
+ 0.7

y3
+ 0.7

y4
+ 0.7

y5
+ 0.7

y6
.

Proposition 4.17 provides the characteristics of the third fuzzy α-covering depending on the rough
set pattern.

Proposition 4.17. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
A ,H ∈ F (W2), we have

1) LIII(A c) = (UIII(A ))c.
2) LIII(W2) = W1.
3) LIII(A ∩H ) = LIII(A ) ∩ LIII(H ).
4) If A ⊆H , then LIII(A ) ⊆ LIII(H ).
5) LIII(A ∪H ) ⊇ LIII(A ) ∪ LIII(H ).
6) If 1 − 3Ñαy (z) ≤ A (z) ≤ 3Ñαy (z) for any z ∈ W2, then LIII(A ) ⊆ UIII(A ).
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7) UIII(A c) = (LIII(A ))c.
8) UIII(ϕ) = ϕ.
9) UIII(A ∪H ) = UIII(A ) ∪ UIII(H ).

10) If A ⊆H , then UIII(A ) ⊆ UIII(H ).
11) UIII(A ∩H ) ⊆ UIII(A ) ∩ UIII(H ).

Proof. 1) For any y ∈ W1, LIII(A c)(y) =
∧

z∈W2
([1−3Ñαy (z)]

∨
A c(z)) =

∧
z∈W2

((3Ñαy (z))c∨A c(z)) =∧
z∈W2

(3Ñαy (z)
∧

A (z))c = (
∨

z∈W2
(3Ñαy (z)

∧
A (z)))c = 1 −

∨
z∈W2

(3Ñαy (z)
∧

A (z)) = 1 −
UIII(A )(y) = (UIII(A ))c(y).

2) For any y ∈ W1, LIII(W2)(y) =
∧

z∈W2
([1 − 3Ñαy (z)]

∨
W2(z)). Since W2(z) = 1 for any z ∈ W2,

LIII(W2)(y) =
∧

z∈W2
([1 − 3Ñαy (z)]

∨
1) = 1 = W1(y), i.e. L(W2) = W1.

3) For any y ∈ W1, LIII(A ∩ H )(x) =
∧

z∈W2
([1 − 3Ñαy (z)]

∨
[A ∩ H ](z)) =

∧
z∈W2

([1 −

3Ñαy (z)]
∨

[A (z)
∧

H (z)]) = (
∧

z∈W2
([1 − 3Ñαy (z)]

∨
A (z)))

∧
(
∧

z∈W2
([1 − 3Ñαy (z)]

∨
H (z))) =

(LIII(A ) ∩ LIII(H ))(y). Then LIII(A ∩H ) = LIII(A ) ∩ LIII(H ).
4) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1, (

∧
z∈W2

([1 − 3Ñαy (z)]
∨

A (z))) ≤
(
∧

z∈W2
([1 − 3Ñαy (z)]

∨
H (z))). Thus, LIII(A )(y) ≤ LIII(H )(y) holds for any y ∈ W1, i.e.,

LIII(A ) ⊆ LIII(H ).
5) Since A ⊆ A ∪ H and H ⊆ A ∪ H , by (4), LIII(A ) ⊆ LIII(A ∪ H ) and LIII(H ) ⊆
LIII(A ∪H ). Hence, LIII(A ∪H ) ⊇ LIII(A ) ∪ LIII(H ).

6) For any y ∈ W1, there is 1 − 3Ñ
α

y (z) ≤ A (z) ≤ 3Ñ
α

y (z), for any z ∈ W2 and therefore, A (z) =

3Ñ
α

y (z) ∧ A (z) ≤
∨

x∈W2
(3Ñαy (x) ∧ A (z)) = UIII(A )(y) and A (z) = ([1 − 3Ñ

α

y (z)] ∨ A (z)) ≥∧
x∈W2

([1 −3 Ñαy (x)] ∨A (x)) = LIII(A )(y). Thus, LIII(A ) ⊆ A ⊆ UIII(A ).
7) For any y ∈ W1, UIII(A c) =

∨
z∈W2

(3Ñαy (z) ∧ A c(z)) =
∨

z∈W2
((3Ñαy (z))c ∨ A (z))c = (

∧
z∈W2

[1 −

3Ñ
α

y (z)] ∨A (z))c = (LIII(A ))c.
8) UIII(ϕ) =

∨
z∈W2

(3Ñαy (z) ∧ ϕ), y ∈ W1

=
∨

z∈W2
ϕ, y ∈ W1

= ϕ.
9) For any y ∈ W1, we have UIII(A ∪H )(y) =

∨
z∈W2

(3Ñαy (z) ∧ (A ∪H )(z)) =
∨

z∈W2
(3Ñαy (z) ∧

[A (z)∨H (z)]) = (
∨

z∈W2
(3Ñαy (z)∧A (z)))∨ (

∨
z∈W2

(3Ñαy (z)∧H (z))) = (UIII(A )∪UIII(H ))(y).
Then, UIII(A ∪H ) = UIII(A ) ∪ UIII(H ).

10) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1, we have
∨

z∈W2
(3Ñαy (z) ∧

A (z)) ≤
∨

z∈W2
(3Ñαy (z) ∧ H (z)). Thus, UIII(A )(y) ≤ UIII(H )(y) holds for any y ∈ W1, i.e.,

UIII(A ) ⊆ UIII(H ).
11) Since A ∩H ⊆ A and A ∩H ⊆ H , by (10) we have that UIII(A ∩H ) ⊆ UIII(A ) and
UIII(A ∩H ) ⊆ UIII(H ). Hence, UIII(A ∩H ) ⊆ UIII(A ) ∧ UIII(H ).

Proposition 4.18. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
K ∈ F (W2) and k ∈ [0, 1],

1) LIII(K ∪ kW2) = LIII(K ) ∪ kW1.
2) LIII(K ∩ kW2) = LIII(K ) ∩ kW1.
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Proof. 1) For any y ∈ W1, LIII(K ∪ kW2)(y) =
∧

z∈W2
([1 − 3Ñαy (z)] ∨ [K ∪ kW2](z)) =

∧
z∈W2

([1 −

3Ñαy (z)] ∨K (z) ∨ kW2(z)) =
∧

z∈W2
([1 − 3Ñαy (z)] ∨K (z) ∨ k) = (

∧
z∈W2

([1 − 3Ñαy (z)] ∨K (z))) ∨
(
∧

z∈W2
([1 − 3Ñαy (z)] ∨ k)) = LIII(K )(y) ∨ k = LIII(K ) ∪ kW1.

2) For any y ∈ W1, UIII(K ∩ kW2)(y) =
∨

z∈W2
(3Ñαy (z) ∧ [K ∩ kW2](z)) =

∨
z∈W2

(3Ñαy (z) ∧K (z) ∧
kW2(z)) =

∨
z∈W2

(3Ñαy (z) ∧ K (z) ∧ k) = (
∨

z∈W2
(3Ñαy (z) ∧ K (z))) ∧ (

∨
z∈W2

(3Ñαy (z) ∧ k)) =
UIII(K )(y) ∧ k = UIII(K ) ∩ kW1.

Proposition 4.19. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
a ∈ W1, c ∈ W2, and X ⊆ W2,

1) UIII(1c)(a) = 3Ñαa (c).
2) LIII(1W2−{c})(a) = 1 − 3Ñαa (c).
3) UIII(1X)(a) =

∨
c∈X 3Ñαa (c).

4) LIII(1X)(a) =
∧

c<X(1 − 3Ñαa (c)).

Proof. 1) For any a ∈ W1, a′, andc ∈ W2, from the definition of 1c, we have 1c(a′) = 0 for a′ , c.
Hence, UIII(1c)(a) =

∨
z∈W2

[3Ñαa (z) ∧ 1c(z)] = 3Ñαa (c).
2) LIII(1W2−{c})(a) =

∧
z∈W2

([1 − 3Ñαa (z)]
∨

1W2−{c}(z)) = (
∧

z∈W2−{c}([1 − 3Ñαa (z)]
∨

1W2−{c}(z)))
∧

(
∧

z=c([1 − 3Ñαa (z)]
∨

1W2−{c}(z))) = 1
∧

([1 − 3Ñαa (c)]
∨

0) = 1 − 3Ñαa (c).
3) For any c ∈ W2 and X ⊆ W2, from the definition of 1X, we have 1X(c) = 0 if and only if

c < X. Hence, for any x ∈ W1, we have UIII(1X)(a) =
∨

c∈W2
[3Ñαa (c) ∧ 1X(c)] = (

∨
c∈X[3Ñαa (c) ∧

1X(c)])
∨

(
∨

c<X[3Ñαa (c) ∧ 1X(c)]) =
∨

c∈X 3Ñαa (c).
4) LIII(1X)(a) =

∧
c∈W2

([1 − 3Ñαa (c)]
∨

1X(c)) = (
∧

c∈X([1 − 3Ñαa (c)]
∨

1X(c)))
∧

(
∧

c<X([1 −
3Ñαa (c)]

∨
1X(c))) = 1

∧
(
∧

c<X([1 − 3Ñαa (c)]
∨

0)) =
∧

c<X(1 − 3Ñαa (c)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an α-neighborhood.

Definition 4.20. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ⊆ W2, the third upper UIII and lower LIII approximations, respectively, are defined as

UIII(B) = {x ∈ W1 : 3Ñαx (y) ∩B , ϕ}.

LIII(B) = {x ∈ W1 : 3Ñαx (y) ⊆ B}.
B is definable, except if UIII(B) , LIII(B). B is called the third kind of fuzzy covering depending
on the rough set.

Example 4.21. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). From Example

3.17, we have 3Ñ0.4
u1
=3Ñ0.4

u2
=3Ñ0.4

u3
=3Ñ0.4

u4
=3Ñ0.4

u5
=3Ñ0.4

u6
= {y1, y2, y3, y4}.

1) Let B = {y1, y4}. Then UIII(B) = {u1, u2, u3, u4, u5, u6} = W1 and LIII(B) = ϕ.
2) Let B = {y3}. Then UIII(B) = {u1, u2, u3, u4, u5, u6} and LIII(B) = ϕ.
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4.4. The fourth pattern

Definition 4.22. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2), the fourth fuzzy α-lower LIV and fuzzy α-upper UIV approximations, respectively, are
defined as

LIV(B)(y) =
∧

z∈W2
([1 − 4Ñαy (z)]

∨
B(z)), y ∈ W1,

UIV(B)(y) =
∨

z∈W2
(4Ñαy (z)

∧
B(z)), y ∈ W1.

B is definable, except if LIV(B) , UIV(B). B is called the fourth kind of fuzzy α-covering depending
on the rough set.

Example 4.23. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). Using the
information in Examples 3.12 and 4.2, we have

LIV(B)(u1) = ([1 − 4Ñ0.4
u1

(y1)]
∨

B(y1))
∧

([1 − 4Ñ0.4
u1

(y2)]
∨

B(y2))
∧

([1 − 4Ñ0.4
u1

(y3)]
∨

B(y3))∧
([1 − 4Ñ0.4

u1
(y4)]
∨

B(y4)) = 0.3 ∧ 0.7 ∧ 0.5 ∧ 0.2 = 0.2.
In the same manner for u2 to u6, we get LIV(B) = 0.2

y1
+ 0.2

y2
+ 0.2

y3
+ 0.2

y4
+ 0.2

y5
+ 0.2

y6
.

UIV(B)(u1) = (4Ñ0.4
u1

(y1)
∧

B(y1))
∨

(4Ñ0.4
u1

(y2)
∧

B(y2))
∨

(4Ñ0.4
u1

(y3)
∧

B(y3))
∨

(4Ñ0.4
u1

(y4)
∧

B(y4)) = 0.3 ∨ 0.7 ∨ 0.5 ∨ 0.2 = 0.7.
In the same manner for u2 to u6, we get UIV(B) = 0.7

y1
+ 0.7

y2
+ 0.7

y3
+ 0.7

y4
+ 0.7

y5
+ 0.7

y6
.

Proposition 4.24 provides the characteristics of the fourth fuzzy α-covering depending on the rough
set pattern.

Proposition 4.24. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
A ,H ∈ F (W2), we have

1) LIV(A c) = (UIV(A ))c.
2) LIV(W2) = W1.
3) LIV(A ∩H ) = LIV(A ) ∩ LIV(H ).
4) If A ⊆H , then LIV(A ) ⊆ LIV(H ).
5) LIV(A ∪H ) ⊇ LIV(A ) ∪ LIV(H ).
6) If 1 − 4Ñαy (z) ≤ A (z) ≤ 4Ñαy (z) for any z ∈ W2, then LIV(A ) ⊆ UIV(A ).
7) UIV(A c) = (LIV(A ))c.
8) UIV(ϕ) = ϕ.
9) UIV(A ∪H ) = UIV(A ) ∪ UIV(H ).

10) If A ⊆H , then UIV(A ) ⊆ UIV(H ).
11) UIV(A ∩H ) ⊆ UIV(A ) ∩ UIV(H ).

Proof. 1) For any y ∈ W1, LIV(A c)(y) =
∧

z∈W2
([1− 4Ñαy (z)]

∨
A c(z)) =

∧
z∈W2

((4Ñαy (z))c∨A c(z)) =∧
z∈W2

(4Ñαy (z)
∧

A (z))c = (
∨

z∈W2
(4Ñαy (z)

∧
A (z)))c = 1 −

∨
z∈W2

(4Ñαy (z)
∧

A (z)) = 1 −
UIV(A )(y) = (UIV(A ))c(y).

2) For any y ∈ W1, LIV(W2)(y) =
∧

z∈W2
([1 − 4Ñαy (z)]

∨
W2(z)). Since W2(z) = 1 for any z ∈ W2,

LIV(W2)(y) =
∧

z∈W2
([1 − 4Ñαy (z)]

∨
1) = 1 = W1(y), i.e., L(W2) = W1.

3) For any y ∈ W1, LIV(A ∩ H )(y) =
∧

z∈W2
([1 − 4Ñαy (z)]

∨
[A ∩ H ](z)) =

∧
z∈W2

([1 −

4Ñαy (z)]
∨

[A (z)
∧

H (z)]) = (
∧

z∈W2
([1 − 4Ñαy (z)]

∨
A (z)))

∧
(
∧

z∈W2
([1 − 4Ñαy (z)]

∨
H (z))) =

(LIV(A ) ∩ LIV(H ))(y). Then LIV(A ∩H ) = LIV(A ) ∩ LIV(H ).
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4) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1, (
∧

z∈W2
([1 − 4Ñαy (z)]

∨
A (z))) ≤

(
∧

z∈W2
([1 − 4Ñαy (z)]

∨
H (z))). Thus, LIV(A )(y) ≤ LIV(H )(y) holds for any y ∈ W1, i.e.,

LIV(A ) ⊆ LIV(H ).
5) Since A ⊆ A ∪ H and H ⊆ A ∪ H , by (4), LIV(A ) ⊆ LIV(A ∪ H ) and LIV(H ) ⊆
LIV(A ∪H ). Hence, LIV(A ∪H ) ⊇ LIV(A ) ∪ LIV(H ).

6) For any y ∈ W1, there is 1 − 4Ñ
α

y (z) ≤ A (z) ≤ 4Ñ
α

y (z) for any z ∈ W2, A (z) = 4Ñ
α

y (z) ∧ A (z) ≤∨
x∈W2

(4Ñαy (x) ∧A (z)) = UIV(A )(y) and A (z) = ([1 − 4Ñ
α

y (z)] ∨A (z)) ≥
∧

x∈W2
([1 −4 Ñαy (x)] ∨

A (x)) = LIV(A )(y). Thus, LIV(A ) ⊆ A ⊆ UIV(A ).
7) For any y ∈ W1, UIV(A c) =

∨
z∈W2

(4Ñαy (z) ∧ A c(z)) =
∨

z∈W2
((4Ñαy (z))c ∨ A (z))c = (

∧
z∈W2

[1 −

4Ñ
α

y (z)] ∨A (z))c = (LIV(A ))c.
8) UIV(ϕ) =

∨
z∈W2

(4Ñαy (z) ∧ ϕ), y ∈ W1

=
∨

z∈W2
ϕ, y ∈ W1

= ϕ.
9) For any y ∈ W1, we have UIV(A ∪H )(y) =

∨
z∈W2

(4Ñαy (z) ∧ (A ∪H )(z)) =
∨

z∈W2
(4Ñαy (z) ∧

[A (z) ∨H (z)]) = (
∨

z∈W2
(4Ñαy (z) ∧A (z))) ∨ (

∨
z∈W2

(4Ñαy (z) ∧H (z))) = (UIV(A ) ∪UIV(H ))(y).
Then UIV(A ∪H ) = UIV(A ) ∪ UIV(H ).

10) If A ⊆ H , then A (z) ≤ H (z) for any z ∈ W2. For any y ∈ W1,
∨

z∈W2
(4Ñαy (z) ∧ A (z)) ≤∨

z∈W2
(4Ñαy (z) ∧H (z)). Thus, UIV(A )(y) ≤ UIV(H )(y) holds for any y ∈ W1, i.e., UIV(A ) ⊆

UIV(H ).
11) Since A ∩H ⊆ A and A ∩H ⊆ H , by (10), UIV(A ∩H ) ⊆ UIV(A ) and UIV(A ∩H ) ⊆
UIV(H ). Hence, UIV(A ∩H ) ⊆ UIV(A ) ∧ UIV(H ).

Proposition 4.25. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
K ∈ F (W2) and k ∈ [0, 1], the following hold:

1) LIV(K ∪ kW2) = LIV(K ) ∪ kW1.
2) LIV(K ∩ kW2) = LIV() ∩ kW1.

Proof. 1) For any y ∈ W1, LIV(K ∪ kW2)(y) =
∧

z∈W2
([1 − 4Ñαy (z)] ∨ [K ∪ kW2](z)) =

∧
z∈W2

([1 −

4Ñαy (z)] ∨K (z) ∨ kW2(z)) =
∧

z∈W2
([1 − 4Ñαy (z)] ∨K (z) ∨ k) = (

∧
z∈W2

([1 − 4Ñαy (z)] ∨K (z))) ∨
(
∧

z∈W2
([1 − 4Ñαy (z)] ∨ k)) = LIV(K )(y) ∨ k = LIV(K ) ∪ kW1.

2) For any y ∈ W1, UIV(K ∩ kW2)(y) =
∨

z∈W2
(4Ñαy (z) ∧ [K ∩ kW2](z)) =

∨
z∈W2

(4Ñαy (z) ∧K (z) ∧
kW2(z)) =

∨
z∈W2

(4Ñαy (z) ∧ K (z) ∧ k) = (
∨

z∈W2
(4Ñαx (z) ∧ K (z))) ∧ (

∨
z∈W2

(4Ñαy (z) ∧ k)) =
UIV(K )(y) ∧ k = UIV(K ) ∩ kW1.

Proposition 4.26. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
a ∈ W1, c ∈ W2, and X ⊆ W2,

1) UIV(1c)(a) = 4Ñαa (c).
2) LIV(1W2−{c})(a) = 1 − 4Ñαa (c).
3) UIV(1X)(a) =

∨
c∈X 4Ñαa (c).

4) LIV(1X)(a) =
∧

c<X(1 − 4Ñαa (c)).
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Proof. 1) For any a ∈ W1, a′, c ∈ W2, from the definition of 1c, we have 1c(a′) = 0 for a′ , c. Hence,
UIV(1c)(a) =

∨
z∈W2

[4Ñαa (z) ∧ 1c(z)] = 4Ñαa (c).
2) LIV(1W2−{c})(a) =

∧
z∈W2

([1 − 4Ñαa (z)]
∨

1W2−{c}(z)) = (
∧

z∈W2−{c}([1 − 4Ñαa (z)]
∨

1W2−{c}(z)))
∧

(
∧

z=c([1 − 4Ñαa (z)]
∨

1W2−{c}(z))) = 1
∧

([1 − 4Ñαa (c)]
∨

0) = 1 − 4Ñαa (c).
3) For any c ∈ W2, X ⊆ W2, from the definition of 1X, we have 1X(c) = 0 if and only if c <

X. Hence, for any x ∈ W1, we have UIV(1X)(a) =
∨

c∈W2
[4Ñαa (c) ∧ 1X(c)] = (

∨
c∈X[4Ñαa (c) ∧

1X(c)])
∨

(
∨

c<X[4Ñαa (c) ∧ 1X(c)]) =
∨

c∈X 4Ñαa (c).
4) LIV(1X)(a) =

∧
c∈W2

([1 − 4Ñαa (c)]
∨

1X(c)) = (
∧

c∈X([1 − 4Ñαa (c)]
∨

1X(c)))
∧

(
∧

c<X([1 −
4Ñαa (c)]

∨
1X(c))) = 1

∧
(
∧

c<X([1 − 4Ñαa (c)]
∨

0)) =
∧

c<X(1 − 4Ñαa (c)).

Depending on Pawlak’s rough set pattern, the fuzzy covering depending on the rough set pattern
over 2-finite sets is provided by using the idea of an α-neighborhood.

Definition 4.27. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ⊆ W2, the fourth upper UIV and lower LIV approximations, respectively, are defined as:

UIV(B) = {x ∈ W1 : 4Ñαx (y) ∩B , ϕ}.

LIV(B) = {x ∈ W1 : 4Ñαx (y) ⊆ B}.
B is definable, except if UIV(B) , LIV(B). B is called the fourth kind of fuzzy covering depending
on the rough set.

Example 4.28. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). From Example

3.17, we have 4Ñ0.4
u1
=4Ñ0.4

u2
=4Ñ0.4

u3
=4Ñ0.4

u4
=4Ñ0.4

u5
=4Ñ0.4

u6
= {y1, y2, y3, y4}.

1) Let B = {y1, y4}. Then UIV(B) = {u1, u2, u3, u4, u5, u6} = W1. and LIV(B) = ϕ.
2) Let B = {y3}. Then UIV(B) = {u1, u2, u3, u4, u5, u6}. and LIV(B) = ϕ.

We provide a definition of the accuracy degree to examine the four kinds of fuzzy α-covering
depending on the rough set patterns introduced in this research.

Definition 4.29. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2), the accuracy degree of B is defined as

1) ςαI (B) = Σx∈W1LI (B)(x)
Σx∈W1UI (B)(x) ,

2) ςαII(B) = Σx∈W1LII (B)(x)
Σx∈W1UII (B)(x) ,

3) ςαIII(B) = Σx∈W1LIII (B)(x)
Σx∈W1UIII (B)(x) ,

4) ςαIV(B) = Σx∈W1LIV (B)(x)
Σx∈W1UIV (B)(x) .

Example 4.30 illustrates the idea of the definition above.

Example 4.30. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). Using the
information in Examples 4.2, 4.9, 4.16, and 4.23, then the accuracy degrees for B = 0.3

y1
+ 0.7

y2
+ 0.5

y3
+ 0.2

y4

are:

1) ς0.4
I (B) = 0.2+0.3+0.2+0.3+0.3+0.2

0.7+0.7+0.7+0.6+0.7+0.7 = 0.37,
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2) ς0.4
II (B) = 0.2+0.3+0.2+0.3+0.3+0.2

0.7+0.7+0.7+0.6+0.7+0.7 = 0.37,
3) ς0.4

III (B) = 0.2+0.2+0.2+0.2+0.2+0.2
0.7+0.7+0.7+0.7+0.7+0.7 = 0.29,

4) ς0.4
IV (B) = 0.2+0.2+0.2+0.2+0.2+0.2

0.7+0.7+0.7+0.7+0.7+0.7 = 0.29.

We provide a definition of the accuracy measure (am) for the four kinds of fuzzy α-covering
depending on the rough set patterns introduced in Definitions 4.6, 4.13,4.20, and 4.27.

Definition 4.31. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ W2, the am of B is defined as

1) ϱαI (B) = |LI (B)|
|UI (B)|

,

2) ϱαII(B) = |LII (B)|
|UII (B)|

,

3) ϱαIII(B) = |LIII (B)|
|UIII (B)|

,

4) ϱαIV(B) = |LIV (B)|
|UIV (B)|

, where |B| represents the cardinality of B.

Example 4.32 illustrates the definition above.

Example 4.32. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). Using the
information in Examples 4.7,4.14,4.21, and 4.28 we have

1) For B = {y1, y4},

(a) ϱαI (B) = 0
6 = 0,

(b) ϱαII(B) = 0
6 = 0,

(c) ϱαIII(B) = 0
6 = 0,

(d) ϱαIII(B) = 0
6 = 0.

2) For B = {y3},

(a) ϱαI (B) = 0
4 = 0,

(b) ϱαII(B) = 0
4 = 0,

(c) ϱαIII(B) = 0
6 = 0,

(d) ϱαIII(B) = 0
6 = 0.

Definition 4.33. Let (W1,W2,V) be a FαCAS for some α1 ∈ (0, 1] and f ∈ Onto(W1,W2). For each
B ∈ F (W2) and 0 < α1 < α, the fuzzy α1-covering depending on the rough set is defined as

1) ∗LI(B) =
∧

z∈W2
([1 − 1Ñα1

y (z)]
∨

B(z)), ∗UI(B)(y) =
∨

z∈W2
(1Ñα1

y (z)
∧

B(z)).
2) ∗LII(B) =

∧
z∈W2

([1 − 2Ñα1
y (z)]

∨
B(z)), ∗UII(B)(y) =

∨
z∈W2

(2Ñα1
y (z)

∧
B(z)).

3) ∗LIII(B) =
∧

z∈W2
([1 − 3Ñα1

y (z)]
∨

B(z)), ∗UIII(B)(y) =
∨

z∈W2
(3Ñα1

y (z)
∧

B(z)).
4) ∗LIV(B) =

∧
z∈W2

([1 − 4Ñα1
y (z)]

∨
B(z)), ∗UIV(B)(y) =

∨
z∈W2

(4Ñα1
y (z)

∧
B(z)).

4.5. The relationships among the four patterns

In this subsection, we introduce the connections between the patterns which are provided above.
Moreover, it gives a comparison of the patterns defined by Yao [42] and Yang and Hu [43].

The following propositions explain the relationships among different types of fuzzy α-
neighborhoods.
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Proposition 4.34. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each
ui, u j ∈ W1, the following statements hold:

1)
⋂

mdα
V

(ui)(u j) = 1Ñαui
.

2)
⋃

MDα
V

(ui)(u j) = 4Ñαui
.

3) If mdα
V

(ui)(u j) , MDα
V

(ui)(u j), then 2Ñα
V

(ui) ⊆ 3Ñα
V

(ui).
4) mdα

V
(ui)(u j) ⊆ MDα

V
(ui)(u j).

5) 1Ñαui
⊆ 2Ñαui

⊆ 4Ñαui
.

6) 1Ñαui
⊆ 3Ñαui

⊆ 4Ñαui
.

Proof. 1) From Definition 3.11, 1Ñαui
=
⋂
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(ui)(u j)} =⋂

Nα
V

(ui)(u j) =
⋂

mdα
V

(ui)(u j) by Proposition 3.10.
2) From Definition 3.11, 4Ñαui

=
⋃
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ MDα

V
(ui)(u j)} =⋃

MDα
V

(ui)(u j).
3) Let I( f (ϵ(x)), f (ϵ(v))) ∈ 2Ñα

V
(ui)(u j). Then I( f (ϵ(x)), f (ϵ(v))) ∈ mdα

V
(ui)(u j). However,

by the assumption mdα
V

(ui)(u j) , MDα
V

(ui)(u j), I( f (ϵ(x)), f (ϵ(v))) ⊆ I( f (ϵ1(x)), f (ϵ1(v))),
where I( f (ϵ1(x)), f (ϵ1(v))) ∈ MDα

V
(ui)(u j) by Proposition 3.8. Therefore, I( f (ϵ(x)), f (ϵ(v))) ∈⋂

MDα
V

(ui)(u j). That is, I( f (ϵ(x)), f (ϵ(v))) ∈ 3Ñα
V

(ui)(u j). Hence, 2Ñα
V

(ui)(u j) ⊆ 3Ñα
V

(ui)(u j).
4) This is clear from Proposition 3.8.
5) Let 1Ñαui

=
⋂
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ Nα

V
(ui)(u j)} =

⋂
Nα
V

(ui)(u j) =⋂
mdα
V

(ui)(u j) by Proposition 3.10. However,
⋂

mdα
V

(ui)(u j) ⊆
⋃

mdα
V

(ui)(u j) =⋃
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v)) ∈ mdα

V
(ui)(u j)} = 2Ñαui

. Therefore, 1Ñαui
⊆

2Ñαui
. Moreover, by Proposition 3.8, since I( f (ϵ1(x)), f (ϵ1(v))) ⊆ I( f (ϵ2(x)), f (ϵ2(v)))

where I( f (ϵ1(x)), f (ϵ1(v))) ∈ mdα
V

(ui)(u j) and I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα
V

(ui)(u j),⋃
{I( f (ϵ1(x)), f (ϵ1(v))) :

I( f (ϵ1(x)), f (ϵ1(v))) ∈ mdα
V

(ui)(u j)} ⊆
⋃
{I( f (ϵ2(x)), f (ϵ2(v))) : I( f (ϵ2(x)), f (ϵ2(v))) ∈

MDα
V

(ui)(u j)}. That is, 2Ñαui
⊆ 4Ñαui

. Hence, 1Ñαui
⊆ 2Ñαui

⊆ 4Ñαui
.

6) By Proposition 3.8, since I( f (ϵ(x)), f (ϵ(v))) ⊆ I( f (ϵ2(x)), f (ϵ2(v))) where I( f (ϵ(x)), f (ϵ(v))) ∈
Nα
V

(ui)(u j) and I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα
V

(ui)(u j). Therefore,
⋂
{I( f (ϵ(x)), f (ϵ(v))) :

I( f (ϵ(x)), f (ϵ(v))) ∈ Nα
V

(ui)(u j)} ⊆
⋂
{I( f (ϵ2(x)), f (ϵ2(v))) : I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα

V
(ui)(u j)}.

That is, 1Ñαui
⊆ 3Ñαui

. Moreover,
⋂
{I( f (ϵ2(x)), f (ϵ2(v))) : I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα

V
(ui)(u j)} ⊆⋃

{I( f (ϵ2(x)), f (ϵ2(v))) : I( f (ϵ2(x)), f (ϵ2(v))) ∈ MDα
V

(ui)(u j)}. That is, 3Ñαui
⊆ 4Ñαui

. Hence, 1Ñαui
⊆

3Ñαui
⊆ 4Ñαui

.

Proposition 4.35. Let (W1,W2,V) be a FαCAS and f ∈ Onto(W1,W2). If 0 ≤ α1 ≤ α2 ≤ α. For any
ui, u j ∈ W1, i, and j = {1, 2, ..., n}, we have

1) 1Ñα2
ui ⊇ 1Ñα1

ui .
2) 2Ñα2

ui ⊆ 2Ñα1
ui .

3) 4Ñα2
ui ⊆ 4Ñα1

ui .

Proof. We will prove only 1), and the proof for the others is similar.
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1) If ui ∈ W1 and α1 ≤ α2, then 1Ñα1
ui =

⋂
{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ Nα1

V
(ui)(u j)} ⊆⋂

{I( f (ϵ(x)), f (ϵ(v))) : I( f (ϵ(x)), f (ϵ(v))) ∈ Nα2
V

(ui)(u j)} = 1Ñα2
ui . Therefore, 1Ñα1

ui ⊆ 1Ñα2
ui for any

ui, u j ∈ W1.

The next proposition explains the relationships among four kinds of FαCAS, which are given in
Definitions 4.1, 4.8, 4.15, and 4.22 with the four types of the fuzzy α1-covering based on the rough set
in Definition 4.33.

Proposition 4.36. Let (W1,W2,V) be a FαCAS for some α1 ∈ (0, 1] and f ∈ Onto(W1,W2). If α1 ≤ α,
then for any B ∈ F (W2), we have

1) LI(B) ⊆ ∗LI(B), ∗UI(B) ⊆ UI(B).
2) LII(B) ⊆ ∗LII(B), ∗UII(B) ⊆ UII(B).
3) LIII(B) ⊆ ∗LIII(B), ∗UIII(B) ⊆ UIII(B).
4) LIV(B) ⊆ ∗LIV(B), ∗UIV(B) ⊆ UIV(B).

Proof. We will prove only 1), and the proof for the others is similar.

1) If α1 ≤ α, then, by Proposition 4.35, we have that 1Ñα1
ui ⊆ 1Ñαui

. Thus, we have LI(B) ⊆
∗LI(B),∗UI(B) ⊆ UI(B) by their definitions.

5. Some topological features of fuzzy α-covering depending on the rough set patterns

Here, we investigate some topological characteristics of the fuzzy α-covering depending on the
rough set patterns.

Definition 5.1. Let (W1,W2,V) be a FαCAS with V = {ϵ1, ϵ1, ..., ϵm} for some α ∈ (0, 1] and f ∈
Onto(W1,W2). For each u ∈ W1, the kinds of sub-base for the fuzzy topology are

1) S 1 = { f (ϵ) ∈ f (V) : 1Ñαu ⊆ f (ϵ)},
2) S 2 = { f (ϵ) ∈ f (V) : 2Ñαu ⊆ f (ϵ)},
3) S 3 = { f (ϵ) ∈ f (V) : 3Ñαu ⊆ f (ϵ)},
4) S 4 = { f (ϵ) ∈ f (V) : 4Ñαu ⊆ f (ϵ)}.

Example 5.2. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2) in Example 3.12.
Then we have the following sub-bases

S 1 = {1Ñ0.4
u1
, 1Ñ0.4

u2
, 1Ñ0.4

u4
, 1Ñ0.4

u6
},

S 2 = {2Ñ0.4
u1
, 2Ñ0.4

u2
, 2Ñ0.4

u4
, 2Ñ0.4

u6
},

S 3 = {3Ñ0.4
u1
, 3Ñ0.4

u2
, 3Ñ0.4

u4
, 3Ñ0.4

u6
},

S 4 = {4Ñ0.4
u1
, 4Ñ0.4

u2
, 4Ñ0.4

u4
, 4Ñ0.4

u6
}.

Therefore, the bases will be:
B1 = {1, 1Ñ0.4

u1
, 1Ñ0.4

u2
, 1Ñ0.4

u4
, 1Ñ0.4

u6
, 0.4

y1
+ 0.9

y2
+ 0.1

y3
+ 0.7

y4
, 0.7

y1
+ 0.6

y2
+ 0.6

y3
+ 0.7

y4
, 0.4

y1
+ 0.6

y2
+ 0.1

y3
+ 0.7

y4
, 0.7

y1
+ 0.6

y2
+ 0.4

y3
+ 0.7

y4
},

B2 = {1, 2Ñ0.4
u1
, 2Ñ0.4

u2
, 2Ñ0.4

u4
, 2Ñ0.4

u6
, 0.4

y1
+ 0.9

y2
+ 0.1

y3
+ 0.7

y4
, 0.7

y1
+ 0.6

y2
+ 0.6

y3
+ 0.7

y4
, 0.4

y1
+ 0.6

y2
+ 0.1

y3
+ 0.7

y4
},
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B3 = {1, 3Ñ0.4
u1
, 3Ñ0.4

u2
, 3Ñ0.4

u6
},

B4 = {1, 4Ñ0.4
u1
, 4Ñ0.4

u2
, 4Ñ0.4

u4
, 4Ñ0.4

u6
}.

Hence, the topologies will be
τ1 = {0, 1, 1Ñ0.4

u1
, 1Ñ0.4

u2
, 1Ñ0.4

u4
, 1Ñ0.4

u6
, 1

y1
+ 1

y2
+ 0.6

y3
+ 1

y4
, 1

y1
+ 0.9

y2
+ 1

y3
+ 1

y4
, 0.7

y1
+ 1

y2
+ 1

y3
+ 0.7

y4
, 0.7

y1
+ 1

y2
+ 0.4

y3
+

1
y4
, 0.7

y1
+ 0.9

y2
+ 1

y3
+ 1

y4
, 0.7

y1
+ 1

y2
+ 0.6

y3
+ 0.7

y4
, 0.7

y1
+ 1

y2
+ 0.4

y3
+ 0.7

y4
, 0.7

y1
+ 0.9

y2
+ 0.4

y3
+ 1

y4
, 0.7

y1
+ 0.9

y2
+ 0.6

y3
+ 1

y4
},

τ2 = {0, 1, 2Ñ0.4
u1
, 2Ñ0.4

u2
, 2Ñ0.4

u4
, 2Ñ0.4

u6
, 1

y1
+ 0.9

y2
+ 1

y3
+ 1

y4
, 0.7

y1
+ 1

y2
+ 1

y3
+ 0.7

y4
, 0.7

y1
+ 1

y2
+ 0.6

y3
+ 0.7

y4
, 0.7

y1
+ 0.9

y2
+ 1

y3
+ 0.7

y4
},

τ3 = {0, 1, 3Ñ0.4
u1
, 3Ñ0.4

u2
, 3Ñ0.4

u6
},

τ4 = {0, 1, 4Ñ0.4
u1
, 4Ñ0.4

u2
, 4Ñ0.4

u6
}.

where 0 = 0
y1
+ 0

y2
+ 0

y3
+ 0

y4
, 1 = 1

y1
+ 1

y2
+ 1

y3
+ 1

y4
∈ F (W2) are two fuzzy sets for any yi ∈ W2, i ∈ {1, 2, 3, 4}.

Definition 5.3. Let (W1,W2,V) be a FαCAS with V = {ϵ1, ϵ1, ..., ϵm} for some α ∈ (0, 1] and f ∈
Onto(W1,W2). The complement of the open set which is an element in τ is called a closed set and is
denoted by Cr = { f (ϵ) ∈ f (V) : ( f (ϵ))c ∈ τr}, where r ∈ {1, 2, 3, 4}.

Example 5.4. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2) in Example 5.2.
The closed sets will be

C1 = {1, 0, 0
y1
+ 0.1

y2
+ 0.4

y3
+ 0

y4
, 0.6

y1
+ 0

y2
+ 0.9

y3
+ 0.3

y4
, 0.3

y1
+ 0.4

y2
+ 0

y3
+ 0.3

y4
, 0.3

y1
+ 0.1

y2
+ 0.6

y3
+ 0

y4
, 0

y1
+ 0

y2
+ 0.4

y3
+ 0

y4
, 0

y1
+ 0.1

y2
+ 0

y3
+

0
y4
, 0.3

y1
+ 0

y2
+ 0

y3
+ 0.3

y4
, 0.3

y1
+ 0

y2
+ 0.6

y3
+ 0

y4
, 0.3

y1
+ 0.1

y2
+ 0

y3
+ 0

y4
, 0.3

y1
+ 0

y2
+ 0.4

y3
+ 0.3

y4
, 0.3

y1
+ 0

y2
+ 0.6

y3
+ 0.3

y4
, 0.3

y1
+ 0.1

y2
+ 0.4

y3
+ 0

y4
},

C2 = {1, 0, 0
y1
+ 0.1

y2
+ 0.4

y3
+ 0

y4
, 0.6

y1
+ 0

y2
+ 0.9

y3
+ 0.3

y4
, 0.3

y1
+ 0.4

y2
+ 0

y3
+ 0.3

y4
, 0

y1
+ 0

y2
+ 0.4

y3
+ 0

y4
, 0

y1
+ 0.1

y2
+ 0

y3
+ 0

y4
, 0.3

y1
+

0
y2
+ 0

y3
+ 0.3

y4
, 0.3

y1
+ 0

y2
+ 0.4

y3
+ 0.3

y4
, 0.3

y1
+ 0.1

y2
+ 0

y3
+ 0.3

y4
},

C3 = {1, 0, 0
y1
+ 0.1

y2
+ 0.4

y3
+ 0

y4
, 0

y1
+ 0

y2
+ 0.3

y3
+ 0

y4
, 0.3

y1
+ 0.1

y2
+ 0.6

y3
+ 0

y4
}.

C4 = {1, 0, 0
y1
+ 0.1

y2
+ 0.4

y3
+ 0

y4
, 0

y1
+ 0

y2
+ 0.3

y3
+ 0

y4
, 0

y1
+ 0

y2
+ 0.4

y3
+ 0

y4
}.

Definition 5.5. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
B ∈ F (W2) and s ∈ {1, 2, 3, 4}, the fuzzy interior and fuzzy closure, respectively, are defined as

Is(B) =
⋃
{P ∈ τs : P ⊆ B},

Cs(B) =
⋂
{G ∈ Cs : B ⊆ G}.

Example 5.6. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2) in Example 5.2.
If B = 0.7

y1
+ 1

y2
+ 0.6

y3
+ 1

y4
, then for s = {1}, we have the following:

1) The fuzzy interior of B is I1(B) = 0.7
y1
+ 1

y2
+ 0.6

y3
+ 1

y4
.

2) The fuzzy closure of B is C1(B) = ϕ.

Theorem 5.7. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For any
Z ,Z1,Z2 ∈ F (W2) and s ∈ {1, 2, 3, 4}, we have the following properties:

1) Is(ϕ) = ϕ, Is(W2) = W2.
2) Is(Z ) ⊆ Z .
3) Z is an open set⇐⇒ Is(Z ) = Z .
4) Is(Is(Z )) = Is(Z ).
5) If Z1 ⊆ Z2, then Is(Z1) ⊆ Is(Z2).
6) Is(Z1 ∩Z2) = Is(Z1) ∩ Is(Z2).
7) Is(Z1) ∪ Is(Z2) ⊆ Is(Z1 ∪Z2).
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8) Cs(ϕ) = ϕ,Cs(W1) = W1.
9) Z ⊆ Cs(Z ).

10) Z is a closed set⇐⇒ Cs(Z ) = Z .
11) Cs(Cs(Z )) = Cs(Z ).
12) If Z1 ⊆ Z2, then Cs(Z1) ⊆ Cs(Z2).
13) Cs(Z1 ∩Z2) ⊆ Cs(Z1) ∩Cs(Z2).
14) Cs(Z1) ∪Cs(Z2) = Cs(Z1 ∪Z2).

Proof. The following proof is for s = 1, and the same proof will be applicable to the others.

1) From Definition 5.5, we have
I1(ϕ) =

⋃
{P ∈ τ1 : P ⊆ ϕ} = ϕ,

I1(W2) =
⋃
{P ∈ τ1 : P ⊆ W2} = W2.

2) Definition 5.5 illustrates the proof.
3) If Z is an open set, then the biggest open set contained in Z is Z itself. Therefore, I1(Z ) = Z .

Moreover, let I1(Z ) = Z . As I1(Z ) is an open set, Z is an open set.
4) From Definition 5.5, for any Z ∈ F (W2), we have

I1(I1(Z )) =
⋃
{P ∈ τ1 : P ⊆ I1(Z )} =

⋃
{P ∈ τ1 : P ⊆

⋃
[P ∈ τ1 : P ⊆ Z ]} =

⋃
{P ∈ τ1 : P ⊆

Z } = I1(Z ).
5) From Definition 5.5, for any Z1,Z2 ∈ F (W2) we have

Z1 ⊆ Z2 ⇒ I1(Z1) =
⋃
{P ∈ τ1 : P ⊆ Z1} ⊆

⋃
{P ∈ τ1 : P ⊆ Z2} = I1(Z2).

6) From Definition 5.5, for any Z1,Z2 ∈ F (W2) we have
I1(Z1 ∩Z2) =

⋃
{P ∈ τ1 : P ⊆ (Z1 ∩Z2)} =

⋃
{P ∈ τ1 : P ⊆ Z1 and P ⊆ Z2} = (

⋃
{P ∈ τ1 : P ⊆

Z1})
⋂

(
⋃
{P ∈ τ1 : P ⊆ Z2}) = I1(Z1)

⋂
I1(Z2).

7) Since Z1 ⊆ Z1
⋃

Z2, by 5), we have I1(Z1) ⊆ I1(Z1
⋃

Z2). Moreover, as Z2 ⊆ Z1
⋃

Z2, by 5),
we have I1(Z2) ⊆ I1(Z1

⋃
Z2). Thus, I1(Z2)

⋃
I1(Z2) ⊆ I1(Z1

⋃
Z2).

8) From Definition 5.5, we have C1(ϕ) =
⋂
{G ∈ C1 : ϕ ⊆ G} = ϕ, C1(W1) =

⋂
{G ∈ C1 : W1 ⊆ G} =

W1.
9) Definition 5.5 illustrates the proof.

10) If Z is a closed set, then the smallest closed set containing Z is Z itself. Therefore, C1(Z ) =
Z . Moreover, let C1(Z ) = Z . As C1(Z ) is a closed set, Z is a closed set.

11) By Definition 5.5, for any Z ∈ F (W1), we have C1(C1(Z )) =
⋂
{G ∈ C1 : C1(Z ) ⊆ G} =⋂

{G ∈ C1 :
⋂

[G ∈ C : W1 ⊆ G] ⊆ G} =
⋂
{G ∈ C1 : W1 ⊆ G} = C1(Z ).

12) From Definition 5.5, for any Z1,Z2 ∈ F (W1), we have Z1 ⊆ Z2 ⇒ C1(Z1) =
⋂
{G ∈ C1 : Z1 ⊆

G} ⊆
⋂
{G ∈ C1 : Z2 ⊆ G} = C1(Z2).

13) Since Z1
⋂

Z2 ⊆ Z1, by (12), we have C1(Z1
⋂

Z2) ⊆ C1(Z1). Moreover, as Z1
⋂

Z2 ⊆ Z2, by
(12), we have C1(Z1

⋂
Z2) ⊆ C1(Z2). Hence, C1(Z1

⋂
Z2) ⊆ C1(Z1)

⋂
C1(Z2).

14) By Definition 5.5, for any Z1,Z2 ∈ F (W1), we have C1(Z1)
⋃

C1(Z2) = (
⋂
{G ∈ C1 : Z1 ⊆

G})
⋃

(
⋂
{G ∈ C1 : Z2 ⊆ G}) =

⋂
{G ∈ C1 : Z1 ⊆ G or Z2 ⊆ G} =

⋂
{G ∈ C1 : (Z1

⋃
Z2) ⊆ G =

C1(Z1
⋃

Z2).

Definition 5.8. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1] and f ∈ Onto(W1,W2). For each B ∈
F (W2), the fuzzy boundary of B will be defined as Bs(B) = Cs(B)

⋂
Cs(Bc), where s ∈ {1, 2, 3, 4}.
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Example 5.9. From the information in Examples 5.4 and 5.6, we have C1(B) = ϕ. Moreover, Bc =
0.3
y1
+ 0

y2
+ 0.4

y3
+ 0

y4
. Then C1(Bc) = 1 ∩ 0.6

y1
+ 0

y2
+ 0.9

y3
+ 0.3

y4
∩ 0.3

y1
+ 0.1

y2
+ 0.6

y3
+ 0

y4
∩ 0.3

y1
+ 0

y2
+ 0.6

y3
+

0
y4
∩ 0.3

y1
+ 0

y2
+ 0.4

y3
+ 0.3

y4
∩ 0.3

y1
+ 0

y2
+ 0.6

y3
+ 0.3

y4
∩ 0.3

y1
+ 0.1

y2
+ 0.4

y3
+ 0

y4
= 0.3

y1
+ 0

y2
+ 0.4

y3
+ 0

y4
. Therefore,

Bs(B) = C1(B) ∩C1(Bc) = ϕ ∩ ( 0.3
y1
+ 0

y1
+ 0.4

y1
+ 0

y1
) = ϕ.

Theorem 5.10. Let (W1,W2,V) be a FαCAS for some α ∈ (0, 1], and f ∈ Onto(W1,W2). For each
Z ∈ F (W2) and s ∈ {1, 2, 3, 4}, we have

1) Cs(Z ) = Z
⋃

Bs(Z ).
2) Is(Z ) = Z

⋂
(Bs(Z ))c.

Proof. We will prove the case for s = 1, and the proof will be the same for the others.

1) For any Z ∈ F (W2), we have Z ⊆ C1(Z ), and thus Z ∪ B1(Z ) = Z ∪ (C1(Z ) ∩ C1(Z c)) =
(Z ∪C1(Z )) ∩ (Z ∪C1(Z c)) = C1(Z ) ∩ (Z ∪C1(Z c)) = C1(Z ).

2) For any Z ∈ F (W2), we have (C1(Z ))c = I1(Z c). Then Z ∩ (B1(Z ))c = Z ∩ (C1(Z ) ∩
C1(Z c))c = Z ∩ [(C1(Z ))c ∪ (C1(Z c))c] = (Z ∩ (C1(Z ))c) ∪ (Z ∩ (C1(Z c))c) = (Z ∩

I1(Z c)) ∪ (Z ∩ I1(Z )) = ϕ ∪ I1(Z ) = I1(Z ).

Remark 5.11. Figure 1 shows that the reversal of stocks is not achieved, and this has been made clear
through Examples 3.15 and 3.20.

Figure 1. Comparison between results.

6. Conclusions and future work

In this research, the idea of the fuzzy α neighborhood Nα(x) of x, which was defined by Zhang et
al. [38] for FαCAS was investigated over two finite sets (W1,W2). First, we introduced the definitions
of FαNS, the fuzzy α-neighborhood of x, and v, Fαmd and FαMD. Then, the relations among FαNS,
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Fαmd, and FαMD were discussed. After that, we suggested some kinds of FαNs. On the other hand,
four patterns of fuzzy α-covering over two finite sets were provided and the relationships among them
were studied. Finally, we proposed some topological features of fuzzy α-covering depending on the
rough set patterns. Future work could explore several key areas:
1) Expanding the framework of fuzzy α-neighborhoods (FαNS):
Investigate the properties of FαNS in more intricate or dynamic systems.
Explore applications in multi-dimensional or real-time data environments.
Develop efficient algorithms for computing FαNS in large-scale datasets.
2) Enhancing the understanding of relationships:
Broaden the analysis of the relationships among FαNS, Fαmd, and FαMD, including scenarios with
non-linear or stochastic characteristics.
Assess the implications of these relationships in practical contexts like decision-making systems and
pattern recognition.
3) Introducing variants of fuzzy α-neighborhoods:
Propose and evaluate new variants or modifications of FαNs to tackle specific challenges or
requirements.
Test the effectiveness of these variants in applications such as clustering and classification.
4) Generalizing fuzzy α-coverings:
Extend the four patterns of fuzzy α-coverings to larger, more complex finite or infinite sets.
Study fuzzy α-coverings in relation to other mathematical structures, including lattices and graphs.
5) Advancing topological features in fuzzy rough sets:
Develop more detailed topological features of fuzzy α-coverings based on rough set theory.
Examine their practical applications in areas such as image processing and knowledge representation.
6) Exploring real-world applications:
Apply the proposed concepts in fields like artificial intelligence, machine learning, and data analysis.
Investigate the integration of fuzzy α-coverings into real-time systems, including dynamic decision-
making frameworks.
7) Building interdisciplinary connections:
Establish links between fuzzy α-coverings and fields such as fuzzy logic, neural networks, and
optimization.
Collaborate with experts to customize fuzzy α-concepts for industries like healthcare and finance.
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