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Abstract: Ideal matrices, which generalize circulant and r−circulant matrices, play a key role in
Ajtai’s construction of collision-resistant hash functions. In this paper, we study ideal matrices whose
entries are the generalized k−Horadam numbers, which represent a generalization of second-order
sequences and include many well-known sequences such as Fibonacci, Lucas, and Pell numbers as
special cases. We derive two explicit formulas for calculating the eigenvalues and determinants of
these matrices. Additionally, we obtain upper bounds for the spectral norm and the Frobenius norm
of ideal matrices with generalized k−Horadam number entries. These results not only extend existing
findings on ideal matrices but also highlight the versatility and applicability of generalized k−Horadam
numbers in matrix theory and related fields.
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1. Introduction

In recent years, circulant matrices and r−circulant matrices have been two of the most interesting
research areas in the fields of computational mathematics and applied mathematics. Many scholars
have done a lot of meaningful work on this. It is well known that these matrices have a wide range of
applications in coding theory, signal processing, image processing, digital image disposal, and linear
forecasting in [4,20,21,26]. Further, ideal matrices are more general circulant matrices and r−circulant
matrices. Therefore, they not only play an important role in the above aspects but also have significance
in the study of ideal lattices [12, 18].

Many generalizations of the circulant matrices with special entries have been introduced and studied
[13, 16, 17, 23, 24]. For example, Shen, Cen, and Hao [17] computed the determinants and inverses
of circulant matrices with Fibonacci and Lucas numbers. In 2012, Yazlik and Taskara [23] defined
circulant matrices whose entries are the generalized k−Horadam numbers and calculated the spectral
norms, eigenvalues, and determinants of the matrices. The generalized k−Horadam sequence is a
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generalization of the special second-order sequences or polynomials. Inspired by these studies, we aim
to extend this line of research by studying ideal matrices whose entries are the generalized k−Horadam
numbers. We compute the eigenvalues and determinants of these matrices and establish novel upper
bounds for the spectral norm and the Frobenius norm of ideal matrices with generalized k−Horadam
number entries. This work not only generalizes existing results on circulant and r−circulant matrices
but also contributes to the broader understanding of ideal matrices and their algebraic properties.

Horadam sequences, introduced by A. F. Horadam [8] in 1965, have since found applications
across a wide range of fields, including geometry, combinatorics, approximation theory, statistics,
cryptography, and physics, due to their ability to model various natural and theoretical phenomena. The
study of these sequences has become particularly prominent in matrix theory, where they play a crucial
role in areas such as coding theory, signal processing, image processing, and digital image analysis. In
recent years, many scholars have made significant contributions to the study of Horadam sequences.
For example, W. M. Abd-Elhameed et al. [1] explored a Horadam-type of generalized numbers
involving four parameters and presented several new identities related to them. Prasad et al. [27]
extended the k-Horadam numbers to third order and studied their properties. W. M. Abd-Elhameed [2]
established new connection formulae for Fibonacci and Lucas polynomials, extending known results
and deriving novel applications. Frontczak [7] explored Horadam identities using binomial coefficients
and gave many other known identities. G. Y. Şentürk et al. [15] investigated the algebraic properties of
Horadam numbers and provided matrix representations.

In [22], the generalized k−Horadam sequence {Hk,n}n∈N was defined as follows:

Hk,n+2 = f (k)Hk,n+1 + g(k)Hk,n, Hk,0 = a, Hk,1 = b (a, b ∈ R), (1.1)

where k ∈ R+, f (k), g(k) are scalar-valued polynomials, and f (k)2 +4g(k) > 0. Clearly, if f (k) = g(k) =

1, a = 0 and b = 1, the well-known Fibonacci number is obtained. If f (k) = g(k) = 1, a = 2 and
b = 1, we obtain the famous Lucas number. If f (x) = 2x, g(x) = −1, a = 1 and b = x, then we have
the Chebyshev polynomial. Note that for Chebyshev polynomials, the condition f (k)2 + 4g(k) > 0
is satisfied only when x2 > 1. For x ∈ [−1, 1], the characteristic roots of the recurrence relation are
complex. This is consistent with the oscillatory nature of Chebyshev polynomials in this interval, as
they can be expressed in terms of trigonometric functions that remain real for x ∈ [−1, 1]. That is to say,
if we take an appropriate value with f (k), g(k), a, b in (1.1), then we can get the familiar second-order
sequences.

Let α and β be the roots of the characteristic equation x2− f (k)x−g(k) = 0 of the sequence {Hk,n}n∈N.
Then the Binet formula of this sequence {Hk,n}n∈N has the form

Hk,n =
Xαn − Yβn

α − β
, (1.2)

where X = b − aβ, Y = b − aα.
Many scholars have also studied some properties of r−circulant matrices with generalized

k−Horadam numbers [11, 19, 25]. An r−circulant matrix is not only a generalization of a classical
circulant matrix but is also a special case of an ideal matrix. For example, Yazlik and Taskara [25]
obtained upper and lower bounds for the spectral norm of an r−circulant matrix whose entries are
the generalized k−Horadam numbers. In 2018, by using the algebra methods and the properties of
the r−circulant matrix, Shi [19] gave a new estimate for the spectral norms of an r−circulant matrix
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involving the generalized k−Horadam numbers. Let us take any matrix A = [ai, j] ∈ Mm,n(C); the
well-known spectral norm of A is given by

||A||2 =
√

max
1≤i≤n

λi(A∗A), (1.3)

where λi(A∗A) are the eigenvalues of A∗A, A∗ is the conjugate transpose of A. The Frobenius (or
Euclidean) norm of A is given by

||A||F = (
m∑

i=1

n∑
j=1

|ai j|
2)

1
2 =

√
trace(A∗A). (1.4)

In this paper, we first give the basic properties of ideal matrices and the definition of the ideal matrix
with the generalized k−Horadam numbers. And then we calculate its eigenvalues and determinants.
Finally, we will obtain upper bound estimates of the spectral norm and the Frobenius norm for the ideal
matrix. The results to be derived here will turn out to be the most general statements concerning an
r−circulant matrix and such matrices having as elements the terms of a second order sequence.

2. Some basic properties of ideal matrix

We now introduce a generalization of circulant matrices and r−circulant matrices—the so-called
ideal matrices, according to the lattice-based cryptosystem theory.

Definition 2.1. [27] Suppose p(x) = xn−an−1xn−1−· · ·−a1x−a0 ∈ Z[x], Gp ∈ Z
n×n is a square matrix

given by

G = Gp =


0 · · · 0 a0

a1

In−1
...

an−1

 , (2.1)

where In−1 is the (n−1)× (n−1) unit matrix. Let h(x) = h0 + h1x + h2x2 + · · ·+ hn−1xn−1 ∈ C[x]. Denote
the vector h by

h =


h0

h1
...

hn−1

 . (2.2)

Then an ideal matrix generated by a vector h is defined as

G(h) = Gp(h) = [h,Gh,G2h, . . . ,Gn−1h]n×n (2.3)

and each column vector is Gih(0 ≤ i ≤ n − 1).

Obviously, p(x) is the characteristic polynomial of G. If p(x) = xn − 1, i.e., a1 = a2 = · · · = an−1 =

0, a0 = 1. So

G = Gp =


0 · · · 0 1

0

In−1
...

0


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in (2.1). Then the ideal matrix G(h) generated by h is given by

G(h) = Gp(h) = [h,Gh,G2h, . . . ,Gn−1h]n×n

=


h0 hn−1 · · · h2 h1

h1 h0 · · · h3 h2

· · · · · · · · · · · · · · ·

hn−2 hn−3 · · · h0 hn−1

hn−1 hn−2 · · · h1 h0


,

which is known as the classical circulant matrix.
If we let p(x) = xn − r, r ∈ C, i.e., a1 = a2 = · · · = an−1 = 0, a0 = r. Then

G(h) = Gp(h) = [h,Gh,G2h, . . . ,Gn−1h]n×n

=


h0 rhn−1 rhn−2 · · · rh1

h1 h0 rhn−1 · · · rh2

· · · · · · · · · · · · · · ·

hn−2 hn−3 hn−4 · · · rhn−1

hn−1 hn−2 hn−3 · · · h0


is the r−circulant matrix. The r−circulant matrix in this paper applies the factor r to the main diagonal
entries, unlike the classical r−circulant matrix, where the factor r is applied to entries below the main
diagonal. This approach simplifies the expression of G(h) by directly using column vectors instead of
row vectors with a transpose operation.

Therefore, an ideal matrix is a more general form of a circulant matrix and an r−circulant matrix.
We know that both circulant matrices and r−circulant matrices are special cases of Toeplitz matrices
(see [5]), but ideal matrices are not Toeplitz matrices, generally.

Next, we give some basic properties for an ideal matrix G(h).

Lemma 2.1. For any h =


h0

h1
...

hn−1

 ∈ Rn, we have G(h) = h0I + h1G + h2G2 + · · ·+ hn−1Gn−1, where I is

a n × n matrix, G is defined as in Eq (2.1).

Proof. Let e1, e2, . . . , en be the n column unit vectors in Rn, i.e.,

e1 =


1
0
...

0

 , e2 =


0
1
...

0

 , . . . , en =


0
0
...

1

 .
It is easy to check that h = h0e1 + h1e2 + · · · + hn−1en and G(g + h) = G(g) + G(h) for any g =

(g0 g1 · · · gn−1)T ∈ Rn. Thus, G(h) = h0G(e1) + h1G(e2) + · · · + hn−1G(en). We claim that G(ek) =

Gk−1(1 ≤ k ≤ n). We prove it by induction on k. And we know Gei = ei+1(1 ≤ i ≤ n − 1). If
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k = 1,G(e1) = In is trivial. Assume it is true for k = n−1, that is G(en−1) = (en−1,Gen−1, . . . ,Gn−1en−1) =

Gn−2. We consider the case of k = n,

G(en) = (en,Gen, . . . ,Gn−1en)
= (Gen−1,G2en−1, . . . ,Gnen−1)
= G(en−1,Gen−1, . . . ,Gn−1en−1)
= G ·Gn−2 = Gn−1.

So G(h) = h0I + h1G + h2G2 + · · · + hn−1Gn−1. We complete the proof of Lemma 2.1. �

We always assume that p(x) ∈ Z[x] is a separable polynomial and ω1, ω2, . . . , ωn are distinct zeros
of p(x). The Vandermonde matrix V generated by {ω1, ω2, . . . , ωn} is

V =


1 1 · · · 1
ω1 ω2 · · · ωn

· · · · · · · · · · · ·

ω1
n−1 ω2

n−1 · · · ωn
n−1

 ,∆ and det(V) , 0.

Lemma 2.2. Let l(x) = l0 + l1x + · · · + ln−1xn−1 ∈ R[x], then we have

G(l) = V−1diag{l(ω1), l(ω2), . . . , l(ωn)}V,

where diag{l(ω1), l(ω2), . . . , l(ωn)} is the diagonal matrix.

Proof. By Theorem 3.2.5 of [6], for G, we have

G = V−1diag{ω1, ω2, . . . , ωn}V. (2.4)

By Lemma 2.1, it follows that

G(l) = V−1diag{l(ω1), l(ω2), . . . , l(ωn)}V.

�

Lemma 2.3. Let g, h ∈ Rn be two column vectors and G(g) be the ideal matrix generated by g, then
we have

(i) G(g)G(h) = G(h)G(g);
(ii) G(g)G(h) = G(G(g)h);

(iii) det(G(g)) =
∏n

i=1 g(ωi);
(iv) G(g) is an invertible matrix if and only if p(x) and g(x) are coprime, i.e., gcd(p(x), g(x)) = 1.

Proof. (i) By Lemma 2.1, we have

G(g) = g0I + g1G + g2G2 + · · · + gn−1Gn−1

and
G(h) = h0I + h1G + h2G2 + · · · + hn−1Gn−1.
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We know gi, hi ∈ R(0 ≤ i ≤ n − 1), gihi = higi. Then

G(g)G(h) = (g0I + g1G + g2G2 + · · · + gn−1Gn−1)(h0I + h1G + h2G2 + · · · + hn−1Gn−1)
= (h0I + h1G + h2G2 + · · · + hn−1Gn−1)(g0I + g1G + g2G2 + · · · + gn−1Gn−1)
= G(h)G(g).

(ii) By Lemma 2.1, we have

G(g)h = g0Ih + g1Gh + g2G2h + · · · + gn−1Gn−1h,

and

G(G(g)h) =(g0Ih0 + g1Gh0 + g2G2h0 + · · · + gn−1Gn−1h0)I
+ (g0Ih1 + g1Gh1 + g2G2h1 + · · · + gn−1Gn−1h1)G
+ · · ·

+ (g0Ihn−1 + g1Ghn−1 + g2G2hn−1 + · · · + gn−1Gn−1hn−)G
=(g0I + g1G + g2G2 + · · · + gn−1Gn−1)(h0I + h1G + h2G2 + · · · + hn−1Gn−1)
=G(g)G(h).

(iii) By Lemma 2.2, we have

G(g) = V−1diag{g(ω1), g(ω2), . . . , g(ωn)}V,

then

det(G(g)) = det(diag{g(ω1), g(ω2), . . . , g(ωn)})

=

n∏
i=1

g(ωi).

(iv) It is clear that p(x) = (x −ω1)(x −ω2) · · · (x −ωn). G(g) is an invertible matrix⇐⇒ g(ωi) , 0(1 ≤
i ≤ n)⇐⇒ gcd(p(x), g(x)) = 1. �

Finally, we give the definition of the ideal matrix with the generalized k−Horadam numbers.

Definition 2.2. Let

h =


Hk,0

Hk,1
...

Hk,n−1


in Definition 2.1. That is h(x) = Hk,0 + Hk,1x + Hk,2x2 + · · ·+ Hk,n−1xn−1, where Hk,i(0 ≤ i ≤ n− 1) is ith
generalized k−Horadam number. Then G(h) = [h,Gh,G2h, . . . ,Gn−1h]n×n = h(G) = Hk,0I + Hk,1G +

Hk,2G2 + · · · + Hk,n−1Gn−1 is the ideal matrix with the generalized k−Horadam numbers.

Similarly, we can give the definitions of ideal matrices with the Fibonacci and Lucas numbers,
respectively. Throughout this paper, the ideal matrix with the generalized k−Horadam numbers will be
denoted by K = G(h) = Hk,0I + Hk,1G + Hk,2G2 + · · · + Hk,n−1Gn−1.
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3. Eigenvalues and determinants of K

In this section, we consider the eigenvalues and determinants of ideal matrices with the generalized
k−Horadam numbers. Our results generalize the results in [11, 17, 25].

Lemma 3.1. Assume ω1, ω2, . . . , ωn are the roots of p(x). Then h(ω1), h(ω2), . . . , h(ωn) are all
eigenvalues of the ideal matrix G(h). That is,

λ j(G(h)) = h(ω j) =

n−1∑
i=0

hiω j
i, j = 1, 2, . . . , n.

Proof. Because p(x) is the characteristic polynomial of G, ω1, ω2, . . . , ωn are all eigenvalues of G. And
G(h) = h(G) = h0I+h1G+h2G2 +· · ·+hn−1Gn−1, h(x) = h0 +h1x+h2x2 +· · ·+hn−1xn−1 is any polynomial
with degree greater than 0 in C. So h(ω1), h(ω2), . . . , h(ωn) are all eigenvalues of G(h). �

The method of first studying the eigenvalues of G and the expression of G(h) to subsequently derive
the eigenvalues of G(h) is similarly reflected in the approaches of references [3, 9, 10]. In [9], the
authors first obtained the eigenvalues of a generalized permutation matrix U, they then used these
results to determine the eigenvalues of a generalized weighted circulant matrix C generated by U,
where C =

∑k
r=0 crUr. In [3], the eigenvalues of a (k, n)-circulant like matrix A(k, n) =

∑m−1
i=0 aiQ

i(k, n)
were computed based on similar principles. In [10], the eigenvalues of both Q-circulant matrices and
Q-circulant matrices whose entries are Horadam numbers were derived. Next, we will also calculate
the eigenvalues of the ideal matrix with the generalized k−Horadam numbers.

Theorem 3.1. Let K = G(h) be the ideal matrix with the generalized k−Horadam numbers defined in
Definition 2.2. Then the eigenvalues of K are given by

λ j(K) =
ω j

nHk,n + g(k)ω j
n+1Hk,n−1 + (a f (k) − b)ω j − Hk,0

g(k)ω j
2 + f (k)ω j − 1

,

where Hk,n is the nth generalized k−Horadam number and ω j are the roots of p(x), j = 1, 2, . . . , n.

Proof. By Lemma 3.1,

λ j(K) =

n−1∑
i=0

Hk,iω j
i

= Hk,0 + Hk,1ω j + Hk,2ω j
2 + · · · + Hk,n−1ω j

n−1.

And by Binet’s formula (1.2), we have

λ j(K) =

n−1∑
i=0

Xαi − Yβi

α − β
ω j

i

=
1

α − β
(X

(αω j)n − 1
αω j − 1

− Y
(βω j)n − 1
βω j − 1

)

=
1

α − β

X(αnω j
n − 1)(βω j − 1) − Y(βnω j

n − 1)(αω j − 1)
(αω j − 1)(βω j − 1)
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=
1

α − β

X(αnβω j
n+1 − αnω j

n − βω j + 1) − Y(αβnω j
n+1 − βnω j

n − αω j + 1)
αβω j

2 − (α + β)ω j + 1
.

Also, αβ = −g(k), α + β = f (k), then

λ j(K) =
1

−g(k)ω j
2 − f (k)ω j + 1

×
−g(k)Xαn−1ω j

n+1 − Xαnω j
n − Xβω j + X + g(k)Yβn−1ω j

n+1 + Yβnω j
n + Yαω j − Y

α − β

=
1

−g(k)ω j
2 − f (k)ω j + 1

× (
−g(k)ω j

n+1(Xαn−1 − Yβn−1)
α − β

−
ω j

n(Xαn − Yβn)
α − β

−
ω j(Xβ − Yα)

α − β
+

X − Y
α − β

)

=
1

−g(k)ω j
2 − f (k)ω j + 1

(−g(k)ω j
n+1Hk,n−1 − ω j

nHk,n − ω j
Xβ − Yα
α − β

+ Hk,0).

Moreover, X = b − aβ, Y = b − aα, we obtain

λ j(K) =
ω j

nHk,n + g(k)ω j
n+1Hk,n−1 + (a f (k) − b)ω j − Hk,0

g(k)ω j
2 + f (k)ω j − 1

.

�

Theorem 3.2. The determinant of K = G(h) = [h,Gh,G2h, . . . ,Gn−1h] is formulated by

det(K) =

n∏
j=1

ω j
nHk,n + g(k)ω j

n+1Hk,n−1 + (a f (k) − b)ω j − Hk,0

g(k)ω j
2 + f (k)ω j − 1

,

where Hk,n is the nth generalized k−Horadam number and ω j are the roots of p(x), j = 1, 2, . . . , n.

Proof. It is clear that det(K) =
∏n

j=1 λ j(K). By Theorem 3.1, which completes the proof. �

Remark 3.1. If we take p(x) = xn − r in Theorems 3.1 and 3.2, then K is an r−circulant matrix with
the generalized k−Horadam numbers. The result is reduced to Theorems 7 and 8 in [25], respectively.

Corollary 3.1. If we take

h =


F0

F1
...

Fn−1


in Theorem 3.1, where {Fi}i∈N is the Fibonacci sequence. Then K is the ideal matrix with the Fibonacci
numbers. In this case, the eigenvalues and determinants of K are

λ j(K) =
ω j

nFn + ω j
n+1Fn−1 − ω j

ω j
2 + ω j − 1

(1 ≤ j ≤ n)

and

det(K) =

n∏
j=1

ω j
nFn + ω j

n+1Fn−1 − ω j

ω j
2 + ω j − 1

,

where ω j are the roots of p(x) = xn − an−1xn−1 − · · · − a1x − a0 ∈ Z[x], j = 1, 2, . . . , n.
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Proof. Because {Fi}i∈N is the Fibonacci sequence, that is

f (k) = g(k) = 1, a = 0 and b = 1

in (1.1). Then by Theorems 3.1 and 3.2, the proof is completed. �

In Reference [14], the author derived the eigenvalues of a k-circulant matrix with Fibonacci numbers
(see Theorem 4) and considered the cases where ψω− j = 1

α
or ψω− j = 1

β
.

Corollary 3.2. If we take

h =


L0

L1
...

Ln−1


in Theorem 3.1, where {Li}i∈N is the Lucas sequence. Then K is the ideal matrix with the Lucas numbers.
In this case, the eigenvalues and determinants of K are

λ j(K) =
ω j

nLn + ω j
n+1Ln−1 + ω j − 2

ω j
2 + ω j − 1

(1 ≤ j ≤ n)

and

det(K) =

n∏
j=1

ω j
nLn + ω j

n+1Ln−1 + ω j − 2
ω j

2 + ω j − 1
,

where ω j are the roots of p(x) = xn − an−1xn−1 − · · · − a1x − a0 ∈ Z[x], j = 1, 2, . . . , n.

Proof. Because {Li}i∈N is the Lucas sequence, that is

f (k) = g(k) = 1, a = 2 and b = 1

in (1.1). Then by Theorems 3.1 and 3.2, the proof is completed. �

4. Norms of K

We start this section by giving the following lemma.

Lemma 4.1. Suppose that {Hk,i}i∈N is a generalized k−Horadam sequence defined in (1.1). N is an
arbitrary constant. The following conclusions hold.

(i) If N f (k) + N2g(k) , 1, then

n−1∑
i=0

N iHk,i =
a − N(a f (k) − b) − NnHk,n − g(k)Nn+1Hk,n−1

1 − N f (k) − N2g(k)
.

(ii) If N f (k) + N2g(k) = 1, then

n−1∑
i=0

N iHk,i =
a + nbN + naN2g(k) − NnHk,n

1 + N2g(k)
.
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Proof. (i) According to (1.1), we have

Hk,−1 =
Hk,1 − f (k)Hk,0

g(k)
=

b − a f (k)
g(k)

(4.1)

and

Hk,−2 =
Hk,0 − f (k)Hk,1

g(k)
=

a
g(k)

−
f (k)(b − a f (k))

g2(k)
. (4.2)

Shifting the summation index, we obtain

n−1∑
i=0

N iHk,i =

n−1∑
i=0

N i( f (k)Hk,i−1 + g(k)Hk,i−2)

= f (k)
n−1∑
i=0

N iHk,i−1 + g(k)
n−1∑
i=0

N iHk,i−2

= f (k)(
n−1∑
i=0

N i+1Hk,i + Hk,−1 − NnHk,n−1)

+ g(k)(
n−1∑
i=0

N i+2Hk,i + Hk,−2 + NHk,−1 − NnHk,n−2 − Nn+1Hk,n−1).

Then by direct calculation and (4.1), (4.2), we have

(1 − N f (k) − N2g(k))
n−1∑
i=0

N iHk,i

= f (k)Hk,−1 − f (k)NnHk,n−1 + g(k)Hk,−2 + g(k)NHk,−1 − g(k)NnHk,n−2 − g(k)Nn+1Hk,n−1

= f (k)
b − a f (k)

g(k)
− f (k)NnHk,n−1 + a −

f (k)(b − a f (k))
g(k)

+ N(b − a f (k)) − g(k)NnHk,n−2 − g(k)Nn+1Hk,n−1

= a − N(a f (k) − b) − NnHk,n − g(k)Nn+1Hk,n−1.

Because N f (k) + N2g(k) , 1, we obtain that

n−1∑
i=0

N iHk,i =
a − N(a f (k) − b) − NnHk,n − g(k)Nn+1Hk,n−1

1 − N f (k) − N2g(k)
.

(ii) If N f (k) + N2g(k) = 1, then 1 + N2g(k) , 0. Because by the definition of k−Horadam numbers, we
know f 2(k) + 4g(k) > 0. And f (k) =

1−N2g(k)
N . Hence, we have

(1 − N2g(k))2 + 4N2g(k)
N2 > 0,

that is
(1 + N2g(k))2 > 0.
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Therefore, 1 + N2g(k) , 0.
In addition, we first demonstrate that

Hk,i+2 + Ng(k)Hk,i+1 =
1
N

(Hk,i+1 + Ng(k)Hk,i).

According to (1.1),

Hk,i+2 + Ng(k)Hk,i+1 = f (k)Hk,i+1 + g(k)Hk,i + Ng(k)Hk,i+1

= ( f (k) + Ng(k))Hk,i+1 + g(k)Hk,i

=
1
N

Hk,i+1 + g(k)Hk,i

=
1
N

(Hk,i+1 + Ng(k)Hk,i).

So we have

Hk,i+2 + Ng(k)Hk,i+1 =
1

N2 (Hk,i + Ng(k)Hk,i−1)

= · · ·

=
1

N i+1 (Hk,1 + Ng(k)Hk,0)

=
1

N i+1 (b + Ng(k)a).

One can obtain that
N i+2(Hk,i+2 + Ng(k)Hk,i+1) = N(b + Ng(k)a).

Evaluating summation from 0 to n − 1, we have

n−1∑
i=0

(N i+2Hk,i+2 + N i+3g(k)Hk,i+1) = nN(b + Ng(k)a). (4.3)

Shifting the summation index in (4.3), we obtain

nN(b + Ng(k)a)

=

n−1∑
i=0

N i+2Hk,i+2 + N2g(k)
n−1∑
i=0

N i+1Hk,i+1

=

n−1∑
i=0

N iHk,i − Hk,0 − NHk,1 + NnHk,n + Nn+1Hk,n+1 + N2g(k)(
n−1∑
i=0

N iHk,i − Hk,0 + NnHk,n)

= (1 + N2g(k))
n−1∑
i=0

N iHk,i − a − Nb + NnHk,n + Nn+1Hk,n+1 − N2g(k)a + Nn+2g(k)Hk,n.

Since
Nn+1Hk,n+1 + Nn+2g(k)Hk,n = N(b + Ng(k)a).
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Then, we have

(1 + N2g(k))
n−1∑
i=0

N iHk,i = nNb + nN2g(k)a + a − NnHk,n.

Therefore,
n−1∑
i=0

N iHk,i =
a + nNb + nN2g(k)a − NnHk,n

1 + N2g(k)
.

�

Theorem 4.1. Let K = G(h) = [h,Gh,G2h, . . . ,Gn−1h] be an n × n ideal matrix with the generalized
k−Horadam numbers. Then we have the following upper bound estimates for the spectral norm of K.

(i) If N f (k) + N2g(k) , 1, then

||K||2 ≤
a − N(a f (k) − b) − NnHk,n − g(k)Nn+1Hk,n−1

1 − N f (k) − N2g(k)
.

(ii) If N f (k) + N2g(k) = 1, then

||K||2 ≤
a + nbN + naN2g(k) − NnHk,n

1 + N2g(k)
,

where N =

√
1+

∑n−1
i=0 ai2+

√
(1+

∑n−1
i=0 ai2)2−4a02

2 , a0, a1, . . . , an−1 are the coefficients of the polynomial p(x).

Proof. By (2.1),

G =


0 · · · 0 a0

a1

In−1
...

an−1

 .
G∗ is the conjugate transpose of G, so G∗G has the form

G∗G =


0 1 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·

0 0 · · · 0 1
a0 a1 · · · an−2 an−1




0 0 · · · 0 a0

1 0 · · · 0 a1

· · · · · · · · · · · · · · ·

0 0 · · · 0 an−2

0 0 · · · 1 an−1



=


1 0 · · · 0 a1

0 1 · · · 0 a2

· · · · · · · · · · · · · · ·

0 0 · · · 1 an−1

a1 a2 · · · an−1 a0
2 + a1

2 + · · · + an−1
2


.
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One can obtain that

|λI −G∗G| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − 1 0 · · · 0 −a1

0 λ − 1 · · · 0 −a2

· · · · · · · · · · · · · · ·

0 0 · · · λ − 1 −an−1

−a1 −a2 · · · −an−1 λ − (a0
2 + a1

2 + · · · + an−1
2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − 1 0 · · · 0 −a1

0 λ − 1 · · · 0 −a2

· · · · · · · · · · · · · · ·

0 0 · · · λ − 1 −an−1

0 0 · · · 0 λ −
∑n−1

i=0 ai
2 − 1

λ−1 (
∑n−1

i=1 ai
2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ − 1)n−1(λ −

n−1∑
i=0

ai
2 −

1
λ − 1

(
n−1∑
i=1

ai
2))

= (λ − 1)n−2(λ2 − λ(1 +

n−1∑
i=0

ai
2) + a0

2).

Let M = 1 +
∑n−1

i=0 ai
2. So the eigenvalues of G∗G are

λ1(G∗G) = λ2(G∗G) = · · · = λn−2(G∗G) = 1, λn−1,n(G∗G) =
M ±

√
M2 − 4a0

2

2
,

where M2 − 4a0
2 ≥ 0. Because ai ∈ Z, M2 − 4a0

2 ≥ (1 + a0
2)2 − 4a0

2 = (a0
2 − 1)2 ≥ 0. We know

K = G(h) = Hk,0I + Hk,1G + Hk,2G2 + · · · + Hk,n−1Gn−1, so

||K||2 = ||

n−1∑
i=0

Hk,iGi||2 ≤

n−1∑
i=0

Hk,i||G||2i.

Because of M ≥ 2, and λn−1(G∗G) =
M+
√

M2−4a02

2 ≥ 1. Then

||G||2 =
√

max
1≤i≤n

λi(G∗G)

=

√
M +

√
M2 − 4a0

2

2
.

Let N =

√
M+
√

M2−4a02

2 , we have

||K||2 ≤
n−1∑
i=0

Hk,i||G||2i =

n−1∑
i=0

N iHk,i,

by Lemma 4.1, which completes the proof. �

Theorem 4.2. We have the following upper bound estimates for the Frobenius norm of K.
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(i) If S f (k) + S 2g(k) , 1, then

||K||F ≤
a − S (a f (k) − b) − S nHk,n − g(k)S n+1Hk,n−1

1 − S f (k) − S 2g(k)
.

(ii) If S f (k) + S 2g(k) = 1, then

||K||F ≤
a + nbS + naS 2g(k) − S nHk,n

1 + S 2g(k)
.

Here S =

√
n − 1 +

∑n−1
i=0 ai

2 , a0, a1, . . . , an−1 are the coefficients of the polynomial p(x).

Proof. From the proof of Theorem 4.1, we know trace(G∗G) = n − 1 +
∑n−1

i=0 ai
2. So

||G||F =
√

trace(G∗G) =

√√
n − 1 +

n−1∑
i=0

ai
2.

And K = G(h) = Hk,0I + Hk,1G + Hk,2G2 + · · · + Hk,n−1Gn−1, then

||K||F = ||

n−1∑
i=0

Hk,iGi||F ≤

n−1∑
i=0

Hk,i||G||Fi.

Let S =

√
n − 1 +

∑n−1
i=0 ai

2, we have

||K||F ≤
n−1∑
i=0

Hk,i||G||Fi =

n−1∑
i=0

S iHk,i,

where S is a constant. By Lemma 4.1, the proof is completed. �

5. Conclusions

This paper investigates ideal matrices with generalized k-Horadam numbers and develops explicit
formulas for calculating the eigenvalues and determinants of these matrices and establishes upper
bounds for their spectral and Frobenius norms. These findings contribute to the understanding of
ideal matrices and their applications in matrix theory and related fields. Future research could aim to
establish connections between ideal matrices with generalized k-Horadam numbers and ideal lattices,
provide new insights into the fundamental theory of ideal lattices, and explore their specific properties
and potential applications in cryptography.
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