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Abstract: The traveling wave behavior of the nonlinear third and fourth-order advection-diffusion
equation has been elaborated. In this study, the effect of dispersion and dissipation processes
was mainly analyzed thoroughly. In the thorough analysis, strictly permanent short waves to
breaking waves, having comparative higher amplitudes, have been observed. The governed problem
was employed with the space-splitting method for a coupled system of equations to conduct
the computational process. For the time derivative, the Crank-Nicolson difference approximation
was studied. An orthogonal collocation method using Hermite splines has been implemented to
approximate the solution of the semi-discretized coupled problem. The proposed method reduces
the equation to an iterative scheme of an algebraic system of collocation equations, which reduced
the computational complexity. The proposed scheme is found to be unconditionally stable, and the
numerical demonstrations and comparisons represented the computational efficiency.
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1. Introduction

Nonlinear higher-order partial differential equations play an essential role in the physical processes
occurring in various sciences and engineering disciplines. The fluid dynamical waves in oceanography
and bio-fluid dynamics are usually framed by nonlinear higher-order perturbed forms of partial
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differential equations. In general, the partial differential problems can be of the form:

F(u, ut, uζ , uζζ , ..., ζ, t) = 0. (1.1)

The nonlinear higher-order differential problems have been studied so far with various analytical and
numerical techniques. Yet, there is no straightforward technique to thoroughly analyze any family of
differential problems. The sub-equation method and the generalized Kudryashov method [1] discussed
the soliton-type solutions of evolution equations. The Homotopy analysis J-transformation method is
discussed in [2] to analyze the turbulent solutions of the generalized Kuramoto-Sivashinsky equation
with the fractional operator. The compact solution is the advantage of any analytic technique but is
restricted to specific conditions to study nonlinear differential problems. Various numerical techniques
have been designed, such as Legendre wavelets methods [3], a formulation of the fifth order Korteweg-
de Vries (KdV) equation in the form of Evans function [4], a rational spectral method [5], mesh-free
collocation method [6], etc.

In this study, a prominent position occupying fourth-order nonlinear problems is elaborated on with
respect to the perturbation parameter.

ut + α(u)uζ + δuζζζ︸                  ︷︷                  ︸
KdV

+ κuζζ + εuζζζζ︸         ︷︷         ︸
KS

= 0, (ζ, t) ∈ (a, b) × (0,T ]; (1.2)

subjected to the initial and boundary data as follows:

u(ζ, 0) = ϕ(ζ); (1.3)
u(a, t) = ψ1(t); u(b, t) = ψ2(t); (1.4)

uζζ(a, t) = ψ3(t); uζζ(b, t) = ψ4(t); (1.5)

where κ, δ and ε are the known constant coefficients and α(u) represents a function of u(ζ, t), describing
the physical processes. The functions ϕ(ζ) and ψi(t) : i = 1, 2, 3, 4 are the known continuous functions
restricting u(ζ, t) at initial time and the spatial boundary. For δ = 1 and α(u) = u, the equation(1.2) was
introduced by Benny in the study of long waves on thin fluid films [7] and is referred to as a special
case of the Benny equation. Nowadays, the problem (1.2) has also been studied as the generalized
Kuramoto-Shivashinsky equation by the Lattice Boltzmann method [8], collocation method with B-
splines functions [9], methods of lines accompanied by radial basis functions [10], moving least square
meshless method [11], and the Chebyshev spectral collocation method [12]. The proposed problem has
also been considered as the KdV-Burgers-Kuramoto equation in [13] considering the traveling fronts
for small dissipation.

The proposed problem exhibits rich solutions ranging from stable short waves to turbulent shock
waves, and also has applications in various disciplines like the flow of turbulent air over the laminar
fluid [14] and solidification of alloys [15]. A numerical study of flame dynamics and instabilities
represented by the Kuramoto-Sivashinsky type equation has been conducted by [16]. A numerical
study accounting for the thin film growth and its roughness modeled by the conserved Kuramoto-
Sivashinsky equation has been presented in [17]. Earlier, the exact form of solution has been obtained
for the aforementioned problem using the Weiss—Tabor—Carnevale method [18]. Various other
aspects of the problem, like the existence of the solution, its similar solutions and the structure of the
traveling wave solution, and the Gevrey regularity and the stability of the solution, have been discussed
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by [19–21]. The evolution of one or more traveling pulses with the dominating dispersion in Eq (1.2)
has been described by [22]. Solitary wave solutions due to dissipation as well as instability has been
derived by [23]. In higher dimensions, [24], the existence and nonlinear stability of solution for Eq
(1.2) have been elaborated. A study using equivalence transformation leading to an algebraic system
of equations has also been conducted in [25] for the proposed problem (1.2).

Earlier, various forms of the traveling waves have been studied by researchers regarding the
Kuramoto-Sivashinsky (KS) equation [26, 27], KdV equation [28, 29], KdV Burgers equation [30],
and Benjamin–Bona–Mahony–Burgers’ equation [31] with conservative compact scheme.

The aforementioned problem incorporates the effect of dispersion as well as the dissipation process
due to the Kuramoto-Shivashinsky equation. The addition of dispersion(δ > 0) changes the time
evolution of the wave significantly.

The balancing effect of both the third and fourth-order derivative terms corresponding to the
different initial conditions, especially the sech function, is thoroughly elaborated concerning the
perturbed parameters. It is observed that as the perturbation parameter ε → 0.5, 0.1, humps with
higher amplitude, yet bounded, and starts to appear due to suppressed dissipative effect only on the
negative domain, then for the nonnegative domain, the wave saves its pattern irrespective to the values
of ε. Also, the problem was studied with dominant dissipation, where permanent short waves were
observed. A detailed study of the dissipation system is found in [32, 33].

In this manuscript, the traveling waves under the influences of dissipation and dispersion are
investigated. The rest of the study is manipulated as follows: In Section(2), a weighted finite difference
scheme has been studied. Section(3) discusses the fully discretization of the proposed technique.
Section(4) comprises the stability analysis using the von Neumann method. The numerical illustrations
are presented in Section(5). The conclusion of the entire study is discussed in Section(6).

2. Space splitting and semi discretization technique

In order to meet the requirement that the approximate solution should satisfy the boundary
conditions imposed on the solution, the fourth order equation is reduced to a coupled system of second
order by assuming a differentiable function w = −uζζ [34]. The reduced system reads:

w = −uζζ;
ut + α(u)uζ − δwζ − κw − εwζζ = 0. (2.1)

To numerically approximate the solution, the coupled system of equations, after reduction of the order
of the proposed problem, is treated with the Crank-Nicholson scheme for time variable coupled with the
collocation method for spatial approximation. Earlier, the traveling wave behavior of the Kuramoto-
Shivashinsky equation [35], Burgers Huxley and Burgers Fisher [36] and Benjamin-Bona-Mahony-
Burgers equations [37], singularly perturbed problems [38], etc. have been studied by the weighted
finite difference scheme with quintic Hermite spline collocation method. Here, the simultaneous impact
of the dispersive and dissipative mechanisms on the traveling waves and the corresponding perturbed
problems have been considered.

In the present study, the Crank-Nicolson (CN) scheme as proposed by [39] operates on the mean of
function over the interval [t j t j+1] with uniform distribution of points [35, 38].
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Define the partition πt : 0 = t0 < t1 < . . . < tM = T with τ = t j+1 − t j. After applying the CN scheme
on the coupled system of equations given by Eq (2.1), following system of equations appears:

w j+1 + w j = −u j+1
ζζ − u j

ζζ; (2.2)

u j+1 − u j

τ
+

(α(u)uζ) j+1 + (α(u)uζ) j

2
− δ

w j+1
ζ + w j

ζ

2
− κ

w j+1 + w j

2
− ε

w j+1
ζζ + w j

ζζ

2
= 0, (2.3)

and the nonlinear function f (u, uζ) j+1 = (α(u)uζ) j+1 is quasi-linearized with truncation error of order
O(τ2) by

f (u, uζ) j+1 ≈ τ
∂ f (u, uζ) j

∂u
ut(t j) + τ

∂ f (u, uζ) j

∂uζ
uζt(t j). (2.4)

The non-linearity is treated with different formulations using implicit and compact finite difference
schemes in [40, 41]. Also, a special case of quasi-linearization of the nonlinear term, i.e., α(u) = u, is
studied by [42]. After rearranging the terms, the following system is obtained:

w j+1 + u j+1
ζζ = −w j − u j

ζζ; (2.5)

u j+1 +
τ

2
{α(u) j+1u j

ζ + α(u) ju j+1
ζ } −

δτ

2
w j+1
ζ −

κτ

2
w j+1 −

ετ

2
w j+1
ζζ

= u j +
δτ

2
w j
ζ +

κτ

2
w j +

ετ

2
w j
ζζ; j = 0, 1, 2, . . . ,M. (2.6)

For convenience, write u(ζ, t j+1) = u j+1.

3. Fully discretization technique

Orthogonal splines are the piecewise orthogonal polynomials that interpolate the function at node
points. Hermite splines are orthogonal splines and are usually followed to interpolate the function.
Earlier, the essence of Hermite splines has been discussed in many ways. Hermite splines are
considered to be the extension of the Lagrangian interpolating polynomials. Hermite interpolating
polynomials of order ′2k + 1′ interpolate the function and its kth order derivative at node points.
This feature of Hermite interpolating polynomials makes it superior to Lagrangian interpolating
polynomials. In the present study, quintic Hermite splines, which are of order 5, are followed.
Piecewise, the basis includes six splines and interpolates the function as well as its first and second-
order derivatives at intermediate node points. The detailed study of quintic Hermite splines is given
hereunder.

Consider an interval I = [a, b], let Π be the partition of I such that:
Π : a = ζ0 < ζ1 < ζ2 < ... < ζm−1 < ζm = b.
Let Iγ = [ζγ−1, ζγ] such that γ = 1(1)m is the γth subinterval of the partitioned domain. Let h =
ζγ − ζγ−1 : 1 ≤ γ ≤ m represent the constant step size of the partition Π. The piecewise interpolating
Hermite splines are represented as follows:

Qi(ζ) =


6 (ζi+1−ζ)5

(ζi+1−ζi)5 − 15 (ζi+1−ζ)4

(ζi+1−ζi)4 + 10 (ζi+1−ζ)3

(ζi+1−ζi)3 ζi ≤ ζ ≤ ζi+1

6 (ζ−ζi−1)5

(ζi−ζi−1)5 − 15 (ζ−ζi−1)4

(ζi−ζi−1)4 + 10 (ζ−ζi−1)3

(ζi−ζi−1)3 ζi−1 ≤ ζ ≤ ζi

0 otherwise
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Q̄i(ζ) =


3 (ζi+1−ζ)5

(ζi+1−ζi)4 − 7 (ζi+1−ζ)4

(ζi+1−ζi)3 + 4 (ζi+1−ζ)3

(ζi+1−ζi)2 ζi ≤ ζ ≤ ζi+1

−3 (ζ− ζi−1)5

(ζi−ζi−1)4 + 7 (ζ−ζi−1)4

(ζi−ζi−1)3 − 4 (ζ−ζi−1)3

(ζi−ζi−1)2 ζi−1 ≤ ζ ≤ ζi

0 otherwise

¯̄Qi(ζ) =


0.5 (ζi+1−ζ)5

(ζi+1−ζi)3 −
(ζi+1−ζ)4

(ζi+1−ζi)2 + 0.5 (ζi+1−ζ)3

(ζi+1−ζi)
ζi ≤ ζ ≤ ζi+1

0.5 (ζ− ζi−1)5

(ζi−ζi−1)3 −
(ζ−ζi−1)4

(ζi−ζi−1)2 + 0.5 (ζ−ζi−1)3

(ζi−ζi−1) ζi−1 ≤ ζ ≤ ζi

0 otherwise

(3.1)

In order to implement the collocation, the Hermite splines within each sub-domain Iγ are mapped onto

the interval [0, 1] using a linear mapping ξ =
ζ − ζγ−1

h
. This linear map reduces the structure of splines

mentioned in (3.1) to the tabular form given in Table (1) for 0 ≤ ξ ≤ 1.

Table 1. The Hermite splines and the derivatives for approximation.

i Hi H(1)
i H(2)

i
1 1 − 10ξ3 + 15ξ4 − 6ξ5 −30ξ2 + 60ξ3 − 30ξ4 −60ξ + 180ξ2 − 120ξ3

2 h(ξ − 6ξ3 + 8ξ4 − 3ξ5) h(1 − 18ξ2 + 32ξ3 − 15ξ4) h(−36ξ + 96ξ2 − 60ξ3)
3 h2

2 (ξ2 − 3ξ3 + 3ξ4 − ξ5) h2

2 (2ξ − 9ξ2 + 12ξ3 − 5ξ4) h2

2 (2 − 18ξ + 36ξ2 − 20ξ3)
4 h2

2 (ξ3 − 2ξ4 + ξ5) h2

2 (3ξ2 − 8ξ3 + 5ξ4) h2

2 (6ξ − 24ξ2 + 20ξ3)
5 10ξ3 − 15ξ4 + 6ξ5 30ξ2 − 60ξ3 + 30ξ4 60ξ − 180ξ2 + 120ξ3

6 h(−4ξ3 + 7ξ4 − 3ξ5) h(−12ξ2 + 28ξ3 − 15ξ4) h(−24ξ + 84ξ2 − 60ξ3)

The Hermite spline collocation method is applied to both the functions un,wn simultaneously. Thus,
assuming the following piecewise approximations:

un(ξ) =
6∑

i=1

aγ,ni Hi(ξ) (3.2)

wn(ξ) =
6∑

k=1

bγ,nk Hk(ξ) (3.3)

where aγi,n,bγk ,n are the controlling constant coefficients to be determined. To implement the orthogonal
collocation, the roots of orthogonal polynomials are taken as collocation points within each sub-
domain. Traditionally, the zeros of Jacobi polynomials are taken as collocation points. The zeros of
Chebyshev or Legendre polynomials of degree six, which are special cases of Jacobi polynomials, are
usually chosen as collocation points. In the present study, the zeros of shifted Legendre polynomials
of degree six have been taken as collocation points [43]. Using the piecewise approximations defined
in Eqs (3.2) and (3.3) in the semi-discretized coupled Eqs (2.5) and (2.6), the following system of
equations is obtained:

6∑
i=1

bγ,n+1
i Hi(ξ) +

1
h2

6∑
i=1

aγ,n+1
i H(2)

i (ξ) = −
6∑

i=1

bγ,ni Hi(ξ) −
1
h2

6∑
i=1

aγ,ni H(2)
i (ξ) (3.4)
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6∑
i=1

aγ,n+1
i Hi(ξ) −

κτ

2

6∑
i=1

bγ,n+1
i Hi(ξ) −

τ

2h
α(

6∑
i=1

aγ,n+1
i Hi(ξ))

 6∑
i=1

aγ,ni H(1)
i (ξ)


−
τ

2h

6∑
i=1

aγ,n+1
i H(1)

i (ξ)α(

 6∑
i=1

aγ,ni Hi(ξ)

) − δτ2h

6∑
i=1

bγ,n+1
i H(1)

i (ξ) −
ετ

2h2

6∑
i=1

bγ,n+1
i H(2)

i (ξ)

=

6∑
i=1

aγ,ni Hi(ξ) +
κτ

2

6∑
i=1

bγ,ni Hi(ξ) +
δτ

2h

6∑
i=1

bγ,ni H(1)
i (ξ) +

ετ

2h2

6∑
i=1

bγ,ni H(2)
i (ξ) (3.5)

The matrix formulation of the algebraic system of Eqs (3.4) and (3.5) can be represented in the
following form:

Pλn+1 = Qλn (3.6)

P =



P1

P2
. . .

Pr
. . .

Pm−1

Pm


8m×8m

Q =



Q1

Q2
. . .

Qr
. . .

Qm−1

Qm


8m×8m

The structure of each block of the matrices P and Q is given below:

Pr =

[
ρki κki

νki ηki

]
8×12

; Qr =

[
χki ϕki

ψki αki

]
8×12

For r = 1,m the order of block Pr and Qr is 8 × 10 due the homogeneous boundary constraints. The
above components of the matrix blocks are defined as below:

ρki = Hi(ξk), κki =
1
h2 H(2)

i (ξk),

νki = Hi(ξk) −
6τ
2h

Hi(ξk){
6∑

i=1

aγ, jl H(1)
i (ξk)} −

6τ
2h

H(1)
i (ξk){

6∑
i=1

aγ, jl Hi(ξk)},

ηki = −
τ

2h
H(1)

i (ξk), ϕki = −
1
h2 H(2)

i (ξk), χki = −Hi(ξk), ψki = Hi(ξk), αki =
τ

2h
H(1)

i (ξk)
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The matrix formulation defined in Eq (3.6) is solved using mathematical software such as
MATLAB. With the increment in the order of the algebraic system and decrement in the step size
in the time direction, the computational cost increases. In order to balance the computational cost, the
optimal choice of partitions has been chosen, and good accuracy is achieved.

4. Stability analysis

In this section, the stability of the proposed technique is discussed using the Von-Neumann criterion
of stability. For quasi-linearization, let us assume α(u) is locally bounded by η over the given domain.
Therefore, the linearized coupled system reads:

w j+1 + u j+1
ζζ = −(w j + u j

ζζ), (4.1)

u j+1 −
κτ

2
w j+1 −

δτ

2
w j+1
ζ −

ετ

2
w j+1
ζζ
+
ητ

2
u j+1
ζ = u j +

κτ

2
w j +

δτ

2
w j
ζ +

ετ

2
w j
ζζ −

ητ

2
u j
ζ . (4.2)

In the form of operator, the linearized problem in Eqs (4.1) and (4.2) can be written as

T (u,w) j+1 = Eτ. (4.3)

It is clear from Eq (4.1) that (w + uζζ) j+1 + (w + uζζ) j = 0; also, initially (w + uζζ)0 = 0 this implies
(w + uζζ) j = 0∀ j. Thus, the boundedness of both w and uζζ throughout the given domain is ensured.
Application of the piecewise Hermite spline collocation technique as discussed in Eqs (3.2) and (3.3),
in Eq (4.1), one gets:

6∑
i=1

Hi(ξ)b
γ, j+1
i +

6∑
i=1

H(2)
i (ξ)
h2 aγ, j+1

i = −

 6∑
i=1

Hi(ξ)b
γ, j
i +

6∑
i=1

H(2)
i (ξ)
h2 aγ, ji

 ,
=⇒

6∑
i=1

Hi(ξ)b
γ, j+1
i +

6∑
i=1

H(2)
i (ξ)
h2 aγ, j+1

i = 0.

Similarly, considering the relation between w and uζζ , it can be derived that:

6∑
i=1

H(1)
i (ξ)
h

bγ, j+1
i +

6∑
i=1

H(3)
i (ξ)
h3 aγ, j+1

i = 0;

6∑
i=1

H(2)
i (ξ)
h2 bγ, j+1

i +

6∑
i=1

H(4)
i (ξ)
h4 aγ, j+1

i = 0. (4.4)

Again, considering the second equation of the coupled system stated in Eq (4.2), it is simple to say
that:

6∑
i=1

aγ, j+1
i Hi(ξ) −

κτ

2

6∑
i=1

bγ, j+1
i Hi(ξ) −

δτ

2h

6∑
i=1

bγ, j+1
i H(1)

i (ξ) −
ετ

2h2

6∑
i=1

bγ, j+1
i H(2)

i (ξ)

+
ητ

2h

6∑
i=1

aγ, j+1
i H(1)

i (ξ) =
6∑

i=1

aγ, ji Hi(ξ) +
κτ

2

6∑
i=1

bγ, ji Hi(ξ) +
δτ

2h

6∑
i=1

bγ, ji H(1)
i (ξ)
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+
ετ

2h2

6∑
i=1

bγ, ji H(2)
i (ξ) −

ητ

2h

6∑
i=1

aγ, ji H(1)
i (ξ).

Now, using the relations given in Eq (4.4), the following equation is obtained:

6∑
i=1

(
Hi(ξ) +

ητ

2h
H(1)

i (ξ)
)

aγ, j+1
i (ξ) +

κτ

2h2

6∑
i=1

H(2)
i (ξ)

(
aγ, j+1

i + aγ, ji

)
+
δτ

2h3

6∑
i=1

H(3)
i (ξ)

(
aγ, j+1

i + aγ, ji

)
+
ετ

2h4

6∑
i=1

H(4)
i (ξ)

(
aγ, j+1

i + aγ, ji

)
=

6∑
i=1

(
Hi(ξ) −

ητ

2h
H(1)

i (ξ)
)

aγ, ji (ξ) (4.5)

further rearranging the terms, Eq (4.5) can be written as:

6∑
i=1

(
Hi(ξ) +

ητ

2h
H(1)

i (ξ) +
κτ

2h2 H(2)
i (ξ) +

δτ

2h3 H(3)
i (ξ) +

ετ

2h4 H(4)
i (ξ)
)

aγ, j+1
i

=

6∑
i=1

(
Hi(ξ) −

ητ

2h
H(1)

i (ξ) −
κτ

2h2 H(2)
i (ξ) −

δτ

2h3 H(3)
i (ξ) −

ετ

2h4 H(4)
i (ξ)
)

aγ, ji

(4.6)

Now, assume aγ,nj = ρn exp (iµ j), where µ represents the mode number, ρ is the amplification factor,
and i =

√
−1, and substituting in Eq (4.6), one obtains:

6∑
p=1

Mp(ξ)ρ j+1 exp (ipµ) =
6∑

p=1

Np(ξ)ρ j exp (ipµ),

where

Mp(ξ) = Hp(ξ) +
ητ

2h
H(1)

p (ξ) +
κτ

2h2 H(2)
p (ξ) +

δτ

2h3 H(3)
p (ξ) +

ετ

2h4 H(4)
p (ξ),

Np(ξ) = Hp(ξ) −
ητ

2h
H(1)

p (ξ) −
κτ

2h2 H(2)
p (ξ) −

δτ

2h3 H(3)
p (ξ) −

ετ

2h4 H(4)
p (ξ).

(4.7)

It is clear from the structure of Mp(ξ) and Np(ξ) that | Np(ξ) |≤| Mp(ξ) |. Therefore,

| ρ |=|

∑6
p=1 Np(ξ) exp (ipµ)∑6
p=1 Mp(ξ) exp (ipµ)

| ≤ 1.

This implies that the given technique is unconditionally stable.

5. Numerical illustrations

The efficiency of any technique is incomplete if it does not study the error norms. Define the L2-
norm and L∞-norm as:
∥u∥∞ = maxζϵΩ . | u(ζ, t j) |,
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∥u∥2 =
√

h
∑m

k=0 u(ζk, t j)2.
∥e∥∞ = ∥unum − uexact∥∞,
∥e∥2 = ∥unum − uexact∥2.
GRE(t j) =

∑m
k=0 |uexact(ζk ,t j)−unum(ζk ,t j)|∑m

k=1 |uexact(ζk ,t j)|
where e represents the difference between exact and approximate solution, uexact is the exact solution,
and unum is the numerical approximation of the proposed problem with quintic Hermite splines. GRE
represents the global relative error.

Example 1. In this test problem, Eq (1.2) having the compact form of solution as:

u(ζ, t) = 15 − 15(tanh(c1(ζ − k1t − ζ̄)) + tanh2(c1(ζ − k1t − ζ̄)) − tanh3(c1(ζ − k1t − ζ̄))); (5.1)

is considered, where c1 =
1
2 ; k1 = 6; ζ̄ = −10.

The initial and the boundary conditions to approximate the solution are derived from the equation
(5.1). Different values of τ, h have been considered to analyze the problem. Figure 1 represents
the graphical behavior of the soliton solution generated by the proposed technique. Figures 2 and 3
represent the exact solution and the absolute error showing the agreement of the approximate solution.
Soliton solution behavior at different levels of time is represented in Figure 4, whereas Figures 5 and
6 depict the computed measures of error. The GRE and the ∥e∥2 both seem to decrease after T = 3,
ensuring the accuracy of the solution even after a large number of iterations. Computationally, the error
norms and GRE have been considered. In Table 2, the progress of GRE, ∥e∥2, and the ∥e∥∞ with respect
to time is studied. The effect of technique parameters like τ,m simultaneously on the approximation
are represented in the form of GRE, ∥e∥2 in Table 3. Considering τ = 0.0001, the behavior of GRE,
∥e∥2, and ∥e∥∞ is presented in Table 4. A comparative study of the GRE generated from the technique
with other methods is presented in Table 5. Clearly, the generated results are found to be better than
the existing ones.

Figure 1. The approximate solution behavior with τ = 0.001,m = 100 up to T = 4 for
example(1).
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Figure 2. The exact solution behavior for τ = 0.001,m = 100 up to T = 4 for example(1).

Figure 3. The absolute error with τ = 0.001,m = 100 up to T = 4 for example(1).
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Figure 4. The approximate solution at different time levels with τ = 0.001,m = 100 for
example(1).
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Figure 5. The GRE with τ = 0.001,m = 100 for example(1).
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Figure 6. The ∥e∥2 with τ = 0.001,m = 100 for example(1).

Table 2. Behavior of the computed GRE, ∥e∥2, and ∥e∥∞ with τ = 0.001,m = 100 for
example(1).

T GRE ∥e∥2 ∥e∥∞
0.5 8.04313e-06 1.43998e-04 1.22064e-04
1.0 1.36078e-05 2.44052e-04 1.91056e-04
1.5 1.79169e-05 3.12336e-04 2.39644e-04
2.0 2.05323e-05 3.52196e-04 2.65038e-04
2.5 2.19399e-05 3.67707e-04 2.70592e-04
3.0 2.20216e-05 3.62452e-04 2.61325e-04
3.5 2.09862e-05 3.39838e-04 2.50715e-04
4.0 1.90943e-05 3.03281e-04 2.32007e-04

Table 3. Behavior of the computed GRE and ∥e∥2 for different values of τ,m at T = 1
example(1).

m = 60 m = 80 m = 100
τ GRE ∥e∥2 GRE ∥e∥2 GRE ∥e∥2

0.01 1.39021e-03 3.14452e-02 1.33659e-03 2.72392e-02 1.36023e-03 2.43602e-02
0.001 1.58780e-05 3.64098e-04 1.35205e-05 2.75786e-04 1.36078e-05 2.44052e-04
0.0001 6.34182e-06 1.12855e-04 5.55149e-07 8.72604e-06 1.82577e-07 3.15424e-06
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Table 4. Behavior of the computed GRE, ∥e∥2, and ∥e∥∞ for τ = 0.0001,m = 80 at different
values T for example(1).

T=0.2 T=0.4 T=0.6 T=0.8 T=1.0
GRE 3.32031e-07 3.35650e-07 4.81134e-07 5.19877e-07 5.55149e-07
∥e∥2 7.75904e-06 7.59700e-06 8.74719e-06 1.03343e-05 8.72604e-06
∥e∥∞ 6.93918e-06 7.64722e-06 5.88548e-06 8.74518e-06 5.53721e-06

Table 5. Comparative study of the GRE with other methods at T = 1 for example(1).

QHSM Method in [10] Method [8] Method [11]
GRE 5.55149e-07 1.2184e-06 5.5060e-07 6.8261e-04 2.5945e-02 0.4075e-02
(m, τ) (80, 0.0001) (121, 0.0001) (600, 0.0001) (600, 0.0001)

Example 2. In this test problem, the KdV-Burgers equation corresponding to ε = 0 and α(u) = u is
considered in Eq (1.2), having the compact form of solution as:

u(ζ, t) = 2ρ +
2ρ

[1 + exp(2γ(ζ − ρt))]2 ; (5.2)

where γ = κ
10δ ; ρ =

6κ2

25δ .

For computational purpose, κ = −9 × 10−4, δ = 2 × 10−5 are chosen. The initial and the boundary
conditions to approximate the solution are derived from the Eq (5.2). The problem has been analyzed
for different values of τ, h. The shock wave profile of solution has been observed in Figures 7 and 8
for approximate and exact solution up to T = 200 with τ = 0.1,m = 50. The absolute error between
the approximate and exact solution is shown in Figure 9, which signifies that good accuracy has been
achieved in approximation. The progress of shock wave with respect to different levels of time T has
been studied in Figure 10, whereas Figures 11 and 12 represents the growth of GRE and the ∥e∥2 with
respect to time T . In Table 6, the computed behavior of GRE, ∥e∥2, and the ∥e∥∞ with respect to time
T , choosing τ = 0.1,m = 50 is shown. Comparison of the computed GRE with those available in [10]
and [44] has been studied in Table 7. The method proposed by [10] has studied the three values of GRE
as shown in Table 7 corresponding to the different technique parameters. Clearly, the approximation is
better with the proposed technique as compared to those available in [10] and [44].

AIMS Mathematics Volume 10, Issue 2, 2098–2130.



2111

Figure 7. The approximate solution behavior with τ = 0.1,m = 50 up to T = 200 for
example(2).

Figure 8. The exact solution behavior with τ = 0.1,m = 50 up to T = 200 for example(2).
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Figure 9. Graphical representation of absolute error with τ = 0.1,m = 50 up to T = 200 for
example(2).
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Figure 10. The approximate solution at different time levels with τ = 0.1,m = 50 for
example(2).
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Figure 11. The GRE with τ = 0.1,m = 50 for example(2).
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Figure 12. The ∥e∥2 with τ = 0.1,m = 50 for example(2).

Table 6. Variations in the GRE, ∥e∥2 and the ∥e∥∞ at different time levels with τ = 0.1,m = 50
for example(2).

T = 0.0 T = 50.0 T = 100.0 T = 150.0 T = 200.0
GRE 1.67409e-07 4.39441e-07 4.00091e-07 3.52208e-07 3.06519e-07
∥e∥2 1.45014e-08 2.13959e-08 2.11200e-08 2.00602e-08 1.87295e-08
∥e∥∞ 7.80192e-08 1.07259e-07 1.06128e-07 1.00410e-07 9.35236e-08
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Table 7. Comparative study of the GRE at different time levels for example(2).

Time QHSM Method in [10] Method [44]
50 4.39441e-07 8.143e-06 3.7744e-04 2.7880e-05 9.9928e-05

150 3.52208e-07 1.609e-05 7.5168e-04 6.3142e-05 9.3727e-05
250 2.64658e-07 2.097e-05 8.9492e-04 8.6739e-05 7.5330e-05

Example 3. In this problem, the Gardner equation as a special case of Eq (1.2) with α(u) = u − 5u2

and δ = 1, ε = 0 is considered with the compact form of solution is defined in [45] as:

u(ζ, t) =
1 − tanh(l1(ζ − t

30 ))
10

; (5.3)

where l1 =
√

30
60 .

The initial and the boundary conditions are derived from the Eq (5.3). The problem has been studied
for different values of τ and h. The kink-type behavior of the solution has been recorded. Figure 13
represents the exact solution, and Figure 14 represents the approximate solution computed with the
proposed technique. The agreement of both exact and approximate solutions at the fully discrete
temporal-spatial domain is plotted in Figure 15. As can be seen, the approximation accuracy is good.
GRE up to T = 15 has been plotted in Figure 16. Table 8 compares the GRE and ∥e∥∞ at different time
levels with the results given in [45]. For τ = 0.001 and m = 50 over the domain [−50, 50], the behavior
of GRE, ∥e∥2, and ∥e∥∞ with respect to time is shown in Table 9. The effect of τ,m at T = 1 on the
approximation is studied in Table 10 by GRE, ∥e∥2, and the ∥e∥∞. It can be observed that the decrement
in τ does not affect the accuracy of approximation very much for this problem, whereas the changes in
m, i.e., decrement in h, improve the accuracy.

Figure 13. Behavior of exact solution with τ = 0.1,m = 150 up to T = 15 for example(3).
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Figure 14. Behavior of approximate solution with τ = 0.1,m = 150 up to T = 15 for
example(3).

Figure 15. Behavior of absolute error with τ = 0.1,m = 150 up to T = 15 for example(3).
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Figure 16. Behavior of GRE with τ = 0.1,m = 150 for example(3).

Table 8. Comparison of the GRE and ∥e∥∞ at different time levels with τ = 0.1 for
example(3).

(−80, 80), h = 0.1 [45] (−50, 50), h = 2/3 QHSM
T GRE ∥e∥∞ GRE ∥e∥∞

0.1 5.1442e–05 2.9570e–05 2.56737e-06 1.54318e-06
0.2 1.0288e–04 5.9142e–05 5.13375e-06 3.08546e-06
0.5 2.5720e–04 1.4786e–04 1.28284e-05 7.70678e-06
1.0 5.1438e–04 2.9575e–04 2.56404e-05 1.53906e-05
2.0 1.0287e–03 5.9159e–04 5.12174e-05 3.06882e-05
5.0 2.5709e–03 1.4796e–03 1.27622e-04 7.60006e-05

10.0 5.1393e–03 2.9610e–03 2.53991e-04 1.50160e-04
15.0 7.7049e–03 4.4434e–03 3.78659e-04 2.23088e-04

AIMS Mathematics Volume 10, Issue 2, 2098–2130.



2117

Table 9. Comparison of the GRE, ∥e∥2, and ∥e∥∞ at different time levels with τ = 0.001 and
m = 50 over the domain [−10, 10] for example(3).

T GRE ∥e∥2 ∥e∥∞
0.1 1.03570e-05 4.12075e-06 4.31948e-06
0.2 1.95358e-05 7.12038e-06 6.28697e-06
0.3 2.83276e-05 9.94701e-06 8.06467e-06
0.4 3.68442e-05 1.26925e-05 9.52461e-06
0.5 4.52817e-05 1.53896e-05 1.07819e-05
0.6 5.37134e-05 1.80543e-05 1.18964e-05
0.7 6.20710e-05 2.06954e-05 1.29036e-05
0.8 7.03345e-05 2.33184e-05 1.38266e-05
0.9 7.85132e-05 2.59272e-05 1.46813e-05
1.0 8.66148e-05 2.85242e-05 1.54795e-05

Table 10. Behavior of the computed GRE and ∥e∥2 for different values of τ,m at T = 1
example(3).

τ = 0.1 τ = 0.01 τ = 0.001
m GRE ∥e∥2 GRE ∥e∥2 GRE ∥e∥2
20 1.04710e-04 5.65792e-05 1.04564e-04 5.64584e-05 1.04558e-04 5.64530e-05
40 9.04729e-05 3.32377e-05 9.04346e-05 3.32206e-05 9.04362e-05 3.32212e-05
60 8.39552e-05 2.53352e-05 8.39589e-05 2.53319e-05 8.39594e-05 2.53320e-05

Example 4. In this test problem, Eq (1.2) is considered with the following initial function as :

u(ζ, 0) = sech2(ζ). (5.4)

The boundary conditions, in this case, are homogeneous. The problem has been studied for different
values of dispersion and dissipation parameters. KdV-Burgers equation for the case ε = 0 has been
analyzed for different values of κ, δ. In Figure 17 to Figure 20, the solution behavior has been
presented concerning the impact of dispersive and diffusive parameters. Further, the combined effect
of dissipative, dispersive, and diffusive parameters has been presented from Figure 21 to Figure 26.
It has been observed from Figure 21 to Figure 23 that for κ = δ = 1, as the values of ε decrease
from 1 to 0.1, more waves arise with rising amplitudes. The simultaneous decrement in the values of
dispersive and dissipative parameters has been presented from Figure 24 to Figure 26. The dispersive
parameter increases the peaks of the traveling wave. ∥u∥2-norm has also been studied corresponding
to dissipative, dispersive, and diffusive parameters. In Table 11, ε = 0, i.e., dissipation is zero, with
decreasing values of dispersive parameter, a slight decrement in the ∥u∥2-norm has been observed, but
in the simultaneous decrement in the diffusive and dispersive parameter, the ∥u∥2-norm increases as for
κ = 0.1, δ = 0.01. In Table 12, the effects of dissipation and dispersion parameters are observed. It
is observed that with decreasing ε as well as δ, the ∥u∥2-norm decreases. The effect of decreasing ε is
greater as compared to decreasing δ as for κ = 1, δ = 1, ε = 0.1 and κ = 1, δ = 0.1, ε = 0.1.
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Figure 17. Behavior of solution for KdV-Burgers equation with τ = 0.01,m = 60 κ = 1, δ =
1, ε = 0 at T = 1 for example(4).
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Figure 18. Behavior of solution for KdV-Burgers equation with τ = 0.01,m = 60 κ = 1, δ =
0.1, ε = 0 at T = 1 for example(4).
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Figure 19. Behavior of solution for KdV-Burgers equation with τ = 0.01,m = 60 κ = 1, δ =
0.01, ε = 0 at T = 1 for example(4).
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Figure 20. Behavior of solution for KdV-Burgers equation with τ = 0.01,m = 60 κ =

0.1, δ = 0.01, ε = 0 at T = 1 for example(4).
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Figure 21. Behavior of solution with τ = 0.01,m = 60 for κ = 1, δ = 1, ε = 1 at T = 1 for
example(4).
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Figure 22. Behavior of solution with τ = 0.01,m = 60 for κ = 1, δ = 1, ε = 0.5 at T = 1 for
example(4).
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Figure 23. Behavior of solution with τ = 0.01,m = 60 for κ = 1, δ = 1, ε = 0.1 for
example(4).
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Figure 24. Behavior of solution with τ = 0.01,m = 60 for κ = 1, δ = 0.1, ε = 0.1 at T = 1
for example(4).
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Figure 25. Behavior of solution with τ = 0.01,m = 60 for κ = 1, δ = 0.01, ε = 0.1 at T = 1
for example(4).
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Figure 26. Behavior of solution with τ = 0.01,m = 60 for κ = 1, δ = 0.001, ε = 0.1 at T = 1
for example(4).
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Table 11. ∥u∥2-norm of solution with ε = 0,m = 60, τ = 0.01 at different time levels
corresponding to different values of dispersive and diffusive parameter for Example(4).

T κ = 1, δ = 1 κ = 1, δ = 0.1 κ = 1, δ = 0.01 κ = 0.1, δ = 0.01
0.1 8.40703e-01 8.40328e-01 8.40283e-01 9.04870e-01
0.2 7.90226e-01 7.89165e-01 7.89035e-01 8.96166e-01
0.3 7.52279e-01 7.50564e-01 7.50339e-01 8.88426e-01
0.4 7.22137e-01 7.19875e-01 7.19571e-01 8.81362e-01
0.5 6.97291e-01 6.94586e-01 6.94218e-01 8.74355e-01
0.6 6.76256e-01 6.73194e-01 6.72778e-01 8.66902e-01
0.7 6.58087e-01 6.54735e-01 6.54282e-01 8.58849e-01
0.8 6.42143e-01 6.38557e-01 6.38075e-01 8.50398e-01
0.9 6.27975e-01 6.24197e-01 6.23694e-01 8.41958e-01
1.0 6.15252e-01 6.11318e-01 6.10798e-01 8.33964e-01

Table 12. ∥u∥2-norm of solution with m = 60, τ = 0.01 at different time levels corresponding
to different values of dissipative, dispersive, and diffusive parameter for Example(4).

T κ = 1, δ = 1, ε = 1 κ = 1, δ = 1, ε = 0.1 κ = 1, δ = 0.1, ε = 0.1
0.1 8.60531e-01 9.85949e-01 9.85910e-01
0.2 8.50180e-01 1.07531e+00 1.07611e+00
0.3 8.48737e-01 1.18531e+00 1.18951e+00
0.4 8.51420e-01 1.32073e+00 1.33185e+00
0.5 8.56547e-01 1.48838e+00 1.50958e+00
0.6 8.63337e-01 1.69730e+00 1.72957e+00
0.7 8.71363e-01 1.95902e+00 1.99856e+00
0.8 8.80373e-01 2.28594e+00 2.32238e+00
0.9 8.90203e-01 2.69147e+00 2.70449e+00
1.0 9.00744e-01 3.19668e+00 3.14350e+00

Example 5. In this test problem, the KdV equation is considered as a special case of Eq (1.2) with the
initial function as:

u(ζ, 0) = sech(ζ − 1) + sech(ζ − 5). (5.5)

The problem has been analyzed for the long-time behavior. Also, the effect of domain range has
been considered. For time direction, the behavior of the solution from a small time range as in Figure
27 to long-time behavior of the traveling wave as in Figure 30 is examined. For spatial direction,
the domain has been extended from (−10, 10) to (−60, 60) and the effect is noticed correspondingly.
Different values of τ and m have been considered to analyze the solution for the long-time domain as
well as the wider spatial domain. The decreasing wave amplitude has been presented in Figures 28, 29,
and 30 for the time and spatial domain. The computed values of ∥u∥2-norm are presented in Table 13
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and Table 14. The effect of the domain and τ on the ∥u∥2-norm at large time levels is studied in Table
13 whereas Table 14 represents the ∥u∥2-norm at small time. At the higher times, the ∥u∥2-norm seems
to decrease irrespective of the domain.

Figure 27. Short time solution behavior of KdV problem with τ = 0.001 for Example(5).
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Figure 28. Solution behavior of KdV problem with τ = 0.001,m = 80 for Example(5).
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Figure 29. Solution behavior of KdV problem with τ = 0.01,m = 80 for Example(5).
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Figure 30. Solution behavior of KdV problem with τ = 0.1,m = 120 for Example(5).
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Table 13. Analysis of ∥u∥2-norm of solution at large time with respect to different domains
and τ for Example(5).

[−10, 10], m = 32 [−80, 80],m = 120
T τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01

1.0 1.58154e+00 1.58086e+00 2.30914e+00 2.30864e+00
2.0 1.50089e+00 1.49863e+00 2.19113e+00 2.18786e+00
3.0 1.40173e+00 1.39957e+00 2.05341e+00 2.04994e+00
4.0 1.31101e+00 1.30842e+00 1.93585e+00 1.93317e+00
5.0 1.07170e+00 1.07111e+00 1.84143e+00 1.83951e+00
6.0 9.02970e-01 9.02843e-01 1.76509e+00 1.76372e+00
7.0 7.85945e-01 7.85855e-01 1.70193e+00 1.70094e+00
8.0 6.96921e-01 6.96838e-01 1.64863e+00 1.64789e+00
9.0 6.26110e-01 6.26044e-01 1.60286e+00 1.60230e+00
10.0 5.68453e-01 5.68406e-01 1.56297e+00 1.56254e+00

Table 14. Analysis of ∥u∥2-norm of solution at small time with respect to different domains
and τ for Example(5).

[−10, 10], m = 32 [−80, 80],m = 120
T τ = 0.1 τ = 0.01 τ = 0.01 τ = 0.001

0.1 1.65461e+00 1.65459e+00 2.41704e+00 2.41700e+00
0.2 1.63646e+00 1.63644e+00 2.39009e+00 2.39006e+00
0.3 1.62500e+00 1.62498e+00 2.37331e+00 2.37329e+00
0.4 1.61662e+00 1.61661e+00 2.36111e+00 2.36110e+00
0.5 1.60984e+00 1.60983e+00 2.35114e+00 2.35113e+00
0.6 1.60388e+00 1.60388e+00 2.34236e+00 2.34235e+00
0.7 1.59827e+00 1.59827e+00 2.33412e+00 2.33411e+00
0.8 1.59269e+00 1.59269e+00 2.32595e+00 2.32595e+00
0.9 1.58694e+00 1.58693e+00 2.31754e+00 2.31753e+00
1.0 1.58086e+00 1.58086e+00 2.30864e+00 2.30863e+00

6. Conclusions

In this study, higher-order nonlinear dispersive dissipative partial differential equations have been
studied. The computational study has been conducted using a hybrid technique comprising a weighted
finite difference scheme followed by a collocation method using quintic Hermite splines. The main
focus of the present study is toward the traveling wave solution exhibited by the dispersive-dissipative
systems. The simultaneous impact of the dispersive-dissipative process, dominating the dispersive
process over the dissipative process and vice-versa, has been studied thoroughly.
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It is observed that the dominance of dispersion raises the nonlinear waves, whereas the dominance
of the dissipative process raises the amplitude of nonlinear waves without dispersion, as studied in
Figure 21 to Figure 26. Also, it has been studied that as the dispersion parameter, i.e., δ decreases, the
nonlinear waves disappear and make the amplitude higher with the sharp peak, as studied from Figure
24 to Figure 26.

Soliton solution, shock wave solution, and Kink-type solution have also been studied with good
approximation accuracy. The stability analysis and the convergence analysis of the adopted technique
have also been studied. The computed results show that the applied technique gives fruitful results
in studying the traveling wave behavior of nonlinear systems. A comparative study of the computed
results with those available in the literature presents the accuracy and efficiency of the technique as
well. A good accuracy has been achieved for the small number of partitions in the space as well as in
the time direction.
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