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Abstract:  This paper studied the Riemann problem for the non-isentropic Chaplygin gas
magnetogasdynamics equations and investigated the general asymptotic behavior of its Riemann
solutions. Due to the influence of the source term in the equations, the Riemann solutions for the non-
isentropic Chaplygin gas magnetogasdynamics equations are no longer self-similar. We performed
the analysis after eliminating the source term by using a velocity transformation. When the Riemann

initial data of density and velocity satisfied the condition v_ — pi > vy + p%, as the reciprocal of

magnetic flux density u tended to zero, the Riemann solutions of the non-isentropic Chaplygin gas
magnetogasdynamics equations converged to the delta shock solutions of the non-isentropic Chaplygin
Euler equations. Otherwise, the Riemann solutions converged to a contact discontinuity of the non-

isentropic Chaplygin Euler equations.
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1. Introduction

As one of the important components of partial differential equations, hyperbolic conservation laws
play a crucial role in fields such as aerospace, meteorology, and chemical engineering. The Riemann
problem was proposed by Riemann when studying shock tube experiments corresponding to the Euler
equations. In 1957, for the Riemann problem, Lax [1] first constructed solutions under the assumptions
that the equations are strictly hyperbolic and all the characteristics of the equations are genuinely
nonlinear or linearly degenerate. Based on mass conservation and momentum conservation, the one-
dimensional isentropic Euler equations can be derived as follows:
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{p’+(p”)x:0’ (1.1)

(ou), + (pu2 + P)x =0,

where p, P, and u represent density, pressure, and velocity, respectively. For research related to the
Eq (1.1), please refer to references [2,3]. Based on the Eq (1.1), the non-isentropic Euler equations
with energy conservation are

Pt + (pu)x = 0’
(pu), + (pu* + P) =0, -
(5 +pe) (55 +pe+ P)u) =0

Shelkovich, Nilsson, and Rozanova [4] used the variable H to replace the product of p and e,
transforming the Eq (1.2) into

Pt + (P”)x = 0’
(ou), + (pu? + P)x =0, (1.3)
(’%2 +H)t+((%2 +H+P)”)x =0,

where H = pe > 0 represents the internal energy. Under the condition of a negative state (o_, u_, H_),
Pang [5] studied the Riemann problem for the Eq (1.3) with the equation of state p = —ﬁ, and obtained
Riemann solutions that include both contact discontinuities and delta shock waves. For more research
related to the Eq (1.3), please refer to references [6,7]. Considering the effect of the source term, the
non-isentropic Euler Eq (1.3) are transformed into

pPr+ (pu)x = O’
o, + (i + ), = o o
(5 1)+ (54 11 )u), =

where £ is a constant. In 2019, Pang and Hu [8] studied the Riemann problem for the Eq (1.4) for Van
der Waals gas with external forces being continuous functions of time, and provided explicit forms for
rarefaction waves, shock waves, and contact discontinuities. In 2020, Pang, Ge [9] investigated the
exact solutions of the Riemann problem for the Eq (1.4) for compressible ideal fluids and proved that,
for ¢t > 0, the solutions of the system exhibit vacuum phenomena and no longer possess self-similarity.
Thus, the study of the Eq (1.4) has broad physical significance.

Magnetic fluids are materials that exhibit both the flow characteristics of liquids and the magnetic
properties of solids. It has a wide range of applications in various demanding fields such as magnetic
fluid seals, shock absorption, medical devices, sound modulation, optical displays, and magnetic fluid
beneficiation. When the equation of state is influenced by magnetic fluids, researchers have focused
more on studying the equations

{p, + (pu), - 0, ) 5
(ou), + (pu + P+ g)x =0.
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Based on the Eq (1.5), considering that the magnetic fluid satisfies

(1.6)

P=-Y4 0O<a<l,
{ | _p K2p?
W Nz;/ , k>0,
where 4/ and u represent the magnetic permeability and the reciprocal of magnetic flux density,
respectively, and B = /ll with M and N being positive real numbers. In view of the vanishing magnetic
field limits for the Riemann solutions for the Eqs (1.5) and (1.6), in 2022, Shao [10] demonstrated that
as the magnetic field vanishes, certain Riemann solutions with two shocks converge to a delta shock
solution of the Chaplygin gas equations, resulting in a density that becomes a weighted 6-measure.
Conversely, other Riemann solutions converge to a state characterized by two contact discontinuities,
where the intermediate state remains nonvacuum. For more research on the Eq (1.5), please refer to
references [11-13].

In contrast to the above studies, we investigate the Riemann problem for Eq (1.4), which describe
Chaplygin gas affected by magnetic fields. The Riemann solutions of the non-isentropic Chaplygin gas
magnetogasdynamics equations may include both elementary wave and delta shock wave. The delta
shock wave is particularly significant in handling impulses and instantaneous events, and has important
applications in fields such as signal processing and Fourier transform. After introducing magnetic
fluids, we can discuss the Chaplygin gas model that is affected by the magnetic field. Physically,
magnetic permeability is defined as y' = ﬂlg, where ', u, ¢ represent magnetic permeability, the
reciprocal of magnetic flux density and magnetic field intensity, respectively. Through the Eq (1.6)
and definition of magnetic permeability, we get the equation of state which we investigate

1 1
P=—ukp* —~, k>0, (1.7)
2 P

where u > 0 is the reciprocal of magnetic flux density. This paper investigates the Riemann solutions
of the Eqs (1.4) and (1.7) and their vanishing magnetic field limits. In 2019, Zhang, Pang and
Wang [14] studied concentration and cavitation in the vanishing pressure limit of solutions to the
generalized Chaplygin Euler equations of compressible fluid flow. In 2021, Zhang and Pang [15]
studied the phenomena of concentration and cavitation by examining the vanishing pressure limit of
solutions to the simplified isentropic relativistic Euler equations. In 2022, Peng and Wang [16] used the
pressureless limit method to study the limit behavior of continuous solutions for the isentropic Euler
equations. Their research indicated that during the pressureless limit process, for the isentropic Euler
equations, the initial data of compressive continuous solutions converges to the mass concentrated
solutions of the pressureless Euler equations. In 2023, Lei and Shao [17] constructively solved the
Riemann problem for relativistic Euler equations using a logarithmic equation of state and proved that,
as pressure vanishes, the Riemann solutions of the relativistic Euler equations converge to the Riemann
solutions of the pressureless relativistic Euler equations. This demonstrates that the pressureless limit
is an important method for studying the Riemann problem.
We study the Riemann problem of Eqs (1.4) and (1.7) with the initial data

(o—,u_,H_),x <0,
= 1.
(o, u, H) (0, x) {(p+’u+’H+)’x -0, (1.8)
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where p;, H; > 0, u;, i = —, +, are constants. By using the velocity transformation u = v+gt introduced
by Faccanoni and Mangeney [18], the source term is eliminated

pr+ (v +p0n), =0,
(ov), + (ov (v + ) + Juklp® = 1) =0, (1.9)

P/x

(%pv2 + H)t + ((%va + H) (v+p1)+ (%,uk%pz - /l)) v)x =0.
When t = 0, u, = v,. Meanwhile, the initial data (1.8) becomes

(0,7, H) (0, x) = 4 £ V= H)- 0 <0 (1.10)
" S (04, Ve, Hy), x> 0. '

We obtain the solutions to the Eqgs (1.7), (1.9), and (1.10). Then, we use characteristic analysis
and phase plane analysis methods [19-21] to study the Riemann solutions to the systems (1.7), (1.9),
and (1.10) and the limiting behavior of Riemann solutions as the reciprocal of magnetic flux density u
approaches zero.

The structure of this paper is arranged as follows: In the second section, we briefly review the
Riemann solutions of the non-isentropic Chaplygin Euler equations. In the third section, we study
the Riemann solutions of the non-isentropic Chaplygin gas magnetogasdynamics equations in both the
phase plane and the physical plane. The fourth section analyzes the vanishing magnetic field limits
of the Riemann solutions for the non isentropic Chaplygin gas magnetogasdynamics equations in two
casesv. — - >v, + —andv_— L <v, + p%, as the reciprocal of magnetic flux density u approaches
zero. The main conclusion is as follows.

Theorem 1. When v_ — i > v, + —, the Riemann solutions of the Eqs (1.9) and (1.10) with (1.7)
converges to the delta shock wave of the Egqs (1.4) and ( 1.8) with P = —~ as the reciprocal of magnetic
Sflux density p approaches zero. When v_ — p—l_ <vy+ p+ the Riemann solutlons of the Egs (1.9) and
(1.10) with (1.7) converges to the contact discontinuity of the Eqs (1.4) and (1.8) with P = —ﬁ as the

reciprocal of magnetic flux density u approaches zero.

Remark 1. In [ 5 |, Pang considered the delta shock wave and the contact discontinuity of (1.4) and

(1.8) with P = —> in two cases v_ — p— > v, + o L andv_ - p— <Vvy+ p%, respectively. The velocity us (t)
of delta shock wave satisfies the entropy condltlon
1 1 1 1
Vy— — <V <vi+—<us(t) Svo— — <v_<v_+ —.
P+ P+ P- P-

We want to explore the limit behavior of the Riemann solutions for systems (1.9) and (1.10) with
(1.7) as the reciprocal of magnetic flux density yu approaches zero. Notice that in (1.7), we see
lin(l)(%,uk(z)p2 - /]7) = —;; thus, as u tends to zero, the equation of state converges to the equation
H—

of state of the Chaplygin gas. The first and third eigenvalues of (1.9) with (1.7) are calculated as
Ai(p,v) =v+pt— \|u kgp + iz, A3(p, v) =v+pBt+ Juk 2p + iz, which are independent of the variable
H; therefore, hm /11(p V) =v_— — hm /13(p+,v+) = Vet - . Thus, as the reciprocal of magnetic

Sflux density u approaches zero, we conszder the limit of Rlemann solutions of systems (1.9) and (1.10)
with (1.7) in cases v_ — pi_ <v,+ p% andv_ — i >y, + p% in Theorem 1.
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2. Riemann problem for non-isentropic Chaplygin Euler equations

This section briefly reviews the Riemann solutions of the non-isentropic Chaplygin Euler equations
under the equation of state p = — é, and the equations satisfy the thermodynamic conditions

Tds —de = Pd(l) ,
ol

where T = T (p, s) represents the temperature, and e and s represent the internal energy and entropy of
the fluid, respectively. The physical region that satisfies the above thermodynamic conditions is

1
Q:{(p,u,H)|p>0,u€R,H2 —}
2p

The expressions for the non-isentropic Chaplygin Euler equations are

pr+ (ou), =0,
(ou), + (pu = 1) = Bp. 2.1
(%pu2 + H)[ + ((%pu2 + H - é) u)x = Bpu,

where the state variable H > 0 is the internal energy. After using the variable substitution u = v+4¢ [18],

for a given negative state (o, v_, H_), Pang [22] solved the distribution of its Riemann solutions in the
phase plane, as shown in Figure 1.

X i

11

Figure 1. The Riemann solutions of Eqgs (1.8) and (2.1) in the phase plane.

When the projection of (p,, v,, H,) is located in I, the contact discontinuities are as follows:

_ _ P
p—H pH— - 2pp-

v—1=y -1
le{ p p- (2.2)
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v=v., p=p.,

Jr: 2.3
; {v+%:v++p%, (0.4)
3¢ _ _ i’ :

p+H pH+ T 2pps

Since the equations in differential form are no longer valid on the interrupted line of solutions
and the equations in integral form still hold, we use delta shock to construct interrupted solutions of
the equations. Mathematically, they are characterized by the delta functions appearing in the state
variables. Physically, they represent the process of concentration of the mass and formation of the
universe [23]. When the projection of (p,, v,, H,) is located in /1, the delta shock wave should satisfy
the following generalized Rankine-Hugoniot conditions [24]:

d
8O = us (1) + B,

9 = us @ [p] - [p (v + D],

L0 D) — g1 1) [ow] ~ [pv v+ ) — L] 2
MG =y 0 [t + ] = (% + H) o0~ 2],

where x (¢) and us (¢) represent the position and velocity of the delta shock, and / (¢) and w (7) are the
weights of 6, on the state variables H and p, respectively, with x(0) = 0, us(0) = uy, w(0) = 0,
h(0) = 0. Additionally, to ensure the uniqueness of the solutions, the following entropy condition
must be satisfied:

AL (P4, V1) < A (P4, v4) < A3 (P4, ve) Sus (D) < A (p-,vo) < A (p-,v-) < A3 (p-,v2).

3. Riemann solutions of systems (1.9) and (1.10) with (1.7)

Next, we study the Riemann solutions of the systems (1.9) and (1.10) with (1.7). Since the system
(1.4) is non-self-similar, we use the variable substitution u = v + gt introduced by [18], then the system
(1.4) can be transformed into the following form:

o+ (p(v+p1), =0,
(ov), + (pv (v + B + Lukdp? - l) =0, 3.1

P/x

(%pv2 + H)t + ((%pv2 + H) (v + 1) + (%,uk%,o2 - %) v) =0,

X

with the following initial data:

(o-,v_,H_),x <0,
= 2
(p, v, H) (0, x) {(p+’v+’H+)’x -0, (3.2)

where p;, H; > 0, v;, i = —, +, are given constants. Denote the matrix
1 0 O
A=l v p 0],
1
v opv 1

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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v+ Bt Jol
B= v(v+pt) +,uk(2)p +é 2pv + pft

%vz v+ 1)+ ,uk%pv + /%v %pv2 +pvBt + H + %,uk%p

Simplifying and writing the system (3.1) in the following matrix form,

p p
Al v | +B| v =0,
H t H X
let A satisfy
det (1A — B) =0,

the eigenvalues are calculated as

0
0

1
5 v+ Bt

(3.3)

2 1 2 1
A =v+pt—\|pkgp+ =, L =v+pt, A3=v+Pr+ 4 |ukp + =,
p p

then the right eigenvectors corresponding to A, A,, A3 are

-p

0
Fl = \H-lk?)erplz s ?2 = 0 ) _)3 =
1

—H = 3pkip® + 4
and
pkg = 25

VA = |——— 2 10|,
2,/uk§p+§

v, =(0,1,0),
ko — 2

VA, = "~ 10l

2 ,/,ukgp + piz

Thus, we know

vy - =(0,1,0)-(0,0,1)" =0,

Jo
wkipt |
1 2.2 1
SHkop™ = o

T
pk = % 1 1 1
V/ll . ’—?l = _0—p31’ l’O : (_p9 ,Uk(Z)p"' UL -H - (Eluk(z) ? - _)
2J,uk%p+ﬁ7 P p
2. 1 2, _ 1 2 1
_ M + y|ukZp + L L

0 2~
2‘/,uk(2)p+pi2 P 2,/,11/’(3,0+pi2

AIMS Mathematics

= >0,
2 ,/,ukgp + piz
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VA3 - P = ,uk%p+—
2, /,uk%p + = 2, /,uk(z)p +

therefore, the first and third eigenvalues are genuinely nonlinear, while the second eigenvalue is linearly

degenerate. Given the negative state (o_, v_, H_), the rarefaction wave curve is obtained by solving the
Riemann problem (1.9) and (1.10) with (1.7)

=4 (p,v)=v+pLt+ ‘/,uk(z)p+§,

- 1
Rip-v i H) i qv—v == [/ 7 (uk2s3 +1)*ds, p < p_, (3.4)
% L= dukp + 2 - (—uk(z)p + 5 )
and
‘é—f =L (p,v)=v+p6t+ ,/yk§p+ #,
N 1
R_,v_.,H):{y—vy_= fpp 2 (,ukzs3 + 1)2 ds, p>p_, (3.5)
H _H

i —zﬂk§p+——(-ﬂk§p +22)

We analyze the asymptotic trend of the projection of the rarefaction wave curve on the (p, v) plane.

For <I?(,o_, v_,H_)where p < p_,
1
dv \/'Uk(% o

— =" " <0,
dp p

2y kgt

— = > 0.
2
W7 202 Jukzp + >
Thus, the graph of v with respect to p is convex downward, and v = v_ — f k2s3 + 1) ds. As
p.

o 0 I
p approaches 07, 11r(r)1 52 ”ks A =1 > 0, so at this time, f s~ (,ukés3 + 1)2 ds diverges. Forp < p_,

r-

2 1
as p approaches 0, v =v_ — f 572 (,uk%s3 + 1)2 ds approaches +oco.
P-

For?% (o_,v_,H_) where p > p_,

AIMS Mathematics Volume 10, Issue 1, 1675-1703.



1683

P L
Thus, the graph of v with respect to p is concave upward, and v = v_ + f 52 (,ukf,s3 + 1)2 ds. As
P-

2 1
p approaches +oco, similarly, it can be shown that v = v_ + f 572 (,uk(z)s3 + 1)2 ds approaches +co. The
P

solutions (o,, v, Hp,) at any point (x, ¢) in the backward rarefaction wave satisfy

dx _ / 2 1
d_);—vbr +Bt_ :Uk()pbr‘l'p_}z”,

x(0) =0.

Integrating the above equation yields

1 1
X = Vpl + E,sz - ,Uképbr + =L
br

that is,
/ 1 x 1
r k2 y+ — = —— =pt,
Vb lu ()pb pir ¢ 2ﬁ
SO
Dbr llk(z)P + % 1 1
f N T dp+ \[uk2on + — =v_— T4 Zpr (3.6)
p- P P, t 2

From the second equation in (3.4), we have

Vor = o |1k? +L+f—1,8t
br — /Jopbr pir p 5 .

Combining the above formula with (3.6),

o MG + 5 T ox 1
V. — ———dp = ,|ukipp + — + = — =P,
fp p e, 12

and integrating both sides yields

Obr 1,/.1]((2)[) + # X 1 1
_ - dp=-v_ 4+ ——Bt+ k2 op + —, 3.7
f p=—v-+ -~ 5p Hksr + 2 (3.7

P br

p-

. Hy H. _ (1 1 1 1 .
since ~r — 7= = (E,uk%pb, + ﬂ) - (i,uk%p_ + 2’7), that is,
Onr 1 I 1 1
Hy = P2 H + pp | 21k200 + — | = por | 2k + — ).

b o Pb (2,U 0Pb 2pir) Pb (zﬂ oP 207

Volume 10, Issue 1, 1675-1703.
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The above calculation shows that the solutions (0., Vs, Hp,) at any point (x, ) in the backward
rarefaction wave satisfies

[ukZp+
f’i’" ud + /,uk%pbr+ - =v_— 2+ 2B,
N o S, o

Hy, = 52 Hy, + ppr (%#kopbr ) Pbr( SHkgp- + 2#)

Similarly, it can be concluded that the solutions (pf,, Ve, H fr) at any point (x, t) in the forward
rarefaction wave satisfies

k2
o YK 0Pt 2p 1 X 1
L7 dp + “/tkopfr + p—ir = —v_+ i iﬁt’

Dfr \/“kopprz d 3.9

V=V +fp ~——=dp,
Hy, = %H—"'pfr(%/lkopfr ) pfr(zluk(z)p *3 )

Next, we will investigate the shock wave solutions. From the Eq (3.3), the Rankine-Hugoniot
conditions are obtained as follows:

= [p] + [p(v+pD] =0
—0* [pv] + |ov (v + B1) + dukdp? = L] = 0, (3.10)
ot [%pv2 + H] + [(%pvz + H) v+p1)+ (%,ukg 2 - é)] =0,

where o (t) = W, and [p] = p, — p_ represents the jump discontinuity. For a negative state

(p-,v_, H_), the shock wave curve for the Riemann problems (1.7), (1.9), and (1.10) is given by

ot = v+ b= (= H (ke - 1) - (akde? - 1))

L [ R iy =
=t (- ) (b - 1)

where 4, (p, v) < o (t) < A, (p-, v-),

B ot =i 2 G - 3 (ke - ) - (ki - 7))
S ooy sgv =y = =G = 1) (ke - ) - (ki = 1) G.12
H = L+ 52 (ke = 2) + (ko2 = ).

where 13 (p, v) < 0% (t) < A3 (p_, v-). Next, we analyze the asymptotic behavior of the projection of

the shock wave curve onto the (p, v) plane. For <S_(p_, v_, H_) under the condition p > p_,

v 1{(1 1\(/1 1\ (1 1\\\2
s o))
do 2\\p_ p/\\2 Jo, 2 o

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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1{(1 1 (1 1 1
[_2 [(Eﬂképz -—- (Euk{‘}p? - —)) +( — ]]] <0,
P P P- p-—3 (,ukop + p_2)

H
and as p tends to +oo, v tends to —co. For S (p_,v_, H_) under the condition p < p_,

1

v 1{(1 1\([1 ,, 1) (1 . 1)))
— = —={|— = = |[{51ke0" - =) - | s1ko0> = —]||| -
dp 2((p- p)((2 “op) 2T e

1[[1 1 1 1 1
e s [ P s | R
P P P- p-=3 (,ukop + ;)

and as p tends to 0*, v tends to —oco. Since the shock wave curve and the rarefaction wave curve are
tangent to each other at a second-order point in the phase plane (v, p), their concavity and convexity
are consistent.

Next, we consider the contact discontinuity. When [p] = 0, by the first equation of the Rankine-
Hugoniot conditions [p (v + Bf)] = 0, we know p, [v] = 0, which implies [v] = 0. From the third
equation of the Rankine-Hugoniot conditions,

- ((%mvi + H+) - (%p_vz + H_)) + ((%pwi + H+) (v+p1) - (%p_v% + H_) (v- +,Bt))

1 1 1 1
+ (| 2202 = — v, — |zl — —|v_
(e e L

=— o4 [H] + (Hy (v+ + ) — H_(v_ + B1))
=— oy [H1+ (v_+p1)[H] = 0.

Thus, a contact discontinuity curve is given by

oy =v_+ I,
J(p-,v_,H_):{[p] =0, [v]=0,
[H] # 0.

In summary, we have derived the elementary wave curves in the phase plane of Eqs (3.1) and (3.2).
In the phase plane, given the negative state (po_, v_, H_), we can draw the corresponding curves based
on the expressions for the rarefaction wave curve and the shock wave curve. The phase plane is divided
into four regions, as shown in Figure 2.

If the projection of (p,, v, v,) is located in I (po_,v_), the Riemann solutions to the Eqgs (3.1) and
(3.2)1s
(p_, v, HO), x<x[ (1),
©Obr> Vor Hp) X7 (0) £ x < x7 (1),
(P Vi Ha) s X7 (1) <x <xp (1),
(P Vi Hip),  x0(1) < x < x5 (1),
(orrvirmHp). x50 < x<x3(0),
s ve, HY), x> x; (2).

(o, v, H) (t,x) = (3.13)

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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It R (o_,v_, H_) has &=y 4 Br— | Juklp + piz, that is, x (1) = vt + 17 — | Jukip + ét, it can be

concluded that

x (1) = 7

1 1
[v_ — A\ |ukdp + —) t+ E,Btz,
+ _ k2 1 1 2
xp () =|v.— ,uop*+p—§ t+§ﬁt.

Similarly, from 7€>(p+,v+,H+) we get %‘ = v + Bt + ‘/,uk(z)p+pi2, that is, x(r) =

(v + \Jukip + ﬁt + %ﬁtz). It can be concluded that

1 1
x§ (t) = [v_ + ,uk(2)p+ + ;)t + E’Btz’
+

- 1 1
X (D)= (v* + ,uk(z) « + P_Z]H_ Eﬁﬂ.

3 R

1A%
(v-,p-)

nl

1

111

v

Figure 2. The Riemann solutions of the Eqgs (1.9) and (1.10) with (1.7) in the phase plane.

From R (o_,v_, H.), we know that H., = p, (fL - (%/xkép_ ; Z#)) + Lukp? + ;- Similarly, from

H
R (p.,v,, H,) we know that H,, = p, (% - (%,uképJ, + ﬁ))+ Tukop?+ ﬁ, where (p., v.) is the solution
to the following equations:

1
Ve —V_ = fp* _Mds’
- (3.14)

Ve —V, = fpi* 52 (,uk(z)s3 + 1) ds,

D=

and (op,, Vi, Hp) and (p fra Virs H fr) are the states before and after the rarefaction wave, respectively.
From 0"21 (1) = v_ + Bt, we know that x, (f) = v.t + %ﬁtz. The physical plane of the Riemann solutions
for the Eqgs (3.1) and (3.2) are shown in Figure 3.

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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(p-,v—. H-)

Figure 3. The Riemann solutions of the Eqs (1.9) and (1.10) with (1.7) in the physical plane
when (o;,v,, H,) € L.

If the projection of (o4, vy, H,) is located in II (p_, v_), the Riemann solutions to the Eqgs (3.1) and
(3.2) are

(p—’ V_,H_) > x < xl (t) >

PV Hy)y, x1(0) <x<x2(20),

(0, v, H) (1, X) = { (pus Vi, Hia) , X2 () < x < X5 (D), (3.15)

(rovim Hpr)s X5 () <x< x5 (),
(p+9v+9H+)’ X > x;,— (t)a

where
fo» 1 1 | . 1 | I,
x (1) =|v- - (———)((—ﬂkpi—— — | s1koe= = — |||t + 5Bt
: [ Pap_ \/ p- pJ\\2 p) \27%7 po 2
1
X (£) = vt + =312,
2
xi (1) =|vo+ |ukip +i t+lﬁt2
3 =\|V- + s
o) 2
o 5 1 I,
X () =|v. + ”k0*+p_§t+§'8t’
P+ pe—p- (1 5, 1 1,5, 1
H,=—H_+ —ukip; — — | + | zukop” — —11,
1 o 2. ((2,“ 0P p*) (2/1 0P o
1 1
H* — Px i k2 + + — kz 2+ R
2 p ( . (2/1 Op+ 2 i)) 2# Op* Zp*
AIMS Mathematics
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and (p., v.) 1s the solution to the following equations:

v v = =i ) (ker — 1)~ (ukder — 1)

Ve — vy = f;ﬁ 572 (,uk(z)s3 + 1)% ds.

Then the physical plane of the Riemann solutions for the Egs (3.1) and (3.2) is shown in Figure 4. If
the projection of (p,,v,, H;) is located in III (po_, v_), the Riemann solutions to the Eqs (3.1) and (3.2)
are
(-, v_,H_), x<x7(D),

Obrs Vors Hpr) s x7 () < x < X7 (1),
(s, vis Ha), X7 () <x < x2(D),
(P Vi Hip),  x0(1) < x < x5 (1),
(e verHpr). 25 (0 < x5 (1),
0+, v, Hy), x> x (1),

(o, v,H) (t,x) = (3.16)

where

- 1 1
x () = [v_ - ,uk(%p + E}t + Eﬁlz,

/ o1,
xf(t):[v*— ,uk(2)*+p—£)t+§,8t,

1
X, (1) = vt + 5,8#,

o, ] 1)((1 Lo L\ (1,1 1,
X3 () = | v, — (——— —uk2p? — — | = [=pk20? — — |||+ =2,
’ [+ p+—p*\/p+ p. )\ 2H T g ) T2 T 2P

H. (1 1 1 1
H* =P« — |~ k2 — o ~ k2 2 s
=5 = (e + 7))+ 3t +
P+ P+ — P+ 1 2 2 1) (1 2 2 1))
H,="—"H, - —ukip* — — | + | zukip* — —||,
? P+ ' 2p. ((2’u P P 2'u s P+

and (p., v.) is the solution to the following equations:

{v* —v_ = fp’i* —572 (,uk(z)s3 + 1)% ds,
v =l - D) (ke 2) - (ke - 1)

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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Figure 4. The Riemann solutions of the Eqs (1.9) and (1.10) with (1.7) in the physical plane

when (o, v,, H,) €Il

The physical plane of the Riemann solutions for the Eqs (3.1) and (3.2) are shown in Figure 5. If
the projection of (o,, v,, H,) is located in IV (p_, v_), the Riemann solutions to the Egs (3.1) and (3.2)

x<x (1),
() <x<x((), (3.17)
x () <x<x3(1),

x>x3(),

0. N RS U S R 1,
x1(®)=v. - (———)((—,ukpf—— —zukip? — — |||t + =pBt°,
1 { p*-p_\/p- p )27 o) 277 o 2

o | i g
— — = zuk202 = —| = [z pk20? = —|),
P+ — P \/(p+ P A\ B Vi

\ L —p- (1 1 1 1
Ho=2n +2F ((—uképi - —) + (—ﬂk§p3 - —))
p- \\2 p

are
(p—av—aH—)7
*9V*7H* 9
(0w H) (1,0 = 1 2
(,D*,V*,H*z),
(p+,V+,H+),
where
1 2
Xy (1) = vt + =17,
2
x3()=vy -
fo 2
P+ P =P+ (1 55
Ho=%H, - -
T o, 2p- ((2“ o
AIMS Mathematics
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and (p., v.) 1s the solution to the following equations:

vomvo= = JiE - ) (kier — 1)~ (ukde? — 1)

o= = ) (et~ 1) (ki — ).

—
R

wnl

(p+,v4, HY)

Figure S. The Riemann solutions of the Eqs (1.9) and (1.10) with (1.7) in the physical plane
when (o,, v, H,) € IIL.

The physical plane of the Riemann solutions for the Eqgs (3.1) and (3.2) is shown in Figure 6.

~ o

|

(04, V4, Hy)

oL

Figure 6. The Riemann solutions of the Eqs (1.9) and (1.10) with (1.7) in the physical plane
when (o, v,, H,) € IV.
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4. The vanishing magnetic field limits of the Riemann solutions

In this section, we will consider the limiting behavior of the Riemann solutions of the Eqgs (1.9) and
(1.10) with (1.7). Through theoretical analyses, it is shown that the Riemann solutions of the Eqs (1.9)
and (1.10) with (1.7) can be converted to the Riemann solutions of the Eqgs (1.8) and (2.1) with the
disappearance of variable u .

If (v_, p_) is the negative state of the phase plane, we make a curve v_ — i =v,+ ,,% (see Figure 7),
which is the delta shock curve of Eqgs (1.8) and (2.1).

In order to facilitate the study, the problem can be discussed in two parts:

(1) The appearance of delta shock

1 1
V.o —— 2V, + —,
P- P+
(2) Formation of contact discontinuity
1 1
Vo — <V 4+ —.
P- P+

-
S

=l

1 Y +L
v — L _
p- p-

Figure 7. The Riemann solutions of (1.9) and (1.10) with (1.7) in the phase plane under

1 1
v.—=—2>v,+—asu—0.
p- =7 T ps H

4.1. Limit of Riemann solutions of the Eqs (3.1) and (3.2) when v_ — i > vy + p%

Lemma 1. Suppose that (p,,v., H,) satisfies v_ — i > v, + p%. Then, there exists uy > 0 such
that 0 < u < o, (04, vy, Hy) always belongs to IV.

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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Proof. From the second equation of the Eqs (3.11) and (3.12), we obtain

SN AR N PR

1 1 1
=V-+(———) \/—ﬂképp-(p+p_)+1
e p-) V2
1 1 1 1
=v_+ |- = — | \[=uk’p?0_ + —ukipp> + 1.
v (p p_)\/z’“‘ 0P°p- + Skopp>
To differentiate v with p, we have
dv 1 \/1 1 1 1) 1 pkgp-p + sukp?
— = —— [zl p? + ko + 1+ [ - — ]| = 2
0 = o2 N 2Hkee-p7 + SHkopp (p p_)

2
\/ Tuk3p_p* + SukZp® + 1

1 1 1
B %lt?Jyﬁww”+yW¢%+1f+puL—mQ%¢¢+%M@ﬁ)

20_p? \/ Sukip_p* + sukgpr +1  2p%p_ \/ Sukgp_p* + sukip? + 1
kg2 p* + pkgp’ p + 2p_ .\ pkgp? p* + spkip’ p — pkip_p* — sukip? p
20p%p_ \/ SukZp_p? + Suklp? + 1 20%p_ \/ Sukp_p? + Sukdp? + 1
SUKSE® p + kP’ p* + 2p_

20%p- \/ Sukip_p? + Sukgp? + 1

When p > p_, u is inversely proportional to g—;, we obtain

1 1 1 1 1 1
ST (L —k22——)—(— kzz——)).
' \/(p— p+)((2/l of P+ 2# 0 P-

Simplifying, we get

L 20,p- (v — V+)2 2 _y
_ - —_— 0
k(z) (o+ +p-) o+ — p—)2 k(z) (P+ + p-) p+p-

We have found the y that satisfies the conditions, and the lemma is proved. When (o, v, H,) €
IV, the shock wave is given by

ot = v = 52 (G = (et - ) - (bke? = )
St H o == = (= ) (bukier = 1) - (bukie? = ). o> -

Ho = foH+ ot ((sukip? = 5:) + (3uke? = 7)),

AIMS Mathematics Volume 10, Issue 1, 1675-1703.
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O \/(pl = o ((Gekder - 7-) - (2“k(2) 2= 5)
R
3 oot . .= - = 2) (k- ) (i D) . <
Ho = 0-H, = 252 ((qukp? = ) + (sukdet - 7))

then
P+ pr—p- (1 2, 1 ) (1 2o 1
H,=—H_+ —pkyp, — — | + | spkopz — —11., 4.1)
" 2p_ ((2 ) 2T
P+ P+ — P+ 1 2 2 1) (1 2 2 1))
H,=—H, - —pkyp; — — |+ | sk — — |- 4.2)
T 2, ( LN B VSN
1 1 ({1 1 1 1
-y == - = _k22____k22__
Vi =V \/(p»= 04 ((2/-1 0P+ p+) (2/'1 oF 0. ))
1 1 ({1 1 1 1
) )
\/(p- o ((2 e 20T p
1 1 1 1 1 1
:(— — —) \/ ,uk2(p+ +0.) P + 1+ (— - — \/—yk(z)(p* +p-)p.p- + 1.
P« p+) V2 pe p-) V2
As above, we have provided the expression for the intermediate state when the projection of the
positive state (p,, vy, H,) on the phase plane falls into region IV. O

Lemma 2. Suppose that H_ > 2’%, H, > Zp% and the positive state (p..,v., H,) satisfies the condition
v.—L>v, +L1 Then,
P- P+
limp, = +oo,
u—0
limH,, = hmH*z = +o00.

u—0

Proof. Suppose that lirré p. = Cp, then we have
Hu—

1 1 1 1 1 1
hm (vy —v_) =lim (— - —) \/ UKG (04 + pu) peps + 1|+ hm (— - —) \/—ﬂk?) (0x + p-) pup- + 1.
=0 \\p  py) V2 px p-] V2
We find
N 1 2 N 1
Vit — = — v - —,
T G p-
which implies that
1 1
Vet — >V — —
P+ p-
does not hold, so lim p* = oo. To prove that hm H, = hm H., = +o0, where H,; and H.,, are given by
u—0 u— u—0

Eqgs (4.1) and (4. 2)

0. pk o opky o1 1 1 1) p—p-
lim H.y = lim |21+ S0y T =
lm 1 lr% o 4p_ o 2% 4 Ps 2p_ 2/)Jc 2 0p+ I Zp_ 00

)
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2 2

. . P luk() 3 /-lko 2 1 1 Px — P+ 1 2 2 1
limH,, = lim[22H, + 203 02 - © 4~ Sk ~ oo,
ﬂll}(l) 2 /JILI% p+ + 4p+p 4 p 2p+ 2p>s 2p+ 2 o~ + o0

Lemma 3. Suppose that v_ — i >V, + p%. Then,

limo| = limo?} = limo = 0.
p#—0 #—0 u—0

Proof.
) ) fo» 1 1 1 1 1 1
limo* = lim|v_ + Bt — — — | zpk0? = =) - |z k202 — —
w01 ﬂ%(v s \/(p- p*)((Z# o ) T\ T
G2 () =)
= v +Br—lim | —2— —((Spkp? - =) - k3 - —
s (7)o = )
=v_+Bt—lim | ——— || zpk;p? — — | = | zpkip -2 ——
P p=0 \/p—(p*—p_) ((2ﬂ o) TR T
k2 1
:v_+ﬁt—lim\/#—0p*(p*+p_)+—2,
u—0 2p_ ot
. . P 1 (1 1 1 1
i< oty |2 (L ) (L L
u—0 3 + ﬁ 10 J(p* _p+) fol 2# Op 0. 2# Op+ 0+
L el e B s s
= v, + Bt + lim | ———— (| suk202 — — | - | =uk20? — —
B WO\/m(p*_m((zu e b
k2 1
:v++ﬁt+lim\/#—0p*(p*+p+)+—2.
10 \ 2p_ 2
Then,

1 1\ [uk 1 1 1\ [uk 1
vy — Vo= (— - —) \/ L. (ps +p) + — =v_+p_ (— - —) \/—Op* (os +p-) + —,
P p+) \2p+ P+ P« p-] \2p- P

11\ [uk 1 1 1
v++ﬁt—p+(———)\/ C. (D + pe) + — = v+ Bt +p_ ———)
P P+ \2ps Jor ps P-

As u — 0, we get

, 11 uk? 1
lim V++,6’t—p+(———) =—p. (o +p0) + —
=0 P p+) \ 204 r

11 k2 1

=lim v_+ﬂt+p_(———) 'u—op*(p*+p_)+—2 ,

p=0 -] \2p- Z

AIMS Mathematics
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. 1 kg
v+ Bt —limfp, | — - — _P* (s +p+)_
u—0 P P+ 2p +

2p-

11 kS 1
=v_+ Bt + lim p_(———) ﬂ—p*(p +p)+ 5|,
u—0 P P- p

: 1
(p +p+)+_

+

vy + 6+ hm

20,

=v_ +ﬁt—11m \/—p*(p +p_ )+—.

Therefore, lim o = hmo-” Also hmO'“ = hm (v« + Bt), and substituting and calculating gives

u—0

el )
oo o 2]

,uk 1
e P (os +p) + =
P+ 2p, o

=y, +

Thus, hn%o'” = limo, = hmo-“ Suppose that hm \ups (ps + py) = oo and hm Vup. (o + p_) =

#—0

co. Then,

11 1 11 1
hm (vy —v_) =lim [(— - —) \/EukS (04 + Po) PP + 1] + (p— - —) \/E,Uk% (- +p)p-p.+ 1

u—0 P P+

* —

1 /1 1 /1
= —lim — +/ =uk? (p, + p. L+ 1-1 —\/— k2 (o_ +p.)p_p. + 1
- 2/10(P+ P+) P+p M 2/10(/0 p+) P-p
= —00

which implies that the assumption does not hold. In conclusion, hn(l) ol = l1r% o = hm o = ot
H—

Lemma 4. Suppose that v_ — p% > v, + pi. Then,

tim 15 p.d = (o [p] = [o (v + B

1, p
lig [ P = (0% Iov] = [ov 0.0 = )
fim [ (4452 H)dx = (o [2655 + ] = [(2522 1 = )0 o)

where x| (t, u) = fot ot (0)de, x, (t, w) = fot o*(0)de.

O
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Proof. From the first equation of the system (3.10), we have

—0 (s —p) + (P (Ve + B —p-(v+ 1)) =0
~0% (pr =) + (s (v + 1) —p. (v + 1)) = 0

Adding both equations and taking the limit as 4 — 0, by Lemma 3 we get
lim (o = ) . = o [p] = [p (v + )],

and integrating the above equation gives

X2 (1, 1)

lim p«dx = (" [p] - [p(v+BD)])t

120 J 2, )

Similarly, from the second and third equations of (3.10) and by Lemma 3, we get

mfx)fit(t /;) Sudx = (0’” [ov] = [pv (v+pt) - l])l‘

#—0

mfxz(z 1) (p SNCST) SN )dx _ (0_/.t [pv(v+,31) + H] [(‘M + H - %) (v +,3t)]) .

10 Jx1(t 1) 2
In conclusion, Lemma 4 is proved. O

In summary, under the condition v_ — pi > v, + —+, as u — 0, the Riemann solutions of the
non-isentropic Chaplygin gas magnetogasdynamics equations exhibits mass concentration, meaning
it converges to the delta shock wave of the non-isentropic Chaplygin Euler equations (see Figures 7

and 8).

vl

(vs +1,04)

L4 >

o

Figure 8. The Riemann solutions of (1.7), (1.9), and (1.10) in the physical plane under
Vo= =2+ maspu— 0.
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4.2. Limit of Riemann solutions of the Egs (3.1) and (3.2) when v_ — pi_ <v,+ p%
Case 1. (o, v, H) eIV (p_,v_).
Lemma 5. Suppose that v_ — i < vy + p% and (p,,v,,H,) € IV. Then, as u — 0, fS’_(p_,v_,H_)

_)
and S (py,v,, H,) converge to the Riemann solutions J, and J3 of the non-isentropic Chaplygin Euler
equations.

Proof. From (4.1), we know lir% s = Cy. Taking the limit as u — O for the first equation in (3.11), we
u—

. . P 1 1 1 l) (l 1))
limo? = lim|v_+pr - — — | =uk20? = = = =uk?0® - —
w0 ! fHO( g P = pP- \/(P— P*)((zﬂ o P 2HoP p-

get

=v_+ Bt —lim Pe PP
NHOP*_P— p—p*
1

=v_+pt— —.
o_

Likewise, the limit of the second equation in (3.11) is

1 1 1 1 1 1
i *—_:1' - - _kz 2____k22_ ,
e 0 =v-) a \/(p_ p*)((2u P p*) (2/1 0P p—))

and we know

The limit of the third equation in (3.11) is

. _ i [P P- l zz_i l 22_L
}}_{%(H*lp— p-H-) —}g%( 5 ((zﬂkop* p*)+(zukop_ o))
then
2 _ 2
Hap_ —p.H_ = '(%
00—

Thus, as g — 0, for the system (3.11) we have

U=
1 1
Vi — [: V_ — ﬁt’
_ pi-pi
H*]p— _p*H— 2p*p7

Taking the limit as u — O for the first equation in (3.12), we get

. ) fon 1 1 1 1 1 1
limo* = lim|v, + pr — (———)((_ k2o — — | — | = k20?2 —
=0 ”*0( + P P+ — P \/ P« P+ 2# 0P% feR 2'u o 0s
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R e | G R Ly
=y, + Bt —-1lim — — — | zpkip: — — | = | zpukip? — —
+ B 40 Py — s \/(p* 04 2:“ 0P+ o 2:“ 0 0.

1
=v, +pt+ —.
P+

Likewise, the limit of the second equation in (3.12) is
1 1 1 1 1 1
1 -v,) =1l — — — | =uk’p? — — | = =ukip? — —||,
Hr (ve —v,) = lim \/(p* p+)((2u o p+) (2“ o p*))

1
V+ + — = V* + - .
P+ P+

1 1 1 1
- k2 2 +1= k2 2 - ,

p+ Jo
2p*p+

and we can get

The limit of the third equation in (3.12) is

. i [P T P+
;111—{% (Hoops —pH,) = ;lzli%( ) ((

and, similarly,

Hop, —p.H, =

The limit of the Eq (3.12) is

limo? = v, +ﬁt+ L

u—0

= 1

vy + o = V, + o
pi—pi

Hop, = pHy = 5.

b

In conclusion, when (o,,v,, H,) is located in IV and as u — 0, the shock wave (S_(p_,v_,H_)

= . ) ) ) )
and S (o4, vs, Hy) of the non-isentropic Chaplygin gas magnetogasdynamics equations converge to
the contact discontinuities J; and J3 of the non-isentropic Chaplygin Euler equations. i

Case 2. (o.,v,H ) el(p_,v).
Lemma 6. Suppose that v_ — pi_ <v,+ p% and (p4,vy,H,) € I. Then, as u — 0, the rarefaction wave

— -
R (p_,v_,H_) and R (o, v, H,) converge to the Riemann solutions J, and J3 of the non-isentropic
Chaplygin Euler equations.

Proof. Let (p., V., H,;) and (p., v., H,>) be the intermediate states connecting R, J, R3, then we have

%:ﬂl(p,V):V*+,8t— ‘Ulkg ++pl3_’

— 1
R(p-,v_,H ) :{v,—v_= fp* —p~2 (,ukép3 + 1)2 dp, p < p_,
H, H_
o = ket 5 - (%ﬂkép— + j)
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&= 25 (o, v) = v + B+ \Juklp, + 2

— 1

R (p+, vy, Hy) Vy— V. = fp’mp—z (,uk(%p‘j’r + 1)2 dp, L >p-
H, Ho _ 1 2 1 1 2 1
o p—f = spkops + 22 (E“kop* + 27%)'

Taking the limit as u — O for the first equation of (E@_, v_,H_), we get

1 1
lim A, :lim[v*+ﬁt— ,ukgpf+—2J:v*+ﬁt——.
#=0 =0 V P P

Likewise, the limit of the second equation of (I?(p_, v_,H_)is

P 1
lim (v, — v_) = lim f —p7* (ukgp® +1)° dp,
u—0 pu—0 o

thus,
1 1

Ve— — =V_ — —.
P+ p-

The limit of the third equation of R (o_, v_, H_) is
C(Ho H\ . ({1, 1 1, 1
1 ) mtim || 2 ko, + — | = [2uk20- + — ),
ﬂli%(p* p—) ﬂll%((fo 2/0*) (ZM T 2

)
o H, —p,H =2="F
20 % p_

and we know

Thus, as u — 0, for <I?(p_, v_,H_),

limA, =v, +Bt— 1,
u—0 ! * ﬁ P

- L_y _ L,
b b=y s
_ P=—pPx
p-H,—p.H_ = o

Vi

Taking the limit as u — O for the first equation of 76) (04, vy, Hy), we get

1 1
lim A3 :lim[v*+ﬁt+ ,ukgp§+—2]:v*+ﬁt+—.
#=0 p=0 V P P

Likewise, the limit of the second equation of 73) (04, vy, Hy) s

O+ 1
lim (v, — v,) = lim f P~ (uksp® +1)° dp,
u—0 u—0 0.
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thus

1 1
V++_:V*+_.
P+ P+

The limit of the third equation of R (ps, v+, H,) is
C(He Ho\ . ([l , 1 1,1
lim [ — 22} = him | 2 uklo, + — | = [2uilo. + — ||,
/g%(m p*z) Ji%((zﬂ Pt op, ) 2H T o

p2—p;
2P+p*

and we know

pH, —p,H., =

Thus, as u — 0, f0r7€> (0+, Vv, Hy), we have

lim A3 = v, + B + -,

u—0
1 _ 1
v+ L=y + 1
P P-
p2=p2
p*H+ _p+H*2 = 20401 "

) . ) . —
In conclusion, when (po,,v,, H,) is located in I and as u — 0, the rarefaction wave R (o_,v_, H_)

_)
and R (p,, vy, H,) of the non-isentropic Chaplygin gas magnetogasdynamics equations converge to the
contact discontinuities J; and J3 of the non-isentropic Chaplygin Euler equations. O

Case 3. (o, v, H)ell(p_,v.).

Lemma 7. Suppose that v_ — i < v, + p% and (p;,vy,H,) € II. Then, as u — 0, (S_(p_,v_,H_)

and R (04, vy, Hy) converge to the Riemann solutions J, and J5 of the non-isentropic Chaplygin Euler
equations.

Proof. If the conditions in the lemma hold, (S_(p_, v_,H_) as u — 0 is the same as in Case 1.
P
Thus, as u — 0, for § (o_,v_, H_), we have

limo* =v_+pBr— 1,
u—0 1 B p-

_ 1
Vi —Vo=Vo— o,

_ pPrp?

p-H., —p.H_ = T

Similarly, when u — 0, the calculation for taking the limit of 73) (04, Vv, Hy) 1s the same as in Case 2.
Thus, as u — 0, for7€> (04, Vvs, Hy), we have

limA; = v, + Bt + pi,

u—0
1 _ 1
Vit o =V o,
P+ P
_ =
psHy —p Hyp = e
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In conclusion, when (o,,v,,H,) is located in I/ and as u — 0, the backward shock wave
<S_(p_, v_, H_) and the forward rarefaction wave B (04, vy, Hy) of the non-isentropic Chaplygin gas
magnetogasdynamics equations converge to the contact discontinuities J; and J; of the non-isentropic
Chaplygin Euler equations. O

Cased. (o, v, H,)elll(p_,v_).

Lemma 8. Suppose that v_ — p% < vy + p% and (p,,v,,H,) € IIl. Then, as u — 0, (I?(p_,v_,H_)

and ? (0+, V4, Hy) converge to the Riemann solutions J, and J5 of the non-isentropic Chaplygin Euler
equations.

Proof. If the conditions in the lemma hold, (E@_, v_,H_) as u — 0 is the same as in Case 2.
Thus, as u — 0, for <I?(p_, v_, H_), we have

limA; = v, + Bt — L,
po0 T =3

1 1
Vi— — =V_— —
* Ds p_?

p_H, —p.H_ ="

Similarly, when u — 0, the calculation for taking the limit of E) (04, vy, Hy) 1s the same as in Case 1.
Thus, as u — 0, forg) (04, vy, Hy), we have

lim o —v++Bt+—

#—0

1 _ 1

v, + p+ =Vt o
pi-pt

H*2p+ _p*H = 2o

b

In conclusion, when (p,,v,,H,) is located in II] and as u — 0, the backward rarefaction
wave <I?(p_, v_, H_) and the forward shock wave ? (0+, Vv, H,) of the non-isentropic Chaplygin gas
magnetogasdynamics equations converge to the contact discontinuities J; and J3 of the non-isentropic
Chaplygin Euler equations. O

5. Discussion

In summary, the Riemann solutions of the Eqs (1.9) and (1.10) with (1.7) converges to the delta

shock wave of the Eqs (1.8) and (2.1) as the parameter u approaches zero when v_ — pl 2 v+ o

When v_ — p— <v,+ p , the Riemann solutions of the Eqs (1.9) and (1.10) with (1.7) converges to the
contact discontinuity of the Eqs (1.8) and (2.1) as the parameter u approaches zero.
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