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1. Introduction

On a pseudo-Riemannian manifold (M, g) with the Ricci tensor S , the Ricci flow was introduced by
Hamilton [1] as follows:

∂

∂t
g = −2S .

The Ricci soliton [2] is a special solution to the Ricci flow and is a generalization of the Einstein
metric and is defined by

LYg + S + λg = 0,

for some constant λ and the vector field Y , where LYg denotes the Lie derivative of the metric g in
the direction of Y . A Ricci soliton has applications in physics [3–7]. The Ricci solitons have been
investigated in a pseudo-Riemannian setting [8, 9]. Many authors have generalized the Ricci flow and
introduced new geometric flows. For instance, on a manifold (M, g) with the Riemann curvature tensor
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R, the Riemann flow was introduced by Udrişte [10] as

∂

∂t
G(t) = −2R(g(t)),

where G = 1
2g⊙ g, and ⊙ denotes the Kulkarni-Nomizu product. The Kulkarni-Nomizu product of two

(0, 2)-tensors ω and θ is defined by

(ω ⊙ θ)(U1,U2,U3,U4) = ω(U1,U4)θ(U2,U3) + ω(U2,U3)θ(U1,U4)
−ω(U1,U3)θ(U2,U4) − ω(U2,U4)θ(U1,U3),

for all vector fields U1,U2,U3 and U4. A complete pseudo-Riemannian manifold (Mn, g) is called the
Riemann soliton [11] and denoted by (Mn, g, µ,Y) if it satisfies

2R + µg ⊙ g + g ⊙ LYg = 0, (1.1)

for some constant µ and the vector field Y . If µ > 0, or µ < 0, or µ = 0, then the Riemann soliton is
called expanding, or shrinking, or steady. If Y = gradh (for some smooth function h), then the Riemann
soliton is said to be a gradient Riemann soliton, and the equation of the Riemann soliton turns to

2R + µg ⊙ g + 2g ⊙ ∇2h = 0.

A lot of studies have been carried out on the Riemann solitons on different kinds of manifolds. For
instance, Venkatesha et al. [12, 13] studied the Riemann solitons on contact geometry and almost
Kenmotsu manifolds, Biswas et al. [14] investigated the Riemann solitons on a 3-dimensional almost
co-Kahler manifold, and De et al. [15] investigated almost Riemann solitons on para-Sasakian
manifolds and in a non-cosymplectic normal almost contact metric manifold [16]. In [17] explored
some remarks on almost Riemann solitons with gradient or torse-forming vector field. In [18], the
authors studied four classes of Riemann solitons on α-cosymplectic manifolds. Also, see [19–22].

On the other hand, Egorov spaces and ϵ-spaces are Lorentzian manifolds. Egorov spaces and ϵ-
spaces have constant curvature, and we can write these manifolds as Nn+1 × R. If the dimension of
an isometry group of a Riemannian manifold Mn is at least 1

2n(n − 1) + 1 (this manifold is called a
manifold with a large isometry group), then the manifold is either of constant curvature or a product of
an (n−1)-dimensional manifold of constant curvature with a circle or a line. In 2003, Patrangenaru [23]
proved that if the dimension of an isometry group of a Lorentzian manifold Mn is at least 1

2n(n−1)+2,
then the manifold has constant curvature. In [23], all Lorentzian manifolds with a large isometry
group of dimension n ≥ 4, n , 7 are classified. Let (M, g) be a pseudo-Riemannian manifold. A
neutral metric g is called a Walker metric if there is a null distribution D with respect to g on M.
Also, (M, g) is locally conformally flat if for each point x ∈ M, there exists a neighborhood U of
x and a smooth function f defined on U such that (U, e2 f g) is flat, meaning its curvature of e2 f g
vanishes in U. Egorov spaces and ϵ-spaces are Walker manifolds and are locally conformally flat
while Egorov spaces are not homogeneous and ϵ-spaces are locally symmetric [24–26]. Also, Egorov
spaces are geodesically complete. A pseudo-Riemannian manifold is called indecomposable if the
holonomy group, acting at each point p ∈ M, stabilizes only nontrivial degenerate subspaces V ⊂ TpM.
Indecomposable Lorentzian symmetric spaces are either irreducible or the Cahen-Wallach symmetric
spaces [27, 28]. On Egorov and Cahen-Wallach symmetric spaces, the Ricci solitons [29], algebraic
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properties of curvature operators [24, 25], and Killing magnetic trajectories [30] have been studied.
Also, see [23, 26].

The exploration of geometric solitons, particularly the Riemann soliton, holds significant
importance in the fields of differential geometry and physics, as previously noted. In general,
verifying the existence of a Riemann soliton on a manifold poses significant challenges due to the
involvement of non-linear differential equations, and in some cases, it may be impossible to ascertain.

Motivated by the above-mentioned works, we study the Riemann solitons on Egorov and Cahen-
Wallach symmetric spaces. We demonstrate that the Egorov and Cahen-Wallach symmetric spaces
support the existence of Riemann solitons and gradient Riemann solitons. Furthermore, we provide
a classification of the Riemann solitons within these spaces and establish that the potential vector
fields associated with the Riemann solitons are characterized as Killing, Ricci collineation, and Ricci
bi-conformal vector fields.

The paper is organized as follows: In the following section, we recall some fundamental concepts
on Egorov and Cahen-Wallach symmetric spaces, which will be used in the next sections. The
non-vanishing Christoffel symbols of the Levi-Civita connection associated with the metric, Ricci
tensor, and the Lie derivative of both the metric tensor and Ricci tensor along an arbitrary vector field
are described in Egorov and Cahen-Wallach symmetric spaces. In Section 3, we study the Riemann
solitons on Egorov spaces. We categorize all possible vector fields associated with Riemann solitons
in Egorov spaces. Subsequently, we derive gradient Riemann solitons within these spaces.
Additionally, we examine which of the potential vector fields related to Riemann solitons in Egorov
spaces qualify as Killing fields, Ricci collineations, and Ricci bi-conformal vector fields. Similar to
Section 3, in Section 4 we classify the Riemann solitons on Cahen-Wallach symmetric spaces.

2. Preliminaries

In this section, we recall some fundamental concepts on Egorov and Cahen-Wallach symmetric
spaces.

2.1. Egorov spaces

In this subsection, we will discuss the Levi-Civita connection, the curvature tensor, and the Ricci
tensor of Egorov spaces, focusing on their components relative to the basis of coordinate vector fields.
This analysis equips us with the essential geometric tools necessary for our investigation. Subsequently,
we will calculate the Lie derivative of both the metric and the Ricci tensor in relation to an arbitrary
vector field Y .

An Egorov space [24, 25] is a Lorentzian manifold (Rn+2, g f ), where f : R → (0,+∞) is a positive
function, and with respect to the coordinates {u, v, x1, . . . , xn} on Rn+2, the metric g f is respectively
defined by

g f (u, v, x1, . . . , xn) = 2dudv + f (u)
n∑

i=1

(dxi)2. (2.1)

Let ∇ be the Levi-Civita connection of (Rn+2, g f ), and let R be its curvature tensor, where

R(X1, X2)X3 = ∇[X1,X2]X3 − [∇X1 ,∇X2]X3,
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for all vector fields X1, X2, and X3. The Ricci tensor [29] is defined by

S (X1, X2) = trace(X3 → R(X1, X3)X2).

As proved in [24, 29], on (Rn+2, g f ), with respect to the basis {∂u =
∂
∂u , ∂v =

∂
∂v , ∂i =

∂
∂xi
} for

i = 1, 2, . . . , n, the non-zero components of the covariant derivative are

∇∂i∂i = −
1
2

f ′∂v, ∇∂i∂u =
f ′

2 f
∂i, i = 1, 2, ..., n.

The only non-zero components of the Riemann curvature tensor [25] are determined by

Ruiui =
1

4 f
( f ′2 − 2 f f ′′), i = 1, 2, ..., n, (2.2)

and the only non-zero component of the Ricci tensor is given by

S uu =
n

4 f 2 ( f ′2 − 2 f f ′′).

Suppose Y = Yu∂u + Yv∂v +
∑n

i=1 Y i∂i is an arbitrary vector field on (Rn+2, g f ), where
Yu = Yu(u, v, x1, . . . , xn), Yv = Yv(u, v, x1, . . . , xn), and Y i = Y i(u, v, x1, . . . , xn), i = 1, . . . , n are smooth
functions. By the direct computation, we obtain

(LYg f )(∂u, ∂u) = 2∂uYv,

(LYg f )(∂u, ∂v) = ∂uYu + ∂vYv,

(LYg f )(∂u, ∂i) = ∂iYv + f∂uY i, 1 ≤ i ≤ n,

(LYg f )(∂v, ∂v) = 2∂vYu,

(LYg f )(∂v, ∂i) = ∂iYu + f∂vY i, 1 ≤ i ≤ n, (2.3)
(LYg f )(∂i, ∂ j) = ∂iY j + ∂ jY i, 1 ≤ i , j ≤ n,

(LYg f )(∂i, ∂i) = f ′Yu + 2 f∂iY i, 1 ≤ i ≤ n,

and

(LYS )(∂u, ∂u) = Yu

(
n

4 f 2 ( f ′2 − 2 f f ′′)
)′
+ 2(∂uYu)

(
n

4 f 2 ( f ′2 − 2 f f ′′)
)
,

(LYS )(∂u, ∂v) =
n∂vYu

4 f 2 ( f ′2 − 2 f f ′′),

(LYS )(∂u, ∂i) =
n∂iYu

4 f 2 ( f ′2 − 2 f f ′′), 1 ≤ i ≤ n,

(LYS )(∂v, ∂v) = 0,
(LYS )(∂v, ∂i) = 0, 1 ≤ i ≤ n, (2.4)
(LYS )(∂i, ∂ j) = 0, 1 ≤ i , j ≤ n,

(LYS )(∂i, ∂i) = 0, 1 ≤ i ≤ n.
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2.2. Cahen-Wallach symmetric spaces

This subsection explores the Levi-Civita connection, curvature tensor, and Ricci tensor of Cahen-
Wallach symmetric spaces, focusing on their components in relation to coordinate vector fields. We
will then compute the Lie derivative of the metric and Ricci tensor with respect to an arbitrary vector
field Y .
ϵ-spaces [29] are Lorentzian manifolds (Rn+2, gϵ), and with respect to the coordinates

{u, v, x1, . . . , xn} on Rn+2, the metrics gϵ are defined by

gϵ = ϵ

 n∑
i=1

x2
i

 (du)2 + dudv +
n∑

i=1

(dxi)2.

Cahen-Wallach symmetric spaces [27, 28] are Lorentzian manifolds (Rn+2, gcw), where the metric
gcw is defined by

gcw(u, v, x1. . . . , xn) =

 n∑
i=1

kix2
i

 (du)2 + dudv +
n∑

i=1

(dxi)2, (2.5)

where ki, i = 1, . . . , n are non-zero constants. If k1 = k2 = · · · = kn, then Cahen-Wallach symmetric
spaces are locally conformally flat and conversely. In this case, a Cahen-Wallach symmetric space
becomes ϵ-space, and ki (i = 1, .., n) are non-zero constants. As proved in [29], on (Rn+2, gcw), the
non-vanishing Christoffel symbols of the Levi-Civita connection are described by

∇∂u∂u = −

n∑
i=1

kixi∂i, ∇∂i∂u = kixi∂v, i = 1, 2, ..., n.

The only non-zero components of the Riemann curvature tensor are defined by

Ruiui = −ki, i = 1, 2, ..., n, (2.6)

and the only non-zero component of the Ricci tensor is given by

S uu = −

n∑
i=1

ki.

Let Y = Yu∂u + Yv∂v +
∑n

i=1 Y i∂i be an arbitrary vector field on (Rn+2, gcw), where
Yu = Yu(u, v, x1, . . . , xn), Yv = Yv(u, v, x1, . . . , xn), and Y i = Y i(u, v, x1, . . . , xn), i = 1, . . . , n are smooth
functions. We obtain

(LYgcw)(∂u, ∂u) = 2
n∑

i=1

kixiY i + 2

 n∑
i=1

kix2
i

 ∂uYu + 2∂uYv,

(LYgcw)(∂u, ∂v) =

 n∑
i=1

kix2
i

 ∂vYu + ∂uYu + ∂vYv,

(LYgcw)(∂u, ∂i) =

 n∑
i=1

kix2
i

 ∂iYu + ∂iYv + ∂uY i, 1 ≤ i ≤ n,

(LYgcw)(∂v, ∂v) = 2∂vYu,
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(LYgcw)(∂v, ∂i) = ∂iYu + ∂vY i, 1 ≤ i ≤ n,

(LYgcw)(∂i, ∂ j) = ∂iY j + ∂ jY i, 1 ≤ i , j ≤ n,

(LYgcw)(∂i, ∂i) = 2∂iY i, 1 ≤ i ≤ n,

and

(LYS )(∂u, ∂u) = −2

 n∑
i=1

ki

 ∂uYu,

(LYS )(∂u, ∂v) = −

 n∑
i=1

ki

 ∂vYu,

(LYS )(∂u, ∂i) = −

 n∑
i=1

ki

 ∂iYu, 1 ≤ i ≤ n,

(LYS )(∂v, ∂v) = 0,
(LYS )(∂v, ∂i) = 0, 1 ≤ i ≤ n,

(LYS )(∂i, ∂ j) = 0, 1 ≤ i , j ≤ n,

(LYS )(∂i, ∂i) = 0, 1 ≤ i ≤ n.

3. Riemann solitons on (Rn+2, g f )

In this section, we study the Riemann solitons on (Rn+2, g f ).

Theorem 3.1. (Rn+2, g f , µ,Y) is a Riemann soliton if and only if µ and Y = Yu∂u + Yv∂v +
∑n

i=1 Y i∂i are
admitted by 

Yu = b1u + b2,

Yv = −(µ + b1)v +
∫

1
4 f 2 ( f ′2 − 2 f f ′′)du + b3 +

∑n
i=1(1

2dx2
i + eixi),

Y i = −(dxi + ei)
∫

1
f du + axi +

∑n
j=1
j,i

ci jx j + αi, 1 ≤ i ≤ n,

(b1u + b2) f ′

2 f − d
∫

1
f du + a = −1

2µ,

(3.1)

or 
Yu = b1u + b2 +

∑n
i=1 cixi,

Yv = −(µ + b1)v + b3 +
∑n

i=1 eixi,

Y i = − ci
k v − ei

k u − 1
2µxi +

∑n
j=1
j,i

ci jx j + αi, 1 ≤ i ≤ n,
(3.2)

or 

Yu =
(
b1 +

∑n
i=1 aixi

)
u + b2 +

∑n
i=1

cl
al

aixi,

Yv = −(µ + b1 +
∑n

i=1 aixi)v + b3 +
∑n

i=1( 1
2βal(clb1 − b2al)x2

i + eixi),
Y i = − ai

alβ(alu+cl)
v − βal(clb1−b2al)xi+ei

alu+cl
− (1

2µ + b1)xi −
1
2aix2

i −
∑n

j=1
j,i

a jxix j

−
∑n

j=1
j,i

1
2aix2

j +
∑n

j=1
j,i

ci jx j + αi,

(3.3)

where bi, b2, b3, d, a, ci, ci j, ei, αi, ai are constants for 1 ≤ i, j ≤ n.
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Proof. From (1.1), we get

2R(U1,U2,U3,U4) = −2µ
[
g(U1,U4)g(U2,U3) − g(U1,U3)g(U2,U4)

]
−

[
g(U1,U4)LYg(U2,U3) + g(U2,U3)LYg(U1,U4)

]
(3.4)

+
[
g(U1,U3)LYg(U2,U4) + g(U2,U4)LYg(U1,U3)

]
for any vector fields U1,U2,U3,U4. By using (3.4), (Rn+2, g f , µ,Y) becomes a Riemann soliton if and
only if

2Riuiv = 2µgiiguv + gii(LYg)(∂u, ∂v) + guv(LYg)(∂i, ∂i), 1 ≤ i ≤ n,

2Riuui = −gii(LYg)(∂u, ∂u), 1 ≤ i ≤ n,

2Riuuv = guv(LYg)(∂i, ∂u), 1 ≤ i ≤ n,

2Rivvu = guv(LYg)(∂i, ∂v), 1 ≤ i ≤ n,

2Rivvi = −gii(LYg)(∂v, ∂v), 1 ≤ i ≤ n,

2Ruvuv = −2µguvguv − 2guv(LYg)(∂u, ∂v),
2Riu jv = guv(LYg)(∂i, ∂ j), 1 ≤ i , j ≤ n.

Applying (2.1) and (2.2) in the above equations, we respectively have

(LYg)(∂u, ∂u)=
1

2 f 2 ( f ′2 − 2 f f ′′),

(LYg)(∂u, ∂v) = −µ,
(LYg)(∂u, ∂i) = 0, 1 ≤ i ≤ n,

(LYg)(∂v, ∂v) = 0, (3.5)
(LYg)(∂v, ∂i) = 0, 1 ≤ i ≤ n,

(LYg)(∂i, ∂ j) = 0, 1 ≤ i , j ≤ n,

(LYg)(∂i, ∂i) = −µ f , 1 ≤ i ≤ n.

Applying (2.3) in the above equations, one respectively gets

∂uYv=
1

4 f 2 ( f ′2 − 2 f f ′′), (3.6)

∂uYu + ∂vYv = −µ, (3.7)
∂iYv + f∂uY i = 0, 1 ≤ i ≤ n, (3.8)
∂vYu = 0, (3.9)
∂iYu + f∂vY i = 0, 1 ≤ i ≤ n, (3.10)
∂iY j + ∂ jY i = 0, 1 ≤ i , j ≤ n, (3.11)
f ′Yu + 2 f∂iY i = −µ f , 1 ≤ i ≤ n. (3.12)

Now, we solve the above system of partial differential equations. Equation (3.9) implies that

Yu = F(u, x1, . . . , xn) (3.13)
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for some smooth function F. Inserting (3.13) in (3.7), we conclude that

Yv = −(µ + ∂uF)v +G(u, x1, . . . , xn) (3.14)

for some smooth function G. Plugging (3.14) in (3.6), it follows that

−∂2
uuFv + ∂uG=

1
4 f 2 ( f ′2 − 2 f f ′′). (3.15)

Equation (3.15) is a polynomial with respect to v, then ∂2
uuF = 0 and ∂uG = 1

4 f 2 ( f ′2 − 2 f f ′′). Thus,
we have

F = F1(x1, . . . , xn)u + F2(x1, . . . , xn), G =
∫

1
4 f 2 ( f ′2 − 2 f f ′′)du +G1(x1, . . . , xn),

for some smooth functions F1, F2, and G1. From (3.10), we deduce

Y i = −
1
f

(∂iF1u + ∂iF2)v + Hi(u, x1, . . . , xn), i = 1, . . . , n (3.16)

for some smooth functions Hi, i = 1, . . . , n. Substituting (3.14) and (3.16) in (3.8), we obtain

−∂iF1v + ∂iG1 +

(
−∂iF1 +

f ′

f
(∂iF1u + ∂iF2)

)
v + f∂uHi = 0, i = 1, . . . , n.

Equation (3.15) is a polynomial with respect to v, then

−2∂iF1 +
f ′

f
(∂iF1u + ∂iF2) = 0, ∂iG1 + f∂uHi = 0, i = 1, . . . , n. (3.17)

Hence,

Hi = −∂iG1

∫
1
f

du + Li(x1,, . . . , xn), i = 1, . . . , n,

for some smooth functions Li, i = 1, . . . , n. Equation (3.11) yields

−2
1
f

(∂2
i jF1u + ∂2

i jF2)v − 2∂2
i jG1

∫
1
f

du + ∂iL j + ∂ jLi = 0, 1 ≤ i , j ≤ n,

and consequently,

∂2
i jF1 = ∂

2
i jF2 = 0, ∂2

i jG1 = 0, ∂iL j + ∂ jLi = 0, 1 ≤ i , j ≤ n. (3.18)

Equation (3.12) leads to

(F1u + F2)
f ′

2 f
−

1
f

(∂2
iiF1u + ∂2

iiF2)v − ∂2
iiG1

∫
1
f

du + ∂iLi = −
µ

2
, i = 1, . . . , n.

The last equation implies that

∂2
iiF1 = ∂

2
iiF2 = 0, (F1u + F2)

f ′

2 f
− ∂2

iiG1

∫
1
f

du + ∂iLi = −
µ

2
, i = 1, . . . , n, (3.19)
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and
∂2

iiG1 = ∂
2
11G1 ∂iLi = ∂1L1, i = 2, . . . , n. (3.20)

From (3.18) and (3.19), we find

F1 = b1 +

n∑
i=1

aixi, F2 = b2 +

n∑
i=1

cixi,

for some constants a1. . . . , an, c1. . . . , cn, b1, and b2. If ai = 0 for all i = 1, . . . , n. Then F1 = b1, and
(3.17) implies that f ′ci = 0, i = 1, . . . , n. If ci = 0 for all i = 1, . . . , n, then F2 = b2 and

G1 = b3 +

n∑
i=1

(
1
2

dx2
i + eixi), Li = axi +

n∑
j=1
j,i

ci jx j + αi

for some constants b3, d, a, αi, ei, ci j, i, j = 1, . . . , n such that ci j + c ji = 0. In this case, we have (3.1).
Now, we assume that ai = 0 for all i = 1, . . . , n and there exists l(1 ≤ l ≤ n) such that cl , 0. In this

case, f = k for some constant k, and thus we have

G1 = b3 +

n∑
i=1

eixi, Li = −
1
2

xi +

n∑
j=1
j,i

ci jx j + αi

such that ci j + c ji = 0. Hence, we infer (3.2). Now, suppose that there is l(1 ≤ l ≤ n) such that al , 0.
Then (3.17) implies that f = β(alu+ cl)2 for some constant β. In this case, ci =

cl
al

ai, i = 1, . . . , n. From
(3.18) and (3.20), it follows that

F2 = b2 +

n∑
i=1

cl

al
aixi, G1 = b3 +

n∑
i=1

(
1
2

dx2
i + eixi).

Using (3.19), we getb1 +

n∑
i=1

aixi

 u + b2 +

n∑
i=1

cl

al
aixi

 al +
d
βal
= −(

1
2
µ + ∂iLi)(alu + cl),

which is a polynomial with respect to u, then

1
2
µ + ∂iLi = −

b1 +

n∑
i=1

aixi

 , d = βal(clb1 − b2al).

Since ∂ jLi + ∂iL j = 0 for 1 ≤ i , j ≤ n, we arrive at

Li = −(
1
2
µ + b1)xi −

1
2

aix2
i −

n∑
j=1
j,i

a jxix j −

n∑
j=1
j,i

1
2

aix2
j +

n∑
j=1
j,i

ci jx j + αi,

where ci j + c ji = 0. Hence, we have (3.3). This completes the proof of theorem.
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Now we investigate the gradient Riemann soliton on (Rn+2, g f ).

Corollary 3.1. A Riemann soliton (Rn+2, g f , µ,Y) is a gradient Riemann soliton with the potential
function h, which satisfies

h = −
1
2
µuv + b2v +

∫ ∫
1

4 f 2 ( f ′2 − 2 f f ′′)dudu + b3u +
n∑

i=1

(
1
2

ax2
i + αixi) + γ (3.21)

or

h = −
1
2
µuv + b2v + b3u +

n∑
i=1

(−
1
4
µx2

i + αixi) + γ (3.22)

for some constant γ.

Proof. From (2.1) and Theorem 3.1, the Riemann soliton (Rn+2, g f , µ,Y) is a gradient Riemann soliton
with Y = ∇h = ∂vh∂u + ∂uh∂v +

∑n
i=1 ∂ih∂i for some smooth function h, if and only if ∂vh = Yu, ∂uh =

Yv, ∂ih = Y i, i = 1, . . . , n.
Since h is a smooth function, for the case (3.1), from the equation ∂uYu = ∂u∂vh = ∂v∂uh = ∂vYv, we

conclude that b1 = −
1
2µ. Similarly, using equation ∂iYv = ∂i∂uh = ∂u∂ih = ∂uY i, we deduce d = ei = 0

for i = 1, . . . , n. Also, for 1 ≤ i , j ≤ n by applying ∂ jY i = ∂ j∂ih = ∂i∂ jh = ∂iY j, we arrive at ci j = 0.
Then, we have 

∂vh = −1
2µu + b2,

∂uh = −1
2µv +

∫
1

4 f 2 ( f ′2 − 2 f f ′′)du + b3

∂ih = axi + αi, 1 ≤ i ≤ n,

(−1
2µu + b2) f ′

2 f + a = −1
2µ.

(3.23)

Integrating the first equation in (3.23), we get

h = −
1
2
µuv + b2v + h1(u, x1, · · · , xn) (3.24)

for some function h1. By deriving Eq (3.25) with respect to u and using the second equation in (3.23),
it is concluded that

−
1
2
µv + ∂uh1(u, x1, · · · , xn) = −

1
2
µv +

∫
1

4 f 2 ( f ′2 − 2 f f ′′)du + b3. (3.25)

Then

h1 =

∫ ∫
1

4 f 2 ( f ′2 − 2 f f ′′)dudu + b3u + h1(x1, · · · , xn)

and

h = −
1
2
µuv + b2v +

∫ ∫
1

4 f 2 ( f ′2 − 2 f f ′′)dudu + b3u + h2

for some function h2. Putting the last equation in the third equation in (3.23) gives ∂ih2 = axi + αi for
1 ≤ i ≤ n. Hence, h2 =

∑n
i=1(1

2ax2
i + αixi)+ γ and we infer (3.21). For the case (3.2), from the equation

∂uYu = ∂u∂vh = ∂v∂uh = ∂vYv, we find b1 = −
1
2µ. Applying ∂iYv = ∂i∂uh = ∂u∂ih = ∂uY i, we deduce
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ei = 0 for i = 1, . . . , n. Also, for 1 ≤ i , j ≤ n, by applying ∂ jY i = ∂ j∂ih = ∂i∂ jh = ∂iY j, we arrive at
ci j = 0. From ∂iYu = ∂i∂vh = ∂v∂ih = ∂vY i, we get ci = 0 for i = 1, . . . , n. Thus, we have

∂vh = −1
2µu + b2,

∂uh = −1
2µv + b3,

∂ih = −1
2µxi + αi, 1 ≤ i ≤ n.

(3.26)

After an integration process of (3.26), we have (3.22). For the case (3.3), from the equation ∂uYu =

∂u∂vh = ∂v∂uh = ∂vYv, we arrive at b1 +
∑n

i=1 aixi = −
1
2µ. Using ∂iYu = ∂i∂vh = ∂v∂ih = ∂vY i, we

deduce al = 0, which is a contradiction. Then, in this case, the Riemann soliton is not a gradient
Riemann soliton.

Remark 3.1. A vector field Y on an n-dimensional pseudo-Riemannian manifold (M, g) is called a
Killing vector field if LYg = 0 [31–33]. Since any Riemann soliton on (Rn+2, g f ) admits (3.5), we
conclude any potential vector field of a Riemann soliton on (Rn+2, g f ) is a Killing vector field if µ = 0,
and f = (pu + q)2 for some constants p, q.

Remark 3.2. A vector field Y on an n-dimensional pseudo-Riemannian manifold (M, g) is said to be
a Ricci collineation vector field if LYS = 0. From Theorem 3.1 and (2.4), if Yu = 0 or f = (pu + q)2

for some constants p, q, then any potential vector field of Riemann soliton on (Rn+2, g f ) is a Ricci
collineation vector field.

Remark 3.3. A vector field Y on a pseudo-Riemannian manifold (M, g) is said to be a Ricci
bi-conformal vector field [34] if there are two smooth functions α and β such that

LYg = αg + βS , LYS = αS + βg. (3.27)

I recommend the papers [35–37] for the study of Ricci bi-conformal vector fields on different
spacetimes. Also see [38–40]. From Theorem 3.1 and (3.27), any potential vector field of the
Riemann soliton on (Rn+2, g f ) is a Ricci bi-conformal vector field for α = −µ and β = 0 if
f = (pu + q)2 for some constants p, q.

4. Riemann solitons on (Rn+2, gcw)

In this section, we investigate the Riemann solitons on (Rn+2, gcw).

Theorem 4.1. A Cahen-Wallach space is a steady Riemann soliton where its potential vector field
Y = Yu∂u + Yv∂v +

∑n
i=1 Y i∂i satisfies

Yu = c2,

Yv = −

(
b′(u) +

∑n
j=1
j,i

d′i j(u)x j

)
xi −

∑n
r=1 k1xr

(∫
b(u)du +

∑n
j=1
j,r

∫
di j(u)dux j

)
−k1u + B̃(x1, . . . , xi−1, xi+1, . . . , xn),

Y i = b(u) +
∑n

j=1
j,i

di j(u)x j, i = 1, . . . , n,

(4.1)
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where
b(u) = a1e

√
k1u + a2e−

√
k1u, di j(u) = ai j1e

√
k1u + ai j2e−

√
k1u

for k1 > 0,

b(u) = a1 sin(
√
−k1u) + a2 cos(

√
−k1u), di j(u) = ai j1 sin(

√
−k1u) + ai j2 cos(

√
−k1u)

for k1 < 0, and a1, a2, ai j1, ai j2, are constants such that ai j1 + a ji1 = 0 and ai j2 + a ji2 = 0. Also, B̃ is a
smooth function.

Proof. Using (3.4), (Rn+2, gcw, µ,Y) is a Riemann soliton if and only if

2Ruiui = 2µguugii + guu(LYg)(∂i, ∂i) + gii(LYg)(∂u, ∂u), 1 ≤ i ≤ n,

2Rvivi = gii(LYg)(∂v, ∂v), 1 ≤ i ≤ n,

2Ruiuv = −guv(LYg)(∂i, ∂u) + guu(LYg)(∂i, ∂v), 1 ≤ i ≤ n,

2Ruivi = 2µguvgii + guv(LYg)(∂i, ∂i) + gii(LYg)(∂u, ∂v), 1 ≤ i ≤ n,

2Ruviv = −guv(LYg)(∂v, ∂i), 1 ≤ i ≤ n,

2Ruiu j = guu(LYg)(∂i, ∂ j), 1 ≤ i , j ≤ n,

2Ruvuv = −2µg2
uu − 2guv(LYg)(∂u, ∂v).

Applying gcw and (2.6) in the above equations, we respectively have

(LYg)(∂u, ∂u) = −2ki − µ

n∑
i=1

kix2
i , 1 ≤ i ≤ n,

(LYg)(∂u, ∂v) = −µ,
(LYg)(∂u, ∂i) = 0, 1 ≤ i ≤ n,

(LYg)(∂v, ∂v) = 0, (4.2)
(LYg)(∂v, ∂i) = 0, 1 ≤ i ≤ n,

(LYg)(∂i, ∂ j) = 0, 1 ≤ i , j ≤ n,

(LYg)(∂i, ∂i) = −µ, 1 ≤ i ≤ n.

From the first equation in (4.2), one gets ki = k1 for i = 2, . . . , n. Applying (2.7) in the above
equations, we respectively have

2
n∑

i=1

k1xiY i + 2

 n∑
i=1

k1x2
i

 ∂uYu + 2∂uYv = −2k1 − µ

n∑
i=1

k1x2
i , (4.3) n∑

i=1

k1x2
i

 ∂vYu + ∂uYu + ∂vYv = −µ, (4.4) n∑
i=1

k1x2
i

 ∂iYu + ∂iYv + ∂uY i = 0, 1 ≤ i ≤ n, (4.5)

2∂vYu = 0, (4.6)
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∂iYu + ∂vY i = 0, 1 ≤ i ≤ n, (4.7)
∂iY j + ∂ jY i = 0, 1 ≤ i , j ≤ n, (4.8)
2∂iY i = −µ, 1 ≤ i ≤ n. (4.9)

Now, we solve the above system of partial differential equations. Equation (4.6) yields

Yu = A(u, x1, . . . , xn), (4.10)

for some smooth function A. Inserting (4.10) in (4.4) one gets

Yv = −(µ + ∂uA)v + B(u, x1, . . . , xn),

for some smooth function B. Replacing (4.10) in (4.7), it follows that

Y i = −∂iAv +Ci(u, x1, . . . , xn), i = 1, . . . , n (4.11)

for some smooth functions Ci, i = 1, . . . , n. Applying (4.11) in (4.9), we deduce

−∂2
iiAv + ∂iCi = −

1
2
µ, i = 1, . . . , n. (4.12)

Equation (4.12) is a polynomial with respect to v, then ∂2
iiA = 0 and ∂iCi = −

1
2µ for i = 1, . . . , n.

Also, substituting (4.11) in (4.8), we obtain

−2∂2
i jAv + ∂ jCi + ∂iC j = 0, 1 ≤ i , j ≤ n.

Then, ∂2
i jA = 0 and ∂ jCi + ∂iC j = 0 for 1 ≤ i , j ≤ n. From (4.5), we getk1

n∑
i=1

x2
i

 ∂iA − 2∂2
iuAv + ∂uCi + ∂iB = 0, 1 ≤ i , j ≤ n. (4.13)

Hence, ∂2
iuA = 0 and

(
k1

∑n
i=1 x2

i

)
∂iA + ∂uCi + ∂iB = 0 for i = 1, . . . , n. Therefore, we can write

A = A1(u) +
n∑

i=1

aixi,

for some constants a1, . . . , an and function A1. The Eq (4.3) leads to

1
2

k1

2 + µ n∑
i=1

x2
i

 = (
n∑

i=1

k1aixi)v −
n∑

i=1

k1Cixi −

k1

n∑
i=1

x2
i

 A′1(u)

+ A′′1 (u)v − ∂uB.

The last equation is a polynomial with respect to v, then
∑n

i=1 k1aixi + A′′1 (u) = 0, and

n∑
i=1

k1Cixi +

k1

n∑
i=1

x2
i

 A′1(u) + ∂uB = −
1
2

k1

2 + µ n∑
i=1

x2
i

 . (4.14)
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Since
∑n

i=1 k1aixi + A′′1 (u) = 0 is a polynomial with respect to xi, we conclude that ai = 0 for
i = 1, . . . , n and A1(u) = c1u + c2 for some constants c1 and c2. Equation (4.13) yields ∂uCi + ∂iB = 0.
Taking the derivative of this relation with respect to xi and using ∂iCi = −

1
2µ, we obtain ∂2

iiB = 0.
Differentiating (4.14) with respect to xi to obtain

k1∂iCixi + k1Ci + 2k1c1xi + ∂
2
iuB = −k1µxi.

Since ∂iCi = −
1
2µ, we deduce k1Ci + 2k1c1xi + ∂

2
iuB = −1

2µxi. Taking the derivative of the last
equation with respect to xi, one gets c1 = 0. Thus, we have

n∑
i=1

k1Cixi + ∂uB = −
1
2

k1

2 + µ n∑
i=1

x2
i

 . (4.15)

Equations ∂ jCi + ∂iC j = 0 and ∂iCi = −
1
2µ for 1 ≤ i , j ≤ n yield ∂2

j jCi = ∂
2
jkCi = 0 for i , j, k and

j , k. Therefore, we have

Ci = b(u) +
n∑

j=1
j,i

di j(u)x j, i = 1, . . . , n,

such that di j + d ji = 0 for some smooth functions b and di j. From the relation ∂uCi + ∂iB = 0, we arrive
at

B = −

b′(u) +
n∑

j=1
j,i

d′i j(u)x j

 xi + B̄(u, x1, . . . , xi−1, xi+1, . . . , xn),

for some smooth functions B̄. Equation (4.15) implies that

n∑
r=1

k1xr

b(u) +
n∑

j=1
j,r

di j(u)x j

 −
b′′(u) +

n∑
j=1
j,i

d′′i j(u)x j

 xi + ∂uB̄ = −
1
2

k1

2 + µ n∑
i=1

x2
i

 .
This is a polynomial with respect to xi, then µ = 0,

n∑
r=1

k1xr

b(u) +
n∑

j=1
j,r

di j(u)x j

 + ∂uB̄ = −k1,

and

k1

b(u) +
n∑

j=1
j,r

di j(u)x j

 −
b′′(u) +

n∑
j=1
j,i

d′′i j(u)x j

 = 0.

Also, the last equation is a polynomial with respect to x j, then k1b(u) − b′′(u) = 0 and k1di j(u) −
d′′i j(u) = 0 for 1 ≤ i , j ≤ n. If k1 > 0, then

b(u) = a1e
√

k1u + a2e−
√

k1u, di j(u) = ai j1e
√

k1u + ai j2e−
√

k1u
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and if k1 < 0, then

b(u) = a1 sin(
√
−k1u) + a2 cos(

√
−k1u), di j(u) = ai j1 sin(

√
−k1u) + ai j2 cos(

√
−k1u)

for some constants a1, a2, ai j1, ai j2 such that ai j1 + a ji1 = 0 and ai j2 + a ji2 = 0. Therefore, we have (4.1).
This completes the proof of theorem.

Corollary 4.1. If a Cahen-Wallach space admits a Riemann soliton then it becomes an ϵ-space.

Now, we investigate gradient Riemann solitons on (Rn+2, gcw).

Corollary 4.2. The Riemann soliton (Rn+2, gcw, µ,Y) is a gradient Riemann soliton with Y = ∇h if and
only if h = −1

2k1u2 + b̃u + a for some constants k1, b̃ and a.

Proof. From (2.5) and (4.1), we can conclude that any potential vector field of a Riemann soliton on
(Rn+2, gcw) is as ∇h = ∂vh∂u +

(
∂uh − (

∑n
i=1 k1x2

i )∂vh
)
∂v + ∂ih∂i, if and only if

∂uh = Yv +

 n∑
i=1

k1x2
i

 Yu, ∂vh = Yu, ∂ih = Y i, i = 1, . . . , n.

Equation

∂uY i = ∂u∂ih = ∂i∂uh = ∂iYv +

 n∑
i=1

k1x2
i

 ∂iYu + 2k1xiYu

leads to c2 = b(u) = di j(u) = 0 for 1 ≤ i , j ≤ n. Also, the equation ∂ jY i = ∂ j∂ih = ∂i∂ jh = ∂iY j for
1 ≤ i , j ≤ n yields B̃ = b̃ is a constant. Then ∂uh = −k1u + b̃, ∂vh = ∂ih = 0, i = 1, . . . , n.

Remark 4.1. Theorem 4.1 leads to any potential vector field of the Riemann soliton (Rn+2, gcw) not
being a Killing vector field, a Ricci bi-conformal vector field, or a Ricci collineation vector field,
because (LYgcw)(∂u, ∂u) = −2k1 , 0.

5. Conclusions

In this paper, we study the Riemann solitons on Egorov and Cahen-Wallach symmetric spaces.
We prove that the Egorov spaces admit a steady, shrinking, and expanding Riemann soliton, and the
Cahen-Wallach symmetric spaces admit just a steady Riemann soliton. We prove any potential vector
field of the Riemann soliton on Egorov spaces (Rn+2, g f ) is a Killing vector field if the Riemann soliton
is steady and f = (pu + q)2 for some constants p, q. Also, we conclude that any potential vector field
of the Riemann soliton on (Rn+2, g f ) is a Ricci collineation vector field and a Ricci bi-conformal vector
field with certain conditions. Also, we prove that any potential vector field of the Riemann soliton
on Cahen-Wallach symmetric space is not a Killing vector field, a Ricci collineation vector field, or a
Ricci bi-conformal vector field.
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