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Abstract: In this paper, optimal control problems concerning uncertain random continuous-time
switched system were studied. First, by applying Belleman’s principle of optimality and chance
theory, an optimality equation was derived. It’s an extension of the equation of optimality from
uncertain environment to uncertain random environment. Then, the optimality equation was employed
to get bang-bang control for the control problems with the linear performances. Second, a two-stage
algorithm was applied to implement optimal control. A genetic algorithm and Brent algorithm were
used in the second stage in order to search the optimal switching instants in the numerical example.
Finally, as an application of our theoretical results, an optimal cash holding problem was discussed
and a corresponding optimal cash holding level was provided.
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1. Introduction

A switched system is a type of hybrid system that consists of a group of discrete-time subsystems
or continuous-time subsystems and a switching rule. The switching rule orchestrates the switching
sequence between different subsystems to achieve the expected performance. This class of systems
has been successfully used to model different practical systems such as manufacturing systems [1],
communications systems [2], aerospace systems [3], power systems [4], and economics systems [5].
Optimal control for switched systems is not only to seek the optimal continuous input, but also to
find the optimal switching rule to optimize a certain performance. Complexity is increased due to
analyzing the switching in the interior of the system. Since the 1980s, lots of contributions [6–11] have
been focused on the switched systems. For example, a Riccati recursion was used to solve the optimal
control problems of nonlinear switched systems [9]. In reference [10], a novel perturbation observer
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with a nested parameter adaptive law was designed to study the optimal control problem for a class of
switched continuous-time nonlinear systems.

All of these studies on switched systems are concerned with deterministic models. However,
indeterminacy is more likely to appear in realistic switched systems. The indeterminacy is classified
as objective indeterminacy and subjective indeterminacy according to whether the sample data is
large enough. When the sample data is enough, the indeterminacy is characterized as objective
indeterminacy. We define it as a random variable or a stochastic process because large amounts of
historical data help to estimate probability distribution. In stochastic environments, optimal control
problems have been widely studied [12–19]. For example, Patrinos et al. [15] studied constrained
stochastic optimal control problems for Markovian switched systems and developed appropriate
notions of invariance and stability for such systems . Reference [16] provided necessary conditions
of optimality, in the form of a maximum principle, for optimal control problems of switched
systems. A quadratic optimal control problem for discrete-time switched linear stochastic systems with
nonautonomous subsystems perturbed by Gaussian random noises was proposed in reference [17].
A deterministic switching sequence and a continuous feedback law were implemented to minimize
the expectation of a finite-horizon quadratic cost function. Fan et al. [18] solved the problem of
stochastically weakly locally exponential stability of switched stochastic systems with the state-
dependent delay. Ding and Zhu [19] proposed a novel intermittent static output feedback control
method to solve switched positive systems with stochastic interval delay.

The other is characterized as subjective indeterminacy when the sample data is not sufficient to
estimate their distributions. Subjective indeterminacy is regarded as an uncertain variable or an
uncertain process [20]. Uncertainty theory [20, 21] was found by Liu and developed into an important
mathematical tool for dealing with subjective uncertainty. With the development of uncertainty theory,
Zhu [22] studied optimal control problems with subjective indeterminacy. Later, numbers of works
on optimal control problems have been made in uncertain environment, such as uncertain bang-bang
control problems [23], uncertain optimal control problems with jump [24], and uncertain differential
game problems [25].

However, in practice, the system may be affected not only by randomness but also by uncertainty.
Obviously, the complex system cannot be dealed with simply by probability theory or uncertainty
theory. Chance theory [26] was introduced to model complicated systems including the above
two indeterminacy. After that, Liu [27] studied uncertain stochastic programming and proposed
its mathematical properties. Then, some researchers conducted important studies in this field. For
example, Chen and Zhu [28] presented the linear quadratic optimal control issue in uncertain random
environments. The mean-square stability based on uncertain time-delayed stochastic systems driven by
G-Brownian motions was investigated [29]. Gao and Zhang [30] defined the state of each component as
an uncertain random variable and analyzed the importance of each component in a multistate uncertain
stochastic output system. Uncertain random discrete-time noncausal systems and optimal control
problems were investigated under the framework of chance theory with chance expectation [31],
and in the field of engineering, reference [32] considered the human-machine system as an uncertain
stochastic system and established an evaluation method of operator’s simple emergency-stop action.
The linear and nonlinear event-triggered extended state observers based on uncertain stochastic systems
were designed in [33].

The main contribution of this paper is to study the optimal control problems with uncertain random

AIMS Mathematics Volume 10, Issue 1, 1645–1674.



1647

continuous-time switched systems. In terms of theory, first, compared with the random switched
system [17] and uncertain switched system [23], it is the first time to use both the random differential
equation and uncertain differential equation to describe uncertain random switched system. Second,
in order to solve the optimal control problem of the uncertain random switched system, based on
chance theory and the dynamic method, this paper first proposes the equation of optimality for this
system which is different from random environment [17] or uncertain environment [23]. If the
dynamic system degenerates into a stochastic dynamic system or an uncertain dynamic system, the
equation of optimality is consistent with that in a random environment (Hamilton-Jacobi-Bellman
equation) or an uncertain environment (an equation of optimality presented in [23]). So, it is an
extension of the equation of optimality from uncertain environment to uncertain random environment.
Third, the equation of optimality is employed to obtain bang-bang control for a kind of problem. In
order to implement optimal control, the Brent algorithm and genetic algorithm are applied and the
results are compared. Finally, an optimal cash holding model under uncertain random environment is
established, which is closely related to the real economic scenario, and the uncertainty and randomness
are considered in the cash holding model for enterprise’s cash holding problems, such as the fluctuation
of the economic cycle, the change of the market interest rate, and the transaction cost. By adding these
practical factors into the model, the model is more practical.

The organization of this paper is as follows. In Section 2, some basic concepts and theorems are
reviewed. Section 3 introduces an optimal control model for uncertain random switched systems and
provides the associated equation of optimality. In Section 4, a bang-bang control model is formulated
and its value function and optimal control strategy are derived analytically. The genetic algorithm and
Brent algorithm are used to solve a numerical example in Section 5. Finally, a cash holding problem is
analyzed by applying the above model and an optimal solution is obtained.

Throughout this paper, AT denotes the transpose of a matrix A and tr[A] is trace. Pr(·),M(·),Ch(·)
represent probability measure, uncertain measure, and chance measure, respectively. EPr denotes the
expected value of a random variable in the sense of probability measure, EM denotes the expected value
of an uncertain variable in the sense of uncertain measure, and ECh denotes the expected value of an
uncertain random variable in the sense of chance measure. O(t) represents the high-order infinitesimal
of t. The [α, β]n implies the Cartesian product [α, β]n = [α, β] × [α, β] × · · · × [α, β].

2. Preliminaries

In this section, several fundamental concepts in uncertainty theory [20, 21], chance theory [26, 27],
and switched systems [6, 8] are recalled.

2.1. Uncertain variables

Probability theory is a branch of mathematics concerned with the analysis of frequency and is used
to study the behavior of random phenomena. Uncertainty theory [20, 21] is a branch of mathematics
considered with the analysis of belief degree and it is used to study uncertain phenomena.

Definition 2.1. (Liu [21]) Let Γ be a nonempty set andL be a σ− algebra over Γ. Each element Ai ∈ L

is referred to an event. A set functionM defined on the σ− algebra L is called an uncertain measure

if it satisfies (i)M{Γ} = 1; (ii)M{A}+M{Ac} = 1 for any A ∈ L; (iii)M
{
∞⋃

i=1
Ai

}
≤
∞∑

i=1
M{Ai} for every
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countable sequence of events Ai ∈ L.
Then, the triplet (Γ,L,M) is called an uncertainty space. Let (Γk,Lk,Mk) be uncertain spaces for

k = 1, 2, · · · . Then, the product uncertainty measureM is an uncertain measure defined on the product

σ-algebra L1 × L2 × · · · satisfyingM
{
∞∏

k=1
Ak

}
=
∞∧

k=1
Mk{Ak}, where Ak are arbitrary events from Lk

for k = 1, 2, · · · , respectively.

Remark 2.1. The difference between probability theory and uncertainty theory does not lie in whether
the measures are additive or not, but how the product measures are defined. The product probability

measure is the multiplication of the probability measures of the individual events, i.e., Pr
{ r∏

k=1
Ak

}
=

r∏
k=1

Pr(Ak), while the product uncertain measure is the minimum of the uncertain measures of the

individual events as above.

An uncertain variable ξ is a measurable function from an uncertain space (Γ,L,M) to the real
numbers set R, and an uncertain vector is a measurable function from an uncertainty space to Rn.

Definition 2.2. (Liu [21]) The uncertainty distribution Φ : R → [0, 1] of an uncertain variable ξ is
defined by

Φ(x) =M{ξ ≤ x},

for any x ∈ R.

Definition 2.3. (Liu [21]) Let T be a totally ordered set (e.g., time) and let (Γ,L,M) be an uncertainty
space. An uncertain process is a function Xt(γ) from T × (Γ,L,M) to the set of real numbers such that
{Xt ∈ B} is an event for any Borel set B of real numbers at each time t.

The above definition says Xt is an uncertain process if, and only if, it is an uncertain variable at
each time t.

Definition 2.4. (Liu [21]) An uncertain process Xt is said to have stationary increments if its increments
are identically distributed uncertain variables whenever the time intervals have the same length, i.e.,
for any given t > 0, the increments Xs+t − Xs are identically distributed uncertain variables for all
s > 0. An uncertain process is said to be a stationary independent increment process if it has not only
stationary increments but also independent increments.

Definition 2.5. (Liu [21]) Let Ct be an indeterminate process if the following three conditions
are satisfied:
(i) C0 = 0 and nearly all sample paths are Lipschitz continuous;
(ii) Ct has stationary and independent increments;
(iii) The uncertainty distribution of each increment Cs+t − Cs is a normal uncertainty variable with
expectation 0 and variance t2, and the uncertainty distribution is

Φ(x) =

(
1 + exp

(
−πx
√

3t

))−1

, x ∈ R.

We call the uncertain process Ct the canonical Liu process.
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Definition 2.6. (Liu [21]) Let Ct be a canonical Liu process, g1 and g2 be given real functions, then

dXs = g1(Xs, s)ds + g2(Xs, s)dCs (2.1)

is called a differential equation driven by a canonical Liu process. Its solution satisfies the Eq (2.1)
and is an uncertain process.

2.2. Uncertain random variables

In a complicated system, there may be both uncertainty and randomness. The chance theory
proposed by Liu [26] can deal with this uncertain random phenomenon. The chance space consists of
uncertain space and probability space, described by (Γ,L,M)× (Ω,A, Pr) = (Γ×Ω,L×A,M× Pr).
The chance measure is denoted by Ch(·) as follows.

Definition 2.7. (Liu [26]) Assuming that there is a chance space (Γ,L,M) × (Ω,A, Pr), chance
measure defining event ϑ ∈ L ×A is

Ch{ϑ} =

∫ 1

0
Pr{ω ∈ Ω|M{γ ∈ Γ|(γ, ω) ∈ ϑ} ≥ z}dz.

Chance measure satisfies properties of normality, self-duality, and monotonicity which were
certified in [26].

Definition 2.8. (Liu [26]) Let ϑ be a measurable function from the chance space (Γ,L,M)×(Ω,A, Pr)
to the set R of real numbers. For Borel set B, the set

{ϑ ∈ B} = {(γ, ω) ∈ (Γ,Ω)|ϑ(γ, ω) ∈ B}

is an event, then the ϑ is an uncertain random variable.

Definition 2.9. (Liu [26]) Suppose that ϑ is an uncertain random variable in the chance space
(Γ,L,M) × (Ω,A, Pr), then the function

Φ(z) = Ch{ϑ ≤ z}

is said to be the chance distribution of ϑ for any real number z ∈ R.

Definition 2.10. (Liu [26]) Let ϑ be an uncertain random variable. If at least one of the following two
integrals exists, then

ECh[ϑ] =

∫ +∞

0
Ch{ϑ ≥ z}dz −

∫ 0

−∞

Ch{ϑ ≤ z}dz

is thought to be the expected value of the uncertain random variable ϑ.

Lemma 2.1. (Chen [45]) Let η = (η1, η2, · · · , ηn1)
T be a random vector where η1, η2, · · · , ηn1 are

independent and identically distribution normal random variables with expected value 0 and variance
t2(t > 0), and let θ = (θ1, θ2, · · · , θn2) be an uncertain vector where θ1, θ2, · · · , θn2 are independent and
identically distribution normal uncertain variables with expected value 0 and variance t2. Then, for
any real vectors a1 ∈ R

n1 , a2 ∈ R
n2 and matrices B1 ∈ R

n1×n1 , B2 ∈ R
n2×n2 , B3 ∈ R

n1×n2 , we have

EPr[aT
1η + ηT B1η] = tr(B)t2, ECh[aT

2 θ + θT B2θ + ηT B3θ] = o(t).
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2.3. Switched systems

Definition 2.11. (Switched system [8]) Switched systems consisting of several subsystems can be
described as

ẋ(t) = fi(t)(x(t), u(t), t), f : Rn × Rm × R→ Rn,

i(t) ∈ I = {1, 2, · · · ,M}.

In order to control a switched system, one needs to choose not only a continuous input but also a
switching sequence.

Definition 2.12. A switching sequence in t ∈ [t0, t f ] regulates the sequence of active subsystems and is
defined as

σ = ((t0, i0), (t1, i1), · · · , (tK , iK)),

where 0 ≤ K < ∞, t0 ≤ t1 ≤ t2 ≤ · · · ≤ tK ≤ t f , and ik ∈ I f or k = 0, 1, · · · ,K.

Note here (tk, ik) indicates that at instant tk, the system switches from subsystem ik−1 to subsystem
ik. That is, during the time interval [tk, tk+1) ([tK , t f ] if k = K), subsystem ik is active.

Since many practical problems only involve optimizations in which a prespecified sequence of
active subsystem (i0, i1, · · · , ik) is given (for example, in the speeding up of an automobile power train
which only requires switchings from gear 1–4), we concentrate on such problems. The switching
instants t∗i |

K
i=1 and optimal control u∗(t) are what we need to find out. So, optimal control for switched

systems is not only to seek the optimal continuous input, but also to find the optimal switching rule to
optimize a certain performance.

3. Problem formulation

3.1. Uncertain random continuous-time switched systems

Let us consider the following uncertain random continuous-time switched system:
dXs = pi(Xs,us, vs, s)ds + Q1(Xs,us, vs, s)dCs

dY s = p′i(Xs,us, vs, s)ds + Q2(Xs,us, vs, s)dW s

s ∈ [ti−1, ti], i = 1, 2, · · · ,K + 1
X0 = x0,Y0 = y0,

(3.1)

where (i) Xs ∈ R
m1 ,Y s ∈ R

m2 are the state vectors of the system at time s with the initial conditions
X0 = x0,Y0 = y0. (ii) us ∈ Us ⊂ R

n1 and vs ∈ V s ⊂ R
n2 are the control vectors; (iii) The pi :

Rm1 × Rn1 × Rn2 × [ti−1, ti] → Rm1 and p′i : Rm2 × Rn1 × Rn2 × [ti−1, ti] → Rm2 are given vector-valued
functions, and Q1 : Rm1 × Rn1 × Rn2 × [ti−1, ti]→ Rm1×p1 and Q2 : Rm2 × Rn1 × Rn2 × [ti−1, ti]→ Rm2×p2

are matrix-valued functions. (iv) Cs = (Cs1,Cs2, · · · ,Csp1)
T , where Cs1,Cs2, · · · ,Csp1 are independent

Liu processes, and W s = (Ws1,Ws2, · · · ,Wsp2)
T , where Ws1,Ws2, · · · ,Wsp2 are independent standard

Wiener processes. (v) ti|
K
i=1 are the switching instants and ti ≤ ti+1(i = 1, 2, · · · ,K), t0 = 0, tK+1 = T

represent the initial and terminal instants, respectively.
For the control vectors us and vs, dXs is defined by an uncertain differential equation, and

dY s is defined by a random differential equation. Subjective uncertainty is described by the
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uncertain differential equation driven by the Liu process, while objective randomness is described
by the random differential equation driven by the normal Wiener process. When both random and
uncertain phenomena exist in a control system, we can describe such uncertain random phenomena
by system (3.1).

Remark 3.1. Xs,Ys cannot be combined into one state vector. The reasons are described as follows.
Note that the stochastic differential equation and uncertain differential equation are derived from the
stochastic integral equation and uncertain integral equation, respectively.

The stochastic integral equation is determined by the Ito integral of the stochastic process with
respect to the standard Wiener process. The Ito integral is introduced as follows: Let Yt be a stochastic
process and let Wt be a standard Wiener process. For any partition of closed interval [a, b] with
a = t1, t2, · · · , tk+1 = b, the mesh is written as 4 = max lim

1≤i≤k
|ti+1 − ti|. Then, the Ito integral of Yt with

respect to Wt is ∫ b

a
YtdWt = lim

4→0

k∑
i=1

Yti(Wti+1 −Wti) (3.2)

provided that the limit exists in the mean square and is finite.

The uncertain integral of an uncertain process with respect to the Liu process is introduced as
follows. Let Xt be an uncertain process and Ct be a Liu process. For any partition of closed interval
[a, b] with a = t1, t2, · · · , tk+1 = b, the mesh is written as 4 = max lim

1≤i≤k
|ti+1 − ti|. Then, the uncertain

integral of Xt with respect to Ct is

∫ b

a
XtdCt = lim

4→0

k∑
i=1

Xti(Cti+1 −Cti) (3.3)

provided that the limit exists almost surely and is finite.

Note that the Ito integral is an integral of the stochastic process concerning the standard Wiener
process, and the corresponding limit exists in the mean square. However, the uncertain integral of the
uncertain process concerning the Liu process requires the uncertain process to be integrable and the
corresponding limit exists almost surely. For the uncertain stochastic integral introduced as follows,

∫ b

a
YtdWt +

∫ b

a
XtdCt = lim

4→0

[ k∑
i=1

Yti(Wti+1 −Wti) +

k∑
i=1

Xti(Cti+1 −Cti)
]
, (3.4)

where the symbols have the same mean as that in Eqs (3.2) and (3.3). Up to now, there is no
convergence to make the corresponding limit exist. So, we can’t combine them into one equation
of state.
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3.2. Optimal control model

Based on an uncertain random switched system (3.1), an optimal control model is provided as

J(x0, y0, 0) = min
us∈Us,vs∈Vs,s∈[0,T ]

ECh[
∫ T

0
f (Xs,Y s,us, vs, s)ds + S (XT ,YT ,T )]

sub ject to :
dXs = pi(Xs,us, vs, s)ds + Q1(Xs,us, vs, s)dCs

dY s = p′i(Xs,us, vs, s)ds + Q2(Xs,us, vs, s)dW s

s ∈ [ti−1, ti], i = 1, 2, · · · ,K + 1
X0 = x0,Y0 = y0.

(3.5)

In the above model, the terminal-reward function is S : Rm1 × Rm2 × [0,T ] → R, and f is the objective
function: Rm1×Rm2×Rn1×Rn2×[0,T ]→ R. The f and S are twice differentiable functions. J(x0, y0, 0)
is the expected optimal value in time interval [0,T ] with initial conditions X0 = x0,Y0 = Y0. The
goal of such a problem requires finding not only the optimal control values u∗s, v

∗
s but also the optimal

switching instants t∗i |
K
i=1 in order to make the value function J(x0, y0, 0) optimal.

Use J(x, y, t) to denote the optimal value in [t,T ] with the condition that at time t we are in states
Xt = x,Yt = y,

J(x, y, t) = min
us∈Us,vs∈Vs,s∈[t,T ]

ECh[
∫ T

t
f (Xs,Y s,us, vs, s)ds + S (XT ,YT ,T )]

sub ject to :
dXs = pi(Xs,us, vs, s)ds + Q1(Xs,us, vs, s)dCs

dY s = p′i(Y s,us, vs, s)ds + Q2(Y s,us, vs, s)dW s

s ∈ [ti−1, ti], i = 1, 2, · · · ,K + 1
Xt = x,Yt = y.

(3.6)

Remark 3.2. There are not only close relations but also essential differences among the uncertain
optimal control problem, stochastic optimal control problem, and uncertain stochastic optimal control
problem. The differences bring difficulties to the study of the uncertain stochastic optimal control
problem. The first difficulty is how to describe an uncertain random dynamic including both objective
randomness and human uncertainty and applying to the switched systems. The second difficulty is how
to solve such kind of optimal control problem.

In order to deal with the difficulties, both stochastic differential equations and uncertain differential
equations are used to describe an uncertain stochastic dynamic switched system. Inspired by previous
research results on the stochastic optimal control problem and uncertain optimal control problem, the
dynamic programming method and chance theory are adopted to solve the optimal control problem
of the uncertain random switched system. Then, we deduced the equation of optimality to solve the
optimal control problem.

Theorem 3.1. (Equation of optimality): Let J(x, y, t) be twice differentiable on Rm1 × Rm2 × [ti−1, ti).
Then, we have

−Jt(x, y, t) = min
ut∈Ut ,vt∈Vt

{ f (XT ,YT ,ut, vt,T ) + OxJ(x, y, t)T pi(x,ut, vt, t)

+ OyJ(x, y, t)T p
′

i(y,ut, vt, t)
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+
1
2

tr[Q2(Yt,ut, vt, t)TOyyJ(x, y, t)Q2(Yt,ut, vt, t)]}, (3.7)

where Jt(x, y, t) is the partial derivative of function J(x, y, t) in t, OxJ(x, y, t) and OyJ(x, y, t) are the
gradients of function J(x, y, t) in x and y, respectively, and OyyJ(x, y, t) is the Hessian matrix of function
J(x, y, t) in y.

The proof of Theorem 3.1 is presented in the Appendix. The equation of optimality (3.7) is a useful
tool for solving optimal control problems in continuous-time uncertain random switched systems.
Furthermore, it provides an important condition for the existence of an extremum. If a solution to
the equation exists, then the solution to the Eq (3.5) can be obtained by solving the optimal Eq (3.7).

Remark 3.3. If the dynamic system of model (3.5) degenerates into a stochastic dynamic system or an
uncertain dynamic system, the equation of optimality is consistent with that in a random environment
(HJB equation) or an uncertain environment (an equation of optimality presented in [23]). So, it is an
extension of the equation of optimality from uncertain environment or random environment to uncertain
random environment.

4. Bang-bang control model for uncertain random switched systems

If the optimal control takes a value on its constraint boundary, it is called bang-bang control. Bang-
bang control is an important integrated control method in engineering field [34] and servo systems [35],
which has the characteristics of real-time control, fast response speed, and strong robustness. Bang-
bang control was first studied in the 1950s arising from the time optimal control of deterministic
systems [36], and then extended to various systems such as the time optimal control problem of
distributed parameter systems [37].

The study for bang-bang control of stochastic systems or uncertain systems has been around for a
long time and can be found in [38,39]. With the development of chance theory, we would like to further
investigate bang-bang control in uncertain random environment on the basis of the above studies.

Bang-bang control problems with a linear objective function subject to a linear uncertain random
switched system as follows are studied.

J(x0, y0, 0) = min
us∈[a1,b1]n1 ,vs∈[a2,b2]n2 ,s∈[0,T ]

ECh

[ ∫ T

0
(ΨT

1sXs + ΨT
2sY s + ΨT

3sus

+ΨT
4svs)ds + ϕT

1T XT + ϕT
2T YT ]

sub ject to
dXs = (HisXs + Pisus + P̃isvs + kis)ds + (Q1sXs + R1sus + R̃1svs + l1s)dCs

dY s = (H
′

isY s + P
′

isus + P̃
′

isvs + k
′

is)ds + (Q2sY s + R2sus + R̃2svs + l2s)dW s

s ∈ [ti−1, ti), i = 1, 2, · · · ,K + 1
X0 = x0,Y0 = y0,

(4.1)

where the Ψ1s,Ψ2s,Ψ3s,Ψ4s,His, Pis, P̃is, kis,Q1s, R1s, R̃1s, l1s,H
′

is, P
′

is, P̃
′

is, k
′

is,Q2s, R2s, R̃2s, l2s are
functions of time s with the suitable number of dimensions, and ϕ1T ∈ Rm1 ,ϕ2T ∈ Rm2 are
constant vectors.

In order to implement the optimal control of model (4.1), we break it down into two stages. Stage(a)
is an uncertain random optimal control problem under a given switching sequence. In this stage,
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J(x0, y0, 0) is written as J(x0, y0, 0, t1, · · · , tK) because t1, · · · , tK are fixed. Stage(b) is an optimization
problem by obtaining switching instants t∗i |

K
i=1. Applying optimality equation to stage(a), we have the

following conclusion.

Theorem 4.1. Assume J(x, y, t) is a twice differentiable function on Rm1 × Rm2 × [ti−1, ti) (i =

1, 2, · · · ,K + 1), the optimal control inputs u(i)∗
t = (u(i)∗

1 (t), u(i)∗
2 (t), · · · , u(i)∗

n1 (t))T , and v(i)∗
t =

(v(i)∗
1 (t), v(i)∗

2 (t), · · · , v(i)∗
n2 (t))T of model (4.1) (t1, · · · , tK are fixed) are the bang-bang control provided as

u(i)∗
e (t) =


−1, i f (ΨT

3t + qT
i (t)Pit + rT

i (t)P
′

it)e > 0,

1, i f (ΨT
3t + qT

i (t)Pit + rT
i (t)P

′

it)e < 0,

undetermined, i f (ΨT
3t + qT

i (t)Pit + rT
i (t)P

′

it)e = 0,

(4.2)

v(i)∗
f (t) =


−1, i f (ΨT

4t + qT
i (t)P̃it + rT

i (t)P̃
′

it) f > 0,

1, i f (ΨT
4t + qT

i (t)P̃it + rT
i (t)P̃

′

it) f < 0,

undetermined, i f (ΨT
4t + qT

i (t)P̃it + rT
i (t)P̃

′

it) f = 0,

(4.3)

where (ΨT
3t + qT

i (t)Pit + rT
i (t)P

′

it)e is the eth element of vector ΨT
3t + qT

i (t)Pit + rT
i (t)P

′

it, (ΨT
4t + qT

i (t)P̃it +

rT
i (t)P̃

′

it) f is the fth element of vector ΨT
4t + qT

i (t)P̃it + rT
i (t)P̃

′

it, for e = 1, 2, · · · , n1, f = 1, 2, · · · , n2, i =

1, 2, · · · ,K + 1, and functions qi(t) ∈ Rm1 and ri(t) ∈ Rm2 satisfy the following equations:
dqT

i (t)
dt

= −ΨT
1t − qT

i (t)Hit,

qK+1(T ) = ϕ1T and qi(ti) = qi+1(ti) f or i ≤ K,
(4.4)


drT

i (t)
dt

= −ΨT
2t − rT

i (t)H
′

it,

rK+1(T ) = ϕ2T and ri(ti) = ri+1(ti) f or i ≤ K.
(4.5)

The optimal value is

J(x0, y0, 0, t1, · · · , tK) = q1(0)T x0 + r1(0)T y0

+

K+1∑
i=1

∫ ti

ti−1

[qT
i (s)kis + rT

i (s)k
′

is + (ΨT
3s + qT

i (s)Pis + rT
i (s)P

′

is)u
(i)∗
s

+ (ΨT
4s + qT

i (s)P̃is + rT
i (s)P̃

′

is)v
(i)∗
s ]ds.

(4.6)

Proof. With the application of the equation of optimality (3.7), when t ∈ [tK ,T ], we get

−Jt(x, y, t) = min
ut∈[a1,b1]n1 ,vt∈[a2,b2]n2

{ΨT
1tx + ΨT

2ty + ΨT
3tut + ΨT

4tvt

+ OxJ(x, y, t)T (HK+1,tx + PK+1,tut + P̃K+1,tvt + kK+1,t)

+ OyJ(x, y, t)T (H
′

K+1,ty + P
′

K+1,tut + P̃
′

K+1,tvt + k
′

K+1,t)

+
1
2

tr[(Q2tx + R2tut + R̃2tvt + l2t)T

OyyJ(x, y, t)(Q2ty + R2tut + R̃2tvt + l2t)]}. (4.7)
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Since
J(XT ,YT ,T ) = ϕT

1T XT + ϕT
2T YT ,

we assume J(x, y, t) = qT
K+1(t)x + rT

K+1(t)y + ωK+1(t) (t ∈ [tK ,T ]) and qK+1(T ) = ϕ1T , rK+1(T ) =

ϕ2T , ωK+1(T ) = 0, so

Jt(x, y, t) =
dqT

K+1(t)
dt

x +
drT

K+1(t)
dt

y +
dωK+1(t)

dt
,

OxJ(x, y, t) = qK+1(t),OyJ(x, y, t) = rK+1(t),OyyJ(x, y, t) = 0. (4.8)

Substituting Eq (4.8) into Eq (4.7), it holds that

−

(dqT
K+1(t)
dt

x +
drT

K+1(t)
dt

y +
dωK+1(t)

dt

)
= min

ut∈[−1,1]n1 ,vt∈[−1,1]n2
{ΨT

1tx + ΨT
2ty + ΨT

3tut + ΨT
4tvt

+ qT
K+1(t)(HK+1,tx + PK+1,tut + P̃K+1,tvt + kK+1,t)

+ rT
K+1(t)(H

′

K+1,ty + P
′

K+1,tut + P̃
′

K+1,tvt + k
′

K+1,t)}

= (ΨT
1t + qT

K+1(t)HK+1,t)x + (ΨT
2t + rT

K+1(t)H
′

K+1,t)y

+ qT
K+1(t)kK+1,t + rT

K+1(t)k
′

K+1,t

+ min
ut∈[−1,1]n1

{(ΨT
3t + qT

K+1(t)PK+1,t + rT
K+1(t)P

′

K+1,t)ut}

+ min
vt∈[−1,1]n2

{(ΨT
4t + qT

K+1(t)P̃K+1,t + rT
K+1(t)P̃

′

K+1,t)vt}. (4.9)

We make
ςK+1(t) = min

ut∈[−1,1]n1
{(ΨT

3t + qT
K+1(t)PK+1,t + rT

K+1(t)P
′

K+1,t)ut},

ς
′

K+1(t) = min
vt∈[−1,1]n2

{(ΨT
4t + qT

K+1(t)P̃K+1,t + rT
K+1(t)P̃

′

K+1,t)vt}.

Let u(i)∗
t = (u(i)∗

1 (t), u(i)∗
2 (t), · · · , u(i)∗

n1 (t))T and v(i)∗
t = (v(i)∗

1 (t), v(i)∗
2 (t), · · · , v(i)∗

n2 (t))T be the solution of the
preceding equations, (ΨT

3t + qT
it Pit + rT

it P
′

it)e be the eth element of vector ΨT
3t + qT

it Pit + rT
it P

′

it, (ΨT
4t +

qT
it P̃it + rT

it P̃
′

it) f be the fth element of vector ΨT
4t + qT

it P̃it + rT
it P̃

′

it, for e = 1, 2, · · · , n1, f = 1, 2, · · · , n2,
the optimal control inputs can be obtained when t ∈ [tK ,T ].

u(K+1)∗
e (t) =


−1, i f (ΨT

3t + qT
K+1(t)PK+1,t + rT

K+1(t)P
′

K+1,t)e > 0,

1, i f (ΨT
3t + qT

K+1(t)PK+1,t + rT
K+1(t)P

′

K+1,t)e < 0,

undetermined, i f (ΨT
3t + qT

K+1(t)PK+1,t + rT
K+1(t)P

′

K+1,t)e = 0,

(4.10)

v(K+1)∗
f (t) =


−1, i f (ΨT

4t + qT
K+1(t)P̃K+1,t + rT

K+1(t)P̃
′

K+1,t) f > 0,

1, i f (ΨT
4t + qT

K+1(t)P̃K+1,t + rT
K+1(t)P̃

′

K+1,t) f < 0,

undetermined, i f (ΨT
4t + qT

K+1(t)P̃K+1,t + rT
K+1(t)P̃

′

K+1,t) f = 0,

(4.11)

for e = 1, 2, · · · , n1, f = 1, 2, · · · , n2, and

ςK+1(t) = {(ΨT
3t + qT

K+1(t)PK+1,t + rT
K+1(t)P

′

K+1,t)u
(K+1)∗
t },
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ς
′

K+1(t) = {(ΨT
4t + qT

K+1(t)P̃K+1,t + rT
K+1(t)P̃

′

K+1,t)v
(K+1)∗
t }.

Comparing both sides of Eq (4.9), we deduce the following equations where
qK+1(t), rK+1(T ), ωK+1(T ) should be satisfied as

dqT
K+1(t)
dt

= −ΨT
1t − qT

K+1(t)HK+1,t,

qK+1(t) = ϕ1T .

(4.12)


drT

K+1(t)
dt

= −ΨT
2t − rT

K+1(t)H
′

K+1,t,

rK+1(T ) = ϕ2T .

(4.13)


dωK+1(t)

dt
= −qT

K+1(t)kK+1,t − rT
K+1(t)k

′

K+1,t − ςK+1(t) − ς
′

K+1(t),

ωK+1(T ) = 0.
(4.14)

Integrate dωK+1(t)
dt from t to T , t ∈ [tK ,T ], and we obtain

ωK+1(t) =

∫ T

t
(qT

K+1(t)kK+1,t + rT
K+1(t)k

′

K+1,t + ςK+1(t) + ς
′

K+1(t))dt.

Furthermore,

J(x, y, t) = qT
K+1(t)x + rT

K+1(t)y +

∫ T

t
(qT

K+1(t)kK+1,t + rT
K+1(t)k

′

K+1,t + ςK+1(t) + ς
′

K+1(t))dt,

where qK+1(t) and rK+1(t) satisfy the Riccati differential equation and boundary conditions (4.12)
and (4.13).

When t ∈ [ti−1, ti) for i ≤ K, we assume

J(x, y, t) = qT
i (t)x + rT

i (t)y + ωi(t),

qi(ti) = qi+1(ti), ri(ti) = ri+1(ti),ωi(ti) = ωi+1(ti).

By the same methods as the above steps, we get

J(x, y, t) = qT
i (t)x + rT

i (t)y

+

∫ ti

t
(qT

i (t)kit + rT
i (t)k

′

it + ςi(t) + ς
′

i(t))dt + ωi+1(ti), t ∈ [ti−1, ti),
(4.15)

where qi, ri,ωi satisfy 
dqT

i (t)
dt

= −ΨT
1t − qT

i (t)Hit,

qi(ti) = qi+1(ti).
(4.16)
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drT

i (t)
dt

= −ΨT
2t − rT

i (t)H
′

it,

ri(ti) = ri+1(ti).
(4.17)


dωi(t)

dt
= −qT

i (t)kit − rT
i (t)k

′

it − ςi(t) − ς
′

i(t),

ωi(ti) = ωi+1(ti).
(4.18)

Hence, the optimal value of model (4.1) (where t1, · · · , tK are fixed) is
J(x0, y0, 0, t1, · · · , tK) = q1(0)T x0 + r1(0)T y0

+

K+1∑
i=1

∫ ti

ti−1

[qT
i (s)kis + rT

i (s)k
′

is + (ΨT
3s + qT

i (s)Pis + rT
i (s)P

′

is)u
(i)∗
s

+ (ΨT
4s + qT

i (s)P̃is + rT
i (s)P̃

′

is)v
(i)∗
s ]ds.

(4.19)

�

The theorem is proved.
The Bellman optimality principle can be reduced to a basic recursive relationship, which

continuously transfers the decision-making process and transforms a multistep optimal control problem
into a series of one-step optimal control problems. In uncertain random continuous-time switched
systems, the dynamic process of the system can still be decomposed into some single problems to
optimize despite the uncertainty and randomness. By applying equation of optimalitity to get the
optimal control and optimal value of the model, we divide it into K time periods for optimization(see
it in the proof of Theorem 4.1). Riccati differential equations should be solved at each time period one
by one and backward.

Suppose that there are only two switched subsystems, then the optimal control model is
presented below:

J(x0, y0, 0, t1) = min
us∈[a1,b1]n1 ,

vs∈[a2,b2]n2 ,s∈[0,T ]

ECh

[ ∫ T

0
(ΨT

1sXs + ΨT
2sY s + ΨT

3sus

+ΨT
4svs)ds + ϕT

1T XT + ϕT
2T YT ]

sub ject to
dXs = (HisXs + Pisus + P̃isvs + kis)ds + (Q1sXs + R1sus + R̃1svs + l1s)dCs

dY s = (H
′

isY s + P
′

isus + P̃
′

isvs + k
′

is)ds + (Q2sY s + R2sus + R̃2svs + l2s)dW s

s ∈ [ti−1, ti), i = 1, 2
X0 = x0,Y0 = y0.

(4.20)

According to Theorem 4.1, we rewrite the cost function J(x0, y0, 0, t1) in the following form as

J(x0, y0, 0, t1) = q1(0)T x0 + r1(0)T y0

+

∫ t1

0
[qT

1 (s)k1s + rT
1 (s)k

′

1s + (ΨT
3s + qT

1 (s)P1s + rT
1 (s)P

′

1s)u
(1)∗
s

+ (ΨT
4s + qT

1 (s)P̃1s + rT
1 (s)P̃

′

1s)v
(1)∗
s ]ds

+

∫ T

t1
[qT

2 (s)k2s + rT
2 (s)k

′

2s + (ΨT
3s + qT

2 (s)P2s + rT
2 (s)P

′

2s)u
(2)∗
s

+ (ΨT
4s + qT

2 (s)P̃2s + rT
2 (s)P̃

′

2s)v
(2)∗
s ]ds.

(4.21)
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Denote J̃(t1) = J(x0, y0, 0, t1). The next step is to minimize the objective function J̃(t1), where t1 is
the switching instant between two subsystems.

The above problem can be reformulated as minimizing a single-variable real function subject to
constraint bounds, which can be addressed through nonderivative optimization techniques such as
stochastic search, golden sectioning, or genetic algorithms.

Brent algorithm effectively integrates the strengths of golden section search and parabolic
interpolation [40]. By incorporating parabolic interpolation into the golden section method for
selecting the optimization iteration step size, Brent algorithm intelligently constrains the magnitude
of the step size and ensures that the new interval contains the optimal solution.

Genetic algorithm serves as an optimization approach that imitates the biological evolution
process, frequently employed to tackle intricate search and optimization challenges. This algorithm
explores optimal solutions within the solution space by emulating fundamental principles of biological
evolution, including genetic variation, mutation, and fitness.

Therefore, Brent algorithm and genetic algorithm are employed to solve the optimization problem
in Stage(b). The performance is illustrated by the numerical example in the next section.

5. Numerical example

Considering the following optimal control problem for uncertain random switched system:

J(x0, y0, 0, t1) = min
us∈[−1,1],vs∈[−1,1],s∈[0,1]

ECh

[ ∫ 1

0
(ΨT

1sXs + ΨT
2sY s)ds + ϕT

11XT + ϕT
21YT

]
sub ject to
dXs = (HisXs + Pisus + P̃isvs + kis)ds + l1sdCs

dY s = (H
′

isY s + P
′

isus + P̃
′

isvs + k
′

is)ds + l2sdW s

s ∈ [ti−1, ti), i = 1, 2
X0 = x0,Y0 = y0,

(5.1)

where the states Xs = (X1s, X2s)T ,Y s = (Y1s,Y2s)T with initial conditions X0 = x0 = ( 1
2 ,

1
2 )T ,Y0 = y0 =

(1, 1
2 )T . The Ψ1s = Ψ2s = (1, 1)T , l1s = ( 1

2 ,
1
2 )T , l2s = (1, 1

2 )T ,ϕ11 = (1, 2)T ,ϕ21 = (2, 2)T .
The first switching subsystem:

H1s =

[
0 2
0 0

]
P1s =

[
−1
−1

]
P̃1s =

[
0
1

]
k1s =

[ 1
2
1
2

]
.

H
′

1s =

[
0 1
0 0

]
P
′

1s =

[
0
1

]
P̃
′

1s =

[
−1
0

]
k
′

1s =

[ 1
4
1
2

]
.

The second switching subsystem:

H2s =

[
0 0
1 0

]
P2s =

[
−1
−1

]
P̃2s =

[
2
1

]
k2s =

[
1
2

]
.

H
′

2s =

[
0 0
2 0

]
P
′

2s =

[ 5
4
0

]
P̃
′

2s =

[
1
0

]
k
′

2s =

[ 1
2
1
2

]
.

Stage(a): Fix t1 and formulate J̃(t1) according to Theorem 4.1.
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Denote qi(s) = (qi1(s), qi2(s))T , ri(s) = (ri1(s), ri2(s))T , and we know q2(1) = ϕ11 = (1, 2)T , r2(1) =

ϕ21 = (2, 2)T . It follows from Eqs (4.4) and (4.5) that
dqT

2 (s)
ds = −ΨT

1s − qT
2sH2s = (−1 − q22(s),−1)

q2(1) =

(
1
2

)
,

(5.2)


drT

2 (s)
ds = −ΨT

2s − rT
2sH

′

2s = (−1 − 2r22(s),−1)

r2(1) =

(
2
2

)
,

(5.3)

which has the solution 
q2(s) =

[
0.5s2 − 4s + 4.5

3 − s

]
,

r2(s) =

[
s2 − 7s + 8

3 − s

]
.

(5.4)

Hence, {
u(2)∗

s = sgn{0.75s2 − 3.75s + 2.5},
v(2)∗

s = sgn{2s2 − 16s + 20}.
(5.5)

It also follows from Eqs (4.4) and (4.5) that
dqT

1 (s)
ds = −ΨT

1s − qT
1 (s)H1s = (−1,−1 − 2q11(s))

q1(t1) = q2(t1) =

[
0.5t2

1 − 4t1 + 4.5
3 − t1

]
,

(5.6)


drT

1 (s)
dt = −Ψ2s − rT

1 (s)H
′

1s = (−1,−1 − r11(s))

r1(t1) = r2(t1) =

[
t2
1 − 7t1 + 8

3 − t1

]
,

(5.7)

and the solutions are
q1(s) =

[
−s + 0.5s2

1 − 3s1 + 4.5
s2 − s(s2

1 − 6s1 + 10) + s3
1 − 7s2

1 + 9s1 + 3

]
r1(s) =

[
−s + s2

1 − 6s1 + 8
0.5s2 − s(s2

1 − 6s1 + 9) + s3
1 − 6.5s2

1 + 8s1 + 3

]
.

(5.8)

Hence, {
u(1)∗

s = sgn{−0.5s2 + 2s − 3.3}
v(1)∗

s = sgn{s2 − 5.76s + 1.336}.
(5.9)

According to the above results, we get

J̃(t1) = q1(0)T x0 + r1(0)T y0

+

∫ t1

0
[qT

1 (s)k1s + rT
1 (s)k

′

1s + (ΨT
3s + qT

1 (s)P1s + rT
1 (s)P

′

1s)sgn{−0.5s2 + 2s − 3.3}

+ (ΨT
4s + qT

1 (s)P̃1s + rT
1 (s)P̃

′

1s)sgn{s2 − 5.76s + 1.336}]ds

+

∫ T

t1
[qT

2 (s)k2s + rT
2 (s)k

′

2s + (ΨT
3s + qT

2 (s)P2s + rT
2 (s)P

′

2s)sgn{0.75s2 − 3.75s + 2.5}

+ (ΨT
4s + qT

2 (s)P̃2s + rT
2 (s)P̃

′

2s)sgn{2s2 − 16s + 20}]ds.

(5.10)
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Stage (b): Find the optimal switching instant t∗1.

Through the Brent algorithm, we choose the termination condition tol < 0.01 and obtain the optimal
switching moment t∗1 = 0.606. The optimal cost is −13.807. Through the genetic algorithm, we
initialize the population size to 100, the probability of intersection to 0.8, the probability of mutation
to 0.3, the number of iterations to 100, and find the optimal switching moment t∗1 = 0.604. The optimal
cost is −13.807, too. The optimization process of the two methods is shown in Figures 1 and 2.

Figure 1. Optimal results with the
Brent algorithm.

Figure 2. Optimal results with the
genetic algorithm.

From the results in Figures 1 and 2, we can see that there is no difference between the results of the
Brent algorithm and genetic algorithm in solving this problem. According to the Eqs (5.5) and (5.9),
we can get the optimal control inputs:

u∗s =


1, i f s ∈ [0, 0.6) or [0.79, 1),
−1, i f s ∈ [0.6, 0.79),

undetermined, i f s = 0.6 or s = 0.79 or s = 1,
(5.11)

v∗s =


−1, i f s ∈ [0, 0.24) or (0.6, 1),

1, i f s ∈ [0.24, 0.6),
undetermined, i f s = 0.24 or s = 0.6 or s = 1.

(5.12)

The optimal control inputs u∗s and v∗s are shown in Figures 3 and 4. From the figures, we can see
that the optimal switching moment is 0.6, and there are two switching functions in each of the two
switching subsystems that control the positive and negative of u and v, respectively, where u changes
at 0.79 and v at 0.24.
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Figure 3. Optimal control input u∗t . Figure 4. Optimal control input v∗t .

Next, we derive the trajectory equations for Xs = (X1s, X2s)T ,Y s = (Y1s,Y2s)T associated with the
optimal control inputs u∗s and v∗s. It follows from Eq (5.1) that:

X1s =



−1.5s2 + 0.5s + 0.5 +

∫ s

0
Ctdt + 0.5Cs, i f s ∈ [0, 0.24),

0.5s2 − 0.46s + 0.62 + 0.5Cs +

∫ s

0
Ctdt, i f s ∈ [0.24, 0.6),

0.524 +

∫ 0.6

0
Ctdt + 0.5Cs, i f s ∈ [0.6, 0.79),

−2s + 2.104 +

∫ 0.6

0
Ctdt − 0.5C0.79 + Cs, i f s ∈ [0.79, 1],

(5.13)

X2s =



−1.5s + 0.5 + 0.5Cs, i f s ∈ [0, 0.24),
0.5s + 0.02 + 0.5Cs, i f s ∈ [0.24, 0.6),

2.524s +

∫ 0.6

0
Ctdts + 0.5

∫ s

0
Ctdt + 0.5Cs

− 1.1944 − 1.1
∫ 0.6

0
Ctdt, i f s ∈ [0.6, 0.79),

−s2 + 2.104s +

∫ 0.6

0
Ctdts − 0.5C0.79s + 2Cs +

∫ s

0
Ctdt

− 0.2385 − 0.5
∫ 0.79

0
Ctdt − 1.105C0.79 − 1.1

∫ 0.6

0
Ctdt, i f s ∈ [0.79, 1],

(5.14)

where

Cs ∼ N(0, s),
∫ s

0
Ctdt ∼ N(0,

3
2

s2),
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Y1s =



0.75s2 + 1.75s + 1 + 0.5
∫ s

0
Wtdt + Ws, i f s ∈ [0, 0.24),

0.75s2 − 0.25s + 1.48 + Ws + 0.5
∫ s

0
Wtdt, i f s ∈ [0.24, 0.6),

−1.75s + 2.65 + 0.5
∫ 0.6

0
Wtdt + Ws, i f s ∈ [0.6, 0.79),

0.75s + 0.675 + 0.5
∫ 0.6

0
Wtdt + Ws, i f s ∈ [0.79, 1],

(5.15)

Y2s =



1.5s + 0.5 + 0.5Ws, i f s ∈ [0, 0.6),

−1.75s2 + 5.8s +

∫ 0.6

0
Wtdts + 0.5Ws + 2

∫ s

0
Wtdt − 1.45 − 2.6

∫ 0.6

0
Wtdt, i f s ∈ [0.6, 0.79),

0.75s2 + 1.85s +

∫ 0.6

0
Wtdts + 0.11 − 2.6

∫ 0.6

0
Wtdt + 0.5Ws + 2

∫ s

0
Wtdt, i f s ∈ [0.79, 1],

(5.16)
where

Ws ∼ N(0, s),
∫ s

0
Wtdt ∼ N(0,

1
3

s3).

The distributions of variables Cs,
∫ s

0
Ctdt,Ws,

∫ s

0
Wtdt are Φ1(x),Φ2(x),Φ3(x),Φ4(x),

respectively, where

Φ1(x) =

(
1 + exp

(
−πx
√

3s

))−1

,Φ2(x) =

(
1 + exp

(
−2πx

3
√

3s

))−1

,

Φ3(x) =
1
√

2πs

∫ x

−∞

exp
(
−

t2

2s2

)
,Φ4(x) =

3
√

2πs3

∫ x

−∞

exp
(
−

9t2

2s6

)
.

We may get the sample points by Φ1(ζs) = α,Φ2(ηs) = α,Φ3(κs) = α,Φ4(νs) = α. The sample
trajectories Xs = (X1s, X2s)T ,Y s = (Y1s,Y2s)T can be given by

X1s =


−1.5s2 + 0.5s + 0.5 + ηs + 0.5ζs, i f s ∈ [0, 0.24),

0.5s2 − 0.46s + 0.62 + 0.5ζs + ηs, i f s ∈ [0.24, 0.6),
0.524 + η0.6 + 0.5ζs, i f s ∈ [0.6, 0.79),
−2s + 2.104 + η0.6 − 0.5ζ0.79 + ζs, i f s ∈ [0.79, 1],

(5.17)

X2s =



−1.5s + 0.5 + 0.5ζs, i f s ∈ [0, 0.24),
0.5s + 0.02 + 0.5ζs, i f s ∈ [0.24, 0.6),
2.524s + η0.6s + 0.5ηs + 0.5ζs

− 1.1944 − 1.1η0.6, i f s ∈ [0.6, 0.79),
−s2 + 2.104s + η0.6s − 0.5ζ0.79s + 2ζs + ηs

− 0.2385 − 0.5η0.79 − 1.105ζ0.79 − 1.1η0.6, i f s ∈ [0.79, 1],

(5.18)
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Y1s =


0.75s2 + 1.75s + 1 + 0.5νs + κs, i f s ∈ [0, 0.24),
0.75s2 − 0.25s + 1.48 + κs + 0.5νs, i f s ∈ [0.24, 0.6),
−1.75s + 2.65 + 0.5ν0.6 + κs, i f s ∈ [0.6, 0.79),

0.75s + 0.675 + 0.5ν0.6 + κs, i f s ∈ [0.79, 1],

(5.19)

Y2s =


1.5s + 0.5 + 0.5κs, i f s ∈ [0, 0.6),
−1.75s2 + 5.8s + ν0.6s + 0.5κs + 2νs − 1.45 − 2.6ν0.6, i f s ∈ [0.6, 0.79),

0.75s2 + 1.85s + ν0.6s + 0.11 − 2.6ν0.6 + 0.5κs + 2νs, i f s ∈ [0.79, 1].
(5.20)

When assuming α as 0.1, we obtain the trajectories of Xs = (X1s, X2s)T and Y s = (Y1s,Y2s)T in
Figures 5 and 6.

Figure 5. Optimal state trajectory Xt

with α = 0.1.
Figure 6. Optimal state trajectory Yt

with α = 0.1.

When assuming α as 0.9, we obtain the trajectories of Xs = (X1s, X2s)T and Y s = (Y1s,Y2s)T as in
Figures 7 and 8.

Figure 7. Optimal state trajectory Xt

with α = 0.9.
Figure 8. Optimal state trajectory Yt

with α = 0.9.

By comparing Figure 5 with Figure 7, it can be concluded that the states of X1s and X2s show
opposite trends over time. It means that when α takes different values, Cs or (

∫ s

0
Ctdt) has more
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influence on the trajectories of Xs = (X1s, X2s)T . Comparing Figure 6 with Figure 8, it can be seen that
the trajectories of Y1s and Y2s over time are much higher when α is taken 0.9 than when α is taken 0.1.
It shows that when α takes different values, Ws or (

∫ s

0
Wtdt) has more influence on the trajectories of

Y s = (Y1s,Y2s)T . In conclusion, uncertainty and randomness have effects on Xs and Ys, respectively.
Therefore, it is necessary to consider both uncertainty and randomness in a system.

6. Cash holding problem with a safe area constraint

The cash holding problems have always been an important topic in the management of corporate
liquid assets. For enterprises, cash requirements are often highly volatile and unpredictable. However,
based on historical experience and actual needs, control ranges determining the upper and lower limits
of cash holdings can be calculated by companies. Miller and Orr [41] consider a cash inventory model
in a random model. Reference [42] examines the cash holding problem in an uncertain environment.
According to reference [43], the economic environment can be categorized into high volatility period
and low volatility period, and different economic environments have an impact on the interest rates of
both securities and cash. In addition, in the process of securities trading, we often need to consider
the impact of transaction costs. Reference [44] discusses the three components of transaction costs:
explicit cost, implicit cost, and the cost of missed trading opportunities. It is also pointed out that
different kinds of market mechanisms and economic environments also affect the transaction costs in
a country’s capital market. Therefore, in this section, we will model an uncertain random switched
system described by uncertain differential equations and stochastic differential equations affected
by two economic environments, which, unlike general models, not only incorporates two switched
subsystems, but also has to satisfy the constraint of cash in the safe area. Bellman’s principle of
optimality provides an effective framework that enables us to consider the optimal choice at each
decision stage in this dynamically changing uncertain stochastic environment to achieve the optimal
objective (e.g., maximizing the cash holding) over the entire time horizon. Based on this model, we can
predict in advance the optimal switching moment in different economic environments that maximize
the objective function, so that people can adjust their cash holding strategy if expectations are not met.

We denote the lower limit on cash holdings as L and the upper limit as H. When the cash holding
level exceeds the upper limit H, cash is used to purchase securities to reduce the level of cash holdings.
In contrast, when the level of cash holdings is below the lower limit L, securities are sold for cash to
increase the cash holdings level. If the cash holding level stays within the range [L,H], then we do not
need to change and keep the current cash level. When s ∈ [ti−1, ti] (i = 1, 2), let Xs and Ys denote the
firm’s cash assets and risky assets at time s, respectively, with initial conditions X0 = x0 and Y0 = y0.
µi(s) denotes the interest rate on cash in the ith economic environment, and µ̃i(s) denotes the interest
rate on securities in the ith economic environment. hs denotes the sale price of the security, and when
hs is negative it denotes the purchased price of the security with −H2 ≤ hs ≤ H1,H1 ≥ 0,H2 ≥ 0. The
l1sdWs is the fluctuation of cash balance and the l2sdCs is the fluctuation of securities balance. The θi

denotes the transaction cost of the security in the ith economic environment. Thus, the cash holding
problem is to find the optimal switching moment that maximizes Xs + Ys over a finite time range [0,T ]
as well as the optimal cash holding level. The optimal cash holding problem for an uncertain random
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switched system in a finite time range of [0,T ] is proposed below.

J(x0, y0, 0, t1) = min
−H2≤hs≤H1

ECh[−XT − YT ]

sub ject to
dXs = (µi(s)Xs + hs − θi|hs|)ds + l1sdWs

dYs = (µ̃i(s)Ys − hs)ds + l2sdCs

X0 = x0,Y0 = y0

s ∈ [ti−1, ti), i = 1, 2.

(6.1)

Because |hs| is an absolute value function of the control input, we can rewrite the |hs| as the difference
between two nonnegative variables

hs = vs − us, vs ≥ 0, us ≥ 0, (6.2)

where us denotes the fraction of cash transformed to risky assets at time s, and vs denotes the fraction
of risky assets transformed to cash assets at time s. In order to make hs = vs when us is strictly positive,
and hs = −us when vs is nonnegative, we also apply the quadratic constraint as

usvs = 0, (6.3)

so that one of us and vs must be 0. The reason is that cash holdings cannot be both greater than H and
less than L, which means us and vs cannot occur simultaneously. Based on Eqs (6.2) and (6.3), we may
rewrite |hs| as

|hs| = us + vs. (6.4)

Thus, the following is an optimal control problem for a linear uncertain random switched system:

J(x0, y0, 0, t1) = min
0≤us≤H2,0≤vs≤H1

ECh[−XT − YT ]

sub ject to
dXs = (µi(s)Xs + (1 − θi)vs − (1 + θi)us)ds + l1sdWs

dYs = (µ̃i(s)Ys − vs + us)ds + l2sdCs

s ∈ [ti−1, ti), i = 1, 2.

(6.5)

According to Eq (6.3), we can solve Eq (6.5) into two cases.
Case 1. For X(s) > H(s ∈ [ti−1, ti], i = 1, 2), we need to convert cash into risk assets at this time. At
time s, the transformed cash holdings are X(s)−u(s)−θiu(s). The level of cash holdings must be within
the safety area [L,H], therefore, X(s)−H

1+θi
≤ us ≤

X(s)−L
1+θi

. We note that U = [ X(s)−H
1+θi

, X(s)−L
1+θi

]. The optimal
cash holding problem for uncertain random switched systems in the time range of [0,T ] is proposed as

J(x0, y0, 0, t1) = min
us

ECh[−XT − YT ]

sub ject to
dXs = (µi(s)Xs − us − θius)ds + l1sdWs

dYs = (µ̃i(s)Ys + us)ds + l2sdCs

s ∈ [ti−1, ti), i = 1, 2
u ∈ U,

(6.6)
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where t0 = 0, t2 = T . By comparing (6.6) with (5.1), ϕ1T = ϕ2T = −1 and Ψ1s = Ψ2s = 0 can be
obtained. The first switched subsystem: H1s = µ1(s), P1s = −1 − θ1,H

′

1s = µ̃1(s), P
′

1s = 1. The second
switched subsystem: H2s = µ2(s), P2s = −1 − θ2,H

′

2s = µ̃2(s), P
′

2s = 1. All other values are 0.
According to Eq (4.2), we can get

qT
i (t)Pit + rT

i (t)P
′

it =(1 + θi)exp
( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
− exp

( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
.

(6.7)

Then, the optimal control is provided as

u(i)∗
t =


H − X(t)
−1 − θi

, i f exp
( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
< (1 + θi)exp

( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
,

L − X(t)
−1 − θi

, i f exp
( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
> (1 + θi)exp

( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
.

(6.8)

Furthermore, the optimal cash holding is

X(t) − (1 + θi)u
(i)∗
t =


H, i f (1 + θi)exp

( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
> exp

( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
,

L, i f (1 + θi)exp
( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
< exp

( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
.

(6.9)
Moreover, for t = 0 with the initial conditions X0 = x0 and Y0 = y0, by Theorem 4.1, the cost function
is written as

J(x0, y0, 0, t1) = −exp
( ∫ T

t1
µ2(s)ds

)
exp

( ∫ t1

0
µ1(s)ds

)
x0 − exp

( ∫ T

t1
µ̃2(s)ds

)
exp

( ∫ t1

0
µ̃1(s)ds

)
y0

+

∫ t1

0

[
(1 + θ1)exp

( ∫ T

t1
µ2(s)ds

)
exp

( ∫ t1

t
µ1(s)ds

)
− exp

( ∫ T

t1
µ̃2(s)ds

)
exp

( ∫ t1

t
µ̃1(s)ds

)]
u(1)∗

t dt

+

∫ T

t1

[
(1 + θ2)exp

( ∫ T

t
µ2(s)ds

)
− exp

( ∫ T

t
µ̃2(s)ds

)]
u(2)∗

t dt.

(6.10)
Then the optimization algorithm is used to solve the optimal switching moment t1 for function

J(x0, y0, 0, t1), where t1 is the optimal switching moment in different economic environments that
maximizes the objective function.

Function (6.9) indicates that in the ith economic environment, if the expected value of 1 + θi units
cash assets is greater than the expected value of 1 unit risky assets, then the optimal cash holding is H.
Otherwise, the optimal cash holding level is L.
Case 2. For X(s) < L(s ∈ [ti−1, ti], i = 1, 2), we need to transform risky assets into cash assets at this
time. At time s, the transformed cash holdings are X(s) + vs − θivs. The number of cash holdings must
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be within the safety area [L,H], therefore, L−X(s)
1−θi

≤ vs ≤
H−X(t)

1−θi
. We note that V = [ L−X(s)

1−θi
, H−X(s)

1−θi
]. The

optimal control model is provided as

J(x0, y0, 0, t1) = min
vs

ECh[−XT − YT ]

sub ject to
dXs = (µi(s)Xs + vs − θivs)ds + l1sdWs

dYs = (µ̃i(s)Ys − vs)ds + l2sdCs

s ∈ [ti−1, ti), i = 1, 2
v ∈ V,

(6.11)

where t0 = 0, t2 = T . By comparing (6.11) with (5.1), ϕ1T = ϕ2T = −1 and Ψ1s = Ψ2s = 0 can be
obtained. The first switched subsystem: H1s = µ1(s), P̃1s = 1 − θ1,H

′

1s = µ̃1(s), P̃
′

1s = −1. The second
switched subsystem: H2s = µ2(s), P̃2s = 1 − θ2,H

′

2s = µ̃2(s), P̃
′

2s = −1. All other values are 0.
According to Eq (4.3), we can get

qT
i (t)P̃it + rT

i (t)P̃
′

it = − (1 − θi)exp
( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
+ exp

( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
.

(6.12)

Then, the optimal control is provided as

v(i)∗
t =


X(t) − H
θi − 1

, i f exp
( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
< (1 − θi)exp

( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
,

X(t) − L
θi − 1

, i f exp
( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
> (1 − θi)exp

( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
.

(6.13)

Furthermore, the optimal cash holding is

X(t) + (1 − θi)v
(i)∗
t =


H, i f (1 − θi)exp

( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
> exp

( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
,

L, i f (1 − θi)exp
( ∫ T

ti
µi+1(s)ds

)
exp

( ∫ ti

t
µi(s)ds

)
< exp

( ∫ T

ti
µ̃i+1(s)ds

)
exp

( ∫ ti

t
µ̃i(s)ds

)
.

(6.14)
Similarly, in Case 2, for t = 0 with the initial conditions X0 = x0 and Y0 = y0, by Theorem 4.1, the

cost function is written as

J(x0, y0, 0, t1) = −exp
( ∫ T

t1
µ2(s)ds

)
exp

( ∫ t1

0
µ1(s)ds

)
x0 − exp

( ∫ T

t1
µ̃2(s)ds

)
exp

( ∫ t1

0
µ̃1(s)ds

)
y0

+

∫ t1

0

[
− (1 − θ1)exp

( ∫ T

t1
µ2(s)ds

)
exp

( ∫ t1

t
µ1(s)ds

)
+ exp

( ∫ T

t1
µ̃2(s)ds

)
exp

( ∫ t1

t
µ̃1(s)ds

)]
u(1)∗

t dt

+

∫ T

t1

[
− (1 − θ2)exp

( ∫ T

t
µ2(s)ds

)
+ exp

( ∫ T

t
µ̃2(s)ds

)]
u(2)∗

t dt,

(6.15)
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and the optimal switching moment t1 can be found by the optimization algorithm to maximize the
objective function so that we can adjust our cash holding strategy if expectations are not met.

Equation (6.14) indicates that in the ith economy environment, if the expected value of 1 − θi units
cash assets is greater than the expected value of 1 unit risky assets, then the optimal cash holding is H.
In contrast, the optimal cash holding level is L.

7. Conclusions

In this paper, the optimal control problem of uncertain random continuous-time switched systems
is presented. In order to solve this problem, the optimality equation is generalized to uncertain random
switched systems. Using the optimality equation, we obtain the analytical solution and optimal bang-
bang control for a kind of control problem when the corresponding performances are linear. The two-
stage algorithm is applied to implement optimal control. Then, a numerical example is provided to
illustrate the effectiveness of the proposed method. Finally, the optimal control model and optimality
equation for uncertain stochastic switching systems are applied to derive the optimal cash holdings
under different economic cycles. In order to consider the influence of some external extreme events or
noises on switched systems, in future studies, expected value models and optimistic value models of
the optimal control problem for uncertain switched systems with jump will be studied.
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Appendix

The proof of Theorem 3.1.

Proof. For any 4t with t +4t ∈ [ti−1, ti), denote Xt+4t = x+4Xt,Yt+4t = y+4Yt. By using Taylor series
expansion, we have

J(x + 4Xt, y + 4Yt, t + 4t)
= J(x, y, t) + OxJ(x, y, t)T4Xt + OyJ(x, y, t)T4Yt + Jt(x, y, t)4t
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+
1
2
4XT

t OxxJ(x, y, t)4Xt +
1
2
4YT

t OyyJ(x, y, t)4Yt

+ OxJt(x, y, t)T4Xt4t + OyJt(x, y, t)T4Yt4t

+ 4XT
t OxyJ(x, y, t)4Yt + o(4t). (.1)

Denote
4Xt = pi(x,ut, vt, t)4t + Q1(x,ut, vt, t)4Ct,

4Yt = p
′

i(y,ut, vt, t)4t + Q2(y,ut, vt, t)4Wt.

Then, the expansion (.1) may be rewritten as

J(x + 4Xt, y + 4Yt, t + 4t)
= J(x, y, t) + OxJ(x, y, t)T [pi(x,ut, vt, t)4t + Q1(x,ut, vt, t)4Ct]

+ OyJ(x, y, t)T [p
′

i(y,ut, vt, t)4t

+ Q2(y,ut, vt, t)4Wt] + Jt(x, y, t)4t

+
1
2

[pi(x,ut, vt, t)4t + Q1(x,ut, vt, t)4Ct]TOxxJ(x, y, t)

· [pi(x,ut, vt, t)4t + Q1(x,ut, vt, t)4Ct]

+
1
2

[p
′

i(y,ut, vt, t)4t + Q2(y,ut, vt, t)4Wt]TOyyJ(x, y, t)

· [p
′

i(y,ut, vt, t)4t + Q2(y,ut, vt, t)4Wt]
+ OxJt(x, y, t)T [pi(x,ut, vt, t)4t + Q1(x,ut, vt, t)4Ct]4t

+ OyJt(x, y, t)T [p
′

i(y,ut, vt, t)4t + Q2(y,ut, vt, t)4Wt]4t

+ [pi(x,ut, vt, t)4t + Q1(x,ut, vt, t)4Ct]TOxyJ(x, y, t)[p
′

i(y,ut, vt, t)4t

+ Q2(y,ut, vt, t)4Wt]T + o(4t).

Since

4CT
t Q1(x,ut, vt, t)T ∂(OxJ(x, y, t))

∂t
=

(
∂(OxJ(x, y, t))

∂t

)T

Q1(x,ut, vt, t)4Ct,

4WT
t Q2(y,ut, vt, t)T ∂(OyJ(x, y, t))

∂t
=

(∂(OyJ(x, y, t))
∂t

)T

Q2(y,ut, vt, t)4Wt,

pi(x,ut, vt, t)TOxxJ(x, y, t)Q1(x,ut, vt, t)4Ct

= 4CT
t Q1(x,ut, vt, t)TOxxJ(x, y, t)pi(x,ut, vt, t),

p
′

i(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t)4Wt

= 4WT
t Q2(y,ut, vt, t)TOyyJ(x, y, t)p

′

i(y,ut, vt, t),

we have

J(x + 4Xt, y + 4Yt, t)
= J(x, y, t) + OxJ(x, y, t)T pi(x,ut, vt, t)4t

+ OyJ(x, y, t)T p
′

i(y,ut, vt, t)4t + Jt(x, y, t)4t
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+ [OxJ(x, y, t)T Q1(x,ut, vt, t)4t

+ pi(x,ut, vt, t)TOxxJ(x, y, t)Q1(x,ut, vt, t)4t

+ OxJt(x, y, t)T Q1(x,ut, vt, t)4t

+
1
2

p
′

i(y,ut, vt, t)TOyxJ(x, y, t)T Q1(x,ut, vt, t)4t]4Ct

+
1
2
4CT

t Q1(x,ut, vt, t)TOxxJ(x, y, t)

· Q1(x,ut, vt, t)4Ct + [OyJ(x, y, t)T Q2(y,ut, vt, t)

+ p
′

i(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t)4t

+
1
2

pi(x,ut, vt, t)TOxyJ(x, y, t)Q2(y,ut, vt, t)4t

+ OyJt(x, y, t)T Q2(y,ut, vt, t)4t]4Wt

+
1
2
4WT

t Q2(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t)4Wt

+ 4CT
t Q1(x,ut, vt, t)TOxyJ(x, y, t)Q2(y,ut, vt, t)4Wt

+ o(4t).

Denote

a1 = OxJ(x, y, t)T Q1(x,ut, vt, t)4t + pi(x,ut, vt, t)TOxxJ(x, y, t)Q1(x,ut, vt, t)4t

+
1
2
OxJt(x, y, t)T Q1(x,ut, vt, t)4t +

1
2

(
∂(OxJ(x, y, t))

∂t

)T

Q1(x,ut, vt, t)4t

+
1
2

p
′

i(y,ut, vt, t)TOyxJ(x, y, t)T Q1(x,ut, vt, t)4t,

B1 =
1
2

Q1(x,ut, vt, t)TOxxJ(x, y, t)Q1(x,ut, vt, t),

a2 = OyJ(x, y, t)T Q2(y,ut, vt, t) + p
′

i(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t)4t

+
1
2

pi(x,ut, vt, t)TOxyJ(x, y, t)Q2(y,ut, vt, t)4t +
1
2

(∂(OyJ(x, y, t))
∂t

)T

Q2(y,ut, vt, t)

+
1
2
OyJt(x, y, t)T Q2(y,ut, vt, t)4t,

B2 =
1
2

Q2(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t),

B3 =
1
2

Q1(x,ut, vt, t)TOxyJ(x, y, t)Q2(y,ut, vt, t) +
1
2

Q1(x,ut, vt, t)TOyxJ(x, y, t)T Q2(y,ut, vt, t).

Then, we can simplify Eq (.1) as

J(x + 4Xt, y + 4Yt, t + 4t)

= J(x, y, t) + OxJ(x, y, t)T pi(x,ut, vt, t)4t + OyJ(x, y, t)T p
′

i(y,ut, vt, t)4t

+ Jt(x, y, t)4t

+ a14Ct + 4CT
t B14Ct + a24Wt + 4WT

t B24Wt + 4CT
t B34Wt + o(4t).
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It follows from the principle of optimality in [45] that

J(x, y, t)
= min

ut∈Ut ,vt∈Vt
{ f (xt, yt,ut, vt, t)4t + J(x, y, t) + OxJ(x, y, t)T pi(x,ut, vt, t)4t

+ OyJ(x, y, t)T p
′

i(y,ut, vt, t)4t + Jt(x, y, t)4t + ECh[a14Ct + 4CT
t B14Ct

+ a24Wt + 4WT
t B24Wt + 4CT

t B34Wt] + o(4t)}. (.2)

By principle of optimality in [45] and Lemma 2.1, it holds that

ECh[a14Ct + 4CT
t B14Ct + a24Wt + 4WT

t B24Wt + 4CT
t B34Wt]

= EM[a24Wt + 4WT
t B24Wt] + ECh[a14Ct + 4CT

t B14Ct + 4CT
t B34Wt],

= tr(B2)4t + o(4t).

So, Eq (.2) may be simply expressed as

J(x, y, t)
= min

ut∈Ut ,vt∈Vt
{ f (xt, yt,ut, vt, t)4t + J(x, y, t) + OxJ(x, y, t)T pi(x,ut, vt, t)4t

+ OyJ(x, y, t)T p
′

i(y,ut, vt, t)4t + Jt(x, y, t)4t

+
1
2

tr(Q2(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t))4t + o(4t)}.

The equation subtracts J(x, y, t) at the same time, and we can get

−Jt(x, y, t)4t = min
ut∈Ut ,vt∈Vt

{ f (xt, yt,ut, vt, t)4t + OxJ(x, y, t)T pi(x,ut, vt, t)4t

+ OyJ(x, y, t)T p
′

i(y,ut, vt, t)4t + Jt(x, y, t)4t

+
1
2

tr(Q2(y,ut, vt, t)TOyyJ(x, y, t)Q2(y,ut, vt, t))4t + o(4t)}. (.3)

Both sides of Eq (.3) are divided by 4t at the same time and make 4t → 0, thus, we can obtain the
conclusion. The theorem is proved. �
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