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1. Introduction

Oscillation theory is a vital field of mathematics dedicated to exploring the dynamics of both
oscillatory and nonoscillatory systems. This theory investigates how systems consistently fluctuate
around a central value or shift between various states. Such oscillatory behavior is widespread in the
natural world and in technological applications, manifesting itself in various areas such as
mechanical, electrical, and biological systems.

For example, in mechanical systems, oscillation theory is essential for analyzing the stability of
electrical circuits, where periodic fluctuations can affect performance. Similarly, in ecological models,
it provides insight into population dynamics, helping to understand how species interact and change
over time. This makes oscillation theory a crucial tool for both theoretical analysis and practical
applications in multiple disciplines; see [1, 2]. In this work, we focus our attention on the oscillation
of the second-order nonlinear differential equation with the form(

f (s) |u′ (s)|p−2 u′ (s)
)′

+ q (s) |w (h (s))|p−2 w (h (s)) = 0, s ≥ s0, (1.1)
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where the first and second terms mean the p−Laplace type operator (1 < p < ∞) and u (s) = w (s) +

b1 (s) w (a1 (s)) + b2 (s) w (a2 (s)). Throughout, we assume that:

(G1) b1, b2, q ∈ C ([s0,∞) , [0,∞)), f ∈ C ([s0,∞) , (0,∞)), η (s0) =
∫ ∞

s0
f −1/(p−1) (υ) dυ < ∞.

(G2) a1, a2, h ∈ C ([s0,∞) ,R) , a1 (s) ≤ s, a2 (s) ≥ s, h (s) ≤ s, lims→∞ a1 (s) = lims→∞ a2 (s) =

lims→∞ h (s) = ∞ and q (s) is not identically zero for large s.

By a solution of (1.1), we mean a nontrivial function w (s) ∈ C1 ([s0,∞) ,R), which has the
properties f (s) (u′ (s))(p−1)

∈ C1 ([s0,∞) ,R), and w (s) satisfies (1.1) on [sw,∞), then u is a solution of
(1.1). In our study, we focus on the solutions that satisfy sup {|w (s)| : sw ≤ s < ∞} > 0, for every
sw ≥ s0. If the solution to (1.1) is neither eventually positive nor eventually negative in the end, it is
said to be oscillatory. Otherwise, this solution is called non-oscillatory. Therefore, we say that this
equation is oscillatory if all of its solutions are oscillatory.

The p-Laplace equations of the oscillatory behavior of differential delay equation issues have
advanced significantly over the past few decades; see [3, 4]. It has proven to be quite helpful in the
engineering and applied sciences fields in building a range of applied mathematical models that
faithfully represent real-world events. neutral-type DDEs are involved in second-order equation delay
systems issues, which were studied by some authors; see [5–7].

The theory of oscillatory conditions generally appears from a large adequate instance for use in drug
organization, physics, engineering, trash hold hypothesis in biology, and airship control; see [8, 9].
The impulsive conditions play an important role in modeling phenomena, principally in relating the
dynamics of the population area under discussion to unexpected modification. Exploring Laplace
differential equations yields a multitude of essential utilities in mechanical systems, electrical circuits,
and the regulation of chemical processes; see [10–12]. Furthermore, their utility extends to ecological
systems, epidemiology, and the modeling of population dynamics, as detailed in references [13–16].

Investigations by some authors in [16–18] have yielded techniques and methodologies aimed at
enhancing the oscillatory attributes of these equations. Furthermore, the work [19, 20] has expanded
this inquiry to include differential equations of neutral variety. In recent years, there has also been a
significant exploration of oscillation behaviors in fourth-order delay differential equations with the p−
Laplace type operator, as evidenced by studies such as [21–23]. Now, in some detail, Liu et al. [24]
introduced good conditions concerning solutions to even-order differential equations that feature a
mixed term in the canonical case.(

f (s)
∣∣∣u(n) (s)

∣∣∣p−2
u(n) (s)

)′
+ r (s)

∣∣∣u(n) (s)
∣∣∣p−2

u(n) (s) + q (s) |w (h (s))|p−2 w (h (s)) = 0,

where
u (s) = w (s) + b (s) w (a (s)) .

Graef et al. [7] improved some results for equations with mixed types.(
f (s) (w (s) + b1 (s) w (a1 (s)) + b2 (s) w (a2 (s)))′

)′
+ b (s) u′ (s) + q (s) w (h (s)) = 0,

where ∫ ∞

s0

1
f (s)

exp
(
−

∫ s

s0

b (υ)
f (υ)

dυ
)

ds = ∞.
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The authors in [25,26] established new conditions to improve and extend some of the results for the
oscillation of the equation of fourth-order with the p− Laplace type operator(

f (s) |u′′′ (s)|p−2 u′′′ (s)
)′

+ q (s) |w (h (s))|p−2 w (h (s)) = 0,

where
∫ ∞

s0
f −1/(p−1) (υ) dυ = ∞.

This manuscript aims to broaden the scope of inquiry by incorporating second-order differential
equations with mixed neutral terms under condition η (s0) < ∞, using some methods. In this context,
the paper introduces innovative criteria for analyzing oscillatory solutions of equation (1.1). Three
examples are shown to illustrate the results that we obtained.

2. Basic lemmas

In this section, we first introduce some important lemmas and notation.

Lemma 2.1. [11] The equation

η (υ∗) ≤ max
%∈R

η (υ) = QL +
(p − 1)(p−1)

pp QpN−(p−1),N > 0,

holds, if η (υ) := Qυ − N (υ − L)p/(p−1), where Q,N, and L are real constants.

Lemma 2.2. [27] Let F and $ be constants. Then

Fv −$v
p/(p−1)

≤
(p − 1)(p−1)

pp

F p

$(p−1) , $ > 0. (2.1)

The following notation will be used in the remaining sections of this work:

M (%, v) =

∫ v

%

f −1/(p−1) (ξ) dξ,

x1 (s) := 1 − b1 (s)
M (a1 (s) ,∞)

M (s,∞)
− b2 (s) ,

and
x2 (s) := 1 − b1 (s) − b2 (s)

M (s1, a2 (s))
M (s1, s)

.

3. Main results

In this section, we discuss our main results about (1.1).

Lemma 3.1. The function w is identified as the ultimate positive solution to (1.1). Then, either(
u (s)

M (s,∞)

)′
≥ 0, (3.1)

or (
u (s)

M (s1, s)

)′
≤ 0, f or all s ≥ s1. (3.2)
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Proof. Given that w (s) constitutes the final positive solution of (1.1). Obviously, for all s ≥ s1, u (s) ≥
w (s) > 0 and f (s) (u′ (s))(p−1) it is not increasing. Since(

f (s)
(
u′ (s)

)(p−1)
)′

= −q (s) w(p−1) (h (s)) ≤ 0,

therefore, u′ is either eventually negative or eventually positive.
Assume first that u′ < 0 on [s,∞) . Since

u (s) ≥ −
∫ ∞

s
f −1/(p−1) (υ) f 1/(p−1) (υ) u′ (υ) dυ ≥ −M (s,∞) f 1/(p−1) (s) u′ (s) , (3.3)

and so (
u (s)

M (s,∞)

)′
=

M (s,∞) u′ (s) + f −1/(p−1) (s) u (s)
(M (s,∞))2 ≥ 0.

Assume now that u′ > 0 on [s1, s), we obtain

u (s) ≥
∫ s

s1

f −1/(p−1) (υ) f 1/(p−1) (υ) u′ (υ) dυ ≥ M (s1, s) f 1/(p−1) (s) u′ (s) ,

it follows that (
u (s)

M (s1, s)

)′
=

M (s1, s) u′ (s) − f −1/(p−1) (s) u (s)
M2 (s1, s)

≤ 0.

Thus, the proof is complete. �

Lemma 3.2. The function w is identified as the ultimate positive solution to (1.1) and u′ (s) < 0.
Then (

f (s)
(
u′ (s)

)(p−1)
)′
≤ −$M(p−1) (s,∞) q (s) x(p−1)

1 (h (s)) . (3.4)

Proof. Given that w (s) constitutes the final positive solution of (1.1). Suppose that u′ (s) < 0 on
[s1,∞). From Lemma 3.1, we have

u (a1 (s)) ≤
M (a1 (s) ,∞)

M (s,∞)
u (s) ,

based on the fact that a1 (s) ≤ s. Therefore,

w (s) = u (s) − b1 (s) w (a1 (s)) − b2 (s) w (a2 (s))

≥ u (s) − b1 (s) u (a1 (s)) − b2 (s) u (a2 (s))

≥

(
1 − b1 (s)

M (a1 (s) ,∞)
M (s,∞)

− b2 (s)
)

u (s)

= x1 (s) u (s) .

Hence, (1.1) becomes(
f (s)

(
u′ (s)

)(p−1)
)′
≤ −q (s) w(p−1) (h (s)) ≤ −q (s) x(p−1)

1 (h (s)) u(p−1) (h (s))

≤ −u(p−1) (s) q (s) x(p−1)
1 (h (s)) . (3.5)
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Since
(

f (s) (u′ (s))(p−1)
)′
≤ 0, we have

f (s)
(
u′ (s)

)(p−1)
≤ f (s1)

(
u′ (s1)

)(p−1) := −$ < 0, (3.6)

for all s ≥ s1, from (3.3) and (3.6), we have

u(p−1) (s) ≥ $M(p−1) (s,∞) for all s ≥ s1. (3.7)

Combining (3.5) with (3.7) yields(
f (s)

(
u′ (s)

)(p−1)
)′
≤ −$M(p−1) (s,∞) q (s) x(p−1)

1 (h (s)) ,

for all s ≥ s1. This completes the proof. �

Theorem 3.3. Let x2 (s) ≥ x1 (s) > 0. If

lim sup
s→∞

∫ s

s1

1
f 1/(p−1) (%)

(∫ %

s1

M(p−1) (υ,∞) q (υ) x(p−1)
1 (h (υ)) dυ

)1/(p−1)

d% = ∞, (3.8)

then, (1.1) is oscillatory.

Proof. Given that w (s) constitutes the final positive solution of (1.1). Then w (a1 (s)), w (a2 (s)), and
w (h (s)) are positive. From (1.1) and u (s) = w (s) + b1 (s) w (a1 (s)) + b2 (s) w (a2 (s)), we see that
u (s) ≥ w (s) > 0 and f (s) (u′ (s))(p−1) do not increase. Therefore, u′ is either eventually negative or
eventually positive.

Suppose first that u′ (s) > 0 on [s1,∞) . From Lemma 3.2 and integrating (3.4) from s1 to s, we
obtain

f (s)
(
u′ (s)

)(p−1)
≤ f (s1)

(
u′ (s1)

)(p−1)
−$

∫ s

s1

M(p−1) (υ,∞) q (υ) x(p−1)
1 (h (υ)) dυ

≤ −$

∫ s

s1

M(p−1) (υ,∞) q (υ) x(p−1)
1 (h (υ)) dυ.

Integrating the last inequality from s1 to s, we obtain

u (s) ≤ u (s1) −$1/(p−1)
∫ s

s1

1
f 1/(p−1) (%)

(∫ %

s1

M(p−1) (υ,∞) q (υ) x(p−1)
1 (h (υ)) dυ

)1/(p−1)

d%.

At s→ ∞, we arrive at a contradiction with (3.8).
Assume now that u′ (s) < 0 on [s1,∞) . From Lemma 3.4 and integrating (3.14) from s2 to s, we

obtain

f (s)
(
u′ (s)

)(p−1)
≤ f (s2)

(
u′ (s2)

)(p−1)
−

∫ s

s2

u(p−1) (h (υ)) q (υ) x(p−1)
2 (h (υ)) dυ

≤ f (s2)
(
u′ (s2)

)(p−1)
− u(p−1) (h (s2))

∫ s

s2

q (υ) x(p−1)
2 (h (υ)) dυ.

Since x2 (s) > x1 (s), we obtain

f (s)
(
u′ (s)

)(p−1)
≤ f (s2)

(
u′ (s2)

)(p−1)
− u(p−1) (h (s2))

∫ s

s2

q (υ) x(p−1)
1 (h (υ)) dυ, (3.9)

we have shown that, according to Eq (3.10), the positivity of u′ (s) as s→ ∞ is contradicted. Therefore,
the proof is finished. �
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Lemma 3.4. Given that w (s) constitutes the final positive solution of (1.1) and u′ (s) > 0. Then∫ s

s1

q (υ) x(p−1)
1 (h (υ)) dυ→ ∞ as s→ ∞. (3.10)

Proof. The function w is identified as the ultimate positive solution to (1.1). Suppose that u′ (s) > 0 on
[s1,∞). From Lemma 3.1, we arrive at

u (a2 (s)) ≤
M (s1, a2 (s))

M (s1, s)
u (s) . (3.11)

From the definition of u, we obtain

w (s) = u (s) − b1 (s) w (a1 (s)) − b2 (s) w (a2 (s))

≥ u (s) − b1 (s) u (a1 (s)) − b2 (s) u (a2 (s)) . (3.12)

Using that (3.11) and u (a1 (s)) ≤ u (s) where a1 (s) < s in (3.12), we obtain

w (s) ≥ u (s)
(
1 − b1 (s) − b2 (s)

M (s1, a2 (s))
M (s1, s)

)
≥ x2 (s) u (s) . (3.13)

Thus, (1.1) becomes(
f (s)

(
u′ (s)

)(p−1)
)′
≤ −q (s) w(p−1) (h (s)) ≤ −q (s) x(p−1)

2 (h (s)) u(p−1) (h (s))

≤ −u(p−1) (h (s)) q (s) x(p−1)
2 (h (s)) (3.14)

On the other hand, it is follows from (3.8) that
∫ s

s1
M(p−1) (υ,∞) q (υ) x(p−1)

1 (h (υ)) dυ must be
unbounded. Further, since M′ (s,∞) < 0, it is easy to see that∫ s

s1

q (υ) x(p−1)
1 (h (υ)) dυ→ ∞ as s→ ∞.

This completes the proof. �

Lemma 3.5. Given that w (s) constitutes the final positive solution of (1.1) and u′ (s) < 0. If

E (s) = ξ (s)
(

f (s) (u′ (s))(p−1)

u(p−1) (s)
+

1
M(p−1) (s,∞)

)
on [s1,∞) . (3.15)

Then

E′ (s) ≤ −ξ (s) q (s) x(p−1)
1 (h (s)) +

(
ξ (s)

M(p−1) (s,∞)

)′
+

f (s)
pp

(ξ′ (s))p

(ξ (s))(p−1) , (3.16)

where ξ ∈ C1 ([s0,∞) , (0,∞)) .
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Proof. The function w is identified as the ultimate positive solution to (1.1). Suppose that u′ (s) < 0 on
[s1,∞), we can notice that E ≥ 0 on [s1,∞) . By computing the derivative of (3.15), we can conclude
at

E′ (s) =
ξ′ (s)
ξ (s)

E (s) + ξ (s)

(
f (s) (u′ (s))(p−1)

)′
u(p−1) (s)

− (p − 1) ξ (s) f (s)
(
u′ (s)
u (s)

)(p−1)+1

+
(p − 1) ξ (s)

f 1/(p−1) (s) Mp (s,∞)

≤
ξ′ (s)
ξ (s)

E (s) + ξ (s)

(
f (s) (u′ (s))(p−1)

)′
u(p−1) (s)

−
(p − 1)

(ξ (s) f (s))1/(p−1)

(
E (s) −

ξ (s)
M(p−1) (s,∞)

)p/(p−1)

+
(p − 1) ξ (s)

f 1/(p−1) (s) Mp (s,∞)
. (3.17)

Combining (3.5) and (3.17), we have

E′ (s) ≤ −
(p − 1)

(ξ (s) f (s))1/(p−1)

(
E (s) −

ξ (s)
M(p−1) (s,∞)

)p/(p−1)

− ξ (s) q (s) x(p−1)
1 (h (s))

+
(p − 1) ξ (s)

f 1/(p−1) (s) Mp (s,∞)
+
ξ′ (s)
ξ (s)

E (s) . (3.18)

Using Lemma 2.1 with Q := ξ′ (s) /ξ (s) , N := (p − 1) (ξ (s) f (s))−1/(p−1) , L := ξ (s) /M(p−1) (s,∞)
and υ := E, we get

ξ′ (s)
ξ (s)

E (s) −
(p − 1)

(ξ (s) f (s))1/(p−1)

(
E (s) −

ξ (s)
M(p−1) (s,∞)

)p/(p−1)

≤
1
pp f (s)

(ξ′ (s))p

(ξ (s))(p−1)

+
ξ′ (s)

M(p−1) (s,∞)
,

which, in view of (3.18), we have

E′ (s) ≤
ξ′ (s)

M(p−1) (s,∞)
+

1
pp f (s)

(ξ′ (s))p

(ξ (s))(p−1) − ξ (s) q (s) x(p−1)
1 (h (s))

+
(p − 1) ξ (s)

f 1/(p−1) (s) Mp (s,∞)

≤ −ξ (s) q (s) x(p−1)
1 (h (s)) +

(
ξ (s)

M(p−1) (s,∞)

)′
+

f (s)
pp

(ξ′ (s))p

(ξ (s))(p−1) .

This completes the proof. �

Lemma 3.6. Given that w (s) constitutes the final positive solution of (1.1) and u′ (s) > 0. If

D (s) = ς (s)
f (s) (u′ (s))(p−1)

u(p−1) (h (s))
, on [s1,∞) , (3.19)

then

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) x(p−1)
2 (h (s)) − (p − 1) ς (s) f (s) h′ (s)

(u′ (s))p

up (h (s))
, (3.20)

where ς ∈ C1 ([s0,∞) , (0,∞)) .
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Proof. The function w is identified as the ultimate positive solution to (1.1). Suppose that u′ (s) > 0 on
[s1,∞). From (3.19), we see that D ≥ 0 on [s1,∞) . Differentiating (3.19), we arrive at

D′ (s) =
ς′ (s)
ς (s)

D (s) + ς (s)

(
f (s) (u′ (s))(p−1)

)′
u(p−1) (h (s))

− (p − 1) ς (s) f (s)
(u′ (s))(p−1) u′ (h (s)) h′ (s)

up (h (s))
. (3.21)

Combining (3.14) and (3.21), we have

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) x(p−1)
2 (h (s)) − (p − 1) ς (s) f (s)

(u′ (s))(p−1) u′ (h (s)) h′ (s)
up (h (s))

.

Since
(

f (s) (u′ (s))(p−1)
)′
< 0 and h (s) ≤ s, we arrive at

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) x(p−1)
2 (h (s)) − (p − 1) ς (s) f (s) h′ (s)

(u′ (s))p

up (h (s))
.

This completes the proof. �

Now, we discuss a numerical example to highlight the significance of the conditions we obtained in
Theorem 3.3.

Example 3.7. Consider the neutral equation(
s2

(
w (s) +

1
3

w
( s
2

)
+

1
2

w (3s)
)′)′

+
t0

s
w

( s
3

)
= 0, s > 0, t0 > 1. (3.22)

Let p = 2, f (s) = s2, b1 (s) = 1/3, b2 (s) = 1/2, a1 (s) = s/2, a2 (s) = 3s, h (s) = s/3, q (s) = t0/s
and

η (s) =

∫ ∞

s0

f −1/(p−1) (υ) dυ =
1
s
.

Moreover, we find

lim sup
s→∞

∫ s

s1

1
f 1/(p−1) (%)

(∫ %

s1

M(p−1) (υ,∞) q (υ) x(p−1)
1 (h (υ)) dυ

)1/(p−1)

d%

= lim sup
s→∞

∫ s

s1

1
υ2

∫ %

s1

∫ ∞

s
κ−2

 t0

υ

1 −
∫ ∞

s/2
r−2dr

3
∫ ∞

s
υ−2dυ

−
1
2


 dκd%

 dυ = ∞.

From Theorem 3.3, the Eq (3.22) is oscillatory.

Theorem 3.8. Assume that x2 (s) ≥ x1 (s) > 0. If

lim sup
s→∞

M(p−1) (s,∞)
∫ s

s1

q (υ) x(p−1)
1 (h (υ)) dυ > 1, (3.23)

then, every solutions of (1.1) is oscillatory.
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Proof. The function w is identified as the ultimate positive solution to (1.1). Then there exists s1 ≥ s0

such that w (a1 (s)) > 0, w (a2 (s)) > 0, and w (h (s)) > 0 for all s ≥ s1. The same way we prove
Theorem 3.3, the sign of u′ becomes consistently positive or negative eventually. First, let u′ < 0.
Integrating (3.5) from s1 to s, we see that

f (s)
(
u′ (s)

)(p−1)
≤ f (s1)

(
u′ (s1)

)(p−1)
−

∫ s

s1

u(p−1) (υ) q (υ) x(p−1)
1 (h (υ)) dυ

≤ −u(p−1) (s)
∫ s

s1

q (υ) x(p−1)
1 (h (υ)) dυ. (3.24)

Using (3.3) in (3.24), we obtain

− f (s)
(
u′ (s)

)(p−1)
≥ −M(p−1) (s,∞) f (s)

(
u′ (s)

)(p−1)
∫ s

s1

q (υ) x(p−1)
1 (h (υ)) dυ. (3.25)

Divide both sides of inequality (3.25) by − f (s) (u′ (s))(p−1) and taking the limsup, we obtain

lim sup
s→∞

M(p−1) (s,∞)
∫ s

s1

q (υ) x(p−1)
1 (h (υ)) dυ ≤ 1,

we arrive at a contradiction with (3.23).
Let u′ > 0 on [s1,∞) . From (3.23) and M (s,∞) < ∞, we have that (3.10) holds. We notice that this

part of the proof is exactly like the part of Theorem 3.3, so the proof is complete. �

Theorem 3.9. If x2 (s) > 0, x1 (s) > 0, and f ′ > 0 such that

lim sup
s→∞

M(p−1) (s,∞)
ξ (s)

∫ s

s

(
ξ (υ) q (υ) x(p−1)

1 (h (υ)) −
f (υ)
pp

(ξ′ (υ))p

(ξ (υ))(p−1)

)
dυ > 1, (3.26)

and

lim sup
s→∞

∫ s

s

(
ς (υ) q (υ) x(p−1)

2 (h (υ)) −
1
pp

f (υ) (ς′ (υ))p

ς(p−1) (υ) (h′ (υ))(p−1)

)
dυ = ∞, (3.27)

where the functions ς, ξ ∈ C1 ([s0,∞) , (0,∞)) and s ∈ [s0,∞) . Then, (1.1) is oscillatory.

Proof. Given that w (s) constitutes the final positive solution of (1.1) on [s0,∞). Then w (a1 (s)) > 0,
w (a2 (s)) > 0, and w (h (s)) > 0 for all s ≥ s1. From Theorem 3.3, it follows that u′ eventually takes
on a consistent sign, either remaining negative or remaining positive, beyond a certain point. First,
assuming that u′ < 0 on [s1,∞) . By following the approach used in the proof of Theorem 3.3, we can
obtain that u is a solution of the inequality (3.5). From Lemma 3.5 and due to (3.3). Integrating (3.16)
from s2 to s, we arrive at∫ s

s2

(
ξ (υ) q (υ) x(p−1)

1 (h (υ)) −
f (υ)
pp

(ξ′ (υ))p

(ξ (υ))(p−1)

)
dυ ≤

(
ξ (s)

M(p−1) (s,∞)
− E (s)

)∣∣∣∣∣∣s
s2

≤ −

(
ξ (s)

f (s) (u′ (s))(p−1)

u(p−1) (s)

)∣∣∣∣∣∣s
s2

. (3.28)
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From (3.3), we have

−
f 1/(p−1) (s) u′ (s)

u (s)
≤

1
M (s,∞)

,

which, in view of (3.28), implies

M(p−1) (s,∞)
ξ (s)

∫ s

s2

(
ξ (υ) q (υ) x(p−1)

1 (h (υ)) −
f (υ)
pp

(ξ′ (υ))p

(ξ (υ))(p−1)

)
dυ ≤ 1.

Applying the limit superior to both sides, we are led to a contradiction with (3.26).
Now, let u′ (s) > 0 on [s1,∞) . From Lemma 3.6 and from (3.19) and (3.20), we have

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) x(p−1)
2 (h (s)) −

(p − 1) h′ (s)
ς1/(p−1) (s) f 1/(p−1) (s)

Dp/(p−1) (s) .

Using Lemma 2.1, with F = ς′ (s) /ς (s) , $ = (p − 1) h′ (s) /
(
ς1/(p−1) (s) f 1/(p−1) (s)

)
and v = D, we

have

D′ (s) ≤ −ς (s) q (s) x(p−1)
2 (h (s)) +

1
pp

f (s) (ς′ (s))p

ς(p−1) (s) (h′ (s))(p−1) . (3.29)

Integrating (3.29) from s2 to s, we arrive at∫ s

s2

(
ς (υ) q (υ) x(p−1)

2 (h (υ)) −
1
pp

f (υ) (ς′ (υ))p

ς(p−1) (υ) (h′ (υ))(p−1)

)
dυ ≤ D (s2) .

We are taking lim sup on both sides of this inequality; we find a contradiction with (3.27), and
therefore the proof is finished. �

Now, we include the following numerical example to highlight the importance of the criteria we
obtained in Theorem 3.9.

Example 3.10. Let the equations2(p−1)
[(

w (s) +
1
2

w
( s
3

)
+

1
3

w (σs)
)′](p−1)′ + ξsw

( s
2

)
= 0, (3.30)

where ξ > 1, s ≥ 1 and σ > 1. Let p = 2, f (s) = s2, b1 (s) = 1/3, b2 (s) = 1/3, a1 (s) = s/3, a2 (s) =

σs, h (s) = s/2, and q (s) = ξs. So, we find

η (s) =

∫ ∞

s0

f −1/(p−1) (υ) dυ = s−1.

If we set ς (υ) = 1, we obtain

lim sup
s→∞

∫ s

s

(
ς (υ) q (υ) x(p−1)

2 (h (υ)) −
1
pp

f (υ) (ς′ (υ))p

ς(p−1) (υ) (h′ (υ))(p−1)

)
dυ = ∞, p < 2.

By Theorem 3.9, every solution of (3.30) is oscillatory.
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4. Conclusions

In this paper, we investigate the oscillatory criteria of a non-canonical second-order differential
equation featuring mixed neutral terms, driven by a p-Laplace differential operator. Our approach
begins with transforming the equation into a canonical form, which facilitates the application of the
Riccati technique to derive new oscillatory properties. The results we present not only extend but also
simplify existing criteria found in the literature.

To demonstrate the practical applicability of our findings, we include several illustrative examples
that highlight the effectiveness of our main results.

Looking to the future, our aim is to explore the oscillatory characteristics inherent in third-order
differential equations with neutral terms, as well as to investigate fractional-order equations governed
by a p-Laplace differential operator. We are already making progress in the study of these specific
types of equations, which promise to enhance our understanding of oscillatory behavior in various
contexts.
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