
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(2): 2083–2097.
DOI: 10.3934/math.2025098
Received: 17 October 2024
Revised: 03 January 2025
Accepted: 17 January 2025
Published: 08 February 2025

Research article

Parameter estimation in the Farlie–Gumbel–Morgenstern bivariate Bilal
distribution via multistage ranked set sampling

S. P. Arun1,∗, M. R. Irshad2, R. Maya2, Amer I. Al-Omari3,∗ and Shokrya S. Alshqaq4

1 Kerala University Library, Research Centre, University of Kerala, Thiruvananthapuram 695034,
India

2 Department of Statistics, Cochin University of Science and Technology, Cochin 682 022, Kerala,
India; irshadmr@cusat.ac.in, publicationsofmaya@gmail.com

3 Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq 251113, Jordan
4 College of Science, Jazan University, P.O.Box. 114, Jazan 45142, Kingdom of Saudi Arabia;

salshekak@jazanu.edu.sa

* Correspondence: Email: arunsptvm@gmail.com, alomari amer@yahoo.com.

Abstract: Ranked set sampling is a well-known and efficient method compared to simple random
sampling for estimating population parameters. In this study, we focus on the challenge of estimating
the scale parameter of the primary variable Z using a multistage ranked set sample obtained by ordering
the marginal observations of an auxiliary variable W, where the pair (W,Z) follows the Farlie–Gumbel–
Morgenstern bivariate Bilal distribution. Assuming that the dependence parameter ϕ is known, we
introduce the best linear unbiased estimator for the scale parameter of the primary variable, utilizing a
multistage ranked set sample. We also compare the efficiency of the proposed estimator with that of
the maximum likelihood estimator based on the same number of measured units. It is found that the
suggested estimators are more efficient than the classical estimators considered in this study.
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1. Introduction

In 2013, [1] introduced a new lifetime distribution of one parameter, known as the Bilal distribution.
The Bilal distribution is derived as a member of the family of distributions for the median of a random
sample drawn from an exponential distribution. The cumulative distribution function (cdf) of the Bilal
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distribution with the scale parameter σ is given by:

F(x;σ) = 1 − e−
2x
σ

(
3 − 2e−

x
σ

)
; σ > 0, x ≥ 0. (1.1)

The corresponding probability density function (pdf) is defined by:

f (x;σ) =
6
σ

e−
2x
σ

(
1 − e−

x
σ

)
; σ > 0, x ≥ 0, (1.2)

with survival function given by:

S (x;σ) = e−
2x
σ

(
3 − 2e−

x
σ

)
; σ > 0, x ≥ 0.

The Bilal distribution exhibits lower skewness and kurtosis compared to the exponential distribution
and belongs to the class of distributions characterized as new, better than used in failure rates. Despite
having only one parameter, the Bilal distribution demonstrates a strong capacity to fit two distinct real-
world data sets: the first comprising 30 consecutive precipitation measurements (in inches) provided
by [2], and the second consisting of waiting times before service for 100 bank customers, as reported
by [3]. The closed-form expressions for all its statistical properties, includes key functions such as the
quantile function, the hazard rate function (HRF), and a simple expression for the moments attracted
several researchers and developed its various extensions. Abd-Elrahman and Niazi [4] proposed
various estimators of the parameter for the Bilal distribution based on using Type-2 censored sample.
To address the unimodal HRF of the Bilal distribution, Abd-Elrahman [5] proposed a two-parameter
generalization referred to as the general Bilal distribution. A three-parameter generalization, called
the Harris extended Bilal distribution was introduced, by [6], and its various properties have been
discussed. Irshad et al. [7] proposed the Marshal–Olkin Bilal distribution, its applications in statistical
process control, and the associated minification process. The proficiency of the univariate Bilal
distribution has been firmly established in the literature, demonstrating its superiority over competing
models in both theoretical and applied perspectives.

Maya et al. [8] introduced a bivariate version of the one-parameter Bilal distribution using
the Morgenstern framework, called the Farlie–Gumbel–Morgenstern bivariate Bilal distribution
(FGMBBD), and studied its inferential aspects based on concomitants of order statistics (COS). The
pdf of FGMBBD is expressed as follows:

f (w, z) =



36
σ1σ2

e−
2w
σ1

(
1 − e−

w
σ1

)
e−

2z
σ2

(
1 − e−

z
σ2

)
×

[
1 + ϕ

(
2e−

2w
σ1

{
3 − 2e−

w
σ1

}
− 1

) (
2e−

2z
σ2

{
3 − 2e−

z
σ2

}
− 1

)]
,

w > 0, z > 0;σ1 > 0, σ2 > 0;−1 ≤ ϕ ≤ 1.
0, otherwise.

(1.3)

Figure 1 presents 3D plots of the FGMBBD pdf for various parameter values. We can see that the
distribution has many shapes depending on the parameters values.
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(a) σ1 = 2, σ2 = 3, ϕ = 0.5 (b) σ1 = 5, σ2 = 2, ϕ = −0.5

Figure 1. 3D plots of the FGMBBD pdf for several values of the parameters.

Arun et al. [9] evaluated the performance of the FGMBBD in comparison to the well-known FGM
bivariate exponential distribution using two real-world data sets. The first data set, sourced from [10],
consists of mineral content measurements in the dominant ulna (X) and non-dominant ulna (Y) of 25
elderly women. The second data set, also from [10], includes tail length (X) and wing length (Y)
measurements in millimeters for a sample of 45 female hook-billed kites.

The marginal distributions of the variables W and Z are univariate Bilal distributions, with their
respective pdf’s given by:

fW(w) =
6
σ1

e−
2w
σ1

(
1 − e−

w
σ1

)
; i f σ1 > 0, w ≥ 0,

and
fZ(z) =

6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

)
; i f σ2 > 0, z ≥ 0. (1.4)

Clearly, E(W) = 5
6σ1,Var(W) = 13

36σ
2
1,

E(Z) =
5
6
σ2, (1.5)

and
Var(Z) =

13
36
σ2

2. (1.6)

Note that the mean and variance values of Z depend on σ2. The ranked set sampling (RSS)
method, originally developed by [11], is designed to improve the precision of the sample mean as
an estimator of the population mean. In this approach, a total of n sets of units, each containing n
units, are selected. The units within each set are ordered using a judgmental method or a cost-effective
technique that does not involve actual measurements of the selected observations. Subsequently, the
unit ranked first in the first set is measured, followed by the unit ranked second in the second set, and
this process continues until the unit ranked n largest in the n-th set is measured. The observations
obtained through this process form a ranked set sample (rss) of size n. Hence, we only measured n rss
units: X1(1:n), X2(2:n), . . . , Xn(n:n), which are obtained from n2 units. For simplicity, we will use X(i:n) to
denote the rss units.
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Let the random variable (rv) X have a pdf f (x) and cdf F(x), with mean µ and variance σ2. Consider
a simple random sample (srs) of size n, denoted as X1,X2,. . . ,Xn. Let X j(i:n) represent the ith largest unit
in a set of size n in the jth sample. Takahasi and Wakimoto [12] demonstrated that the rss estimator of
the population mean, when based on perfect ranking, is unbiased and outperforms the estimator based
on srs because it has a lower variance. The mean estimators based on srs and rss are, respectively given

by: X̄S RS =
1
n

n∑
i=1

Xi, and X̄RS S =
1
n

n∑
i=1

X(i:n), with respective variances given by Var
(
X̄S RS

)
=
σ2

n
, and

Var
(
X̄RS S

)
=
σ2

n
−

1
n2

n∑
i=1

(
µ(i:n) − µ

)2, where µ(i:k) =

∞∫
−∞

x f(i:k)(x)dx. Clearly, Var
(
X̄RS S

)
≤ Var

(
X̄S RS

)
.

Stokes [13] introduced an alternative RSS scheme designed for situations where the primary
variable of interest, denoted as Z, is challenging to measure directly, while an auxiliary variable, W,
which is correlated with Z can be easily measured. The process involves selecting n independent
bivariate sets, each containing n units. In the first set, the Z variable corresponding to the smallest
ordered W is measured, followed by the Z variable associated with the second smallest W in the
second set, and so on, until the Z variable corresponding to the largest W in the n-th set is measured.
The resulting measurements on the Z variable from this new set of n units, selected according to
the described method, constitute a rss, as proposed by [13]. Let W(i:n)i represent the observation on
the auxiliary variable W from the unit obtained from the i-th set represent Z[i:n]i is used to denote
the corresponding measurement of the study variable Z for that unit. Thus, Z[i:n]i for i = 1, 2, . . . , n,
collectively constitutes the rss of size n. David and Nagaraja [14] mentioned Z[i:n]i as the concomitant
variable of the i-th order statistic obtain from the i-th sample. Using Stoke’s procedure of RSS, [15]
proposed estimators of the scale parameter associated with the Z variable, when (W,Z) follows the
FGMBBD.

Suppose that the bivariate random vector (W,Z) follows the FGMBBD with pdf given in (1.3).
Draw a rss using [13] scheme. Let W(i:n)i represent the observation obtained on the auxiliary variate W
from the ith unit of the rss, and let Z[i:n]i denote the corresponding measurement of the variable related
to W(i:n)i, i = 1, 2, · · · , n. Hence, Z[i:n]i is the ith COS of a random sample of size n drawn from the
FGMBBD, with pdf given by (see, [8]) as:

f[i:n](z) =
6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

) [
1 + ϕ

(n − 2i + 1)
(n + 1)

(
2e−

2z
σ2

{
3 − 2e−

z
σ2

}
− 1

)]
. (1.7)

Figure 2 shows 3D plots of the f[i:n](z) for some choices of n = 10, i = 1, 10, ϕ = −0.9, 0.9. The
figure reflects the effect of these selections on the shape of this function.
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(a) n = 10, i = 1, ϕ = −0.9 (b) n = 10, i = 10, ϕ = −0.9

(c) n = 10, i = 1, ϕ = 0.9 (d) n = 10, i = 10, ϕ = 0.9

Figure 2. 3D plots of the function f[i:n](z) of the FGMBBD with 2 ≤ σ2 ≤ 5.

The mean and variance of Z[i:n]i for i = 1, 2, · · · , n, are obtained as

E[Z[i:n]i] = σ2

[
5
6
−

19
60
ϕ

(n − 2i + 1)
(n + 1)

]
, (1.8)

and

Var[Z[i:n]i] = σ2
2

[
13
36
−

253
1800

ϕ
(n − 2i + 1)

(n + 1)
−

361
3600

ϕ2 (n − 2i + 1)2

(n + 1)2

]
. (1.9)

Since, Z[i:n]i and Z[ j:n] j for i , j are arising from two independent samples, we obtain

Cov[Z[i:n]i,Z[ j:n] j] = 0, i , j.

Al-Saleh and Al-kadiri [16] extended McIntyre’s [11] concept of RSS, by introducing the double-
stage ranked set sampling (DSRSS). Their findings affirmed that estimators based on the DSRSS
scheme exhibit greater efficiency in estimating population parameters compared to those based on
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both RSS and simple random sampling (SRS) schemes based on the same number of measured units.
In a subsequent work, Al-Saleh and Al-Omari [17] extended the DSRSS to the multistage ranked set
sampling (MSRSS) and demonstrated an increase in the precision of MSRSS estimators compared
to both DSRSS and RSS estimators without needing to increase the sample size. Al-Saleh [18]
introduced the concept of steady-state RSS and its corresponding parametric inference. Jemain and Al-
Omari [19,20] proposed multistage percentile and quartile RSS methods for estimating the population
mean. Jemain [21] suggested multistage median RSS for estimating the population median. For a
deeper exploration of RSS and its variations, refer to [22], [23] for the varied L RSS method, [24]
for an analysis of generalized robust-regression-type estimators under different RSS methods, and [25]
for research on estimating a decreasing mean residual life based on RSS, with applications to survival
analysis. Zamanzade et al. [26] considered nonparametric estimation of the mean residual lifetime in
RSS with a concomitant variable. Zamanzade et al. [27] considered a ranked-based estimator of the
mean past lifetime.

The aforementioned generalizations of RSS play a crucial role in developing inferential aspects of
parent bivariate distributions in both theoretical and applied perspectives. Consequently, the objectives
of this study are as follows:
(1) To identify the unit that has maximum Fisher information (FI) when ϕ is positive and negative.
(2) Building on the insights from the FI, we define the MSRSS and a steady-state RSS. Using these
methodologies, we estimate the scale parameter associated with the study variable Z.
(3) To compare the efficiency of the proposed estimator based on MSRSS and steady-state RSS with
the maximum likelihood estimator (MLE).

The rest of this paper is structured as follows. The FI included in the concomitant of a specific
order statistic from a random sample arising from a distribution provides essential insight for selecting
the most warranted unit(s) from a group of units to establish an appropriate RSS. Thus, the FI
about the parameter σ2, included in the concomitant of the ith order statistic from a random sample
of size n drawn from the FGMBBD, has been derived and is presented in Section 2. As per the
knowledge disseminated from the FI, we have identified that for the FGMBBD, the maximum amount
of information about the parameter σ2 is contained in the concomitant of the largest order statistic or
the concomitant of the smallest order statistic, according as ϕ is positive or negative. Accordingly, we
define an MSRSS in Section 2 and used its observations to introduce the best linear unbiased estimator
(BLUE) of σ2 when the dependence parameter ϕ is positive and negative. Here, we have additionally
obtained the efficiency of the estimator of σ2 based on the MSRSS and compared it with the MLE of
σ2. In Section 3, we proposed BLUE of σ2 based on steady-state RSS and compared the efficiency of
the same with respect to the MLE of σ2. The article concludes in Section 4 with some suggestions for
future works.

2. Estimation of σ2 using MSRSS

Here, we define the MSRSS and propose the BLUE of σ2 when ϕ is positive and negative based on
observations generated by the MSRSS. The MSRSS at r stages (see, [17]) is defined as follows:
(1) Randomly select nr+1 sample units from the target population, where r denotes the number of stages
in the MSRSS process. These selected units are then randomly divided into nr−1 sets, each containing
n2 units.
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(2) For each set from Step 1, adopt Stoke’s RSS scheme, to obtain an RSS of size n. This step results
in nr−1 ranked sets, each of size n.
(3) Randomly organize the nr−1 ranked sets, each of size n obtained from Step 2, into nr−2 sets, each of
size n2. Without performing any actual measurements, apply the RSS scheme to each of the nr−2 sets
to produce nr−2 second-stage ranked sets, each of size n.
(4) The process continues, without conducting any actual measurements, until we obtain an rth stage
ranked set of size n.
(5) Finally, the n identified units from Step 4 are actually quantified for the variable of interest.

To identify the most suitable unit from a group of units for measurements, we derive the FI regarding
the scale parameter σ2 found in the concomitant of the ith order statistic from the FGMBBD.

The pdf of the concomitant of the ith order statistic given in (1.7) can be written as:

f[i:n](z) =
6
σ2

e
−2z
σ2 (1 − e

−z
σ2 )

[
d + 2(1 − d)e

−2z
σ2 (3 − 2e

−z
σ2 )

]
,

where d = d(ϕ, i, n) = 1 − ϕ (n−2i+1)
(n+1) . By taking the logarithm, and then the first derivative partially with

respect to σ2, we obtain:

∂ log f[i:n](z)
∂σ2

=
1
σ2

−1 +
2z
σ2
−

ze
−z
σ2

σ2(1 − e
−z
σ2 )
+

12(1 − d)ze
−2z
σ2 (1 − e

−z
σ2 )

σ2{d + 2(1 − d)e
−2z
σ2 (3 − 2e

−z
σ2 )}

 .
Thus, (

∂ log f[i:n](z)
∂σ2

)2

=
1
σ2

2

[
−1 + 2u −

ue−u

(1 − e−u)
+

12(1 − d)ue−2u(1 − e−u)
{d + 2(1 − d)e−2u(3 − 2e−u)}

]2

,

where u = z
σ2

. The pdf of the transformed rv U = Z
σ2

is obtained by

g(u) = 6e−2u(1 − e−u)
[
d + 2(1 − d)e−2u(3 − 2e−u)

]
.

Then, the FI about the parameter σ2 contained in the concomitant of the ith order statistic is
given by:

Jσ2(Z[i:n], ϕ) = E
(
∂ log f[i:n](Z)

∂σ2

)2

= σ2
−2q(d),

where

q(d) =

∞∫
0

[
−1 + 2u −

ue−u

(1 − e−u)
+

12(1 − d)ue−2u(1 − e−u)
{d + 2(1 − d)e−2u(3 − 2e−u)}

]2

×6e−2u(1 − e−u)
[
d + 2(1 − d)e−2u(3 − 2e−u)

]
du. (2.1)

Now, fix ϕ > 0. Since, d = 1 − ϕ (n−2i+1)
(n+1) , i = 1, 2, · · · , n, the values of d lie in the interval 0 ≤ 1 − ϕ ≤

d ≤ 1 + ϕ ≤ 2. A graph of the q(d) on the interval 0 ≤ 1 − ϕ ≤ d ≤ 1 + ϕ ≤ 2 is presented in Figure 3.
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Figure 3. Graph of the function q(d).

From the graph, it is easily observed that the maximum value of the q(d) reaches at the upper
extreme point of d, that is when i = n. Thus, one can conclude that when ϕ > 0, the maximum
FI is obtained in the concomitants of the largest order statistic. Hence, we consider the estimator
based on the concomitants of the largest order statistic. Since d(ϕ, i, n) = d(−ϕ, n − i + 1, n), we have
Jσ2(Z[i:n], ϕ) = Jσ2(Z[n−i+1:n],−ϕ). Hence ϕ < 0, the maximum FI is obtained in the concomitants of the
smallest order statistic.

By assuming that the rv (W,Z) has a FGMBBD with pdf given in (1.3), where Z is the variable
of primary interest and W is an auxiliary variable, in this section first we consider ϕ > 0 and carry
out a MSRSS based on measurements made on an auxiliary variate to choose the rss to estimate σ2

contained in FGMBBD based on the measurements made on the variable of primary interest. At each
stage, from each set, we select the unit with the highest value on the auxiliary variable as the units of
the ranked sets, aiming to maximize the FI about σ2 for the final chosen rss.

Let X(r)
i , i = 1, 2, · · · , n be the MSRSS units chosen at the rth stage. Since, the actual measurement

of the auxiliary variable on each unit X(r)
i , i = 1, 2, · · · , n has the largest value, we can write Z(r)

[n:n]i as
the value measured on the variable of the primary interest to X(r)

i , i = 1, 2, · · · , n. Thus, easily one
can verify that Z(r)

[n:n]i is the same as that of Z[nr:nr], the concomitant of the largest order statistic of nr

independent and identically distributed bivariate rvs from the FGMBBD. Also, Z(r)
[n:n]i, i = 1, 2, · · · , n

are independently distributed with a pdf given by:

f (r)
[n:n]i(z; ϕ) =

6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

) [
1 + ϕ

(
nr − 1
nr + 1

) (
1 − 2e−

2z
σ2

{
3 − 2e−

z
σ2

})]
. (2.2)

Thus, the mean and variance of Z(r)
[n:n]i, i = 1, 2, · · · , n are obtained as:

E[Z(r)
[n:n]i] = σ2

[
5
6
+

19
60
ϕ

(
nr − 1
nr + 1

)]
, (2.3)

and

Var[Z(r)
[n:n]i] = σ

2
2

13
36
+

253
1800

ϕ

(
nr − 1
nr + 1

)
−

361
3600

ϕ2
(
nr − 1
nr + 1

)2 . (2.4)

If we write

ζnr =
5
6
+

19
60
ϕ

(
nr − 1
nr + 1

)
, (2.5)
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and

ψnr =
13
36
+

253
1800

ϕ

(
nr − 1
nr + 1

)
−

361
3600

ϕ2
(
nr − 1
nr + 1

)2

. (2.6)

Then, for i ≤ i ≤ n, (2.3) and (2.4) can be written as:

E[Z(r)
[n:n]i] = σ2ζnr , (2.7)

and
Var[Z(r)

[n:n]i] = σ
2
2ψnr . (2.8)

Since Z(r)
[n:n]i and Z(r)

[n:n] j (for i , j) are measurements on Z made from two units involved in two
independent samples, we have

Cov(Z(r)
[n:n]i,Z

(r)
[n:n] j) = 0, for i , j. (2.9)

Assume that Z(r)
[n,n] = (Z(r)

[n:n]1,Z
(r)
[n:n]2, · · · ,Z

(r)
[n:n]n)′. Then, by using (2.7), we obtain the mean vector of

Z(r)
[n,n] as:

E[Z(r)
[n,n]] = σ2ζnr 1, (2.10)

and by using (2.8) and (2.9), the dispersion matrix of Z(r)
[n,n] can be obtained as:

D[Z(r)
[n,n]] = σ

2
2ψnr I, (2.11)

where 1 is a column vector of n ones and I is a unit matrix of order n. If ϕ > 0 is involved in ζnr and
ψnr , then (2.10) and (2.11) together defines a generalized Gauss–Markov setup, and hence the BLUE
of σ2 is obtained as:

σ̃n(r)
2 =

1
nζnr

n∑
i=1

Z(r)
[n:n]i, (2.12)

and its variance is obtained as
Var(σ̃n(r)

2 ) =
ψnr

n(ζnr )2σ
2
2. (2.13)

If we take r = 1 in the MSRSS method elucidated above, in this case, we get the usual single-stage
RSS. Hence, the BLUE σ̃n(1)

2 of σ2 is given by

σ̃n(1)
2 =

1
nζn

n∑
i=1

Z[n:n]i, (2.14)

with variance given by

Var(σ̃n(1)
2 ) =

ψn

n(ζn)2σ
2
2, (2.15)

where we write Z[n:n]i instead of Z(1)
[n:n]i that represents the measurement of the variable of primary

interest of the unit selected by the RSS. Also, ζn and ψn obtained by putting r = 1 in (2.5) and (2.6),
respectively. Irshad et al. [15] computed the asymptotic variance of the MLE σ̂2 of σ2. Using those
values, we have evaluated the ratio e(σ̃n(1)

2 |σ̂2) = Var(σ̂2)
Var(σ̃n(1)

2 )
for ϕ = 0.25(0.25)1; n = 2(2)20 as a measure
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of the efficiency of our estimator σ̃n(1)
2 compared to the MLE σ̂2 based on n observations and the results

are given in Table 1. From the table one can see that the efficiency increases with increases in ϕ and n.
For example, when ϕ = 0.5 and n = 2, 8, we have σ̃n(1)

2 = 1.0596 and 1.1773, respectively. Also, for
n = 6 and ϕ = 0.25, 1, the efficiency values are σ̃n(1)

2 = 1.0720 and 1.3580, respectively. However, it is
clear that there is not much difference in the efficiency values for negative and positive values of ϕ.

Table 1. Efficiencies of the estimators σ̃n(1)
2 and σ̃1(1)

2 relative to σ̂2 of σ2.
n ϕ e(σ̃n(1)

2 |σ̂2) ϕ e(σ̃1(1)
2 |σ̂2)

0.25 1.0302 -0.25 1.0302

2 0.50 1.0596 -0.50 1.0596

0.75 1.0863 -0.75 1.0863

1.00 1.1026 -1.00 1.1030

0.25 1.0588 -0.25 1.0588

4 0.50 1.1259 -0.50 1.1259

0.75 1.1989 -0.75 1.1989

1.00 1.2702 -1.00 1.2710

0.25 1.0720 -0.25 1.0720

6 0.50 1.1577 -0.50 1.1577

0.75 1.2563 -0.75 1.2563

1.00 1.3580 -1.00 1.3600

0.25 1.0800 -0.25 1.0800

8 0.50 1.1773 -0.50 1.1773

0.75 1.2901 -0.75 1.2901

1.00 1.4123 -1.00 1.4150

0.25 1.0858 -0.25 1.0858

10 0.50 1.3273 -0.50 1.3273

0.75 1.3119 -0.75 1.3119

1.00 1.4461 -1.00 1.4490

0.25 1.0882 -0.25 1.0882

12 0.50 1.1950 -0.50 1.1950

0.75 1.3292 -0.75 1.3292

1.00 1.4733 -1.00 1.4733

0.25 1.0882 -0.25 1.0882

14 0.50 1.2026 -0.50 1.2026

0.75 1.3395 -0.75 1.3395

1.00 1.4979 -1.00 1.4979

0.25 1.0909 -0.25 1.0909

16 0.50 1.2105 -0.50 1.2105

0.75 1.3475 -0.75 1.3475

1.00 1.5122 -1.00 1.5122

0.25 1.0951 -0.25 1.0951

18 0.50 1.2119 -0.50 1.2119

0.75 1.3606 -0.75 1.3606

1.00 1.5249 -1.00 1.5249

0.25 1.0928 -0.25 1.0928

20 0.50 1.2170 -0.50 1.2170

0.75 1.3583 -0.75 1.3583

1.00 1.5309 -1.00 1.5309
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3. Estimation of σ2 based on steady-state ranked set sampling

Al-Saleh [18] has proposed the steady-state RSS by letting r go to +∞. If we apply the steady state
RSS, then the asymptotic distribution of Z(r)

[n:n]i is obtained from (2.2) with a pdf given by

f (∞)
[n:n]i(z; ϕ) =

6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

) [
1 + ϕ

(
1 − 2e−

2z
σ2

{
3 − 2e−

z
σ2

})]
. (3.1)

Clearly, Z(∞)
[n:n]i, i = 1, 2, · · · , n are independent and identically distributed (iid) rvs, each with pdf defined

in (3.1). Then, Z(∞)
[n:n]i, i = 1, 2, · · · , n, may be considered as steady-state rss of size n. Therefore,

from (2.3) and (2.4), the mean and variance of Z(∞)
[n:n]i for i = 1, 2, · · · , n are obtained as:

E[Z(∞)
[n:n]i] = σ2

[
5
6
+

19
60
ϕ

]
, (3.2)

and

Var[Z(∞)
[n:n]i] = σ

2
2

[
13
36
+

253
1800

ϕ −
361

3600
ϕ2

]
. (3.3)

Let Z(∞)
[n:n] = (Z(∞)

[n:n]1,Z
(∞)
[n:n]2, · · · ,Z

(∞)
[n:n]n)′. Then, the BLUE σ̃n(∞)

2 based on Z(∞)
[n:n] and the variance of

σ̃n(∞)
2 is obtained by taking the limit as r → ∞ in (2.12) and (2.13), respectively, and are given by

σ̃n(∞)
2 =

1

n
[

5
6 +

19
60ϕ

] n∑
i=1

Z(∞)
[n:n]i, (3.4)

and

Var(σ̃n(∞)
2 ) =

[
13
36 +

253
1800ϕ −

361
3600ϕ

2
]

n
[

5
6 +

19
60ϕ

]2 σ2
2. (3.5)

Using the results of [15], we obtain the efficiency of σ̃n(∞)
2 relative to σ̂2 by taking the ratio of

Var(σ̂2) with respect to Var(σ̃n(∞)
2 ) and is given by:

E(σ̃n(∞)
2 |σ̂2) =

Var(σ̂2)

Var(σ̃n(∞)
2 )

=
I(−1)
σ2 (ϕ)

[
5
6 +

19
60ϕ

]2[
13
36 +

253
1800ϕ −

361
3600ϕ

2
] .

Thus, the efficiency e(σ̃n(∞)
2 |σ̂2) is independent of the sample size n, and that is for a fixed ϕ, the

e(σ̃n(∞)
2 |σ̂2) has the same values for all n.
Additionally, we have computed the value of e(σ̃n(∞)

2 |σ̂2) for ϕ = 0.25(0.25)1, and the results are
given in Table 2. From the table one can observe that the efficiency of σ̃n(∞)

2 increases as ϕ increases.
Moreover, the estimator σ̃n(∞)

2 possesses the highest efficiency among other estimators of σ2 considered
in this study, and the value of the efficiencies varies from 1.1073 to 1.6352.
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Table 2. Efficiencies of the estimators σ̃n(∞)
2 and σ̃1(∞)

2 relative to σ̂2.

ϕ e(σ̃n(∞)
2 |σ̂2) ϕ e(σ̃1(∞)

2 |σ̂2)

0.25 1.1073 -0.25 1.1073

0.50 1.2472 -0.50 1.2472

0.75 1.4223 -0.75 1.4226

1.00 1.6352 -1.00 1.6365

As mentioned earlier in the case of FGMBBD, when ϕ < 0, the concomitant of the smallest order
statistic contains the maximum FI about σ2. Consequently, we explore an MSRSS in this scenario,
where we select a unit of a sample with the smallest value on the auxiliary variable as the units of
ranked sets at each step and from each set, with the goal of maximizing FI on the final selected rss.

Let Z(r)
[1:n]i, i = 1, 2, · · · , n, represents the value measured on the primary variable of interest for the

units selected at the rth stage of the MSRSS. Then, it is simple to see that Z(r)
[1:n]i, the concomitant of

the least order statistic of nr iid bivariate random variables with FGMBBD, has the same distribution
as Z[1:nr]. Moreover, Z(r)

[1:n]i, i = 1, 2, · · · , n, are also independently distributed with pdf given by:

f (r)
[1:n]i(z; ϕ) =

6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

) [
1 − ϕ

(
nr − 1
nr + 1

) (
1 − 2e−

2z
σ2

{
3 − 2e−

z
σ2

})]
. (3.6)

Clearly, from (2.2) and (3.6), we have:

f (r)
[1:n]i(z; ϕ) = f (r)

[n:n]i(z;−ϕ). (3.7)

Hence, it is obvious that E(Z(r)
[n:n]i) for ϕ > 0 and E(Z(r)

[1:n]i) for ϕ < 0 are the same. Similarly,
Var(Z(r)

[n:n]i) for ϕ > 0 and Var(Z(r)
[1:n]i) for ϕ < 0 are the same. Consequently, if σ̃1(r)

2 is the BLUE of
σ2 involved in the FGMBBD for ϕ < 0 based on the MSRSS observations Z(r)

[1:n]i, i = 1, 2, · · · , n, then
the coefficients of Z(r)

[1:n]i, i = 1, 2, · · · , n in the BLUE σ̃1(r)
2 for ϕ < 0 the same as the coefficients of

Z(r)
[n:n]i, i = 1, 2, · · · , n in the BLUE σ̃n(r)

2 for ϕ > 0.
Further, we have Var(σ̃1(r)

2 ) = Var(σ̃n(r)
2 ). Hence, Var(σ̃1(1)

2 ) = Var(σ̃n(1)
2 ) and

Var(σ̃1(∞)
2 ) = Var(σ̃n(∞)

2 ), where σ̃1(1)
2 is the BLUE of σ2 for ϕ < 0 is the usual single-stage rss

observations Z(r)
[1:n]i, i = 1, 2, · · · , n and σ̃1(∞)

2 is the BLUE of σ2 for ϕ < 0 based on the steady-state
rss observations Z(∞)

[1:n]i, i = 1, 2, · · · , n. We have computed the efficiency e(σ̃1(r)
2 |σ̂2) of the BLUE σ̃1(r)

2
relative to σ̂2, the MLE of σ2 for ϕ = −1,−0.75,−0.50,−0.25; n = 2(2)20 and the results are included
in Table 1. Also, we have computed e(σ̃1(∞)

2 |σ̂2) for ϕ = −1,−0.75,−0.50, and − 0.25, and the results
are given in Table 2. Based on Table 2, one can infer that the efficiency increases as |ϕ| increases, and
the value of the efficiency varies from 1.1073 to 1.6365.

Remark 3.1. If (W,Z) follows a FGMBBD with pdf given in (1.3), then the correlation coefficient
between W and Z is given by

Corr(W,Z) =
361

1300
ϕ, − 1 ≤ ϕ ≤ 1.
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Obviously, the correlation coefficient is maximum when |ϕ| is as large as 1. From the tables, we
can observe that the efficiencies of all estimators increase as |ϕ| increases for a given sample size.
Consequently, we observe that more information about σ2 can be extracted from the RSS when |ϕ| is
large. Therefore, we conclude that concomitant ranking is more effective for estimating σ2 when the
modulus value of the dependence parameter ϕ is large (ϕ approaches to ±1).

Remark 3.2. The assumption that ϕ is known may be considered unrealistic in certain real-life
situations. [8] addressed this issue by proposing a moment-type estimator for ϕ, which is expressed as
follows:

ϕ̂ =


−1, i f κ < −361

1300
1300
361 κ, i f −361

1300 ≤ κ ≤
361
1300

1, i f κ > 361
1300 ,

where κ is the sample correlation from (W(i:n)i,Z[i:n]i) for i = 1, 2, · · · , n.

4. Conclusions

This study focuses on estimating the scale parameter of the primary variable Z using the MSRSS,
where the ranking is based on the marginal observations of an auxiliary variable W. It is assumed
that the joint distribution of (W,Z) follows the FGMBBD. Considering the dependence parameter ϕ
is known, the BLUE for the scale parameter of Z under MSRSS as well as steady-state RSS schemes
is presented. The efficiency of the suggested estimators is compared to the MLE based on the same
number of measured units. The results indicate that the proposed estimators are more efficient than the
classical estimators considered in this study. For further studies, one can estimate other parameters or
use different modifications of RSS to estimate the same parameter.
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