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* Correspondence: Email: tahsin.oner@ege.edu.tr; Tel: +902323112263.

Abstract: In this paper, we have presented a novel exploration of the construction of Riečan, Bosbach,
internal, and general states within the framework of Sheffer stroke BCK-algebra B. We highlighted the
originality of our work by examining key characteristics and the independence of the axiomatic systems
associated with these states. Notably, we demonstrated that a Riečan state can correspond to a Bosbach
state and vice versa, revealing significant interconnections between these concepts. Additionally, we
introduced the innovative concepts of faithful and fixed sets generated by internal states on B, proving
that each Sheffer stroke BCK-algebra retains its structure under an internal state. Our investigation also
included internal state-(filters, compatible filters, and prime filters) on B and their related results, as
well as the relationship between internal state congruence and filters. Furthermore, we explore whether
general states imply Riečan and Bosbach states, enhancing our understanding of these relationships.
Finally, we introduced the concept of general state-morphism and discuss its implications for B. To
support our findings, we provided compelling examples and fundamental algorithms, underscoring
the practical significance of our study across various fields including artificial intelligence, computer
science, and quantum logic.
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1. Introduction

In constructing mathematical models, emphasizing originality is paramount. This work aims to
eliminate redundant expressions while presenting equivalent statements with the minimal number of
axioms or operations necessary. For instance, Tarskisuccessfully described Abelian groups with a
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minimal set of axioms by focusing on the divisor operator, showcasing the efficiency of streamlined
approaches [27] . Similarly, H. M. Sheffer [26] demonstrated that all Boolean functions can be
articulated solely through the Sheffer stroke operation, which serves as a foundational concept in our
exploration [19].

The significance of the Sheffer stroke operation extends beyond theoretical constructs; it has
practical implications in computer systems, particularly in chip technology. This operation allows for
the uniform construction of all diodes on a chip, which forms the processor in computers. By
simplifying the manufacturing process and reducing costs, it eliminates the need for different diodes
for various logical connectives like conjunction, disjunction, and negation [2].

When examining logical algebraic structures, we find that they form the algebraic foundation for
diverse domains requiring robust reasoning mechanisms, such as information sciences, artificial
intelligence, quantum logics, computer sciences, and probability theory. While Boolean algebras
dominate classical logic, MV-algebras, introduced by [6], serve non-classical logic applications [20].
Chajda et al. [3] expanded this framework with Basic algebras, encompassing orthomodular lattices
and MV-algebras. To simplify these structures further, Oner and Senturk [21] proposed Sheffer stroke
basic algebras, reducing complexity to a single operation. Following this line of thought, Senturk et
al. and Oner et al. developed the concept of Sheffer Stroke BCK-algebras [22, 25].

The concept of states on MV-algebras was initially introduced by Munduci [20], who utilized
averaging processes for formulas within Łukasiewicz logics. This approach not only generalized
traditional probability measures on Boolean algebras but also provided a semantic interpretation for
the probability of fuzzy events. In an alternative approach, Riečan [23] introduced states on
BL-algebras, defining mappings within the interval [0, 1]. Georgescu [14] expanded this idea by
defining Bosbach and Riečan states on pseudo BL-algebras, mapping them to the real closed interval
[0, 1]. Consequently, the concept of states has been broadened to various logical algebraic structures,
including triangle algebras, pseudo equality algebras, equality algebras, BL-algebras, pseudo-BCK
algebras, residuated lattices, semi-divisible residuated lattices, and morphism
algebras [1, 7–11, 28, 29]. Additionally, Ghasemi Nejad and Borzooei [12] introduced internal states
and homomorphisms in implication basic algebras. Later, Ghasemi Nejad et al. [13] provided a
comprehensive definition of states on implication basic algebras, further enriching the discourse.
Senturk also proposed a perspective on state operators within Sheffer stroke Basic algebras [24].

The study of fuzzy algebraic structures has seen significant progress in recent years, particularly in
the context of BCK/BCI-algebras. Jana and Pal [15] introduced generalized intuitionistic fuzzy ideals
of BCK/BCI-algebras based on 3-valued logic, providing a computational framework for their study.
Extending this work, Jana et al. [16] explored different types of cubic ideals in BCI-algebras using
fuzzy points, further enriching the theoretical foundations of fuzzy algebraic structures. Additionally,
the concept of (α, β)-US sets in BCK/BCI-algebras was examined by Jana and Pal [17], offering novel
insights into the structural properties of these algebras. Furthermore, the comprehensive Handbook of
Research on Emerging Applications of Fuzzy Algebraic Structures edited by Jana et al. [18] serves as
a valuable resource for understanding the diverse applications of fuzzy algebraic structures in modern
mathematics. This paper builds upon these foundational works to investigate decision-making
processes within the framework of fuzzy BCK/BCI-algebras.

In this study, we investigate the construction of Riečan, Bosbach, internal, and general states
within the framework of Sheffer stroke BCK-algebras. Our originality lies in deriving fundamental
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properties and establishing connections between these different types of states. We introduce the
concept of states utilizing solely the Sheffer stroke operation, which has significant implications for
chip technology and other applied fields. This research provides valuable applications for researchers
across various domains requiring the concept of states, such as artificial intelligence, computer
science, information sciences, quantum logics, and probability theory. Additionally, we propose key
algorithms for implementation in these areas.

In Section 2, we revisit essential notions, basic definitions, lemmas, and relevant results pertaining to
Sheffer stroke BCK-algebras. Section 3 is dedicated to introducing the concepts of Riečan and Bosbach
states on Sheffer stroke BCK-algebras, compiling important facts and examples. We demonstrate the
independence of each axiomatic system for Riečan and Bosbach states, proving that a Riečan state can
correspond to a Bosbach state and vice versa. In Section 4, we introduce the notion of τI internal states
along with the concepts of faithful and fixed sets generated by these states on Sheffer stroke BCK-
algebras. We examine the key characteristics and independence of the axiomatic system of internal
states, proving that every Sheffer stroke BCK-algebra is also a Sheffer stroke BCK-algebra under τI .
Furthermore, we discuss internal state-(filters, compatible filters, and prime filters) and present their
related results. We explore internal state congruence and its relationship with filters, providing several
illustrative examples of the aforementioned concepts. Section 5 presents the concept of τ general
states as an extension of previous states on Sheffer stroke BCK-algebras, addressing their characteristic
features and independence of the axiomatic system, accompanied by relevant examples. We investigate
whether general states imply Riečan and Bosbach states, ultimately introducing the notion of general
state-morphism and discussing related results within Sheffer stroke BCK-algebras.

2. Preliminaries

In this section, we begin with fundamental definitions, lemmas, and proposition with reference to
Sheffer stroke BCK-algebras that will be needed throughout this paper.

Definition 1. [4] A Sheffer operation on a non-empty set X is a binary operation | : X × X → X such
that, for all a, b ∈ X, the following identities hold:

(a|b) | (a|a) = a, (1)
(a|b) | (b|b) = b. (2)

A groupoid is an algebra of type (2), that is, a set equipped with a single binary operation. A Sheffer
groupoid is a groupoid X = (X; |) in which | : X × X → X is a Sheffer operation.

Definition 2. [5] Let X = (X; |) be a groupoid. If the following conditions are satisfied for each
a, b, c ∈ X, then the operation | : X × X → X is called a Sheffer stroke operation:
(S 1) a|b = b|a,

(S 2) (a|a)|(a|b) = a,

(S 3) a|((b|c)|(b|c)) = ((a|b)|(a|b))|c,
(S 4) (a|((a|a)|(b|b)))|(a|((b|b)|(b|b))) = a.

If the following identity
(S 5) b|(a|(a|a)) = b|b

is also satisfied, then it is said to be an ortho-Sheffer stroke operation.
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Lemma 1. [5] Suppose X = (X; |) is a groupoid and a, b ∈ X. The binary relation ≤ defined on X by

a ≤ b if and only if a|b = a|a

is a partial order on X.

Lemma 2. [5] Assume that | is a Sheffer stroke operation on X and ≤ is the induced order onX = (X; |).
Then, the following properties hold for all a, b, c, t ∈ X:

(i) a ≤ b if and only if b|b ≤ a|a,
(ii) a|(b|(a|a)) = a|a is the identity element of X,

(iii) a ≤ b implies b|c ≤ a|c,
(iv) if t ≤ a and t ≤ b, then a|b ≤ t|t.

Definition 3 ( [22]). Consider a set X with a distinguished element denoted by “0” and a binary
operation called the Sheffer stroke, represented by “|”. The structure X = (X; |, 0) is termed a Sheffer
stroke BCK-algebra if it meets the following conditions:
(sBCK − 1) ((ab|(a|(c|c)))|(ab|(a|(c|c))))|(c|(b|b)) = 0|0,
(sBCK − 2) ab = 0, ba = 0 ⇒ a = b

for all a, b ∈ X, where ab := (a|(b|b))|(a|(b|b)).

Proposition 1 ( [22]). Every Sheffer stroke BCK-algebra X = (X; |, 0) satisfies:

(a1) (a|(a|a))|(a|a) = a,

(a2) (a|(a|a))|(a|(a|a)) = 0,
(a3) a|(((a|(b|b))|(b|b))|((a|(b|b))|(b|b))) = 0|0,
(a4) (0|0)|(a|a) = a,

(a5) a|0 = 0|0,
(a6) (a|(0|0))|(a|(0|0)) = a,

for all a, b ∈ X.

Define a binary relation “≤X” on a Sheffer stroke BCK-algebra X = (X; |, 0) as follows:

a ≤X b if and only if (a|(b|b))|(a|(b|b)) = 0 (2.1)

for all a, b ∈ X. With this definition, (X,≤X) forms a partially ordered set (poset), and it holds that
0 ≤X a for every a ∈ X (see [22, Lemma 3.2]).

Assume also that X = (X; |, 0) is a Sheffer stroke BCK-algebra. The binary relation ≤X on X is
defined as:

a ≤X b if and only if a|(b|b) = 0|0.

Furthermore, it satisfies the condition b ≤X a|(b|b) and:

a ≤X c ⇒ (a|(b|b))|(a|(b|b)) ≤X (c|(b|b))|(c|(b|b)) (2.2)

for all a, b, c ∈ X.
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3. Riečan state and Bosbach state on Sheffer stroke BCK-algebras

In this section, we define Riečan and Bosbach states within Sheffer stroke BCK-algebras. We
provide conditions for a mapping to be a Riečan state and present an algorithm to verify these
conditions. An example is included to illustrate this process. We then define Bosbach states and
provide a similar verification method. Finally, we prove the equivalence of Riečan and Bosbach states
under certain conditions.

For simplicity, throughout this paper, we will refer to the algebraic structure of a Sheffer stroke
BCK-algebra as B = (B; |, 0).

Definition 4. The mapping τR : B → [0, 1] is referred to as a Riečan state on B if it satisfies the
following conditions for any a, b ∈ B:
(τR

sBCK1) τR(0|0) = 1,
(τR

sBCK2) τR((a|a)|(b|b)) = τR(a) +R τ(b) where a|b = 0|0.

Now, we present a pseudocode to determine whether a given mapping satisfies the conditions to be
a Riečan state on B.

Algorithm 1: Confirming a Riečan state
Input: Set B, mapping τR : B→ [0, 1], operations | and +R

Output: Is τR a Riečan state on B?

IsRiecanS tate(B, τR)
1 if (τR(0|0) , 1) then Return False;
2 for i = 1 to |B| do
3 for j = 1 to |B| do
4 if (xi|x j = 0|0) and (τR((xi|xi)|(x j|x j)) , τR(xi) +R τR(x j)) then Return False;
5 end
6 end
7 Return True;

Algorithm 1 is designed to verify whether a mapping τR : B → [0, 1] fulfills the criteria necessary
to be recognized as a Riečan state on the set B. The algorithm systematically evaluates the two axioms
that characterize a Riečan state:

• Axiom (τR
sBCK1): The first criterion requires that the mapping must yield a value of 1 when applied

to the element 0|0. If this condition is not met, the algorithm promptly returns False, indicating
that the mapping fails to qualify as a Riečan state.
• Axiom (τR

sBCK2): The second criterion involves validating a specific relationship between any
two elements xi and x j within the set B. The algorithm iterates through all possible pairs of
elements xi, x j ∈ B and checks whether the equation τR((xi|xi)|(x j|x j)) = τR(xi)+RτR(x j) is satisfied
whenever xi|x j = 0|0. If this equation fails to hold for any pair of elements, the algorithm returns
False.

If both conditions are met for all applicable elements and element pairs in B, the algorithm
concludes that the mapping τR qualifies as a Riečan state and returns True. This structured procedure
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ensures that the mapping adheres to the required properties, thereby providing a reliable method for
verifying the Riečan state property.

Example 1. Let K = {0, k1, k2, k3, k4, 1}. The operation | on K is defined as shown in Table 1.

Table 1. The groupoid (K; |).

| 0 k1 k2 k3 k4 1
0 1 1 1 1 1 1
k1 1 k2 1 1 k3 k2

k2 1 1 k1 k1 1 k1

k3 1 1 k1 k4 1 k4

k4 1 k3 1 1 k3 k3

1 1 k2 k1 k4 k3 0

One can verify that the structureK = (K; |) is a Sheffer stroke BCK-algebra. Consider the mapping
τR : K → [0, 1] defined by

τR(x) :=


0, if x = 0,
1, if x = 1,
4
5 , if x ∈ {k1, k4},
1
5 , if x ∈ {k2, k3}.

It is clear that (τR
S H1) is satisfied. To verify (τR

S H2), we must consider the following cases:
(i) For all k ∈ K, k|0 = 0|k = 1.
(ii) k1|k2 = k2|k1 = 1, k1|k3 = k3|k1 = 1, k2|k4 = k4|k2 = 1, and k3|k4 = k4|k3 = 1.

Due to the commutativity of the | and + operators, it is sufficient to examine one side of the equalities
in the cases above:
• Since 0|0 = 1, τR((0|0)|(0|0)) = τR(0) = 0 = τ(0) + τ(0).

• Since 0|k1 = 1, τR((0|0)|(k1|k1)) = τR(1|k2) = τR(k1) =
4
5

= τ(0) + τ(k1).

• Since 0|k2 = 1, τR((0|0)|(k2|k2)) = τR(1|k1) = τR(k2) =
1
5

= τ(0) + τ(k2).

• Since 0|k3 = 1, τR((0|0)|(k3|k3)) = τR(1|k4) = τR(k3) =
1
5

= τ(0) + τ(k3).

• Since 0|k4 = 1, τR((0|0)|(k4|k4)) = τR(1|k3) = τR(k4) =
4
5

= τ(0) + τ(k4).

• Since 0|1 = 1, τR((0|0)|(1|1)) = τR(0|1) = τR(1) = 1 = τ(0) + τ(1).
• Since k1|k2 = 1, τR((k1|k1)|(k2|k2)) = τR(k2|k1) = τR(1) = 1 = τ(k1) + τ(k2).
• Since k1|k3 = 1, τR((k1|k1)|(k3|k3)) = τR(k2|k4) = τR(1) = 1 = τ(k1) + τ(k3).
• Since k2|k4 = 1, τR((k2|k2)|(k4|k4)) = τR(k1|k3) = τR(1) = 1 = τ(k2) + τ(k4).
• Since k3|k4 = 1, τR((k3|k3)|(k4|k4)) = τR(k4|k3) = τR(1) = 1 = τ(k3) + τ(k4).

From this perspective, we conclude that the mapping τR satisfies (τR
S H2). Consequently, it is a Riečan

state on K .

Theorem 1. The axiomatic system of a Riečan state on a Sheffer stroke BCK-algebra is independent.

Proof. To prove this theorem, we construct a model for each condition, ensuring that each model
satisfies the given condition while the other condition does not hold. LetK = (K; |) be a Sheffer stroke
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BCK-algebra as described in Example 1. We then demonstrate that conditions (τR
sBCK1) and (τR

sBCK2)
are independent of each other.
(1) Independence of (τR

sBCK1): Consider the mapping τR : K → [0, 1] defined as follows:

τR(x) :=


0, if x = 0,
1, if x = 1,
3
7 , if x ∈ {k1, k4},
4
9 , if x ∈ {k2, k3}.

In this case, K satisfies (τR
sBCK1) but does not satisfy (τR

sBCK2) because
τR((k3|k3)|(k4|k4)) = τR(k4|k3) = τR(1) = 1 , 55

63 = 3
7 + 4

9 = τR(k3) + τR(k4), where c|d = 1 = 0|0.

(2) Independence of (τR
sBCK2): Consider the mapping τR : K → [0, 1] defined as follows:

τR(x) :=


0, if x = 0,
4
7 , if x = 1,
2
7 , if x ∈ {k1, k2, k3, k4}.

Thus, K satisfies (τR
S H2) but not (τR

S H1), as τR(1) = 4
7 , 1. �

Lemma 3. Let τR : B→ [0, 1] be a Riečan state on B. Then, the structure satisfies τR(0) = 0.

Proof. By Definition 4 and Definition 2 (S 2), (τR
sBCK1) gives us 0|0 = τR(0|0). Additionally, using

Definition 4 (τR
S H2), we have τR((0|0)|(0|0)) = τR(0) + τR(0). Therefore, we obtain

τR(0) = τR((0|0)|(0|0)) = τR(0) + τR(0),

which implies τR(0) = 0. �

Proposition 2. Let B = (B; |, 0) be a Sheffer stroke BCK-algebra. Then, the following statements hold
for each b ∈ B:

(i) b|(b|b) = 0,
(ii) b ≤ 0|0.

Proof. (i) By substituting [a := b|b] in Proposition 1 (a3), we get

b|(((b|(b|b))|(b|b))|((b|(b|b))|(b|b))) = 0|0.

Using Proposition 1 (a1), we conclude that

b|(b|b) = 0|0.

(ii) With the help of Proposition 1 (a5), Definition 2 (S 2), and the definition of ≤X, we conclude that

0 = (0|0)|(0|0)
= (b|0)|(b|0)
= (b|((0|0)|(0|0)))|(b|((0|0)|(0|0)))
⇒ b ≤X 0|0

for each b ∈ B. �
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Lemma 4. Let τR : B→ [0, 1] be a Riečan state on B. Then, the following statements hold:

(i) τR(b1|b1) = 1 − τR(b1) for all b1 ∈ B,
(ii) if b1|(b2|b2) = 0|0, then τR(b1) ≤ τR(b2) for b1, b2 ∈ B.

Proof. (i) Using Definition 2 (S 2), Proposition 2, and Definition 4 (τR
sBCK2), we attain

1 = τR(0|0) = τR(b1|(b1|b1))
= τR(((b1|b1)|(b1|b1))|(b1|b1))
= τR(b1|b1) + τR(b1)
⇒ τR(b1|b1) = 1 − τR(b1).

(ii) Given that b2|(b2|b2) = 0|0 for all b1, b2 ∈ B, we have τR(b1) + τR(b1|b1) = 1 and
τR(b2) + τR(b2|b2) = 1. Assume b1|(b2|b2) = 0|0. Then, we obtain τR((b1|b1)|b2) = τR(b1) + τR(b2|b2).
Substituting [τR(b2|b2) := 1 − τR(b2)] into the last equation, we deduce
τR((b1|b1)|b2) − 1 = τR(b1) − τR(b2). Since τR((b1|b1)|b2) ≤ 1, we obtain 0 ≥ τR(b1) − τR(b2), which
implies τR(b1) ≤ τR(b2).

�

Lemma 5. Let τR : B→ [0, 1] be a Riečan state on B. Then, the following identity holds:

τR(b1|b2) + τR(b2) = 1

for all b1, b2 ∈ B.

Proof. Utilizing Definition 4 (τR
sBCK1), Proposition 1 (a5), Definition 2 (S 3), and Definition 4 (τR

sBCK2)
in sequence, we derive the following equality:

1 = τR(0|0)
= τR(0|b1)
= τR(((b2|(b2|b2))|(b2|(b2|b2)))|b1)
= τR((b2|b2)|((b1|b2)|(b1|b2)))
= τR(b1|b2) + τR(b2)

for all b1, b2 ∈ B. �

In the remainder of this chapter, we introduce the concept of Bosbach states on B, and present
some fundamental facts along with an example related to these states. Additionally, we demonstrate
the independence of each axiomatic system for Bosbach states on B, and prove that a Riečan state
corresponds to a Bosbach state, and vice versa.

Definition 5. A mapping τB : B → [0, 1] is called a Bosbach state on B if it satisfies the following
conditions for all a, b ∈ B:
(τB

sBCK1) τB(0|0) = 1,
(τB

sBCK2) τB(a) + τB(a|(b|b)) = τB(b) + τB(b|(a|a)),
(τB

sBCK3) There exists an element c ∈ B such that τB(c) = 0.
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Now, we provide a pseudocode to verify if a given mapping meets the criteria to be a Bosbach state
on B.

Algorithm 2: Confirming a Bosbach state
Input: Set B, mapping τB : B→ [0, 1], operation |
Output: Is τB a Bosbach state on B?

IsBosbachS tate(B, τB)
1 if (τB(0|0) , 1) then Return False;
2 Set control← 0
3 for i = 1 to |B| do
4 for j = 1 to |B| do
5 if (τB(xi) + τB(xi|(x j|x j)) , τB(x j) + τB(x j|(xi|xi))) then Return False ;
6 end
7 if (τB(xi) = 0 then control← 1;
8 end
9 if control = 0 then Return False;

10 Return True;

Algorithm 2 is crafted to verify whether a mapping τB : B → [0, 1] meets the criteria for being a
Bosbach state on the set B. The algorithm assesses the three axioms that define a Bosbach state:

• Axiom (τB
sBCK1): The first criterion ensures that the mapping evaluates to 1 when applied to the

element 0|0. If this condition is not satisfied, the algorithm immediately returns False.
• Axiom (τB

sBCK2): The second criterion involves a more intricate relationship between elements
in the set B. The algorithm iterates over all pairs of elements xi, x j ∈ B and verifies whether the
equation τB(xi) + τB(xi|(x j|x j)) = τB(x j) + τB(x j|(xi|xi)) holds for each pair. If the equation fails for
any pair, the algorithm returns False.
• Axiom (τB

sBCK3): The third criterion requires the existence of at least one element z ∈ B such that
τB(z) = 0. The algorithm examines all elements in B, and if no such element is found, it returns
False.

If the above three axioms are satisfied, the algorithm concludes that the mapping τB qualifies as
a Bosbach state and returns True. This systematic approach ensures that the mapping adheres to all
required conditions, offering a clear and reliable method to verify the Bosbach state property.

Example 2. Let K = (K; |, 0) be a Sheffer stroke BCK-algebra as described in Example 1. Define the
mapping τB as follows:

τB(x) :=

0, if x ∈ {0, k1, k4},

1, if x ∈ {k2, k3, 1}.

Then, τB is a Bosbach state on K .

Theorem 2. The axiomatic system for Bosbach states on a Sheffer stroke BCK-algebra is independent.

Proof. To prove this theorem, we construct a model for each condition where that specific condition
holds true while the others do not. Let K = (K; |, 0) be a Sheffer stroke BCK-algebra as described in
Example 1. We will demonstrate that these three conditions are independent of each other.
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(1) Independence of (τB
sBCK1): Consider the mapping τB : K → [0, 1] defined by

τB(x) :=


1, if x ∈ {0, 1},
4
9 , if x ∈ {k1, k2, k4},
1
6 , if x = k3.

Then, K satisfies (τB
sBCK1), but not (τB

S H2), as shown by the following:

τB(k2) + τB(k2|(k3|k3)) = τB(k2) + τB(1)

=
4
9

+ 1 =
13
9

,
7
6

=
1
6

+ 1

= τB(k3) + τB(1)
= τB(k3) + τB(k3|(k2|k2)).

Furthermore, it does not satisfy (τB
S H3) because there is no element c ∈ K such that τB(c) = 0.

(2) Independence of (τB
sBCK2): Consider the mapping τB : K → [0, 1] defined by τB(x) := 1

5 for all
x ∈ K. In this case, the mapping satisfies only (τB

sBCK2) but does not satisfy the conditions (τB
sBCK1) and

(τB
sBCK3).

(3) Independence of (τB
sBCK3): Consider the function τB : K → [0, 1] defined as follows:

τB(x) :=

0, if x = 0,
3/4, if x ∈ {a, b, c, d, 1}.

This function satisfies (τB
sBCK3) exclusively, without fulfilling (τB

sBCK1) or (τB
sBCK2). �

Lemma 6. Let the mapping τB : B→ [0, 1] be a state onB. Then the following statements are satisfied
for all b1, b2 ∈ A:
(ii) τB(b1|b1) = 1 − τR(b1),
(iii) τB(b1|b2) = τB(b1|((b1|b2)|(b1|b2))) = τB(b2|((b1|b2)|(b1|b2))).

Proof. (i) The proof method is analogous to the one used in Lemma 4 (i).
(ii) Utilizing Definition 2 (S 3) followed by Definition 2 (S 2), we obtain:

τB(b1|((b1|b2)|(b1|b2))) = τB(((b1|b1)|(b1|b1))|b2)
= τB(b1|b2)

for all b1, b2 ∈ B. Similarly, we derive the equality τB(b1|b2) = τB(b2|((b1|b2)|(b1|b2))) for any b1, b2 ∈

B. �

Lemma 7. Let B be a Sheffer stroke BCK-algebra. Then, the following identity is verified:

((b1|(b2|b2))|(b2|b2))|(b2|b2) = b1|(b2|b2)

for each b1, b2 ∈ B.
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Proof. Using the definition of ≤X and Proposition 1 (a3), we obtain b1 ≤X (b1|(b2|b2))|(b2|b2). By
applying Lemma 2 (iii), we have

((b1|(b2|b2))|(b2|b2))|(b2|b2) ≤X b1|(b2|b2). (3.1)

Furthermore, by substituting [a := b1|(b2|b2)] and [b := b2], we get

(b1|(b2|b2)) ≤X ((((b1|(b2|b2)) ≤X (b2 ≤X b2)) ≤X (b2 ≤X b2)) ≤X (((b1|(b2|b2)) ≤X (b2 ≤X b2)) ≤X (b2 ≤X b2))) = 0 ≤X 0.

From the definition of ≤X, we obtain

b1|(b2|b2) ≤X ((b1|(b2|b2))|(b2|b2))|(b2|b2). (3.2)

As a result, by combining Eqs (3.1) and (3.2), we conclude that

((b1|(b2|b2))|(b2|b2))|(b2|b2) = b1|(b2|b2)

for all b1, b2 ∈ B. �

Theorem 3. Let τ be a mapping on B. Then, τ is a Bosbach state if and only if it is also a Riečan state.

Proof. (⇒:) Suppose that τ is a Bosbach state on B. From Definition 5, it follows that (τR
sBCK1) is

satisfied. To complete the proof, we need to demonstrate the validity of (τR
sBCK2). Consider b1|b2 = 0|0.

From Definition 5, we have

τ((b1|b1)|(b2|b2)) + τ(b1|b1) = τ(b2) + τ(b2|((b1|b1)|(b1|b1))).

Using Definition 2 (S 2) and Lemma 6 (ii), we obtain

τ((b1|b1)|(b2|b2)) + 1 − τ(b1) = τ(b2) + τ(b2|b1).

Given that b2|b1 = 0|0 and τ(0|0) = 1, we get

τ((b1|b1)|(b2|b2)) + 1 − τ(b1) = τ(b2) + τ(0|0),

which simplifies to τ((b1|b1)|(b2|b2)) = τ(b1) + τ(b2). Therefore, τ is also a Riečan state.
(⇐:) Assume that τ is a Riečan state on B. From Definition 4 and Lemma 4, we know that τ(0|0) =

1 and τ(0) = 0 are satisfied, respectively. Thus, conditions (τB
sBCK1) and (τB

sBCK3) are verified. To
complete the proof in this direction, it remains to demonstrate the validity of (τB

sBCK2).
Using Lemma 5 and Lemma 4 (i), for any b1, b2 ∈ B, we have:

τ(b1) + τ(b1|(b2|b2)) = τ(b1) + (1 − τ(b2|b2))
= τ(b1) + (τ(b2) + τ(b2|b2) − τ(b2|b2))
= τ(b1) + τ(b2)
= (τ(b1) + τ(b1|b1) − τ(b1|b1)) + τ(b2)
= (1 − τ(b1|b1)) + τ(b2)
= τ(b2|(b1|b1)) + τ(b2).

As a result, we obtain

τ(b1) + τ(b1|(b2|b2)) = τ(b2) + τ(b2|(b1|b1)),

which confirms that τ satisfies (τB
sBCK2). Therefore, τ is also a Bosbach state. �
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4. Internal state on Sheffer stroke BCK-algebras

In this section, we define internal states on Sheffer stroke BCK-algebras, providing the necessary
conditions for a mapping to qualify as an internal state. We introduce a pseudocode algorithm to
verify whether a given mapping satisfies these conditions. Additionally, we explore the relationship
between internal states and filters, presenting theorems and propositions that establish the properties
and interactions between these structures. The examples provided illustrate the application of these
concepts within the algebraic framework, and we conclude with a theorem that demonstrates the
independence of the axiomatic system for internal states.

Definition 6. A mapping τI : B → B is called an internal state on B if it satisfies the following
conditions for all b1, b2 ∈ B:
(τI

sBCK1) τI(b1) ≤ τI(b2), where b1|(b2|b2) = 0|0,
(τI

sBCK2) τI(b1|(b2|b2)) = τI((b1|(b2|b2))|(b2|b2))|(τI(b2)|τI(b2)),
(τI

S H3) τI((τI(b1)|(τI(b2)|τI(b2)))|(τI(b2)|τI(b2))) = (τI(b1)|(τI(b2)|τI(b2)))|(τI(b2)|τI(b2)),
(τI

S H4) τI(τI(b1)|(τI(b2)|τI(b2))) = τI(b1)|(τI(b2)|τI(b2)).

Now, we provide a pseudocode to determine whether a given mapping fulfills the criteria to be an
internal state on B.

Algorithm 3: Confirming an internal state
Input: Set B, mapping τI : B→ B, operation |, and order relation ≤
Output: Is τI an internal state on B?

IsInternalS tate(B, τI)
1 for i = 1 to |B| do
2 for j = 1 to |B| do
3 if (bi|(b j|b j) = 0|0) and (τI(bi) � τI(b j)) then Return False;
4 if (τI(bi|(b j|b j)) , τI((bi|(b j|b j))|(b j|b j))|(τI(b j)|τI(b j))) then Return False;
5 if (τI((τI(bi)|(τI(b j)|τI(b j)))|(τI(b j)|τI(b j))) , (τI(bi)|(τI(b j)|τI(b j)))|(τI(b j)|τI(b j))) then

Return False;
6 if (τI(τI(bi)|(τI(b j)|τI(b j))) , τI(bi)|(τI(b j)|τI(b j))) then Return False;
7 end
8 end
9 Return True;

Algorithm 3 is designed to verify whether a mapping τI : B → B meets the criteria for being an
internal state on the set B. This algorithm methodically checks the four axioms that define an internal
state:

• Axiom (τI
sBCK1): The first criterion involves checking whether bi|(b j|b j) = 0|0 holds for each

pair of elements bi, b j ∈ B. If this condition is satisfied, the algorithm proceeds to verify if
τI(bi) ≤ τI(b j). If any pair fails to meet this condition, the algorithm returns False.
• Axiom (τI

sBCK2): The second criterion requires that

τI(bi|(b j|b j)) = τI((bi|(b j|b j))|(b j|b j))|(τI(b j)|τI(b j))
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holds for all pairs of elements bi, b j ∈ B. If the equation does not hold for any pair, the algorithm
returns False.
• Axiom (τI

S H3): The third criterion checks if

τI((τI(bi)|(τI(b j)|τI(b j)))|(τI(b j)|τI(b j)))

is equal to
(τI(bi)|(τI(b j)|τI(b j)))|(τI(b j)|τI(b j)).

If this condition is not met, the algorithm returns False.
• Axiom (τI

S H4): The fourth criterion requires that

τI(τI(bi)|(τI(b j)|τI(b j))) = τI(bi)|(τI(b j)|τI(b j))

holds for all pairs of elements bi, b j ∈ B. If this condition is not satisfied, the algorithm returns
False.

If all conditions are satisfied for all relevant elements and pairs in the set B, the algorithm concludes
that the mapping τI qualifies as an internal state and returns True. This systematic approach ensures
that the mapping adheres to all necessary conditions, providing a reliable method for verifying the
internal state property.

Definition 7. An internal state τI on B is called faithful if it satisfies

Ker(τI) = {b ∈ B | τI(b) = 0|0} = {0|0}.

Definition 8. The set
Fix(τI) = {b ∈ B | τI(b) = b}

is referred to as the fixed set of the internal state operator τI on B.

Example 3. The identity map τI(b) = b and the constant map τI(b) = 0|0 are considered trivial internal
states on B.

Theorem 4. The axiomatic system for internal states on a Sheffer stroke BCK-algebra is independent.

Proof. Theorem 4 can be proven using a method analogous to the proof of Theorem 2. �

Theorem 5. If τI is an internal state on B, then τI(B) forms a Sheffer stroke BCK-algebra.

Proof. This result directly follows from Definition 3 and Definition 6. �

Proposition 3. Let τI be an internal state on B. Then, the following statements hold true:

(i) τI(0|0) = 0|0,
(ii) τI(τI(b)) = b for all b ∈ B,

(iii) τI(0) = 0,
(iv) If τI(b) = 0|0, then b = 0|0,
(v) τI(b1|b2)|τI(b1|b2) ≤ τI(b1|b1)|τI(b2|b2) for all b1, b2 ∈ B,

(vi) τI(b1|(b2|b2)) ≤ τI(b1)|(τI(b2)|τI(b2)) for all b1, b2 ∈ B,
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(vii) if b1|(b2|b2) = 0|0 or b2|(b1|b1) = 0|0, then τI(b1|(b2|b2)) = τI(b1)|(τI(b2)|τI(b2)),
(viii) τI(B) = Fix(τI).

Proof. (i) By applying Proposition 1 (a2) and Definition 2 (S 2), we derive:

((b|(b|b))|(b|(b|b)))|((b|(b|b))|(b|(b|b))) = 0|0⇒ b|(b|b) = 0|0

for each b ∈ B. Taking into account Definition 6 (τI
sBCK2), we find:

τI(b|(b|b)) = τI((b|(b|b))|(b|b))|(τI(a)|τI(a)).

Using Proposition 1 (a2) and Proposition 2, we obtain:

τI((b|(b|b))|(b|b))|(τI(b)|τI(b)) = τI(b)|(τI(b)|τI(b)) = 0|0

for each b ∈ B.
(ii) With the help of Proposition 1 (a4) and Proposition 3 (i), we find:

τI(τI(b)) = τI((0|0)|(τI(b)|τI(b))) = τI(τI(0|0)|(τI(b)|τI(b))).

By combining Definition 6 (τI
sBCK4), Proposition 3 (i), and Proposition 1 (a4), we arrive at:

τI(τI(0|0)|(τI(b)|τI(b))) = τI(0|0)|(τI(b)|τI(b)) = (0|0)|(τI(b)|τI(b)) = τI(b)

for each b ∈ B.
(iii) Suppose there exists some b ∈ B such that τI(0) = b. By applying Proposition 3 (ii), we obtain:

0 = τI(τI(0)) = τI(b).

Next, using Definition 6 (τI
sBCK2), we get:

τI(0) = τI((0|0)|(0|0))
= τI(τI(0|0)|(τI(b)|τI(b)))
= τI(0|0)|(τI(b)|τI(b))
= (0|0)|(τI(b)|τI(b))
= τI(b) = 0.

(iv) This result follows directly from Proposition 3 (i) and (ii).
(v) For any b1 ∈ B, it holds that b1 ≤ 0|0. By applying Lemma 2 (iii), Definition 2, and Proposition 1
(a4) in sequence, we have:

b1 ≤ 0|0 ⇒ (0|0)|((b2|b2)|(b2|b2)) ≤ b1|((b2|b2)|(b2|b2))
⇒ b2|b2 ≤ b1|b2

for all b2 ∈ B. From Definition 6 (τI
sBCK1), we obtain:

τI(b2|b2) ≤ τI(b1|b2) (4.1)
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and similarly:

τI(b1|b1) ≤ τI(b1|b2). (4.2)

By combining (4.1) and (4.2), we conclude that:

τI(b1|b2)|τI(b1|b2) ≤ τI(b1|b1)|τI(b2|b2).

(vi) Let b1, b2 be any elements of B. By applying Definition 2 (S 3), Definition 2 (S 2), and
Proposition 2, we obtain:

b1|(((b1|(b2|b2))|(b2|b2))|((b1|(b2|b2))|(b2|b2))) = (b1|(b2|b2))|((b1|(b2|b2))|(b1|(b2|b2)))
= 0|0.

From the definition of ≤X, we conclude that:

b1 ≤X (b1|(b2|b2))|(b2|b2)

for all b1, b2 ∈ A, which implies that

τI(b1) ≤ τI((b1|(b2|b2))|(b2|b2)).

Using Lemma 2 (iii), we have:

τI((b1|(b2|b2))|(b2|b2))|(τI(b2)|τI(b2)) ≤ τI(b1)|(τI(b2)|τI(b2)).

Finally, applying Definition 6 (τI
sBCK2), we arrive at:

τI(b1|(b2|b2)) ≤ τI(b1)|(τI(b2)|τI(b2))

for each b1, b2 ∈ B.
(vii) Let b1, b2 ∈ B such that b1|(b2|b2) = 0|0. Then, we have:

0|0 = τI(0|0) = τI(b1|(b2|b2)) ≤ τI(b1)|(τI(b2)|τI(b2)) ≤ 0|0.

As a result, we conclude that τI(b1|(b2|b2)) = τI(b1)|(τI(b2)|τI(b2)).
Similarly, let b1, b2 ∈ B such that b2|(b1|b1) = 0|0. Then, we have:

0|0 = τI(0|0) = τI(b2|(b1|b1)) ≤ τI(b2)|(τI(b1)|τI(b1)) ≤ 0|0.

Thus, it follows that τI(b2|(b1|b1)) = τI(b2)|(τI(b1)|τI(b1)).
(vii) It is evident that Fix(τI) ⊆ τI(B). Now, let b2 ∈ τ

I(B). This implies that there exists some
b1 ∈ B such that τI(b1) = b2. By Proposition 3 (ii), we have:

τI(b2) = τI(τI(b1)) = τI(b1) = b2.

Thus, we conclude that τI(B) ⊆ Fix(τI), which implies τI(B) = Fix(τI). �
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Definition 9. Let B = (B; |, 0) be a Sheffer stroke BCK-algebra, and let FsBCK be a subset of B such
that 0|0 ∈ FsBCK . The subset FsBCK is called a filter of B if it satisfies the following conditions for all
b1, b2, b3 ∈ B:
(FsBCK1) If b1 ∈ FsBCK and b1|(b2|b2) ∈ FsBCK , then b2 ∈ FsBCK ,
(FsBCK2) If b1|(b2|b2) ∈ FsBCK and b2|(b1|b1) = 0|0, then

(b2|(b3|b3))|((b1|(b3|b3))|(b1|(b3|b3))) ∈ FsBCK .

Additionally, if the set FsBCK satisfies:
(FsBCK3) b1|(b2|b2) ∈ FsBCK and b2|(b1|b1) ∈ FsBCK imply (b3|(b1|b1))|((b3|(b2|b2))|(b3|(b2|b2))) ∈ FsBCK ,
then FsBCK is called a compatible filter of B.

The set of all filters and compatible filters of B are denoted by FsBCK(B) and CFsBCK(B),
respectively.

We now present a pseudocode to determine whether a given subset of B meets the criteria to be a
filter on B.

Algorithm 4: Confirming a filter or compatible filter
Input: Set B, subset FsBCK ⊆ B, operation |, and element 0|0
Output: Is FsBCK a filter or a compatible filter of B?

IsFilter(B, FsBCK)
1 if 0|0 < FsBCK then Return False;
2 for b1, b2 ∈ B do
3 if b1 ∈ FsBCK and b1|(b2|b2) ∈ FsBCK then
4 if b2 < FsBCK then Return False;
5 end
6 end
7 for b1, b2, b3 ∈ B do
8 if b1|(b2|b2) ∈ FsBCK and b2|(b1|b1) = 0|0 then
9 if (b2|(b3|b3))|((b1|(b3|b3))|(b1|(b3|b3))) < FsBCK then Return False;

10 end
11 end

IsCompatibleFilter(B, FsBCK)
12 for b1, b2, b3 ∈ B do
13 if b1|(b2|b2) ∈ FsBCK and b2|(b1|b1) ∈ FsBCK then
14 if (b3|(b1|b1))|((b3|(b2|b2))|(b3|(b2|b2))) < FsBCK then Return False;
15 end
16 end
17 Return True;

Algorithm 4 is designed to verify whether a subset FsBCK of a Sheffer stroke BCK-algebra B meets
the criteria for being a filter or a compatible filter. The algorithm methodically checks the axioms
defining these concepts:

• Filter verification:
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– The algorithm first checks whether the element 0|0 is included in the subset FsBCK . If 0|0 is
absent, the subset cannot qualify as a filter, and the algorithm promptly returns False.

– In the sequel, it verifies the first filter condition (FsBCK1), which requires that if an element b1

is in FsBCK and b1|(b2|b2) is also in FsBCK , then b2 must be included in FsBCK . If this condition
is not fulfilled for any pair of elements, the algorithm returns False.

– Additionally, the algorithm checks the second filter condition (FsBCK2). This condition
stipulates that if b1|(b2|b2) belongs to FsBCK and b2|(b1|b1) = 0|0, then the element
(b2|(b3|b3))|((b1|(b3|b3))|(b1|(b3|b3))) must be in FsBCK . If this condition is violated, the
algorithm returns False.

• Compatible filter verification:

– For a subset to qualify as a compatible filter, the algorithm verifies an additional condition
(FS H3). This condition asserts that if both b1|(b2|b2) and b2|(b1|b1) are in FsBCK , then the
element (b3|(b1|b1))|((b3|(b2|b2))|(b3|(b2|b2))) must also be present in FsBCK . If this condition
fails for any trio of elements, the algorithm returns False.

• Final return:

– If all the relevant conditions for a filter and a compatible filter are met, the algorithm
concludes that the subset FsBCK is indeed a filter or a compatible filter of B and returns True.

This Algorithm 4 ensures that the subset FsBCK adheres to all necessary axioms to be recognized as
a filter or a compatible filter within the framework of a Sheffer stroke BCK-algebra.

Definition 10. Let B = (B; |, 0) be a Sheffer stroke BCK-algebra and let D ⊆ B. The set D is called an
order-filter if it satisfies the following conditions:

b1 ∈ D and b1|(b2|b2) = 1 ⇒ b2 ∈ D.

Also, we provide a pseudocode to check if a given subset D satisfies the conditions to be an order-
filter on B.

Algorithm 5: Confirming an order-filter
Input: Set B, subset D ⊆ B, operation |, and identity element 1
Output: Is D an order-filter of B?

IsOrderFilter(B,D)
1 for b1 ∈ D do
2 for b2 ∈ B do
3 if b1|(b2|b2) = 1 then
4 if b2 < D then Return False;
5 end
6 end
7 end
8 Return True;

Algorithm 5 is designed to verify whether a given subset D of a Sheffer stroke BCK-algebra B
meets the necessary conditions to be classified as an order-filter. The algorithm systematically checks
the following criterion:
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• The algorithm iterates over each element b1 within the subset D and examines whether, for any
element b2 in the set B, the condition b1|(b2|b2) = 1 is satisfied. If this condition is met, the
element b2 must also belong to D. If b2 is not found in D, the algorithm returns False, indicating
that D does not qualify as an order-filter.
• If the condition holds true for all relevant elements, the algorithm returns True, confirming that D

is indeed an order-filter within B.

Definition 11. Let B = (B; |, 0) be a Sheffer stroke BCK-algebra. A filter FsBCK of B is called a prime
filter if it fulfills the following condition:

b1|(b2|b2) ∈ FsBCK or b2|(b1|b1) ∈ FsBCK

for every b1, b2 ∈ B.

We present a pseudocode to determine whether a given subset FsBCK meets the criteria to be a prime
filter on B.

Algorithm 6: Confirming a prime filter
Input: Set B, filter FsBCK ⊆ B, operation |
Output: Is FsBCK a prime filter of B?

IsPrimeFilter(B, FsBCK)
1 for b1, b2 ∈ B do
2 if b1|(b2|b2) < FsBCK and b2|(b1|b1) < FsBCK then Return False;
3 end
4 Return True;

Algorithm 6 is designed to verify whether a given filter FsBCK of a Sheffer stroke BCK-algebra B
meets the necessary condition to be considered a prime filter. The algorithm systematically checks the
following criterion:

• The algorithm iterates over each pair of elements b1 and b2 in the set B. For each pair, it checks
whether either the element b1|(b2|b2) or the element b2|(b1|b1) is included in the filter FsBCK . If
neither of these elements is found in the filter for any pair, the algorithm returns False, indicating
that FsBCK does not satisfy the prime filter condition.
• If the condition is satisfied for all pairs of elements, the algorithm returns True, confirming that

FsBCK is indeed a prime filter within B.

Definition 12. Let B = (B; |, 0) be a Sheffer stroke BCK-algebra, and let Θ be an equivalence relation
on B. The relation Θ is called a right congruence on B if it satisfies the following condition:

(b1, b2) ∈ Θ =⇒ (b1|(b3|b3), b2|(b3|b3)) ∈ Θ,

for every b1, b2, b3 ∈ B. The set of all such right congruences is denoted by ConR(B).

Similarly, Θ is referred to as a left congruence on B if it fulfills the condition:

(b1, b2) ∈ Θ =⇒ ((b1|b1)|b3, (b2|b2)|b3) ∈ Θ,
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for all b1, b2, b3 ∈ B. The set of all such left congruences is denoted by ConL(B).

If Θ belongs to both ConR(B) and ConL(B), then it is called a congruence on B. The collection of
all congruences on B is denoted by Con(B). In summary, we can express this as:

Con(B) = ConR(B) ∩ ConL(B).

We now outline a systematic method for determining whether a given equivalence relation qualifies
as a right congruence, left congruence, or a congruence in a Sheffer stroke BCK-algebra through the
following algorithm.

Algorithm 7: Confirming right, left, and general congruences
Input: Set B, equivalence relation Θ ⊆ B × B, operation |
Output: Is Θ a right congruence, left congruence, or congruence of B?

IsRightCongruence(B,Θ)
1 for (b1, b2) ∈ Θ do
2 for b3 ∈ B do
3 if (b1|(b3|b3), b2|(b3|b3)) < Θ then Return False;
4 end
5 end
6 RightCongruence← True;

IsLe f tCongruence(B,Θ)
7 for (b1, b2) ∈ Θ do
8 for b3 ∈ B do
9 if ((b1|b1)|b3, (b2|b2)|b3) < Θ then Return False;

10 end
11 end
12 Le f tCongruence← True;

IsCongruence(B,Θ)
13 if RightCongruence and Le f tCongruence then
14 Return True;
15 // Θ is a congruence of B
16 end
17 else
18 if RightCongruence then Return RightCongruence;
19 // Θ is a right congruence of B;
20 if Le f tCongruence then Return Le f tCongruence;
21 // Θ is a left congruence of B;
22 else Return False;
23 // Θ is not a congruence of B;
24 end
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The purpose of Algorithm 7 is to evaluate whether a given equivalence relation Θ on a Sheffer stroke
BCK-algebra B meets the necessary criteria to be classified as a right congruence, left congruence, or
a general congruence. The algorithm follows these steps:

• Verification of right congruence:

– The algorithm iterates through each pair (b1, b2) within the equivalence relation Θ and checks
whether, for every element b3 in the set B, the pair (b1|(b3|b3), b2|(b3|b3)) is also included in
Θ. If this condition fails for any pair, the algorithm determines that Θ does not qualify as a
right congruence and outputs False. If the condition holds for all pairs, the RightCongruence
flag is set to True.

• Verification of left congruence:

– The algorithm similarly checks whether the condition ((b1|b1)|b3, (b2|b2)|b3) ∈ Θ is satisfied
for each pair (b1, b2) in Θ and every element b3 in B. If this condition is not met for any pair,
the algorithm concludes that Θ is not a left congruence and returns False. Otherwise, the
LeftCongruence flag is set to ‘True’.

• Verification of general congruence:

– If both the RightCongruence and LeftCongruence flags are set to True, the algorithm confirms
that Θ is a general congruence of B and returns True. If only one of the flags is True, the
algorithm indicates that Θ is either a right or left congruence, depending on which flag is
true. If neither flag is True, the algorithm returns False, indicating that Θ is not a congruence
of B.

Algorithm 7 offers a comprehensive and efficient approach for verifying congruence properties
within the framework of a Sheffer stroke BCK-algebra.

Lemma 8. Let τI be an internal state on B. Then, the following properties hold:

(i) The kernel of τI , denoted as Ker(τI), is a compatible filter of B.
(ii) If every element in B is comparable with the others, then Ker(τI) is a prime filter of B.

(iii) If τI is faithful, it preserves the strict order.
(iv) If b and τI(b) are comparable, then b ∈ Fix(τI).

Proof. (i) To establish that Ker(τI) is a compatible filter of B, we need to verify the conditions for a
compatible filter.

(FsBCK1) Suppose a ∈ Ker(τI) and b1|(b2|b2) ∈ Ker(τI). This implies that τI(b1) = 0|0 and
τI(b1|(b2|b2)) = 0|0. Utilizing Proposition 3 (i) and (ii), we find that b1 = τI(τI(b1)) = τI(0|0) = 0|0 and
b1|(b2|b2) = τI(τI(b1|(b2|b2))) = τI(0|0) = 0|0. Since b1|(b2|b2) = 0|0, we conclude that
0|0 = b1 ≤ b2 ≤ 0|0. Therefore, b2 = 0|0 and τI(b2) = τI(0|0) = 0|0, which implies that b2 ∈ Ker(τI).
(FsBCK2) Suppose b1|(b2|b2) ∈ Ker(τI) and b2|(b1|b1) = 0|0. Given that b1|(b2|b2) ∈ Ker(τI), it follows
that b1|(b2|b2) = 0|0. Since both b2|(b1|b1) = 0|0 and b1|(b2|b2) = 0|0, we conclude that b2 ≤ b1 and
b1 ≤ b2 according to the definition of ≤X, which implies b1 = b2. Therefore, we obtain

(b2|(b3|b3))|((b1|(b3|b3))|(b1|(b3|b3))) = (b1|(b3|b3))|((b1|(b3|b3))|(b1|(b3|b3))) = 0|0

for all b3 ∈ B. Consequently, we have (b2|(b3|b3))|((b1|(b3|b3))|(b1|(b3|b3))) ∈ Ker(τI).
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(FsBCK3) Suppose b1|(b2|b2) ∈ Ker(τI) and b2|(b1|b1) ∈ Ker(τI). It follows immediately that b1 = b2.
Therefore, we have

(b3|(b1|b1))|((b3|(b2|b2))|(b3|(b2|b2))) = (b3|(b1|b1))|((b3|(b1|b1))|(b3|(b1|b1))) = 0|0

for all b3 ∈ B. Consequently, we conclude that (b3|(b1|b1))|((b3|(b2|b2))|(b3|(b2|b2))) ∈ Ker(τI).
(ii) Let b1, b2 ∈ B be elements that are comparable with each other. This implies that either b1 ≤ b2 or
b2 ≤ b1. If we assume b1 ≤ b2, then we have τI(b1|(b2|b2)) = τI(0|0) = 0|0. Consequently, we find that
b1|(b2|b2) ∈ Ker(τI). Similarly, in the case where b2 ≤ b1, we obtain b2|(b1|b1) ∈ Ker(τI).
(iii) Suppose b1 < b2. Then, it follows that b1|(b2|b2) = 0|0 and τI(b1) ≤ τI(b2). Assume, for the
sake of contradiction, that τI(b1) = τI(b2). By Proposition 3 (v), since τI(b1) = τI(b2), it follows that
τI(b2|(b1|b1)) = τI(b2)|(τI(b1)|τI(b1)) = 0|0. If τI(b2|(b1|b1)) = 0|0, then we must have b2|(b1|b1) = 1.
This implies b2 ≤ b1, which contradicts the assumption that b1 < b2. Therefore, we conclude that
τI(b1) < τI(b2), meaning that τI is strictly order-preserving.
(iv) Suppose that b1 and τI(b1) are comparable. This means that either b1 ≤ τI(b1) or τI(b1) ≤ b1.
Assume b1 ≤ τ

I(b1). By Proposition 3 (ii), we have τI(b1) ≤ τI(b1) = b1, leading to b1 ≤ τ
I(b1) ≤ b1.

Consequently, this implies b1 = τI(b1), meaning b1 ∈ Fix(τI). A similar conclusion can be drawn in
the opposite case. �

Example 4. Let us consider the set K = {0, k1, k2, k3, k4, k5, k6, 1}. The operation | on K is defined as
shown in Table 2.

Table 2. The groupoid (K; |).

| 0 k1 k2 k3 k4 k5 k6 1
0 1 1 1 1 1 1 1 1
k1 1 k2 1 1 k3 k2 1 k2

k2 1 1 k1 k1 1 1 k5 k1

k3 1 1 k1 k4 1 1 k5 k4

k4 1 k3 1 1 k3 k3 1 k3

k5 1 k2 1 1 k3 k6 1 k6

k6 1 1 k5 k5 1 1 k5 k5

1 1 k2 k1 k4 k3 k6 k5 0

It can be verified that the structure K = (K; |, 0) constitutes a Sheffer stroke BCK-algebra.
In the sequel, we define the internal state τI for each k ∈ K as indicated in Table 3.

Table 3. Internal state τI on K.
k 0 k1 k2 k3 k4 k5 k6 1

τI(k) 0 k2 k1 k3 k4 k6 k5 1

It follows that Ker(τI) = {1}. Therefore, Ker(τI) is a compatible filter of K. However, since the
elements of K are not comparable with one another, Ker(τI) is not a prime filter of K. Notably, we
observe that k1|(k2|k2) = k2 < Ker(τI) and k2|(k1|k1) = k1 < Ker(τI). Additionally, it is straightforward
to verify that τI is strictly order-preserving as it is faithful. Finally, m and τI(m) are not comparable
for m ∈ {k1, k2, k5, k6}, while m and τI(m) are comparable for m ∈ {0, k3, k4, 1}, where m ∈ Fix(τI) =

{0, k3, k4, 1}. In conclusion, all the properties of Lemma 8 are satisfied by this example.
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Lemma 9. Let τI be an internal state on B. Then the following properties hold for all b1, b2 ∈ B:

(i) τI(b1|b1) = τI(b1)|τI(b1),
(ii) τI(τI(b1)|τI(b1)) = b1|b1,

(iii) τI(τI(b1|b1)|τI(b2|b2)) = τI(b1|b1)|τI(b2|b2).

Proof. (i) For any b1 ∈ B, consider τI(b1|b1). This expression can be rewritten as τI(b1|(0|0)).
According to Proposition 3 (vii), we can simplify this further:
τI(b1|(0|0)) = τI(b1)|(τI(0)|τI(0)) = τI(b1)|(0|0) = τI(b1)|τI(b1). This follows because 0|(b1|b1) = 0|0
holds true for any b1 ∈ B.
(ii) This follows directly from Lemma 9 (i) and Proposition 3 (ii).
(iii) Applying Lemma 9 (i), we have:

τI(τI(b1|b1)|τI(b2|b2)) = τI(τI(b1|b1)|(τI(b2)|τI(b2)))

for any b1, b2 ∈ B. Using Definition 6 (τI
S H4) and Lemma 9 (i), it follows that:

τI(τI(b1|b1)|(τI(b2)|τI(b2))) = τI(b1|b2)|(τI(b2)|τI(b2)) = τI(b1|b1)|τI(b2|b2).

�

In the remainder of this section, we explore the concepts of congruences and filters (including order,
prime, and compatible filters) through the framework of the internal state on B.

Definition 13. Let τI be an internal state on B.
(i) If FsBCK is a filter of B such that for every b ∈ FsBCK , we have τI(b) ∈ FsBCK , then FsBCK is called
an internal-state filter of B, denoted by IS FsBCK .
(ii) If FsBCK is a compatible filter of B such that for every b ∈ FsBCK , we have τI(b) ∈ FsBCK , then
FsBCK is called an internal-state compatible filter of B, denoted by IS CFsBCK .
(iii) If FsBCK is a prime filter of B such that for every b ∈ FsBCK , we have τI(b) ∈ FsBCK , then FsBCK is
called an internal-state prime filter of B, denoted by IS PFsBCK .

We now present a systematic approach for determining whether a given filter qualifies as an internal-
state filter, internal-state compatible filter, or internal-state prime filter in a Sheffer stroke BCK-algebra
using the following algorithm.
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Algorithm 8: Confirming internal state-filters
Input: Set B, filter FsBCK ⊆ B, internal state τI : B→ B
Output: Is FsBCK an IS FsBCK , IS CFsBCK , or IS PFsBCK of B?

IsInternalS tateFilter(B, FsBCK , τ
I)

1 for b ∈ FsBCK do
2 if τI(b) < FsBCK then Return False;
3 end
4 Return True;

IsInternalS tateCompatibleFilter(B, FsBCK , τ
I)

5 for b ∈ FsBCK do
6 if τI(b) < FsBCK then Return False;
7 end
8 Return True;

IsInternalS tatePrimeFilter(B, FsBCK , τ
I)

9 for b ∈ FsBCK do
10 if τI(b) < FsBCK then Return False;
11 end
12 Return True;

Algorithm 8 is designed to verify whether a given filter FsBCK of a Sheffer stroke BCK-algebra B
qualifies as an internal state-filter, internal state-compatible filter, or internal state-prime filter. The
algorithm systematically checks the following condition:

• The algorithm iterates over each element b in the filter FsBCK and examines whether the image of
b under the internal state mapping τI : B → B is also contained within FsBCK . If there exists any
element b in the filter such that τI(b) is not included in FsBCK , the algorithm concludes that FsBCK

does not satisfy the internal state-filter condition and returns False.
• If the condition is satisfied for all elements, the algorithm returns True, confirming that FsBCK

qualifies as an internal state-filter (IS FsBCK), internal state-compatible filter (IS CFsBCK), or
internal state-prime filter (IS PFsBCK), depending on the specific context.

Algorithm 8 provides a reliable method for verifying internal state-filter properties, ensuring that
the filter FsBCK meets the necessary conditions within the structure of a Sheffer stroke BCK-algebra.

Lemma 10. Each of these sets {0|0} and B is an IS FsBCK , IS CFsBCK , and IS PFsBCK of B.

Example 5. Let K = (K; |, 0) be a Sheffer stroke BCK-algebra as defined in Example 4. The internal
state τI is also defined as in Example 4.

• If we consider the set FsBCK = {k4, 1}, then FsBCK is a filter of K . Since τI(1) = 1 and τI(k4) = k4,
we have τI(FsBCK) = {k4, 1} = FsBCK . Thus, FsBCK is an IS FsBCK of K .
• If we take the set QsBCK = {k4, k5, k6, 1}, QsBCK is a prime filter of K . We find that τI(QsBCK) =

{k4, k5, k6, 1} = QsBCK because τI(1) = 1, τI(k4) = k4, τI(k5) = k6, and τI(k6) = k5. Therefore,
QsBCK is an IS PFsBCK of K .
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• If we consider the set TsBCK = {k1, k2, k4, 1}, TsBCK is a compatible filter of K . Since τI(1) = 1,
τI(k4) = k4, τI(k1) = k2, and τI(k2) = k1, we have τI(TsBCK) = {k1, k2, k4, 1} = TsBCK . Therefore,
TsBCK is an IS CFsBCK of K .

Theorem 6. Let FsBCK be an internal state-filter (IS FsBCK) in B. Then, the following properties are
satisfied:

(i) τI(FsBCK) = FsBCK ∩ τ
I(B),

(ii) τI(FsBCK) forms a filter within τI(B).

Proof. (i) Let FsBCK be an internal state-filter (IS FsBCK) of B. Suppose b1 ∈ F ∩ τI(B). By using
Proposition 3 (viii), we find that b1 ∈ F ∩ Fix(τI). Since b1 ∈ Fix(τI), it follows that τI(b1) = b1.
Additionally, b1 ∈ FsBCK implies that τI(b1) ∈ τI(FsBCK), which means b1 ∈ τI(FsBCK). Thus, we
obtain:

FsBCK ∩ τ
I(B) ⊆ τI(FsBCK). (4.3)

Now, assume b1 ∈ τ
I(FsBCK). There exists some b2 ∈ FsBCK such that τI(b2) = b1. Therefore,

b1 ∈ τ
I(B). Since FsBCK is an IS FsBCK and b2 ∈ FsBCK , we conclude that τI(b2) = b1 ∈ FsBCK . This

implies b1 ∈ FsBCK ∩ τ
I(B). Hence, we have:

τI(FsBCK) ⊆ FsBCK ∩ τ
I(B). (4.4)

By combining (4.3) and (4.4), we conclude that τI(FsBCK) = FsBCK ∩ τ
I(B).

(ii) To demonstrate that τI(FsBCK) is a filter of τI(B), we must verify the conditions (FsBCK1) and
(FsBCK2).
(FsBCK1) Suppose b1 ∈ τ

I(FsBCK) and b1|(b2|b2) ∈ τI(FsBCK). Given that τI(FsBCK) = FsBCK ∩ τ
I(B), we

know that b1 ∈ FsBCK ∩ τ
I(B) and b1|(b2|b2) ∈ FsBCK ∩ τ

I(B). Since FsBCK is a filter of B, it follows that
b2 ∈ FsBCK . By Definition 13, we then have b2 ∈ τ

I(FsBCK).
(FsBCK2) A similar approach can be used to verify that this condition holds as well. �

Corollary 1. If FsBCK is an IS CFsBCK of B, then τI(FsBCK) is a compatible filter of τI(B).

Proof. This follows directly from Theorem 6. �

Definition 14. Let Θ be a congruence relation on B. If b1Θb2 implies τI(b1)ΘτI(b2), then Θ is called
an internal-state congruence relation on B and is denoted by IS − ConsBCK .

Proposition 4. Let Θ and Ψ be two IS −ConsBCK relations on B. Then the following properties hold:

(i) The equivalence class [0|0]Θ is an IS CFsBCK of B.
(ii) If [0|0]Θ = [0|0]Ψ, then it follows that Θ = Ψ.

Proof. (i) It is evident that [0|0]Θ is a compatible filter of B. To show that [0|0]Θ is an IS CFsBCK , it
suffices to prove that τI(b) ∈ [0|0]Θ for any b ∈ B. Assume b ∈ [0|0]Θ. This implies that bΘ(0|0). Since
Θ ∈ IS − ConsBCK , it follows that τI(b)ΘτI(0|0) = 0|0. Therefore, τI(b) ∈ [0|0]Θ. Consequently, we
conclude that [0|0]Θ is an IS CFsBCK of B.
(ii) Suppose that [0|0]Θ = [0|0]Ψ and (b, 0|0) ∈ Θ. Then we have:

(b, 0|0) ∈ Θ⇒ b ∈ [0|0]Θ = [0|0]Ψ
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⇒ (b, 0|0) ∈ Ψ.

Thus, we conclude that Θ ⊆ Ψ, and by a similar argument, Ψ ⊆ Θ. Therefore, we reach the
conclusion that Θ = Ψ. �

Theorem 7. If FsBCK is an IS FsBCK of B, then the mapping

ΩI : B/FsBCK → B/FsBCK

b/FsBCK 7−→ ΩI(b/FsBCK) = τI(b)/FsBCK

defines an internal state on B/FsBCK .

Proof. First of all, we show that the mapping ΩI is well-defined. Suppose b1/FsBCK = b2/FsBCK for
some b1, b2 ∈ B. According to Definition 9, this implies that b1|(b2|b2) ∈ FsBCK and b2|(b1|b1) ∈ FsBCK ,
which further implies that b1|(b2|b2) = 0|0 or b2|(b1|b1) = 0|0. Since FsBCK is an IS FsBCK , we obtain
τI(b1|(b2|b2)) ∈ FsBCK and τI(b2|(b1|b1)) ∈ FsBCK . By Proposition 3, we have
τI(b1)|(τI(b2)|τI(b2)) ∈ FsBCK and τI(b2)|(τI(b1)|τI(b1)) ∈ FsBCK . Therefore, we conclude that
ΩI(b1/FsBCK) = ΩI(b2/FsBCK), confirming that ΩI is well-defined.

(τI
sBCK1) : Assume that (b1/FsBCK)|((b2/FsBCK)|(b2/FsBCK)) = 0|0. Then, we have:

0|0 = τI((b1/FsBCK)|((b2/FsBCK)|(b2/FsBCK)))
= (τI(b1)/FsBCK)|((τI(b2)/FsBCK)|(τI(b2)/FsBCK))
= ΩI(b1/FsBCK)|(ΩI(b2/FsBCK)|ΩI(b2/FsBCK)).

Since we have
ΩI(b1/FsBCK)|(ΩI(b2/FsBCK)|ΩI(b2/FsBCK)) = 0|0,

it follows that ΩI(b1/FsBCK) ≤ ΩI(b2/FsBCK).

(τI
sBCK2) : Let b1/FsBCK , b2/FsBCK ∈ B/FsBCK for some b1, b2 ∈ B. Since τI is an internal state, we

have:

ΩI((b1/FsBCK)|((b2/FsBCK)|(b2/FsBCK)))
= (τI(b1)/FsBCK)|((τI(b2)/FsBCK)|(τI(b2)/FsBCK))
= τI(b1|(b2|b2))/FsBCK

= [τI((b1|(b2|b2))|(b2|b2))/FsBCK]|[(τI(b2)/FsBCK)|(τI(b2)/FsBCK)]
= ΩI(((b1/FsBCK)|((b2/FsBCK)|(b2/FsBCK)))|((b2/FsBCK)|(b2/FsBCK)))|(ΩI(b2/FsBCK)|ΩI(b2/FsBCK)).

(τI
sBCK3)–(τI

sBCK4) : Following a similar reasoning as above, these conditions can also be verified.
Therefore, we conclude that the mapping ΩI is indeed an internal state on B/FsBCK . �
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5. A generalized state and a general state-morphism on Sheffer stroke basic algebras

In this section, we define a general state on a Sheffer stroke BCK-algebraB as a mapping τ : B→ R

that satisfies three criteria: non-negativity (τsBCK1), normalization (τsBCK2), and additivity (τsBCK3).
We present an algorithm to verify these conditions, ensuring that a mapping qualifies as a general state.

We also introduce several key lemmas and theorems. Lemma 11 establishes that if b1|b2 = 0|0, then
(b1|b1)|(b2|b2) = b1 ∨ b2. Theorem 8 demonstrates the independence of the axioms defining a general
state. Moreover, we discuss the relationship between general states and other states like Riečan and
Bosbach states, establishing that every general state is also a Riečan state and a Bosbach state.

In addition, we introduce the concept of a general state-morphism and show its properties, such as
the equation τ(b) + τ(b|b) = 1 for all b ∈ B. The theorems and lemmas provided illustrate the structure
and behavior of general states within the algebra, ensuring a thorough understanding of their role in
Sheffer stroke BCK-algebras.

Definition 15. A mapping τ : B→ R is termed a general state on B if it satisfies the following criteria:
(τsBCK1) For every b ∈ B, τ(b) ≥ 0,
(τsBCK2) τ(0|0) = 1,
(τsBCK3) τ(b1|b2) = τ(b1|b1) + τ(b2|b2), provided that (b1|b1)|(b2|b2) = 0|0.

Also, we present a pseudocode to verify if a given mapping satisfies the criteria to be a general state
from B to R.

Algorithm 9: Confirming a general state
Input: Set B, mapping τ : B→ R, operation |
Output: Is τ a general state on B?

IsGeneralS tate(B, τ)
1 for b ∈ B do
2 if τ(b) < 0 then Return False // Condition (τsBCK1) fails;
3 end
4 if τ(0|0) , 1 then Return False // Condition (τsBCK2) fails;
5 for b1, b2 ∈ B do
6 if (b1|b1)|(b2|b2) = 0|0 then
7 if τ(b1|b2) , τ(b1|b1) + τ(b2|b2) then Return False // Condition (τsBCK3) fails;
8 end
9 end

10 Return True;

The Algorithm 9 is designed to determine whether a given mapping τ : B → R on a Sheffer stroke
BCK-algebraBmeets the criteria to be considered a general state. The algorithm systematically checks
the following conditions:

• Condition (τsBCK1): The algorithm iterates over each element b in the set B to ensure that τ(b) ≥
0. If any value of τ(b) is found to be negative, the algorithm concludes that τ cannot be a general
state and immediately returns False.
• Condition (τsBCK2): The algorithm checks whether τ(0|0) = 1. This condition is crucial, and if it
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is not satisfied, the algorithm returns False, indicating that τ does not meet the necessary criteria
to be a general state.
• Condition (τsBCK3): For every pair of elements b1 and b2 in B, the algorithm verifies whether the

mapping satisfies τ(b1|b2) = τ(b1|b1) + τ(b2|b2), provided that the condition (b1|b1)|(b2|b2) = 0|0
holds. If this condition is violated for any pair, the algorithm returns False.
• Final Decision: If all three conditions are fulfilled, the algorithm concludes that the mapping τ

qualifies as a general state on B and returns True.

Algorithm 9 provides an efficient and systematic method for determining whether a mapping
qualifies as a general state, ensuring that all necessary conditions are met within the framework of a
Sheffer stroke BCK-algebra.

Before introducing a generalization of the state on orthomodular lattices, we require the following
lemma.

Lemma 11. Let b1, b2 ∈ B. If b1|b2 = 0|0, then (b1|b1)|(b2|b2) = b1 ∨ b2.

Proof. Suppose b1|b2 = 0|0. Then, the following steps hold:

b1|b2 = 0|0 =⇒ b1 ≤X b2|b2,

=⇒ b1|b1 = b1|(b2|b2),
=⇒ (b1|b1)|(b2|b2) = (b1|(b2|b2))|(b2|b2) = b1 ∨ b2.

�

Theorem 8. The set of axioms defining a general state on a Sheffer stroke BCK-algebra is independent.

Proof. Consider the Example 4. Then, we obtain the following conclusions:
(1) Independence of (τsBCK1): Let the mapping τ : K → R be defined as follows:

τ(b) :=



0, if b = 0,
1, if b = 1,
3
2
, if b ∈ {k1, k4, k5},

−1
2
, if b ∈ {k2, k3, k6}.

Under this definition, the structure K meets the criteria for (τsBCK2) and (τsBCK3), but it fails to

satisfy (τsBCK1) because τ(k6) =
−1
2

, which is not greater than or equal to 0.
(2) Independence of (τsBCK2): Consider the mapping τ : K → R defined by τ(b) := 0 for every
b ∈ K. Under this mapping, the structure K satisfies both (τsBCK1) and (τsBCK3), but it does not satisfy
(τsBCK2) because τ(0|0) = 0.
(3) Independence of (τsBCK3): Consider the mapping τ : K → R defined by τ(b) := 1 for all b ∈
K. Under this definition, the structure K satisfies both (τsBCK1) and (τsBCK2), but it does not satisfy
(τsBCK3) because 1 = τ((0|0)|0) , τ((0|0)|(0|0)) + τ(0|0) = 2, where ((0|0)|(0|0))|(0|0) = 0|0. �

Example 6. Let K = (K; |, 0) be the Sheffer stroke BCK-algebra defined in the proof of Theorem 8.
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Given the commutative nature of K , certain conditions are equivalent, allowing us to omit them.
Before defining a general state on K , we must consider the following cases to verify (τsBCK3):

• 0|0 = (1|1)|(k1|k1) • 0|0 = (1|1)|(k2|k2) • 0|0 = (1|1)|(k3|k3) • 0|0 = (1|1)|(k4|k4)
• 0|0 = (1|1)|(k5|k5) • 0|0 = (1|1)|(k6|k6) • 0|0 = (1|1)|(1|1) • 0|0 = (1|1)|(0|0)
• 0|0 = (k1|k1)|(k3|k3) • 0|0 = (k1|k1)|(k6|k6) • 0|0 = (k2|k2)|(k4|k4) • 0|0 = (k2|k2)|(k5|k5)
• 0|0 = (k3|k3)|(k5|k5) • 0|0 = (k4|k4)|(k6|k6)

Considering these cases, the following equations are obtained:

0|0 = (1|1)|(k1|k1) ⇒ τ(1|k1) = τ(1|1) + τ(k1|k1)
⇒ τ(k2) = τ(0) + τ(k2), (5.1)

0|0 = (1|1)|(k2|k2) ⇒ τ(1|k2) = τ(1|1) + τ(k2|k2)
⇒ τ(k1) = τ(0) + τ(k1), (5.2)

0|0 = (1|1)|(k3|k3) ⇒ τ(1|k3) = τ(1|1) + τ(k3|k3)
⇒ τ(k4) = τ(0) + τ(k4), (5.3)

0|0 = (1|1)|(k4|k4) ⇒ τ(1|k4) = τ(1|1) + τ(k4|k4)
⇒ τ(k3) = τ(0) + τ(k3), (5.4)

0|0 = (1|1)|(k5|k5) ⇒ τ(1|k5) = τ(1|1) + τ(k5|k5)
⇒ τ(k6) = τ(0) + τ(k6), (5.5)

0|0 = (1|1)|(k6|k6) ⇒ τ(1|k6) = τ(1|1) + τ(k6|k6)
⇒ τ(k5) = τ(0) + τ(k5), (5.6)

0|0 = (1|1)|(1|1) ⇒ τ(1|1) = τ(1|1) + τ(1|1)
⇒ τ(0) = τ(0) + τ(0), (5.7)

0|0 = (1|1)|(0|0) ⇒ τ(1|0) = τ(1|1) + τ(0|0)
⇒ τ(0|0) = τ(0) + τ(0|0), (5.8)

0|0 = (k1|k1)|(k3|k3) ⇒ τ(k1|k3) = τ(k1|k1) + τ(k3|k3)
⇒ τ(1) = τ(k2) + τ(k4), (5.9)

0|0 = (k1|k1)|(k6|k6) ⇒ τ(k1|k6) = τ(k1|k1) + τ(k6|k6)
⇒ τ(1) = τ(k2) + τ(k5), (5.10)

0|0 = (k2|k2)|(k4|k4) ⇒ τ(k2|k4) = τ(k2|k2) + τ(k4|k4)
⇒ τ(1) = τ(k1) + τ(k3), (5.11)

0|0 = (k2|k2)|(k5|k5) ⇒ τ(k2|k5) = τ(k2|k2) + τ(k5|k5)
⇒ τ(1) = τ(k1) + τ(k6), (5.12)

0|0 = (k3|k3)|(k5|k5) ⇒ τ(k3|k5) = τ(k3|k3) + τ(k5|k5)
⇒ τ(1) = τ(k4) + τ(k6), (5.13)

0|0 = (k4|k4)|(k6|k6) ⇒ τ(k4|k6) = τ(k4|k4) + τ(k6|k6)
⇒ τ(1) = τ(k3) + τ(k5). (5.14)
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By consolidating the results from equations (5.1) to (5.14), we can establish a general state on K
as follows:

τ(b) :=


0, if b = 0,
1, if b = 1,
1 − m, if b ∈ {k1, k4, k5},

m, if b ∈ {k2, k3, k6},

where m ∈ (0, 1).

Theorem 9. Every general state on B is simultaneously a Riečan state and a Bosbach state.

Proof. This result follows directly from Definition 15 and Theorem 3. �

Lemma 12. Let B = (B; |, 0) be a Sheffer stroke BCK-algebra. Then, the inequality

(b1|(b2|b2))|(b1|(b2|b2)) ≤X b2|b2

holds for all b1, b2 ∈ B.

Proof. Assume b1, b2 ∈ B. Using Definition 2 (S 3), Proposition 1 (a1), Proposition 1 (a5), and
Definition 2 (S 3), we derive the following:

(((b1|(b2|b2))|(b1|(b2|b2)))|((b2|b2)|(b2|b2)))|(((b1|(b2|b2))|(b1|(b2|b2)))|((b2|b2)|(b2|b2)))
= (((b1|(b2|b2))|(b1|(b2|b2)))|b2)|(((b1|(b2|b2))|(b1|(b2|b2)))|b2)
= (((b2|(b2|b2))|(b2|(b2|b2)))|b1)|(((b2|(b2|b2))|(b2|(b2|b2)))|b1)
= (0|b1)|(0|b1)
= (0|0)|(0|0)
= 0.

By the definition of ≤X, this implies that (b1|(b2|b2))|(b1|(b2|b2)) ≤X b2|b2 for all b1, b2 ∈ B. �

Lemma 13. Let τ : B → R be a general state on B. Then, the following properties hold for all
b1, b2 ∈ B:
(i) τ(b1 ∨ b2) = τ((b1|(b2|b2))|(b1|(b2|b2))) + τ(b2),
(ii) τ((b1|b2)|b2) = τ((b1|b2)|(b1|b2)) + τ(b2|b2),
(iii) τ((b1|(b2|b2))|(b1|(b2|b2))) = τ(b1) − τ(b2), where b2|(b1|b1) = 0|0,
(iv) τ(b1|b2) = τ(¬b1 ∧ b2) + τ(b2|b2).

Proof. (i) Suppose b1, b2 ∈ B. According to Lemma 12, we have (b1|(b2|b2))|(b1|(b2|b2)) ≤X b2|b2. This
leads to the equation:

((b1|(b2|b2))|(b1|(b2|b2)))|((b2|b2)|(b2|b2)) = 0|0.

Using Definition 2 (ii), we obtain:

((((b1|(b2|b2))|(b1|(b2|b2)))|((b1|(b2|b2))|(b1|(b2|b2))))|(((b1|(b2|b2))|(b1|(b2|b2)))|
((b1|(b2|b2))|(b1|(b2|b2)))))|((b2|b2)|(b2|b2)) = 0|0.
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Since the mapping τ is a state, the following equation holds:

τ((((b1|(b2|b2))|(b1|(b2|b2)))|((b1|(b2|b2))|(b1|(b2|b2))))|(b2|b2)) = τ((b1|(b2|b2))|(b1|(b2|b2))) + τ(b2).

Applying Definition 2 (ii) again, we find:

(((b1|(b2|b2))|(b1|(b2|b2)))|((b1|(b2|b2))|(b1|(b2|b2))))|(b2|b2) = (b1|(b2|b2))|(b2|b2) = b1 ∨ b2.

Thus, we conclude that:

τ(b1 ∨ b2) = τ((b1|(b2|b2))|(b1|(b2|b2))) + τ(b2).

(ii) By replacing b2 with b2|b2 in Lemma 13 (i), we arrive at the following expression:

τ((b1|b2)|b2) = τ((b1|b2)|(b1|b2)) + τ(b2|b2).

(iii) Suppose b2|(b1|b1) = 0|0. This implies that b2 ≤X b1. Utilizing Lemma 13 (i), we find:

τ((b1|(b2|b2))|(b1|(b2|b2))) = τ(b1) − τ(b2).

(iv) For each b1 ∈ B, it holds that b1 ≤X 0|0. Applying Lemma 2 (iii), we find that (0|0)|b2 ≤ b1|b2 for
any b2 ∈ B. Consequently, we have b2|b2 ≤X b1|b2, which implies (b2|b2)|((b1|b2)|(b1|b2)) = 0|0.

From Lemma 13 (iii), we obtain:

τ(((b1|b2)|((b2|b2)|(b2|b2)))|((b1|b2)|((b2|b2)|(b2|b2)))) = τ(b1|b2) − τ(b2|b2).

Note that, according to Definition 2 (ii), we have (b2|b2)|(b2|b2) = b2. Thus, we can express:

τ(((b1|b2)|b2)|((b1|b2)|b2)) = τ(b1|b2) − τ(b2|b2).

Using the definition of the ¬ operator, we confirm:

τ(b1|b2) = τ(¬b1 ∧ b2) + τ(b2|b2)

for all b1, b2 ∈ B. �

Lemma 14. The general state τ is monotonic.

Proof. Let b1, b2 ∈ B such that b1 ≤X b2. This implies that b1|(b2|b2) = 0|0. Using Lemma 13 (iii), we
have:

τ((b2|(b1|b1))|(b2|(b1|b1))) = τ(b2) − τ(b1).

By applying Definition 15 (τsBCK1), we obtain:

0 ≤X τ((b2|(b1|b1))|(b2|(b1|b1))) = τ(b2) − τ(b1).

Hence, we conclude that τ(b1) ≤X τ(b2), which establishes the monotonicity of the general state
τ. �

Lemma 15. Let τ : B→ R be a general state on B. Then, the following properties hold:
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(i) τ((0|0)|b) = 1 − τ(b), for all b ∈ B,
(ii) τ(b1|b2) = 1 − τ(b1), where b1 ≤ b2,

(iii) τ(b1|b1) + τ(b2|b2) ≤ 2τ(b1|b2), for all b1, b2 ∈ B.

Proof. (i) Let b ∈ B. By applying Lemma 13 (iii), we obtain the following:

τ((0|0)|b) = τ(b|b)
= τ(((0|0)|(b|b))|((0|0)|(b|b)))
= τ((0|0) ∨ b) − τ(b)
= τ(0|0) − τ(b)
= 1 − τ(b).

(ii) Let b1, b2 ∈ B such that b1 ≤ b2. According to Lemma 1, we have b1|b1 = b1|b2. Therefore, we can
derive:

τ(b1|b2) = τ(b1|b1)
= τ(((0|0)|(b1|b1))|((0|0)|(b1|b1)))
= 1 − τ(b1),

using Lemma 15 (i).
(iii) For any b1 ∈ B, we know that b1 ≤ 0|0. Using Lemma 2 (iii), it follows that (0|0)|b2 ≤ b1|b2.
Since (0|0)|b2 = b2|b2, we have b2|b2 ≤ b1|b2. From Lemma 14, it follows that τ(b2|b2) ≤ τ(b1|b2), and
similarly, τ(b1|b1) ≤ τ(b1|b2). As a result, we obtain τ(b1|b1)+τ(b2|b2) ≤ 2τ(b1|b2) for all b1, b2 ∈ B. �

We now define the concept of a general state-morphism on a Sheffer stroke BCK-algebra.

Definition 16. A general state τ is called a general state-morphism if it satisfies the condition

τ(b1|b2) = τ(b1)|τ(b2)

for all b1, b2 ∈ B.

Lemma 16. Let τ be a general state-morphism on B. Then the following properties hold for all
b1, b2 ∈ B:

(i) (0|0)|τ(b1) = 1 − τ(b1),
(ii) 2 − (τ(b1) + τ(b2)) ≤ 2τ(b1|b2),

(iii) τ(b1|b2)|τ(b2) = 2 − τ(b1|b2) − τ(b2).

Proof. Assume that τ is a general state-morphism on B. (i) From Lemma 15, it follows that the
equation (0|0)|τ(b1) = τ(0|0)|τ(b1) = τ((0|0)|b1) = 1 − τ(b1) holds true for all b ∈ B.
(ii) According to Lemma 15, we have τ(b1|b1) + τ(b2|b2) ≤ 2τ(b1|b2) for all b1, b2 ∈ B. By applying
Lemma 16 (i), we derive that 2 − (τ(b1) + τ(b2)) ≤ 2τ(b1|b2).
(iii) This result follows directly from Lemma 4 (iv) and Theorem 9. �

Theorem 10. Let τ be a general state-morphism on B. Then, for all b ∈ B, the equation τ(b)+τ(b|b) =

1 holds.
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Proof. This result follows directly from Lemmas 15 and 16. �

Example 7. Using the structure K = (K; |, 0) from Example 4, let us define the mapping τ : K → R as
follows:

τ(b) :=


0, if b = 0,
1, if b = 1,
1
2 , if b ∈ {k1, k2, k3, k4, k5, k6}.

We verify that τ satisfies the conditions of a general state-morphism:

• (τsBCK1) For every b ∈ K, τ(b) ≥ 0.
• (τsBCK2) τ(0|0) = τ(1) = 1.
• (τsBCK3) For b1, b2 ∈ K, τ(b1|b2) = τ(b1|b1) + τ(b2|b2), provided (b1|b1)|(b2|b2) = 0|0.

Finally, since τ is a general state-morphism, we verify the conclusion of the Theorem 10:

• For b = 0, b|b = 1, and τ(b) + τ(b|b) = 0 + 1 = 1.
• For b = 1, b|b = 0, and τ(b) + τ(b|b) = 1 + 0 = 1.
• For b ∈ {k1, k2, k3, k4, k5, k6}, we get b|b ∈ {k1, k2, k3, k4, k5, k6}. As a result, we attain

τ(b) + τ(b|b) =
1
2

+
1
2

= 1.

Thus, the equation τ(b) + τ(b|b) = 1 holds for all b ∈ K, as required.

6. Conclusions

In this paper, we have introduced and thoroughly explored the concepts of Riečan and Bosbach
states within the context of Sheffer stroke BCK-algebra B. By providing precise definitions and
illustrative examples, we have established a foundational understanding of these states and their
significant roles within the algebraic structures of B. A notable aspect of our work is the development
of algorithms and verification methods to determine the validity of mappings as Riečan or Bosbach
states, which underscores the practical applicability of these concepts in various fields.

One of the key achievements of this study is the identification of conditions under which Riečan
and Bosbach states are equivalent. This finding is particularly significant as it reconciles two distinct
approaches within the theory of BCK-algebras, providing a unified framework that enhances our
understanding of the underlying algebraic structures. Furthermore, by extending our investigation to
include internal states on B, we have revealed new connections between these states and other critical
algebraic concepts, such as filters and congruences. These results not only deepen our theoretical
insights but also pave the way for potential applications of these states across various mathematical
disciplines.

Moreover, the independence of the axiomatic systems for Riečan and Bosbach states, as
demonstrated in this work, affirms the robustness and validity of our approach. This independence
ensures that the definitions and properties we have established are fundamentally rooted in the
intrinsic structure of Sheffer stroke BCK-algebras. Consequently, this research offers a substantial and
lasting contribution to the field, providing a comprehensive understanding of these states and laying
the groundwork for future explorations.
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Looking ahead, further investigations could delve into the relationships between these states and
other algebraic structures, such as generalized states on orthomodular lattices. Additionally, examining
the applications of these states in broader mathematical and computational contexts—particularly in
areas like quantum logic and theoretical computer science—could yield valuable insights and open new
avenues for research. This study establishes a solid theoretical framework that subsequent research can
build upon, reinforcing the originality and relevance of our findings in advancing the understanding of
Sheffer stroke BCK-algebras and their applications.
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