
http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(1): 1900–1920.
DOI: 10.3934/math.2025088
Received: 08 October 2024
Revised: 27 December 2024
Accepted: 02 January 2025
Published: 05 February 2025

Research article

Fundamental theorems of group isomorphism under the framework of
complex intuitionistic fuzzy set

Muhammad Jawad1, Niat Nigar1, Sarka Hoskova-Mayerova2,*, Bijan Davvaz3 and Muhammad
Haris Mateen1,*

1 School of Mathematics, Minhaj University Lahore, Lahore 54770, Pakistan
2 Department of Mathematics and Physics, University of Defence, Brno, 66210, Czech Republic
3 Department of Mathematical Sciences, Yazd University,Yazd, Iran

* Correspondence: Email: sarka.mayerova@unob.cz, harism.math@gmail.com; Tel:
+923466118150.

Abstract: Algebraic homomorphisms are essential mathematical structures that sustain operations
across algebraic systems such as groups, rings, and fields. These mappings not only preserve
the validity of algebraic operations but also make it easier to investigate structural similarities and
equivalences across distinct algebraic entities. In this article, we establish the group isomorphism under
the complex intuitionistic fuzzy set, an extended form of the complex fuzzy set that adds the complex
degree of non-membership functions, which plays a significant role in the decision-making process.
The complex algebraic structure provides effective tools for understanding complex phenomena. We
discuss the more intricate features of homomorphism and isomorphism in the framework of a complex
intuitionistic fuzzy set. In addition, we introduce the complex intuitionistic fuzzy normal subgroups.
We establish the relationship between two complex intuitionistic fuzzy subgroups and analyze of
complex intuitionistic fuzzy isomorphisms among these subgroups, proving the important theorems.
Furthermore, we establish examples to explore the concept of complex intuitionistic fuzzy subgroups.
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1. Introduction

Recently, researchers have developed numerous mathematical and computational tools to improve
scientific research and facilitate decision-making. Group theory is one of the most important parts of
algebra and provides a powerful framework for analyzing structures that show up in symmetric form.
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It has applications in many domains, including theoretical physics and medicine [1,2]. Furthermore, it
is essential for classifying atoms, regular polyhedral structures, crystal structures, and symmetries of
molecules [3]. The study of group homomorphism and isomorphism, which connect two groups while
keeping their structure, is also part of group theory.

Uncertainty is a vital part of human life, making it impossible to make precise estimates or
hypotheses. This analytical error is extremely unfavorable for human intelligence and has led to
the development of various mathematical concepts, including fuzzy sets, as useful techniques for
addressing this challenge, presented as practical approaches for solving uncertainty-related problems.
To overcome this uncertainty of data, Zadeh [4] created the notion of fuzzy sets (FS) defined as
µ→ A : {(h, µ(h)); h ∈ A} where µ(h) ∈ [0, 1] is known as the membership value.

Roenfeld [5] introduced the fuzzy subgroup notation (FSG); many basic results were established
for the homomorphism image and pre-image under a group. The concept of Fuzzy space and fuzzy
normal subgroup were investigated [6, 7]. Mukherjee and Bhattacharya [8] established the fuzzy
coset and normality of a FSG of a group. Also, conjugate classes were discussed, and FSG was
determined to be fuzzy normal if and only if it is (constant) on classes of conjugates of group G.
Das [9] investigated the idea of level subgroups of a certain group based on the work of Zadeh and
Rosenfeld. Dib and Youssef [10] developed a new framework with functions, relationships, and fuzzy
Cartesian products. Atanassov [11] investigated the notation of intuitionistic fuzzy set (IFS) defined
as A = {(s, µ(s), ν(s)); s ∈ H}, where µ(s) and ν(s) represent the membership degree (MD) and non-
MD of elements of universe set H that belong to [0, 1], and established many basic results. These
functions must satisfy: 0 < µ(s) + ν(s) ≤ 1 and flourished fundamental algebraic tributes. The
scientific field found more useful applications of this notion because it deals with two-sided information
by increasing non-membership in FS. The subgroups and normal subgroups under the framework of
IFS were discussed [12–14]. Wang et al. [15] initiated a new approach based on intuitionistic fuzzy
propositional logic (IF), classifications of intuitionistic fuzzy logic proposition (IFLP) formulas, and
fundamental features. Moreover, three reasoning methods (the classification methods, the reduction
to absurdity method, and the direct proof method) were developed. Alcantud et al. [16] developed
a method for aggregating IFSs into infinite chains. Also, the scores and accuracy degrees of IF
elements were defined. Meng et al. [17] used linguistic intuitionistic fuzzy preference relations to
solve multi-criteria. Zhou and Xu [18] developed the IFS and used it to deal with concerns about
decision-making that include risk preference. The concepts of IFS t-conorm, IFS t-norm, and IFS
relations, Atanassov intuitionistic composition, and operators of t-conorm and t-norm were created
by Burillo and Bustince [19]. Xiao [20] established a novel distance measure for IFSs based on the
Jensen-Shannon divergence. It was also shown that nonlinear properties can better tell the difference
between IFSs and give more accurate results than other measurement methods. The intuitionistic fuzzy
relations, generalization the idea IFS to Pythagorean Fs also used in decision making and the idea of
IFS extended by introducing the concepts of Pythagorean fuzzy set [21–23]. Jana and Pal [24] used
the notation of bipolar IF soft sets to study their fundamental characteristics. Also, the intersection
and union of two bipolar IF soft sets were presented. Biswas [25] developed the idea of intuitionistic
FSGs on IFSs, and some important characterizations were explored. Mathematically, in terms of the
MD function, extending integers Z to real numbers R is similar to extending crisp sets to FSs. That is,
expanding the range of the member function U from 0,1 to [0, 1] is mathematically similar to expanding
Z to R. The modifications to the number set did not stop with real numbers. The development of real
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numbers into the set of complex numbers, C, preceded their introduction. Therefore, it is possible
to propose that this expansion should serve as the foundation for future FS theory development. In
the domain of set theory, the result of such an extension is the complex fuzzy set (CFS), which is
defined by a function of MD with complex values. Ramot et al. [26] explored the novel idea of CFS
defined as {s, ν(s) = µ(s)eιθ(s) : s ∈ H}. The CFS belongs to the range of values that its function in
MD may attain. This range is not limited to [0, 1], in contrast to a traditional fuzzy function of MD.
Also, it extends to the unit circle in the complex plane. The CFS offers a mathematical framework
that describes a set’s membership in terms of a complex number. The mathematical definition of the
CFS, together with the basic set theory operations that can be performed with it, have been discussed.
Alkouri et al. [27] established the novel notion of a complex intuitionistic fuzzy set (CIFS) defined as
{s, ν(s) = µ(s)eιθ(s), ν(s) = µ(s)eιθ(s) : s ∈ H}, which is extended by adding a non-MD term to the basic
notion of a CFS. Where µ(s)→ [0, 1] is the MD of the real part, ν(s)→ [0, 1] is the non-MD of the real
part, θ(s)→ [0, 2π] is the MD of the imaginary part, and θ(s)→ [0, 2π] is a non-MD of the imaginary
part of a complex number such that 0 < µ(s) + ν(s) ≤ 1 and 0 < θ(s) + θ ≤ 2π for all complex numbers
s ∈ H. For both MD and non-MD functions, CIFS can also reach a wider range of values. These
ranges are now extended to the unit circle in the complex plane for both functions, instead of just [0,
1] as they are in regular IF functions. Several new uncertainty sets have been established. One of these
uncertainty sets is known as the complex Atanassov’s intuitionistic fuzzy set (CAIFS), where values for
Atanassov’s IF functions of MD and non-MD are taken in the complex plane’s unit circle. The concept
of CIFS by quaternion numbers were investigated and used in decision making [28]. Alkouri and
Salleh [29] established some operations that were extended to the CAIFS. The investigation focused
on two major operations and numerous properties. Furthermore, the benefit of applying these two
operations to complex numbers was gained by creating a link between the concepts of CFS and
CAIFS. Almutairi et al. [30] explored the basic components of complex anti-FSGs, pre-image, image,
and the vital primary characteristics of complex anti-FSGs. Also, the homomorphic and isomorphic
relationships between complex anti-FSGs under group homomorphism were investigated. Latif and
Shoaib [31] studied Sylow theory under the framework of the t-IF subgroup and related properties.
They also investigated the fundamental theorems of Sylow theory.

Gulzar et al. [32–34] enhanced the notation of complex intuitionistic fuzzy subgroups (CIFSGs)
and level subsets of CIFSs. Moreover, the t-intuitionistic fuzzy subgroup, Q-complex fuzzy subring,
the CIFSGs homomorphic image and pre-image under group homomorphism were explored. Alkouri
et al. [35] discussed (α, β)-CFSs, then defined CFSGs, and proved their fundamental algebraic
characteristics. Also, (α, β)-complex fuzzy cosets were presented and used to develop (α, β)-complex
fuzzy normal subgroups. Also, an (α, β)-complex fuzzy quotient ring was created and the (α, β)-
complex fuzzification of Lagrange’s Theorem was proved. Ashraf et al. [36] proposed the novel
concept of a CI-hesitant-FS to handle uncertain information in real-world complex issues in unit
disks and introduced generalized distance measures and weighted generalized distance measures
based on the Euclidean, Hamming, and Hausdorff metrics. Dobritsa and Yakh [37] developed the
concept of clarification, which aided in the early conceptualization of homomorphisms in fuzzy groups.
Their study investigated the conditions required to satisfy various characteristics of homomorphisms
in conventional groups while also considering properties unique to systems with fuzzy operations.
Choudhury et al. [38] investigated fuzzy subgroups and discussed the basic structure of fuzzy
homomorphisms and isomorphisms between subgroups of groups. Additionally, they introduced
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the t-level image and t-level inverse images and established their key findings. Chakrabatty and
Khare [39] presented a novel concept of fuzzy homomorphism between crisp groups and established
a fundamental theorem for FSG isomorphism, leveraging insights from group theory. The study also
examined the image and pre-image relationship in FSG, revealing that FSG homomorphisms involve
structure-preserving mappings between algebraic structures. The idea of fuzzy subgroups and fuzzy
homomorphism with categorical properties was investigated [40]. The CIFS is an extended form of
the CFS, incorporating the complex degree of non-membership functions, which play an equal role in
the decision-making process. The CIFS is also an extension of all these existing theories, such as CFS,
IFS, and FS. Furthermore, the concepts of CIFS and CFS are connected in the domain of complex
numbers through two distinct procedures.

Motivation for the proposed concept and its contributions:

• Ramot et al. [41] created a novel concept of CFS by expanding MD of the functions from
the unit interval to the complex plane with the unit disc. The CFS helps in the process of
evaluating the system because it considers the amplitude as well as the phase term. Alkouri
and Salleh [42] extended the concept of CFS to CIFS by introducing complex non-membership
degrees of functions and examined their basic properties. The CIFS expands the MD and non-MD
values of functions to the unit disc in the complex plane instead of [0,1] as in the IFS.
• Roenfeld [5] presented the notation fuzzy subgroup (FSG) and many basic results were

established for the homomorphism image and pre-image under the group. Biswas [25] developed
the idea of intuitionistic FSGs on IFSs, and some important characterizations were explored.
• Al-Husban and Salleh [43] introduced the idea of CF subgroups and CF binary operations,

and fundamental results were discussed. Gulzar et al. [32] developed the novel notation of
CIFSGs, and certain important fundamental results were investigated in detail. Moreover, the
homomorphism between two CIFSGs under the influence of CIFS was discussed. Furthermore,
the direct product of two CIFSGs was investigated, and some new fundamental characteristics
related to the direct product of CIFSG were studied.
• The idea of CIFS has not yet applied to the advanced algebraic structure of complex intuitionistic

fuzzy (CIF) group homomorphisms and isomorphisms. We will talk about the advanced features
of CIF homomorphism and isomorphism in this proposed work, which is influenced by group
theory. Furthermore, we introduce the normal CIF subgroup of the group and establish examples
to explore the concept of the complex intuitionistic fuzzy subgroup. The following Figure 1
depicts the relationship between proposed and existing models. Table 1 shows the comparison
between the CIFSs of the proposed and existing models.
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Figure 1. Relationship between the proposed and existing models.

Table 1. Comparison of CIFSs between the existing approaches.
Sets Domain Co-domain degree degree of degree of degree of

of membership non-membership membership with periodicity non-membership with periodicity
FSs Universal set Unit interval X × × ×

IFSs Universal set Unit interval X X × ×

CFSs Universal set Unit disc X × X ×

CIFSs Universal set Unit disc X X X X

Section 2 presents fundamental definitions related to CIFS, along with a relevant result that
lays the groundwork for subsequent discussions. Section 3 introduces the concept of support for
CIFS, establishes a normal subgroup within the group, and provides relevant illustrations. Section 4
explores the concept of isomorphism in CIFSG and offers a comprehensive examination of three crucial
theorems on CIFG homomorphism and isomorphism.

2. Preliminaries

In this section, we will discuss several fundamental concepts (intuitionistic fuzzy set, union,
intersection, image, pre-image, intuitionistic fuzzy subset, and intuitionistic fuzzy normal subgroup)
associated with the theory of IFSGs, which will play an important part in our further investigation.
Using these definitions, in the main part, we define and investigate the concepts of CIF isomorphism
and homomorphism, as well as show the basic CIF isomorphism theorems.

Definition 2.1. [44] An IFS U of a universal set H is expressed as U = {(s, µ(s), ν(s)) : s ∈ H}, where
µ(s) and ν(s) represent the universe H MD and non-MD of element s to [0, 1]. These functions must
satisfy these requirements: 0 ≤ µ(s) + ν(s) ≤ 1.
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Definition 2.2. [44] The symbol that represents the product of any two IFS U and Q is U ◦ Q and,
defined by the value: For any j ∈ H, U ◦ Q = (µU◦Q( j), νU◦Q( j))

µU◦Q( j) =


∧[∨{µU(q), µQ(d)}]

if j = qd
0 if j is not expressible as j = qd

And

νU◦Q( j) =


∨[∧{νU(q), νQ(d)}]

if j = qd
1 if j is not expressible as j = qd

Definition 2.3. [44] Suppose U and Q are two IFS of sets S and T , respectively, and let w : S → T.
Then the image and pre-image of U and Q are defined as:

µw(U)(s) =

{
∨{µC(g) g ∈ w−1(s)}
0 otherwise

νw(U)(s) =

{
∧{νC(g) g ∈ w−1(s)}

1 otherwise

and w−1(Q)(g) = Q(w(g)), ∀g ∈ H.

Definition 2.4. [44] An IF subgroup of L is defined as an IF subsetif it satisfies the
following conditions:

(1) µ(sg) ≥ ∧{µ(s), µ(g)},
(2) µ(s−1) ≥ µ(s),
(3) ν(sg) ≤ ∨{ν(s), ν(g)},
(4) ν(s−1) ≤ ν(s), ∀s ∈ L.

Definition 2.5. [44] If U is IFSG of a group L, then

(1) µU(s) ≤ µU(e) and νU(s) ≥ νU(e), ∀ s ∈ L, as the identity element of L is denoted by e.
(2) µU(sg−1) = µU(e) and νU(sg−1) = νU(e)⇒ µU(s) = µU(g) and νU(s) = νU(g), ∀ s, g ∈ L.

Definition 2.6. [44] An IF normal subgroup of L is defined as an IFS of L that satisfies the
following factors:

1) µ(sg) = µ(gs),
2) ν(sg) = ν(gs) ∀ s, g ∈ L.
In other terms, an IF normal subgroup of a L is normal⇔ µ(r−1sr) = µ(s) and ν(r−1sr) = ν(s) ∀

s ∈ U and r ∈ L.
We write the IF normal subgroup as IFNSG for convenience.

3. Fundamental algebraic characteristics of complex intuitionistic fuzzy subgroups

The notions of CIF homomorphisms and isomorphisms for CIFSG are the focus of this section.
For these specific FSGs, we explain CIF homomorphism and isomorphism and establish the three basic
theorems of CIF isomorphism.
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Definition 3.1. If CIFS U of group L satisfies the given conditions, then it is said be a CIFSG of
group L:

(1) µU(sg)eιθU (sg) ≥ ∧{µU(s), µU(g)}eι∧{θU (s),θU (g)},
(2) µU(s−1)eιθU (s−1) ≥ µU(s)eιθU (s),
(3) νU(sg)eιθU (sg) ≤ ∨{νU(s), νU(g)}eι∨{θU (s),θU (g)},
(4) νU(s−1)eιθU (s−1) ≤ νU(s)eιθU (s).

Equivalently, a CIFS of L is CIFSG of L if:
µU(sg−1)eιθU (sg−1) ≥ ∧{µU(s), µU(g)}eι∧{θU (s),θU (g)} and
νU(sg−1)eιθU (sg−1) ≤ ∨{νU(s), νU(g)}eι∨{θU (s),θU (g)} hold ∀ s, g ∈ L.

Example 3.2. Consider L = S 3 = {i, (12), (13), (23), (123),
(132)} be the symmetric group. Consider the CIFS U of L defined by

µ(U)(s) =


π, if s = i,
0, if s2 = i,
0.5π

3 , if s3 = i
θ(U)(s) =


0.9π, if s = i,
0, if s2 = i,
0.6π

4 , if s3 = i
and

ν(U)(s) =


0, if s = i,

0.3π
5 , if s2 = i,

0.4π
4 , if s3 = i.

θ(U)(s) =


0, if s = i,

0.2π
6 , if s2 = i,

0.3π
5 , if s3 = i.

Where s ∈ L and i is the identity element of L. Clearly, U is CIFSG of group L.

Definition 3.3. Let U be a CIFSG of L and j be some fixed element of L. The set jU =

{(g, µ jU(g), θ jU(g), ν jU(g), θ jU(g)) : g ∈ L}, where µ jU(g) = µU( j−1g), θ jU(g) = θU( j−1g) and
ν jU(g) = νU( j−1g), θ jU(g) = θU( j−1g) ∀ j ∈ L is called CIF left coset of L is expressed by U and
j. In the same method, the right CIF coset is defined.

Definition 3.4. Assume that U is a CIFSG of L. The set U is called CIF normal subgroup of L if
µU(sg) = µU(gs), θU(sg) = θU(gs) and νU(sg) = νU(gs), θU(sg) = θU(gs), ∀ s ∈ L or equivalently, U
is CIF normal subgroup of a group L normal if and only if µU(s−1gs) = µU(g), θ jU(s−1gs) = θU(g) and
ν jU(s−1gs) = νU(g), θ jU(s−1gs) = θU(g) ∀ j ∈ L.

The above definition implies the following proposition.

Proposition 3.5. Assume that U is a CIFNSG of a group L. In view of Definition (3.4), then µU(sg) =

µU(gs), θU(sg) = θU(gs) and νU(sg) = νU(gs), θU(sg) = θU(gs) ⇔ µU(r−1sr) = µU(s), θU(r−1sr) =

θU(s) and νU(r−1sr) = νU(s), θU(r−1sr) = θU(s), holds ∀ s, r ∈ L.

Remark 3.6. The intersection of two CIFSGs of a group L is a CIFSG.

Definition 3.7. Assume that U is a CIFS of H. The support set U∗ of U is described as: U∗ = { j ∈ H :
µU( j) > 0, θU( j) > 0 and νU( j) < 1, θU( j) < 2π}.

Remark 3.8. Let U be a CIFSG of L. Then U∗ is a subgroup of L.

The following outcome shows that CIFNSG’s support set is normal.
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Theorem 3.9. Assume that U is a CIFSG of H. Then U∗ is a NSG of L.

Proof. For any element j ∈ L and q ∈ µU∗ , using the Definition (3.7), µU∗( jq j−1) = µU∗(q) > 0, we get
jq j−1 ∈ µU∗ . Also, θU∗( jq j−1) = θU∗(q) > 0. We obtain jq j−1 ∈ θU∗ . Similarly, for any element j ∈ L
and q ∈ νU∗ . using the definition (3.7), νU∗( jq j−1) = νU∗(q) < 1. We have jq j−1 ∈ νU∗ . Moreover,
θU∗( jq j−1) = θU∗(q) < 2π. We have jq j−1 ∈ θU∗ . This concludes the proof. �

Theorem 3.10. If U and Q are CIFSG of L. Then (U ∩ Q)∗ = U∗ ∩ Q∗.

Proof. For any element, i ∈ (U ∩Q)∗. We get µU∩Q(i) > 0, θU∩Q(i) > 0 and νU∩Q(i) < 1, θU∩Q(i) < 2π.
Implies that µU(i), µQ(i) > ∧{µU(i), µQ(i)} > µU∩Q(i) > 0, θU(i), θQ(i) > ∧{θU(i), θQ(i)} > θU∩Q(i) > 0.
And, νU(i), νQ(i) < ∨{νU(i), νQ(i)} < νU∩Q(i) < 1, θU(i), θQ(i) < ∨{θU(i), θQ(i)} < θU∩Q(i) < 2π.
This implies that µU(i), µQ(i) > 0, θU(i), θQ(i) > 0 and νU(i), νQ(i) < 1, θU(i), θQ(i) < 2π. We have
i ∈ U∗ ∩ Q∗.
Consequently, (U∩Q)∗ ⊆ U∗∩Q∗. For any element, i ∈ U∗∩Q∗. Which means that µU(i) > 0, θU(i) > 0
and µQ(i) > 0, θQ(i) > 0. Also νU(i) < 1,, θU(i) < 2π, and νQ(i) < 1, θQ(i) < 2π. Therefore,
∧{µU(i), µQ(i)} > 0, ∧ {θU(i), θQ(i)} > 0 and ∨{νU(i), νQ(i)} < 1, ∨ {θU(i), θQ(i)} < 1. We get
µU∩Q(i) > 0, θU∩Q(i) > 0 and νU∩Q(i) < 1, θU∩Q(i) < 2π. Thus, i ∈ (U ∩Q)∗. So, (U ∩Q)∗ ⊇ U∗ ∩Q∗.
This concludes the proof. �

The next theorem shows that the support of a CIF normal subgroup is also normal.

Theorem 3.11. Assume that U and Q are the CIFSG of a group L, and U is a CINFSG of Q. Then U∗

is CIFSG of Q∗.

Proof. For any element j ∈ µU∗ and g ∈ µQ∗ . Since U∗ is CIFSG of Q∗, then µU∗(g jg−1) >

∧{µU∗( j), µQ∗(g)} = ∧{µU∗(e), µQ∗(e)} = µU∗(e) > 0. We obtain µU∗(g jg−1) > 0. For any element j ∈ θU∗

and q ∈ θQ∗ , since U∗ is CIFSG of Q∗, we get θU∗(g jg−1) > ∧{θU∗( j), θQ∗(g)} = ∧{θU∗(e), θQ∗(e)} =

µU∗(e) = θU∗(e) > 0. We have θU∗(g jg−1) > 0.
Similarly, for any element j ∈ νU∗ and g ∈ νQ∗ , since U∗ is CIFSG of Q∗, we obtain νU∗(g jg−1) <

∨{νU∗( j), νQ∗(g)} = ∨{νU∗(e), νQ∗(e)} = νU∗(e) < 1. We get νU∗(g jg−1) < 1. For any element j ∈ θU∗ and
g ∈ θQ∗ , since U∗ is CIFSG of Q∗, then θU∗(g jg−1) < ∨{θU∗( j), θQ∗(g)} = ∨{θU∗(e), θQ∗(e)} = θU∗(e) <
2π. We have θU∗(g jg−1) < 2π. This concludes the proof. �

The next theorem shows that the epimorphism image of the support set of U is equal to the support
of Q.

Theorem 3.12. Let U and Q be any two CIFSG of L and L
′

, and w be a epimorphism from L→ L
′

as
follows w(U) = Q. Then w(U∗) = Q∗.

Proof. As we know w(U) = Q. Let β ∈ w(U∗)⇒ β = w( j), j ∈ U∗. Consider µw(U)(β) = ∨{µU( j), j ∈
w−1(β)} > µU( j) > 0, θw(U)(β) = ∨{θU( j), j ∈ w−1(β)} > θU( j) > 0 and νw(U)(β) = ∧{νU( j), j ∈
w−1(β)} < νU( j) < 1, θw(U)(β) = ∧{θU( j), j ∈ w−1(β)} < θU( j) < 2π.

Therefore, β ∈ Q∗ Thus, w(U∗) = Q∗. In addition, by using the Definition of (2.3) and the fact
that w is an epimorphism w(U∗) ⊇ Q∗, this concludes the proof. �
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4. Group homomorphism and isomorphism under the influence of complex intuitionistic
fuzzy set

This section explores the concepts of CIF homomorphisms and isomorphisms for CIFSG. We
establish the basic theorems of CIF isomorphism and define CIF isomorphism and homomorphism.

Definition 4.1. Assume that U and Q are CIFSG of groups L and L
′

respectively. A homomorphism
w : U → Q is known as weak CIF homomorphism of U into Q if w(U) ⊆ Q. The case becomes CIF
homomorphism from U onto Q if w(U) = Q. In this case, U is said to be CIF homomorphic to Q and
is represented by U ≈ Q.

An isomorphism w : U → Q is called weak CIF isomorphism from U → Q if w(U) ⊆ Q. The case
becomes CIF isomorphism from U → Q if w(U) = Q. In this case, U is said to be CIF isomorphic to
Q and is expressed by U � Q.

Now, the homomorphism from CIFSG to its quotient CIFSG is demonstrated by the
following result.

Theorem 4.2. Suppose that O is a NSG, U is a CIFS G of a group L and a homomorphism η from L
to L

O . Then η is a CIF homomorphism from U → Uρ, where Uρ is a CIFS G of L
O .

Proof. As, we know that, a homomorphism η from L to L
O such that η(h)=hO, h ∈ L. For hO ∈ L

O , we
have η(U)(hO) = (µη(U)(hO), νη(U)(hO)). Consider

µη(U)(hO) = ∨{µU(d) : d ∈ η−1(hO)}eι∨{θU (d):d∈η−1(hO)}.

= ∨{µU(d) : ηd = hO}eι∨{θU (d):ηd=hO}

= ∨{µU(d) : dO = hO}eι∨{θU (d):dO=hO}

= ∨{µU(d) : d = ho, o ∈ O}eι∨{θU (d):d=ho,o∈O}

= ∨{µU(ho) : o ∈ O}eι∨{θU (ho):o∈O}

= µUρ(hO).

Which implies µη(U) = µUρ . Also,

νη(U)(hO) = ∧{νU(d) : d ∈ η−1(hO)}eι∧{θU (d):d∈η−1(hO)}

= ∧{νU(d) : ηd = hO}eι∧{θU (d):ηd=hO}

= ∧{νU(d) : dO = hO}eι∧{θU (d):dO=hO}

= ∧{νU(d) : d = ho, o ∈ O}eι∧{θU (d):d=ho,o∈O}

= ∧{νU(ho) : o ∈ O}eι∧{θU (ho):o∈O}

= νUρ(hO).

We get νη(U) = νUρ . Therefore, η(U) = Uρ. So, η is a CIF homomorphism from U → Uρ. Thus, we
conclude the required result. �

Example 4.3. Assume that the quotient group L
O = {O, bO} and O = {1, a2, a} is a normal subgroup

of L, where L = S 3 = {1, b, a, ab, a2, a2b} is the symmetric group of order 6. The IFS U of L is
expressed as:

µU( j) =

{
0.6eiπ/6 if { j = 1, a, a2}

0.5eiπ/5 if { j = b, ab, a2b}
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and νU( j) =
{

0.4eiπ/4 if x ∈ L

The natural homomorphism η : L → L
O is defined as: η(h) = hO, ∀ h ∈ L. Define IFSG Uρ of L

O
as follows:

µUρ(q) =

{
0.6eiπ/6 if q = O

0.5eiπ/5 if q = bO

and νUρ(q) =
{

0.4eiπ/4 if x ∈ L

⇒ µη(U)(O) = ∨{µU(d) : d ∈ {1, a, a2}}

⇒ µη(U)(O) = 0.6eiπ/6.

⇒ νη(U)(O) = ∧{νU(d) : d ∈ {1, a, a2}}

⇒ νη(U)(O) = 0.4eiπ/4.

Also ⇒ µη(U)(bO) = ∨{µU(d) : d ∈ {b, ab, a2b}}

⇒ µη(U)(bO) = 0.6eiπ/6.

And ⇒ νη(U)(bO) = ∧{νU(d) : d ∈ {b, ab, a2b}}

⇒ νη(U)(bO) = 0.4eiπ/4.

Therefore, η(U) = Uρ. Thus, η is a CIF homomorphism of U → Uρ.

The basic theorem of CIF homomorphism develops a connection between the CIFSG of a quotient
group and the CIFSG of a group.

Theorem 4.4. Assume that w is a CIF homomorphism from U onto Q where U and Q are CIFSG of
group L and L

′

, respectively. Then the mapping φ from L
O → L

′

is a CIF homomorphism from Uρ → Q,
where Uρ is a CIFS G of L

O .

Proof. Given that w is a CIF homomorphism from U → Q, where U and Q are CIFS G of L and L
′

respectively, then w(U) = Q. Define a mapping φ : L
O → L

′

by the rule φ( jO) = w( j) = q,∀ j ∈ L. The
function φ is a mapping of an image of element Uρ that is defined as:

φ(Uρ)(q) = (µφ(Uρ)(q), νφ(Uρ)(q)).

Now µφ(Uρ)(q) = ∨{µUρ( jO) : jO ∈ φ−1(q), q ∈ L
′

}eι∨{θUρ ( jO): jO∈φ−1(q),q∈L
′
}

= ∨{µUρ( jO) : φ( jO) = q, q ∈ L
′

}eι∨{θUρ ( jO):φ( jO)=q,q∈L
′
}

= ∨{µUρ(xn) : o ∈ O,w( j) = q}eι∨{θUρ ( jO):o∈O,w( j)=q}

= ∨{µUρ(d) : d ∈ w−1(q)}eι∨{θUρ (d):d∈w−1(q)}

= µw(U)(q) = µQ(q).
⇒ µφ(Uρ)(q) = µQ(q),∀q ∈ L

′

.

⇒ µφ(Uρ) = µQ.

Also νφ(Uρ)(q) = ∧{νUρ( jO) : jO ∈ φ−1(q), q ∈ L
′

}eι∧{θUρ ( jO): jO∈φ−1(q),q∈L
′
}
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= ∧{νUρ( jO) : φ( jO) = q, q ∈ L
′

}eι∧{θUρ ( jO):φ( jO)=q,q∈L
′
}

= ∧{νUρ(xn) : o ∈ O,w( j) = q}eι∧{θUρ ( jO):o∈O,w( j)=q}

= ∧{νUρ(d) : d ∈ w−1(q)}eι∧{θUρ (d):d∈w−1(q)}

= νw(U)(q) = νQ(q).
⇒ νφ(Uρ)(q) = νQ(q),∀q ∈ L

′

.

⇒ νφ(Uρ) = νQ.

Hence, we complete the desired result. �

The following example indicates that it is possible to develop a homomorphism between the
CIFSG of a group L

′

and its quotient groups.

Example 4.5. Suppose the permutation group L as L = {1, (23), (13), (12), (132), (123)} and L
′

=

{1,−1}. Explain a homomorphism w from L onto L
′

as follows:

w( j) =

{
1 if j = even permutation
−1 if j = odd permutation.

The CIFS U of L is defined as:

µU( j) =

{
0.7eiπ/3 if j = even permutation
0.5eiπ/5 if j = odd permutation

and νU( j) =
{

0.3eiπ/7 if j ∈ L.

The CIFSG Q of L
′

is defined as:

µQ( j) =

{
0.7eiπ/3 if j = 1

0.5eiπ/5 if j = −1

and νQ( j) =
{

0.3eiπ/7 if j ∈ L
′

.

In light of the preceding information, one can develop the following relationship: Let,

µw(U)(1) = ∨{µU( j) : j ∈ w−1(1)}
= ∨{µU( j) : j = even permutation} = 0.7eiπ/3.

And νw(U)(1) = ∧{νU( j) : j ∈ w−1(1)}
= ∧{νU( j) : j = even permutation} = 0.3eiπ/7.

Similarly, µw(U)(−1) = ∨{µU( j) : j ∈ w−1(−1)}
= ∨{µU( j) : j = odd permutation} = 0.7eiπ/3.

And νw(U)(−1) = ∧{νU( j) : j ∈ w−1(−1)}
= ∧{νU( j) : j = odd permutation} = 0.3eiπ/7.

Therefore, w(U) = Q. This implies that w is a CIF homomorphism of U → Q. The factor group of
L = S 3 is defined as L

O = { jO, qO : q =odd permutation, j =even permutation}, where O is a NSG of
even permutation of L. Define IFS Uρ on L

O as follows:

µUρ( j) =

{
0.7eiπ/3 if d = jO
0.5eiπ/5 if d = qO
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and νUρ( j) =
{

0.3eiπ/7 if j ∈ L
O

Define a mapping φ : L
O → L

′

as follows φ( jO) = w( j) = q ∀ j ∈ L. In light of the preceding
information, one can develop the following relationship:

µφ(Uρ)(1) = ∨{µφ(Uρ)( jO) : jO ∈ φ−1(1)} = 0.7eiπ/3.

And νφ(Uρ)(1) = ∧{νφ(Uρ)( jO) : jO ∈ φ−1(1)} = 0.3eiπ/7.

Similarly, µφ(Uρ)(−1) = ∨{µφ(Uρ)( jO) : jO ∈ φ−1(−1)} = 0.7eiπ/3.

And νφ(Uρ)(−1) = ∧{νφ(Uρ)( jO) : jO ∈ φ−1(−1)} = 0.3eiπ/7.

Therefore, φ(Uρ) = Q. Consequently, φ is a CIF homomorphism of Uρ onto Q.

If we choose kernel of the homomorphism, then the above result may be viewed in the form of
following remark.

Remark 4.6. Assume that w is a CIF homomorphism from U → Q, as U and Q are CIFSG of L and L
′

,
and K denotes the kernel of w. Then the mapping φ : L

K → L
′

is a CIF homomorphism from Uk → Q,
as Uk is a CIFSG of L

K .

We may create a link between the CIFSG of a group L
′

and any of its quotient groups, as proved
by the following result.

Theorem 4.7. Assume that w is a CIF homomorphism from U onto Q, where U and Q are CIFSG of
group L and L

′

, respectively, and O is NSG of L with w(O) = O
′

. Then the natural homomorphism
η : L

′

→ L
′

O′
is a CIF homomorphism from Q → Uρ and ψ = η ◦ w is a CIF homomorphism from

U → Uρ, as Uρ is a CIFS G of L
′

O′
.

Proof. As η is a homomorphism from L→ L
′

O′
. For any h

′

O
′

∈ L
′

O′
, we get

(η ◦ w)(U)(h
′

O
′

) = {µ(η◦w)(U)(h
′

O
′

), ν(η◦w)(U)(h
′

O
′

)},

Where µ(η◦w)(U)(h
′

O
′

) = ∨{µU(d) : d ∈ (η ◦ w)−1(h
′

O
′

)}eι∨{θU (d):d∈(η◦w)−1(h
′
O
′
)},

ν(η◦w)(U)(h
′

O
′

) = ∧{νU(d) : d ∈ (η ◦ w)−1(h
′

O
′

)}eι∧{θU (d):d∈(η◦w)−1(h
′
O
′
)},

Consider µ(η◦w)(U)(h
′

O
′

) = ∨{µU(d) : d ∈ (η ◦ w)−1(h
′

O
′

)}eι∨{θU (d):d∈(η◦w)−1(h
′
O
′
)},

µ(η◦w)(U)(h
′

O
′

) = ∨{µU(d) : d ∈ w−1(η)−1(h
′

O
′

)}eι∨{θU (d):d∈w−1(η)−1(h
′
O
′
)}

= µw(U)(η−1(h
′

O
′

)).

Since w is a CIF homomorphism from U onto Q. µ(η◦w)(U)(h
′

O
′

) = µQ(η−1(h
′

O
′

)) = µ(η−1)−1(Q)((h
′

O
′

)).
Thus, η is a CIF homomorphism from Q → Uρ

′

. µ(η)(Q)((h
′

O
′

)) = µUρ
′ ((h

′

O
′

)). ⇒ µ(η◦w)(U)(h
′

O
′

) =

µUρ
′ ((h

′

O
′

)).⇒ µψ(U) = µUρ
′ .

Also ν(η◦w)(U)(h
′

O
′

) = ∧{νU(d) : d ∈ (η ◦ w)−1(h
′

O
′

)}eι∧{θU (d):d∈(η◦w)−1(h
′
O
′
)},
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ν(η◦w)(U)(h
′

O
′

) = ∧{νU(d) : d ∈ w−1(η)−1(h
′

O
′

)}eι∧{θU (d):d∈w−1(η)−1(h
′
O
′
)}

= νw(U)(η−1(h
′

O
′

)).

Since w is a CIF homomorphism from U onto Q. ν(η◦w)(U)(h
′

O
′

) = νQ(η−1(h
′

O
′

)) = ν(η−1)−1(Q)((h
′

O
′

)).
Thus, η is a CIF homomorphism from Q → Uρ

′

. = ν(η)(Q)((h
′

O
′

)) = νUρ
′ ((h

′

O
′

)). ⇒ ν(η◦w)(U)(h
′

O
′

) =

νUρ
′ ((h

′

O
′

)). ⇒ νψ(U) = νUρ
′ . Consequently, ψ = η ◦ w is a CIF homomorphism from U onto Uρ. This

concludes the proof. �

Under a complex intuitionistic fuzzy epimorphism, the following outcome establishes an essential
relationship between the two quotient groups.

Theorem 4.8. Assume that w is a CIF epimorphism from U onto Q, where U and Q are CIFSG of
group L and L

′

, respectively, and η : L
′

→ L
O is a natural homomorphism. Then a mapping σ from L

O

onto L
′

O′
is a CIF homomorphism, from Uρ onto Uρ

′

is a CIF homomorphism from L
O →

L
′

O′
, respectively,

and O = { j ∈ L : w( j) ∈ O
′

}.

Proof. By using Theorem (4.7), we have a mapping ψ : L→ L
′

O′
, where ψ commutes with w and η such

that ψ(h) = (η ◦ w)(h) = h
′

O
′

for all h
′

∈ L
′

. Moreover, ψ(O) = (η ◦ w)(O) = η(w(O)) = η(O
′

) = O
′

.
Consider, CIFS G Uρ of L

O as: Uρ( jO) = (µUρ( jO), νUρ( jO)),

where µ(Uρ)( jO) = ∨{µUρ(d) : d ∈ ( jO)}eι∨{θUρ (d):d∈( jO)},

ν(Uρ)( jO) = ∧{νUρ(d) : d ∈ ( jO)}eι∧{θUρ (d):d∈( jO)}.

This demonstrates ψ is a CIF homomorphism with kerψ = O. Express a homomorphism σ → L
O

to L
′

O′
by the rule σ(hO) = h

′

O
′

, h ∈ L, h
′

∈ L
′

. Where σ : Uρ → Uρ is expressed by the rule:
σ(Uρ)( jO) = (µσ(Uρ)( jO), νσ(Uρ)( jO)), where

µσ(Uρ)(h′O′) = ∨{µUρ( jO) : jO ∈ σ−1(h
′

O
′

)}eι∨{θUρ ( jO): jO∈σ−1(h
′
O
′
)},

νσ(Uρ)(h′O′) = ∧{νUρ( jO) : jO ∈ σ−1(h
′

O
′

)}eι∧{θUρ ( jO): jO∈σ−1(h
′
O
′
)}.

Consider µσ(Uρ)(h′O′) = ∨{µUρ(hO) : hO ∈ σ−1(h
′

O
′

)}eι∨{θUρ (hO):hO∈σ−1(h
′
O
′
)}

= ∨{∨{µUρ(ho) : o ∈ O, h ∈ L,w(h) = h
′

, σ(hO) = w(h)O
′

}

eι∨{θUρ (ho):o∈O,h∈L,w(h)=h
′
,σ(hO)=w(h)O

′
}

= ∨{µUρ(ho) : o ∈ O, h ∈ L,w(h) = h
′

}eι∨{θUρ (ho):o∈O,h∈L,w(h)=h
′
}

= ∨{µUρ(d) : d ∈ w−1(h
′

)}eι∨{θUρ (d):d∈w−1(h
′
)}

= µw(U)(h
′

) = µQ(h
′

), h
′

∈ L
′

= ∨{µQ(h
′

) : η(h
′

) = h
′

O
′

}eι∨{θQ(h
′
):η(h

′
)=h

′
O
′
}

= ∨{µQ(h
′

) : h
′

∈ η−1(h
′

O
′

)}eι∨{θQ(h
′
):h
′
∈η−1(h

′
O
′
}

= µη(Q)(h
′

O
′

) = µUρ
′ (h

′

O
′

).
⇒ µσ(Uρ) = µUρ

′ .

Also νσ(Uρ)(h′O′) = ∧{νUρ(hO) : hO ∈ σ−1(h
′

O
′

)}eι∧{θUρ (hO):hO∈σ−1(h
′
O
′
)}
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= ∧{∧{νUρ(ho) : o ∈ O, h ∈ L,w(h) = h
′

, σ(hO) = w(h)O
′

}

eι∧{θUρ (ho):o∈O,h∈L,w(h)=h
′
,σ(hO)=w(h)O

′
}

= ∧{νUρ(ho) : o ∈ O, h ∈ L,w(h) = h
′

}eι∧{θUρ (ho):o∈O,h∈L,w(h)=h
′
}

= ∧{νUρ(d) : d ∈ w−1(h
′

)}eι∧{θUρ (d):d∈w−1(h
′
)}

= νw(U)(h
′

) = νQ(h
′

), h
′

∈ L
′

= ∧{νQ(h
′

) : η(h
′

) = h
′

O
′

}eι∧{θQ(h
′
):η(h

′
)=h

′
O
′
}

= ∧{νQ(h
′

) : h
′

∈ η−1(h
′

O
′

)}eι∧{θQ(h
′
):h
′
∈η−1(h

′
O
′
}

= νη(Q)(h
′

O
′

) = νUρ
′ (h

′

O
′

).
⇒ νσ(Uρ) = νUρ

′ .

Hence, we obtain the required result. �

Theorem 4.9. Assume that w is a CIF homomorphism from U onto Q, where U and Q are CIFSG of
groups L and L

′

, consequently with kerw = K. Then there exists a CIF isomorphism from U
C → Q, as

C is a CIFNSG of U.

Proof. As we know, w is a CIF homomorphism from U to Q. Let CIFSG C of L as follows:

µC( j) =

{
µU( j) if j ∈ K

0 if j < K

and νC( j) =

{
νU( j) if j ∈ K

1 if j < K.

Also θC( j) =

{
θU( j) if j ∈ K

0 if j < K

and θC( j) =

{
θU( j) if j ∈ K
2π if j < K.

Obviously, C ⊆ U. Also, K is normal, so jq j−1 ∈ K for any j ∈ C, q ∈ L. Let

µC( jq j−1) = µU( jq j−1)
≥ ∧{µU( j), µU(q)}
≥ ∧{µU( j), µU(q)}

Implies that µC( jq j−1) ≥ ∧{µU( j), µU(q)}, j ∈ C, q ∈ L.

Similarly, νC( jq j−1) ≤ ∨{νU( j), νU(q)}, j ∈ C, q ∈ L,

and θC( jq j−1) = θU( jq j−1)
≥ ∧{θU( j), θU(q)}
≥ ∧{θU( j), θU(q)}

Implies that θC( jq j−1) ≥ ∧{θU( j), θU(q)}, j ∈ C, q ∈ L.
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Similarly, θC( jq j−1) ≤ ∨{θU( j), θU(q)}, j ∈ C, q ∈ L.

If j ∈ K, then µC( j) = 0, νC( j) = 1 and θC( j) = 0, θC( j) = 2π. This shows that C is a CIFNSG of U.
Since U ≈ Q⇒ w(U) = Q. In view of Theorem (3.12) w(U∗) = Q∗.

Let o = wU∗ , then o : U∗ → Q∗ is a homomorphism with ker o = C∗. Then there occurs a
isomorphism o from U∗

C∗ to Q∗ o = C∗. that can be characterized as o( jC∗)=z=o( j) = w( j), ∀ j ∈ U∗. For
o, we have o(U

C )(z) = (µU
C

(z), νU
C

(z)).
o(U

C )(z) = (µU
C

(z), νU
C

(z)). Consider

µU
C

(z) = ∨{µU
C

( jC∗) : j ∈ U∗, o( jC∗) = z}e
ι∨{θU

C
( jC∗): j∈U∗,o( jC∗)=z}

= ∨{µU
C

(q) : q ∈ jC∗ : j ∈ U∗, o(q) = z}e
ι∨{θU

C
(q):q∈ jC∗: j∈U∗,o(q)=z}

= ∨{µU
C

(q) : q ∈ U∗, o(q) = z}e
ι∨{θU

C
(q):q∈U∗,o(q)=z}

= ∨{µU
C

(q) : q ∈ L,w(q) = z}e
ι∨{θU

C
(q):q∈L,w(q)=z}

= µw(U)(z) = µQ(z),∀z ∈ Q∗.

Implies that µU
C

(z) = µQ(z). We have µU
C

= µQ.

And νU
C

(z) = ∧{νU
C

( jC∗) : j ∈ U∗, o( jC∗) = z}e
ι∧{θU

C
( jC∗): j∈U∗,o( jC∗)=z}

= ∧{νU
C

(q) : q ∈ jC∗ : j ∈ U∗, o(q) = z}e
ι∧{θU

C
(q):q∈ jC∗: j∈U∗,o(q)=z}

= ∧{νU
C

(q) : q ∈ U∗, o(q) = z}e
ι∧{θU

C
(q):q∈U∗,o(q)=z}

= ∧{νU
C

(q) : q ∈ L,w(q) = z}e
ι∧{θU

C
(q):q∈L,w(q)=z}

= νw(U)(z) = νQ(z),∀z ∈ Q∗.

We obtain νU
C

(z) = νQ(z). Implies that νU
C

= νQ.

�

Now, we illustrate the well-known second fundamental theorem of isomorphism under the
influence of CIFS.

Theorem 4.10. Assume that U is a CIFNSG and Q is a CIFSG of group L such that U ⊆ Q. Then
there exists a weak CIF isomorphism between Q

U∩Q , and U◦Q
U .

Proof. By using Theorem (3.11) and the case U ⊆ Q, verify the addition of the factor groups Q∗

U∗∩Q∗

and U∗Q∗

U∗ . Also, by employing second fundamental theorem, then we have: Q∗

U∗∩Q∗ �
U∗Q∗

U∗ The algebraic
statement leads us to the observation that there is a group isomorphism w from Q∗

U∗∩Q∗ to U∗◦Q∗

U∗ that is
known as w( j(U ∩ Q)∗) = jU∗, ∀ j ∈ Q∗. Consider

µw( Q
U∩Q )( jU∗) = µ( Q

U∩Q )( j(U ∩ Q)∗)

= ∨{µQ(z) : z ∈ ( j(U ∩ Q)∗)}eι∨{θQ(z):z∈( j(U∩Q)∗)}

≤ ∨{µU◦Q(z) : z ∈ ( j(U ∩ Q)∗)}eι∨{θU◦Q(z):z∈( j(U∩Q)∗)}
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≤ ∨{µU◦Q(z) : z ∈ jU∗}eι∨{θU◦Q(z):z∈ jU∗}

= µ (U◦Q)
U

( jU∗),∀ j ∈ Q∗

⇒ µw( Q
U∩Q )( jU∗) = µ (U◦Q)

U
( jU∗}),∀ j ∈ Q∗

⇒ µw( Q
U∩Q ) = µ (U◦Q)

U
.

And νw( Q
U∩Q )( jU∗) = ν( Q

U∩Q )( j(U ∩ Q)∗)

= ∧{νQ(z) : z ∈ ( j(U ∩ Q)∗)}eι∧{θQ(z):z∈( j(U∩Q)∗)}

≥ ∧{νU◦Q(z) : z ∈ ( j(U ∩ Q)∗)}eι∧{θU◦Q(z):z∈( j(U∩Q)∗)}

≥ ∧{νU◦Q(z) : z ∈ jU∗}eι∧{θU◦Q(z):z∈ jU∗}

= ν (U◦Q)
U

( jU∗}),∀ j ∈ Q∗

⇒ νw( Q
U∩Q )( jU∗) = ν (U◦Q)

U
( jU∗}),∀ j ∈ Q∗.

⇒ νw( Q
U∩Q ) = ν (U◦Q)

U
.

Thus, w( Q
U∩Q )) ⊆ ( (U◦Q)

U ). Consequently, we obtain a weak CIF isomorphism between Q
U
⋂

Q and (U◦Q)
U .
�

Now, we show the third fundamental theorem of isomorphism by employing CIFS.

Theorem 4.11. Assume that U, Q, and C are CIFSG of L such that U and Q are CIFNSG of C with
U ⊆ Q. Then there exists a CIF isomorphism between ( C

U )

( Q
U )

and (C
Q ).

Proof. By using Theorem (3.11) and the case U and Q are CIFSG of C with U ⊆ Q, verify the the

addition of the factor groups ( C∗
U∗ )

( Q∗
U∗ )

and C∗
Q∗ . Also, by employing the third basic isomorphism theorem of

group on these specific factor groups results in ( C∗
U∗ )

( Q∗
U∗ )

� C∗
Q∗ . Thus, this statement lead us to the observation

that w is the group isomorphism from ( C∗
U∗ )

( Q∗
U∗ )

to C∗
Q∗ and describes the following w( jU∗.( Q∗

U∗ )) = jQ∗, ∀

j ∈ C∗. Consider

µ
w(

C
U
Q
U

)
( jQ∗) = µ

(
C
U
Q
U

)
( jU∗.(

Q∗

U∗
))

= ∨{µ( C
U )(qU∗) : q ∈ C∗, qU∗ ∈ ( jU∗.(

Q∗

U∗
))}e

ι∨{θ( C
U )(qU∗):q∈C∗,qU∗∈( jU∗.( Q∗

U∗ ))}

= ∨{∨{µC(z) : z ∈ qU∗} : q ∈ C∗, qU∗ ∈ ( jU∗.(
Q∗

U∗
))}

eι∨{∨{θC(z):z∈qU∗}:q∈C∗,qU∗∈( jU∗.( Q∗
U∗ ))}

= ∨{µC(z) : z ∈ C∗, zA∗ ∈ ( jU∗.(
Q∗

U∗
))}eι∨{θC(z):z∈C∗,zA∗∈( jU∗.( Q∗

U∗ ))}

= ∨{µC(z) : zA∗ ∈ ( jU∗.(
Q∗

U∗
))}eι∨{θC(z):zA∗∈( jU∗.( Q∗

U∗ ))}

= ∨{µC(z) : z ∈ C∗,w(z) ∈ jQ∗}eι∨{θC(z):z∈C∗,w(z)∈ jQ∗}

= µ( C
Q )( jQ∗),∀ j ∈ C∗.
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⇒ µ
w(

C
U
Q
U

)
( jQ∗) = µ( C

Q )( jQ∗),∀ j ∈ C∗ ⇒ µ
w(

C
U
Q
U

)
= µ( C

Q ).

And

ν
w(

C
U
Q
U

)
( jQ∗) = ν

(
C
U
Q
U

)
( jU∗.(

Q∗

U∗
))

= ∧{ν( C
U )(qU∗) : q ∈ C∗, qU∗ ∈ ( jU∗.(

Q∗

U∗
))}

e
ι∧{θ( C

U )(qU∗):q∈C∗,qU∗∈( jU∗.( Q∗
U∗ ))}

= ∧{∧{νC(z) : z ∈ qU∗} : q ∈ C∗, qU∗ ∈ ( jU∗.(
Q∗

U∗
))}

eι∧{∧{θC(z):z∈qU∗}:q∈C∗,qU∗∈( jU∗.( Q∗
U∗ ))}

= ∧{νC(z) : z ∈ C∗, zA∗ ∈ ( jU∗.(
Q∗

U∗
))}eι∧{θC(z):z∈C∗,zA∗∈( jU∗.( Q∗

U∗ ))}

= ∧{νC(z) : zA∗ ∈ ( jU∗.(
Q∗

U∗
))}eι∧{θC(z):zA∗∈( jU∗.( Q∗

U∗ ))}

= ∧{νC(z) : z ∈ C∗,w(z) ∈ jQ∗}eι∧{θC(z):z∈C∗,w(z)∈ jQ∗}

= ν( C
Q )( jQ∗),∀ j ∈ C∗.

⇒ ν
w(

C
U
Q
U

)
( jQ∗) = ν( C

Q )( jQ∗),∀ j ∈ C∗

⇒ ν
w(

C
U
Q
U

)
= ν( C

Q ). Thus, w(
C
U
Q
U

) =
C
Q
. Consequently, (

C
U
Q
U

) �
C
Q
.

Hence, we obtain the required result.

�

5. Conclusions

In this manuscript, we have defined normal CIFSGs, introduced the concept of support for
CIFSGs, and proved that the support of a CIF normal subgroup is also normal. Additionally, we have
proved that the epimorphic image of support set A equals the support set B. We established a relevant
generalization of CIF isomorphism between any two CIFSGs. Also, three important isomorphism
theorems for CIF subgroups are shown using support sets, along with examples on how they work.
The support set property of CIF normal subgroups is of great significance to the development of the
algebraic theory of complex fuzzy sets and the potential role of the CIF isomorphism theorem in
group theory. In the future, machine learning (ML) and deep learning (DL) will prove to be pivotal
in modern technology and innovation due to their ability to process and analyze vast amounts of
data, uncover patterns, and make predictions or decisions. We aim to further enhance the speed,
efficiency, and versatility of decision-making in complex plans. We will use machine and deep
learning techniques, [45, 46], paving the way for broader adoption and more impactful applications.
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