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Abstract: Planar Turán number, denoted by exP(n,H), is the maximum number of edges in an n-
vertex planar graph which does not contain H as a subgraph. Ghosh, Győri, Paulos and Xiao initiated
the topic of the planar Turán number for double stars. There were two double stars S 3,4 and S 3,5 that
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1. Introduction

All graphs considered in this paper are finite, simple and planar. Let G = (V(G), E(G)) be a graph,
where V(G) and E(G) are the vertex set and edge set. We use v(G), e(G), δ(G) and ∆(G) to denote
number of vertices, number of edges, minimum degree and maximum degree, respectively. For any
subset S ⊂ V(G), the subgraph induced on S is denoted by G[S ]. We denote by G\S the subgraph
induced on V(G)\S . If S = {v}, we simply write G\v. We use e[S ,T ] to denote the number of edges
between S and T , where S , T are subsets of V(G).

Given a graph H, a graph G is called H-free if it does not contain H as a subgraph. One of the most
classical problems in extremal graph theory is to determine ex(n,H), which is the maximum number
of edges in an n-vertex H-free graph. In 1941, Turán [1] gave the exact value of ex(n,Kr) and the
extremal graph, where Kr is a complete graph on r vertices. Erdős-Stone [2] Theorem extends this to
the case for all non-bipartite graphs H and shows that ex(n,H) = (1 − 1

χ(H)−1 )
(

n
2

)
+ o(n2), where χ(H)

denotes the chromatic number of H. This latter result has been called the ‘fundamental theorem of
extremal graph theory’.

In 2016, Dowden [3] initiated the study of Turán-type problems when host graphs are planar graphs.
We use exP(n,H) to denote the maximum number of edges in an n-vertex H-free planar graph. Dowden
studied the planar Turán number of C4 and C5, where Ck is a cycle on k vertices. Ghosh, Győri, Martin,
Paulos and Xiao [4] gave the exact value for C6. Shi, Walsh and Yu [5], and independently Győri, Li
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and Zhou [6] gave the exact value for C7. The planar Turán number of Ck is still unknown for k ≥ 8.
Cranston, Lidický, Liu and Shantanam [7] first gave both lower and upper bound for general cycles,
while Lan and Song [8] improved the lower bound. Recently, Shi, Walsh and Yu [9] improved the
upper bound, while Győri, Varga and Zhu [10] gave a new construction and improved the lower bound.
Lan, Shi and Song [11] gave a sufficient condition for graphs with planar Turán number 3n − 6. We
refer the interested readers to more results on paths, theta graphs and other graphs [12–18].

In 2022, Ghosh, Győri, Paulos and Xiao [19] studied the planar Turán number for some double stars.
A double star S k,l is the graph obtained by taking an edge uv with k vertices joining u and l vertices
joining v. Moreover, they gave the exact value for S 2,2 and S 2,3. Later, Xu, Hu and Zhang [20] improved
the upper bound for S 2,5. Xu and Shao [21] gave the exact value of S 2,4. Xu, Zhou, Li, Yan [22]
determined the planar Turán number for all balanced double stars, solving a conjecture proposed by
Győri et al. Here we give the exact value of exP(n, S 3,4).

Theorem 1.1. Let G be an n-vertex S 3,4-free planar graph. Then e(G) ≤ 5
2n with equality when

n ≡ 0 (mod 12).

The paper is organized as follows. We prove the theorem in Section 4. In the next section, some
necessary definitions are provided.

2. Preliminaries

Let G be an S 3,4-free planar graph. For any vertex v, the degree of v discussed here is the degree of
v in G. Next, we introduce more notations needed in the proof.

A k-l edge is an edge whose end vertices are of degree k and l in G. A k1-k2- · · · -ks path is a path
containing s vertices of degree k1, k2, · · · , ks in G, respectively. An alternating k-l-k path is a path
of even length, where the degrees of these vertices alternate between k and l, and no two vertices of
degree k are adjacent to each other. An alternating k-l-k path is called maximal if it is not contained in
any other alternating k-l-k path.

A k+-l− star is a copy of star graph such that the central vertex has degree at least k and the leaves
have degree at most l in G. Moreover, a k-l− star is a copy of star graph where the central vertex has
degree exactly k and the leaves have degree at most l. Similarly, we can define the k−-l star and the k-l+

star.
For a vertex v in G, the open neighborhood of v, denoted by N(v), is the set of vertices in G adjacent

to v. The closed neighborhood of v is N[v] = N(v) ∪ {v}. We define analogously for any S ⊂ V(G) the
open neighborhood N(S ) =

⋃
v∈S

N(v) and the closed neighborhood N[S ] =
⋃
v∈S

N[v].

Definition 2.1. A star-block B in G is a subgraph induced on the closed neighborhood of one of the
following vertex sets: (i) a single vertex of degree at least 7; (ii) vertices of a 6-6 edge; (iii) vertices of
a maximal alternating 6-4-6 path; (iv) a single vertex of degree 6.

For example, a 6-5− star is a star-block which can be induced on the closed neighborhood of a single
vertex of degree 6.

Indeed, for any vertex v of degree at least 6, we can determine that v is contained in a unique star-
block which is the first one by checking in the order of (i), (ii), (iii), (iv). Note that there does not exist
a 6-5-6 path, a 6-5-5-6 path, a 6-5-4-6 path or a 6-5-5-5-6 path. Otherwise, we can find an S 3,4. Thus,
each vertex of degree at least 6 must lie in a specific star-block defined above.
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Definition 2.2. Let H be a subgraph of G. The star-block base B of H is the set consisting of star-
blocks satisfying V(H) =

⋃
B∈B

V(B). If there are two star-blocks B, B′ ∈ B with V(B) ∩ V(B′) , ∅, then

the common vertices are called shared vertices.

It is noticed that for any shared vertex v, we have 2 ≤ d(v) ≤ 4. In fact, if d(v) = 1, v can only
belong to one star-block. If d(v) ≥ 5, then there exists a 6-5-6 path, a 6-5-5-6 path, a 6-5-4-6 path or
a 6-5-5-5-6 path, a contradiction.

Given two subgraphs H,H′ ⊂ G, we use H + H′ to denote the subgraph induced on V(H)∪V(H′). If
V(H′) = {v}, we simply write H+v. The edge weight of H is defined as w0(H) B e(H)+ 1

2 (e[H,G\H]) =
1
2

∑
v∈V(H)

d(v).

Definition 2.3. Let G = G1 +G2. If B is a star-block base of G1 and any vertex in V(G2) has degree at
most 5 in G, then we say G has a star-block cover. Let dB(v) be the number of star-blocks containing v
in base B. For any star-block B ∈ B, let si(B) denote the number of shared vertices of degree i in B for
i = 2, 3, 4 and s(B) be the total number of all shared vertices in B.

It is easy to see that G must have a star-block cover. In fact, after identifying the unique star-block
for each vertex of degree at least 6, G2 can be induced on the remaining vertices of degree at most 5
in G. Given a star-block cover G = G1 + G2 and a star-block base B, we have e(G) = w0(G) =
w0(G1) + w0(G2). Furthermore, let v be a shared vertex. If d(v) = 4, it can be checked that there is
only one possibility, which is that v is shared by two subgraphs each induced on a 6-5 edge, and v is
connected to each subgraph with exactly two edges. If d(v) = 3, there are two scenarios: it is shared by
either three or two star-blocks. Here we use s′3(B), s′′3 (B) to denote the number of vertices of degree 3
in B shared by three or two star-blocks of B, respectively. Obviously, s3(B) = s′3(B) + s′′3 (B).

Definition 2.4. Let G have a star-block cover and a star-block base B. For any B ∈ B, the modified
weight of B, denoted by w(B), is defined as

w(B) B w0(B) +
s3(B)

2
+

s4(B)
4
+ 1s′3(B),

where the characteristic function

1s′3(B) =

{
1 if s′3(B) ≥ 1,
0 otherwise.

For the sake of convenience in subsequent discussion, we categorize the star-blocks into three types:

• B0 B {B ∈ B | s(B) = 0},
• B1 B {B ∈ B | s(B) ≥ 1 and s′3(B) = 0},
• B2 B {B ∈ B |s(B) ≥ 1 and s′3(B) ≥ 1}.

We show that for any star-block B, w(B) has the same upper bound.

Lemma 2.1. Let G be an n-vertex S 3,4-free planar graph with δ(G) ≥ 3. If G has no 3-3 edge, then
there exists a star-block cover G = G1 + G2 such that B is a base of G1. For any star-block B ∈ B,
w(B) ≤ 5

2v(B) if s′3(B) ≥ 1 and w(B) < 5
2v(B) if s′3(B) = 0.
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By using this lemma, we can deduce the following lemma and identify the corresponding extremal
graphs.

Lemma 2.2. Let G be an n-vertex S 3,4-free connected planar graph with δ(G) ≥ 3. If G contains no
copy of 3-3 edge, then e(G) ≤ 5

2n.

This lemma is the key to prove our main result and will be proved in Section 4.

3. Proof of Lemma 2.1

For any vertex of degree at least 6 in G, we first determine the star-block containing it by checking
in the order of single vertex of degree at least 7, 6-6 edge, maximal alternating 6-4-6 path, single vertex
of degree 6. Then we obtain a star-block cover G = G1 + G2 and a star-block base B. We show that
each star-block B ∈ B or its variation satisfies the corresponding upper bound.

Now we consider each star-block in turn. For the sake of simplicity, we use s, s3, s4, s′3, s
′′
3 to replace

s(B), s3(B), s4(B), s′3(B), s′′3 (B), respectively. Recall that s3 = s′3 + s′′3 .
Case 1. B contains a vertex of degree at least 7.

Let u be the vertex of the maximum degree in B.
Case 1.1. B is a 8+-3 star.

If there is a vertex v ∈ N(u) with d(v) ≥ 4, we find an S 3,4 easily. So all neighbors of u have
degree 3. Since G contains no 3-3 edge, there does not exist any edge between the vertices in N(u).
Hence

w(B) ≤
1
2

∑
v∈B

d(v) +
1
2
· d(u) + 1s′3

≤
1
2

(d(u) + 3 · d(u)) +
d(u)

2
+ 1

<
5
2
· (d(u) + 1).

Case 1.2. B is a 7-3+ star.
If v ∈ N(u) with d(v) ≥ 4, then we have N(v)\{u} ⊂ N(u)\{v}. Otherwise, an S 3,4 is found.
Let T1,T2 denote the sets of the vertices of degree 3 in N(u) that have exactly one or two neighbors

in G\B, respectively. Let t1 = |T1| and t2 = |T2|.
Note that for any vertex v ∈ N(u)\{T1∪T2}, it can be checked that N(v)\{u} ⊂ N(u). Hence we have

w(B) ≤
(
3(8 − t1 − t2) − 6

)
+ (2t1 + t2 +

1
2

t1 + t2) +
1
2

(t1 + t2) + 1s′3

= 18 −
1
2

t2 + 1s′3

≤ 19 <
5
2
· 8.

Case 2. B contains a 6-6 edge.
Let u, v be the two adjacent vertices of degree 6. There exist at least 4 triangles sitting on uv,

otherwise we find an S 3,4.
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Case 2.1. There are five common neighbors of u, v.
Let S 1 = {a1, a2, a3, a4, a5}, where the vertices are common neighbors of u and v, as shown in

Figure 1(a). Let H1 = G[S 1]. It is easy to see that V(B) = S 1 ∪ {u, v}.

Figure 1. (a) A 6-6 edge uv with five common neighbors. (b) G[B] is the maximal planar
graph on 7 vertices.

Note that the vertices in S 1 can form a path of length at most 4 and each vertex in S 1 has at most
one neighbor in V(G)\B, otherwise an S 3,4 is found. It follows that e(H1) ≤ 4 and e[H1,G\B] ≤ 5.
Moreover, for any x ∈ S 1, if x is a shared vertex, we have d(x) = 3. Otherwise, there also exists an S 3,4.
This means s4 = 0. Furthermore, the shared vertices are covered by exactly two star-blocks. Thus,
s′3 = 0 and 1s′3

= 0.
Hence, we have

w(B) = w0(B) +
s3

2
+

s4

4
+ 1s′3

=
(
3 · (7 − s3) − 6 +

5 − s3

2
)
+ (2s3 +

s3

2
) +

s3

2

= 17
1
2
−

s3

2

≤
5
2
· 7.

The equality holds when s3(B) = 0. Besides, G[B] is the maximal planar graph on 7 vertices
and each vertex in S 1 has exactly one neighbor outside. A more detailed discussion demonstrates the
existence of a variation of this 6-6 edge star-block which has a strictly smaller weight except that there
exists a vertex of degree 3 shared by three star-blocks.

Note that d(a1) = d(a2) = d(a3) = 5. There is an edge a1a′1 ∈ E(G), where a′1 is a vertex in G\B.
It is clear that d(a′1) ≤ 4, otherwise an S 3,4 is found. Let B′ = B + a′1 and replace B by B′. Here, a′1 is
at the distance 2 from u and B′ should be considered as a variation of B. Moreover, it does not affect
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our discussion, so we still refer to B′ as a star-block. Unless it causes ambiguity, we will not explain it
further. Then we obtain a new star-block base, denoted by B′.

If d(a′1) = 4, then either a′1a2 or a′1a5 is an edge. Otherwise, we find an S 3,4. The subgraph
is shown in Figure 1(b). Without loss of generality, we assume that a′1a5 ∈ E(G). Then w(B′) =
w0(B) + d(a′1)

2 +
s4(B′)

4 = 17 1
2 +

4
2 +

1
4 = 193

4 <
5
2 · 8.

If d(a′1) = 3 and dB′(a′1) ≤ 2, then it follows that w(B′) = 171
2 +

3
2 +

1
2 = 19 1

2 <
5
2 · 8.

If d(a′1) = 3 and dB′(a′1) = 3, a′1 is not adjacent to any vertex in B. There are two vertices a′2, a
′
5 such

that a2a′2, a5a′5 ∈ E(G). Let B′′ = B′ + a′2 + a′5 and B′′ be the new base. Through a simple discussion of
the different degrees of vertices a′2 and a′5, we can deduce that w(B′′) ≤ 19 1

2+1s′3(B′′)+
4
2 ·2+

1
4 ·2 =

5
2 ·10.

Case 2.2. There are four common neighbors of u, v.
Let S 1 = {a1, a2, a3, a4}, where the vertices are these four common neighbors. Let b1 be the vertex

only adjacent to u and b2 be the vertex only adjacent to v, as shown in Figure 2(a).

Figure 2. (a) A 6-6 edge uv with four common neighbors. (b) d(b1) = 4, d(b2) = 3.

Similarly, if some vertex in S 1 is shared, then the degree of the vertex must be equal to 3 by δ(G) ≥ 3.
Moreover, if some vertex in S 1 is adjacent to either b1 or b2, then this vertex cannot have any neighbor
in G\B. It can be also checked that d(b1), d(b2) ≤ 4, otherwise G contains an S 3,4. We use s0 to denote
the number of shared vertices in S 1.
(I) d(b1) = d(b2) = 3.
(i) dB(b1) = 3, dB(b2) ≤ 3.

Note that each vertex in S 1 has at most one neighbor in G\B and is not adjacent to b1. Hence,
d(a1), d(a2) ≤ 5 and d(a3), d(a4) ≤ 4. It follows that w(B) = 1

2

∑
v∈B

d(v)+ s0+2
2 +1s′3

≤
36−s0

2 +
s0+2

2 +1 = 5
2 ·8.

(ii) dB(b1) = 2, dB(b2) ≤ 2.
The vertex b1 has at least one neighbor outside. If b1 has no neighbor in S 1, then w(B) = 1

2

∑
v∈B

d(v)+
s0+2

2 ≤
36−s0

2 + s0+2
2 = 19 < 5

2 · 8. Assume b1 has exactly one neighbor in S 1. If N(b1) ∩ N(b2) ∩ S 1 = ∅,
then the degrees of vertices in S 1 are discussed in a similar way. We have w(B) ≤ 36−s0

2 + s0+2
2 <

5
2 · 8.

If N(b1) ∩ N(b2) ∩ S 1 , ∅, then any vertex in S 1 can be the common neighbor of b1, b2. For all these
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subcases, it can be checked that
4∑

i=1
d(ai) ≤ 19. Hence, we have w(B) ≤ 37−s0

2 + s0+2
2 = 19 1

2 <
5
2 · 8.

(iii) dB(b1) = dB(b2) = 1.

If b1, b2 have no common neighbor in S 1, then
4∑

i=1
d(ai) ≤ 19. Otherwise, it is obtained that

4∑
i=1

d(ai) ≤

20. Thus, we have w(B) ≤ 38−s0
2 + s0

2 = 19 < 5
2 · 8.

(II) d(b1) = 4, d(b2) = 3.

Note that b1 is not shared and b1 has two neighbors, say a1, a4, in S 1, as shown in Figure 2(b).
Moreover, a1, a4 have no neighbor in G\B, otherwise, an S 3,4 is found.

(i) dB(b2) = 3.

Since the vertex b2 has no neighbor in S 1, we have
4∑

i=1
d(ai) ≤ 18. Then w(B) = 1

2

∑
v∈B

d(v)+ s0+1
2 +1s′3

≤

37−s0
2 + s0+1

2 + 1 = 5
2 · 8.

(ii) dB(b2) = 2.

The vertex b2 may be adjacent to some vertex in S 1. Then we obtain that
4∑

i=1
d(ai) ≤ 19. It follows

that w(B) = 1
2

∑
v∈B

d(v) + s0+1
2 ≤

38−s0
2 + s0+1

2 = 19 1
2 <

5
2 · 8.

(iii) dB(b2) = 1.

Similarly, we have
4∑

i=1
d(ai) ≤ 20. Hence, w(B) = 1

2

∑
v∈B

d(v) + s0
2 ≤

39−s0
2 + s0

2 = 19 1
2 <

5
2 · 8.

(III) d(b1) = d(b2) = 4.

Note that b1, b2 are not shared now and each has two neighbors in S 1. We show that
4∑

i=1
d(ai) ≤ 20.

It follows w(B) = 1
2

∑
v∈B

d(v) + s0
2 ≤

40−s0
2 + s0

2 =
5
2 · 10.

Now we show that there also exists a variation of this star-block such that weight of the variation
satisfies the upper bound. Here, the equality holds when b1, b2 have two common neighbors in S 1.
There are two possible planar embeddings, as shown in Figure 3.
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Figure 3. Two possible planar embeddings.

For the first planar embedding, a1, a4 are these two common vertices and d(a2) = 5. There is an
edge a2a′2 ∈ E(G). It is easy to see that d(a′2) ≤ 4. Let B′ = B+ a′2 and B′ be the new base by replacing
B by B′.

If d(a′2) = 4, then a′2a3 is also an edge in G. It follows that w(B′) ≤ w0(B) + d(a′2)
2 +

1
4 = 22 1

4 <
5
2 · 9.

If d(a′2) = 3 and a′2a3 ∈ E(G), it follows that w(B′) ≤ w0(B) + d(a′2)
2 +

1
2 <

5
2 · 9.

Assume that d(a′2) = 3 and a′2a3 < E(G). If dB′(a′2) ≤ 2, then w(B′) ≤ w0(B) + d(a′2)
2 +

1
2 <

5
2 · 9.

If dB′(a′2) = 3, then a′2 is not adjacent to a3. There exist edges a3a′3, b1b′1 ∈ E(G) such that
d(a′3), d(b′1) ≤ 4. Let B′′ = B′ + a′3 + b′1 and B′′ be the new base by replacing B′ by B′′. We have
w(B′′) ≤ w(B′) + 4+4

2 +
2
4 =
(
w(B) + d(a′2)

2 +
1
2 + 1s′3(B′)

)
+ 4+4

2 +
2
4 =

5
2 · 11.

For the second planar embedding, a1, a2 are the two common neighbors and d(a3) = d(a4) = 4.
There are two different vertices a′3, a

′
4 in G\B such that a3a′3, a4a′4 ∈ E(G). It can be shown that

d(a′3), d(a′4) ≤ 4. Otherwise an S 3,4 is contained. Note that a′3 is not adjacent to other vertices in
B. If d(a′3) = 4, then a′3 can not be shared. By symmetry, if d(a′4) = 4, it is not shared either. Let
B′ = B + a′3 + a′4 and B′ be the new base by replacing B by B′.

If d(a′3) = d(a′4) = 4, then w(B′) ≤ w0(B) + d(a′3)+d(a′4)
2 = 24 < 5

2 · 10.

If d(a′3) = 3 and d(a′4) = 4, then w(B′) ≤ w0(B) + d(a′3)+d(a′4)
2 + 1

2 + 1s′3
≤ 5

2 · 10.

If d(a′3) = d(a′4) = 3, then w(B′) ≤ w0(B) + d(a′3)+d(a′4)
2 + 2

2 + 1s′3
≤ 5

2 · 10.

Case 3. B contains a maximal alternating 6-4-6 path.

For a 6-4-6 path, there are four possible planar embeddings, as shown in Figure 4. Let u, v,w be the
three vertices with d(u) = d(w) = 6.

AIMS Mathematics Volume 10, Issue 1, 1628–1644.
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Figure 4. Four planar embeddings for 6-4-6 path.

For the first planar embedding, let a1, a2 be the remaining common neighbors of u and w. Note that
a1, a2 cannot have any neighbor in G\B. It is possible that a1a2 ∈ E(G).

A maximal alternating 6-4-6 path constructed by this planar embedding is shown in Figure 5. For
i = 1, 2, 3, let bi, ci be the vertices only adjacent to the ends of the path. Note that for such vertices,
if the degree is 4, each vertex has at most one neighbor in G\B and cannot be shared. Moreover, the
vertex, say b1, must be adjacent to both b2 and b3. Let s0 be the number of shared vertices among these
six vertices.

AIMS Mathematics Volume 10, Issue 1, 1628–1644.
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Figure 5. A maximal alternating 6-4-6 path.

Here we use k to denote the number of copies of 6-4-6 path contained in this star-block. It follows

that v(B) = 4k + 7. Then w(B) ≤ 9k + 3 +
(1

2

3∑
i=1

(bi + ci) − s0
2

)
+ s0

2 + 1 = 9k + 16 < 5
2 · (4k + 7).

For the second planar embedding, let b1, b2, c1, c2 be the four vertices only adjacent to the ends of
the path. Obviously, d(b1) = d(b2) = d(c1) = d(c2) = 3. However, b1b2, c1c2 < E(G). Otherwise there
exists a 3-3 edge. It can be obtained that w(B) ≤ 1

2

∑
v∈B

d(v) + 1
2 · 4 + 1s′3

= 23 < 5
2 · 10.

For the third planar embedding, let b1, c1 be the two vertices only adjacent to the ends of the path.
We have d(b1) = d(c1) = 3 and w(B) ≤ 1

2

∑
v∈B

d(v) + 1
2 · 2 + 1s′3

= 21 < 5
2 · 9.

For the fourth planar embedding, it is a connected component on 8 vertices. It follows that w(B) =
w0(B) ≤ (3 · 8 − 6) < 5

2 · 8.
Case 4. B is a 6-5− star.

Without loss of generality, we assume that there does not exist any copy of 6-6 edge or 6-4-6 path
in G.
Case 4.1. There exists v ∈ N(u) such that d(v) = 5.

Let uv be the 6-5 edge and u be the vertex of degree 6. There exist at least 3 triangles sitting on the
edge uv, otherwise an S 3,4 is found.
Case 4.1.1. There are four common neighbors of u, v.

Let S 1 = {a1, a2, a3, a4} be the set of vertices which are adjacent to u, v. Let b1 be the vertex only
adjacent to u, as shown in Figure 6(a). Obviously, d(b1) ≤ 4. Otherwise, G contains an S 3,4. We also
use s0 to denote the number of shared vertices in S 1.
(I) d(b1) = 3.

If dB(b1) = 3, then b1 has no neighbor in S 1. This implies
4∑

i=1
d(ai) ≤ 5 + 5 + 4 + 4 = 18. Hence,

w(B) = 1
2

∑
v∈B

d(v) + s0+1
2 + 1s′3

≤
32−s0

2 + s0+1
2 + 1 = 5

2 · 7.
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If dB(b1) = 2, the vertex b1 can have at most one neighbor in S 1. Then we have
4∑

i=1
d(ai) ≤ 19.

Hence, w(B) = 1
2

∑
v∈B

d(v) + s0+1
2 ≤

33−s0
2 + s0+1

2 = 17 < 5
2 · 7.

If dB(b1) = 1, then b1 may have two neighbors in S 1. This means that
4∑

i=1
d(ai) ≤ 20. It follows that

w(B) ≤ 34−s0
2 + s0

2 = 17 < 5
2 · 7

Figure 6. (a) A 6-5 star with four common neighbors; (b) A 6-5 star with three common
neighbors.

(II) d(b1) = 4.
The vertex b1 has exactly two neighbors in S 1 and b1 is not shared. Since there does not exist a

6-6 edge, all neighbors of u have degree at most 5. Furthermore, if d(a3) = 5, b1 is adjacent to a3.

By symmetry, a3, a2 cannot both be vertices of degree 5. This means
4∑

i=1
d(ai) ≤ 19. It follows that

w(B) ≤ 34−s0
2 + s0

2 <
5
2 · 7.

Case 4.1.2. There are three common neighbors of u, v.
Let S 1 = {a1, a2, a3} be the set of vertices which are adjacent to u, v and S 2 = {b1, b2} be the set

of vertices only adjacent to u, as shown in Figure 6(b). Note that each vertex in S 1 has at most one
neighbor in G\N(u). If d(b1) ≥ 4, b1 can have at most one neighbor in G\N(u). The vertex b2 is the
same as well. This means s4(B) = 0. If some vertex is shared by three star-blocks, then this vertex
belongs to S 2.

Since there is no 6-6 edge, we have
3∑

i=1
d(ai) ≤ 15. A simple discussion reveals that

2∑
i=1

d(bi) ≤ 9,
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with equality when b1b2 ∈ E(G). Assume that
3∑

i=1
d(ai) = 15. This implies d(a1) = d(a2) = d(a3) = 5.

Then b1, b2 must be in different regions and b1b2 < E(G). Thus,
3∑

i=1
d(ai) +

2∑
j=1

d(b j) ≤ 23.

If there is no shared vertex in B, we have s3(B) = 0. It follows w(B) = 1
2 (

3∑
i=1

d(ai)+
2∑

j=1
d(b j)+ d(u)+

d(v)) ≤ 17 < 5
2 · 7.

Now assume that s3(B) > 0. Let sa, sb denote the number of shared vertices in S 1, S 2 respectively.
If a1 is a shared vertex, then d(a1) = 3 and dB(a1) ≤ 2. We have a1a2, a1a3 < E(G). This implies

d(a2)+d(a3) ≤ 9−sa and
2∑

j=1
d(b j) ≤ 8−sb. It follows that w(B) ≤ 1

2

∑
x∈B

d(x)+ 1
2 (sa+sb)+1s′3(B) =

33
2 <

5
2 ·7.

If a2 is a shared vertex, d(a2) = 3 and a1a2 < E(G). If s′3(B) = 0, we have d(a1) + d(a3) ≤ 11 − sa

and
2∑

j=1
d(b j) ≤ 9 − sb. Thus w(B) ≤ 1

2

∑
x∈B

d(x) + 1
2 (sa + sb) = 17 < 5

2 · 7. If s′3(B) , 0, assume that

d(b1) = 3 and dB(b1) = 3. It is easy to see that d(a1) + d(a3) ≤ 11 − sa and d(b2) ≤ 5 − sb. We have
w(B) ≤ 1

2

∑
x∈B

d(x) + 1
2 (sa + sb) + 1s′3(B) =

5
2 · 7.

By the symmetry of a2 and a3, we assume sa = 0. If dB(b1) = 2, then d(b1) = 3. Furthermore,

if d(b2) = 5, we have b1b2 ∈ E(G). Then either a2 or a3 has degree at most 4. Hence,
3∑

i=1
d(ai) +

2∑
j=1

d(b j) ≤ 22. It follows that w(B) ≤ 33
2 +

1
2 <

5
2 · 7.

If dB(b1) = 3, then d(b2) ≤ 4 and either a2 or a3 has degree at most 4. Hence
3∑

i=1
d(ai)+

2∑
j=1

d(b j) ≤ 21.

We have w(B) ≤ 1
2

∑
x∈B

d(x) + 1
2 sb + 1s′3(B) =

5
2 · 7

Case 4.2. For any v ∈ N(u), we have d(v) ≤ 4.
If some vertex v ∈ N(u) has degree 4, then v is not shared. Otherwise, a 6-4-6 path is found. Let p, q

be the number of vertices of degree 3 or 4 in N(u), respectively. Obviously, p + q = 6. It is obtained
that w(B) ≤ 1

2 (6 + 3p + 4q) + p
2 + 1s′3

= 3 + 2(p + q) + 1s′3
= 15 + 1s′3

< 5
2 · 7.

In summary, w(B) satisfies the upper bound.

4. Proof of Lemma 2.2 and Theorem 1.1

In this section, we first prove Lemma 2.2, and then provide the proof of upper bound in Theorem 1.1.

Proof. By Lemma 2.1, there exists a star-block cover G = G1 + G2 with a base B of G1, where each
star-block satisfies the corresponding upper bound. For each vertex of degree at least 6, it must be
contained in some star-block. Recall that the degree we discuss here is the degree of this vertex in G.
Then the maximum degree of vertices in G2 is at most 5. We have

e(G) = w0(G) = w0(G1) + w0(G2)

≤ w0(G1) +
5
2

v(G2).

Next we prove that w0(G1) < 5
2v(G1).

Given this star-block base B, let
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• p1 B
∣∣∣{v ∈ V(G1) : dB(v) = 2 and d(v) = 3}

∣∣∣,
• p2 B

∣∣∣{v ∈ V(G1) : dB(v) = 3}
∣∣∣,

• p3 B
∣∣∣{v ∈ V(G1) : dB(v) = 2 and d(v) = 4}

∣∣∣.
If there is a vertex v with dB(v) = 3, the degree of vertex v will be accumulated three times in the

summation of the expression
∑

B∈B
w0(B). If there is a vertex v with dB(v) = 2, the degree of vertex v will

be accumulated two times.
Thus, it can be obtained that∑

B∈B

w0(B) = w0(G1) +
3
2

p1 + 3p2 + 2p3. (4.1)

Now let q0 = |B0|, q1 = |B1|, q2 = |B2|. If q2 , 0, then q2 ≥ 3. By the definition of w(B), we have∑
B∈B

w0(B) =
∑
B∈B

(
w(B) −

s3

2
−

s4

4
− 1s′3

)
=
∑
B∈B

w(B) −
∑
B∈B

(
s3

2
+

s4

4
+ 1s′3

).

Based on the relation of shared vertices and the corresponding star-blocks, we also obtain∑
B∈B

(
s3

2
+

s4

4
+ 1s′3

) = p1 +
3
2

p2 +
1
2

p3 + q2.

By Lemma 2.1, it is concluded that if q0 + q1 > 0, then

∑
B∈B

w0(B) =
∑

B∈B0∪B1

w(B) +
∑
B∈B2

w(B) − (p1 +
3
2

p2 +
1
2

p3 + q2)

<
5
2

∑
B∈B

v(B) − (p1 +
3
2

p2 +
1
2

p3 + q2)

=
5
2

(v(G1) + p1 + 2p2 + p3) − (p1 +
3
2

p2 +
1
2

p3 + q2)

=
5
2

v(G1) +
3
2

p1 +
7
2

p2 + 2p3 − q2.

Combining Eq (4.1), we have

w0(G1) <
5
2

v(G1) + (
1
2

p2 − q2).

Note that if q2 = 0, then p2 = 0. Now, we show that p2 ≤ 2q2 − 4 when q2 , 0. Given the star-block
base B, we construct a bipartite graph G∗ = (X,Y) such that |X| = p2 and |Y | = q2, where a vertex
x in X represents a vertex v in G1 with dB(v) = 3 and a vertex y in Y represents a star-block in B2.
Additionally, for x ∈ X and y ∈ Y , xy is an edge if and only if x is contained in the star-block y. Since
G is a planar graph, this auxiliary bipartite graph G∗ is a planar graph too. We have e(G∗) ≤ 2v(G∗)−4.
Note that dG∗(x) = 3 for each vertex x in X. It follows that 3p2 ≤ 2(p2+q2)−4. This means p2 ≤ 2q2−4.
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Thus, we have

w0(G1) <
5
2

v(G1) − 2 · 1q2 ≤
5
2

v(G1),

where 1q2 is the characteristic function of q2.
If q0 + q1 = 0, then q2 > 0. It is obtained

∑
B∈B

w0(B) =
∑
B∈B2

w(B) − (p1 +
3
2

p2 +
1
2

p3 + q2)

≤
5
2

∑
B∈B2

v(B) − (p1 +
3
2

p2 +
1
2

p3 + q2)

=
5
2

v(G1) +
3
2

p1 +
7
2

p2 + 2p3 − q2.

Similarly,

w0(G1) ≤
5
2

v(G1) + (
1
2

p2 − q2)

≤
5
2

v(G1) − 2

<
5
2

v(G1).

In summary, w0(G1) < 5
2v(G1). Therefore we have

e(G) = w0(G1) + w0(G2)

≤ w0(G1) +
5
2

v(G2)

≤
5
2

v(G1) +
5
2

v(G2)

=
5
2

v(G).

The proof is completed. □

We next give the proof of the main result and construct the extremal graphs.

Proof. Let G be an S 3,4-free connected planar graph. We give two operations as follows: (α). Delete
the 3-3 edge; (β). Delete the vertex of degree at most 2. Repeat the operations until it can no longer go
on. The final graph is denoted by G′.

Here, G′ is either an empty graph or an S 3,4-free planar graph satisfying the condition of Lemma 2.2.
Without loss of generality, we assume that G′ is connected. Otherwise, we can discuss each connected
component, respectively. Hence e(G′) = 0 or e(G′) ≤ 5

2v(G′).
Therefore, it is easy to see that e(G) ≤ 5

2v(G). □
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Now we shall complete it by demonstrating that this bound is tight for infinitely many integers n.
A detailed examination of the proof of Theorem 1.1 and Lemma 2.2 reveals that equality is achieved

when G1 is an empty graph and G = G2 is a 5-regular planar graph.
When n = 12, there is only one 5-regular planar graph, as shown in Figure 7. It is easy to see that

the graph is S 3,4-free. When n ≡ 0 (mod 12), there exists an n-vertex planar graph with 12|n connected
components, where each component is a 5-regular planar graph on 12 vertices.

Figure 7. The extremal planar graph on 12 vertices.

5. Conclusions

In this paper, we study the planar Turán number for double stars, specifically focusing on S 3,4. Our
primary contribution is the determination of the exact value of exP(n, S 3,4). Moreover, we construct the
extremal graphs that attain this bound.
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