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Tunçar Şahan and Yunus Atalan*

Department of Mathematics, Aksaray University, Aksaray, 68100, Türkiye

* Correspondence: Email: yunusatalan@aksaray.edu.tr.
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understanding and computational analysis of these functions. Additionally, using the derived criteria,
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1. Introduction

Euclidean geometry cannot accurately represent natural shapes such as clouds or mountains in
computational contexts. This limitation has been addressed through fractal geometry, derived from
the Latin word “fractus,” meaning broken. Fractal geometry differs fundamentally from Euclidean
geometry, particularly in its characteristic self-similarity. Unlike Euclidean shapes, where close
observation reveals distinct features, fractals exhibit consistent patterns at varying levels of
magnification. Consequently, fractal geometry has become essential for mathematically modeling
natural phenomena.

Fractals, characterized by their self-similar structures, are typically generated through iterative
processes that apply specific equations or rules repeatedly. Among the most recognized fractals in the
literature is the Mandelbrot set, defined by the complex function z2 + c, where z is a complex variable
and c ∈ C represents a complex parameter. Mandelbrot [1] observed that objects unsuitable for
standard measurement exhibit a degree of roughness that often remains consistent across scales. This
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roughness, quantified as the fractal dimension, enables the modeling of non-Euclidean shapes in
diverse scientific disciplines. Fractals not only provide visual representations of these shapes but also
facilitate precise calculations for modeling and analysis (see [2, 3]).

Recent advancements in fractal theory have significantly enhanced its applications to
fractional-order systems, particularly through Caputo-like discrete fractional differences and other
fractional calculus methodologies. These approaches reveal novel dynamic properties, such as
non-integer symmetry, boundedness, and intricate escape-time behaviors. For example, fractional
quantum Julia sets, constructed using fractional q-difference operators, exhibit distinctive fractal
dynamics where parameters such as memory and scale play a critical role in shaping the fractal
geometry and influencing their stability under noise perturbations. Notably, robustness to dynamic
noise is quantified using tools like Julia deviation indices, demonstrating the resilience of these sets to
perturbations of varying intensities [4, 5].

Similarly, spatial Julia sets generated by fractional Lotka–Volterra systems provide new perspectives
on the interplay between noise and symmetry. These studies highlight how noise perturbations can
disrupt the symmetrical structures of these sets, offering insights into the stability and boundedness
of ecological systems. Moreover, fractional Lotka–Volterra systems enable richer dynamic behaviors
than their integer-order counterparts, such as the coexistence of multiple equilibria, bifurcations, and
even chaos in discrete versions [5–7].

A key advantage of fractional systems is their ability to incorporate memory effects and
nonlocality, which are critical for accurately modeling complex real-world phenomena. Fractional
q-difference systems provide flexibility in analyzing dynamics by adjusting parameters like scale and
order, enabling precise control over fractal structures. However, challenges remain in terms of
computational efficiency, particularly for systems requiring high memory depth or those influenced by
strong noise [4, 5]. In contrast, fractional Lotka–Volterra systems excel in ecological modeling by
providing realistic representations of predator-prey interactions, yet their sensitivity to parameter
variations necessitates careful tuning and robust control strategies [6, 7]. These developments deepen
the understanding of fractional-order fractals, including Julia and Mandelbrot sets, and underscore
their potential applications across dynamical systems, quantum mechanics, and ecological modeling.
By bridging the gaps between traditional and fractional-order systems, these studies not only enrich
fractal theory but also pave the way for solving complex, nonlinear problems in diverse scientific
domains [8, 9].

The relationship between fixed-point iterative methods and fractals lies in the invariance of fixed
points under the mapping applied in the iterative process. These fixed points, known as attractors, draw
nearby points toward them and form the structural basis of fractals. Consequently, various equations
have been employed to generate fractals using fixed-point iteration methods, culminating in a rich body
of literature [10–16]. For example, iterative methods applied to Julia and Mandelbrot sets enable the
visualization of the complex plane, distinguishing between stable and chaotic regions through escape
criteria. This visualization often involves assigning colors to points that escape to infinity, creating
aesthetic patterns influenced by differences in escape velocities and the colors assigned to non-escaping
points [17–19]. Such methods have found applications in engineering and physics, particularly in
stability analysis, energy flow modeling, and the study of transition boundaries between order and
chaos [20, 21].

Fractals generated through fixed-point iteration methods also serve practical purposes in
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simulating natural phenomena, such as the geometry of coastlines or the branching of plants. These
structures are integral to high-resolution graphical modeling and are used to test parallel computing
algorithms and address large-scale computational challenges [22, 23]. Recent interdisciplinary
applications, such as those in supply chain dynamics, further illustrate the interdisciplinary value of
fractal-based methods. Julia sets, for example, have been employed to analyze the connectivity of
attraction basins in dual-channel supply chains, providing insights into stability and robustness in
pricing strategies. By identifying the influence of initial conditions and parameters on system
stability, fractal methods aid in designing effective interventions to prevent instability caused by
factors like excessive online preferences [24]. Additionally, the connectivity of Julia sets offers a
framework for evaluating system robustness under varying conditions, guiding decision-making in
real-world markets. These connectivity measures have informed control strategies to restore market
stability, demonstrating how fractal analyses bridge mathematical theory with actionable insights in
complex, multi-variable systems.

Building on these advancements, this research focuses on developing new escape criteria for
hyperbolic sine and hyperbolic cosine functions. Using these criteria, the study aims to produce
aesthetically satisfying fractals for Julia and Mandelbrot sets. For this purpose, a three-step,
fixed-point iteration method, namely Picard-Mann-Picard (PMP), is employed due to its superior
speed and practicality compared to traditional methods.

The rest of the paper is organized as follows. Section 2 provides fundamental definitions of the
Mandelbrot and Julia sets, as well as the PMP fixed-point iteration method. In Section 3, escape
criteria for complex-valued hyperbolic sine and hyperbolic cosine functions are derived using the PMP
orbit. In Section 4, the fractal structures of the Julia and Mandelbrot sets are visualized using the PMP
fixed-point iteration method. Finally, Section 5 analyzes the results and discusses future directions.

2. Preliminaries

Definition 2.1. [25] Let p : C → C be a complex mapping. For any initial point z ∈ C, the Picard
orbit is defined as the set of iterates of z as:

O(p, z) = {zn : zn = p(zn−1), n = 1, 2, 3...} . (2.1)

Definition 2.2. [26] Let T : C→ C be a complex mapping which is given by Tz = z2 + c for a complex
parameter c ∈ C. The filled Julia set is defined as:

JT =
{
z ∈ C :

{∣∣∣T1
z
∣∣∣ , ∣∣∣T2

z
∣∣∣ , ...} is bounded

}
in which

{
Tiz

}
is the i-th iterate of T and z2 + c is the boundary of JT.

Definition 2.3. [25] The Mandelbrot setM is defined by

M = {c ∈ C : JT is connected} (2.2)

or equivalently,
M = {c ∈ C : |Tz|↛ ∞ as i→ ∞} . (2.3)
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Definition 2.4. [27] Let T : C → C be a complex mapping. The PMP orbit is defined as follows for
initial point z0 ∈ C:

PMP Orbit
input: T, z0 ∈ C, kn ∈ (0, 1]
For n = 0, 1, 2...,N: do

zn+1 = Tyn

yn = (1 − kn) xn + knTxn

xn = Tzn

end for

(2.4)

3. Main results

This section derives the escape criteria for complex-valued hyperbolic sine T (z) = a sinh (z)q +

b (z) + c and hyperbolic cosine function T (z) = a cosh (z)q + b (z) + c, where q ≥ 2 and a, b, and c are
complex parameters, to examine the new fractal structures of Julia and Mandelbrot sets by using the
PMP iteration method.

3.1. Escape criteria for T (z) = a sinh (z)q + b (z) + c

The following expression establishes

|sinh (zq)| =

∣∣∣∣∣∣∣
∞∑

n=0

zq(2n+1)

(2n + 1)!

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣zq +
z3q

3!
+

z5q

5!
+ · · ·

∣∣∣∣∣∣
=

∣∣∣∣∣∣zq

(
1 +

z2q

3!
+

z4q

5!
+ · · ·

)∣∣∣∣∣∣ (3.1)

= |zq|

∣∣∣∣∣∣1 + z2q

3!
+

z4q

5!
+ · · ·

∣∣∣∣∣∣
≥ |zq| |ℏ1|

in which |ℏ1| ∈ (0, 1] and |ℏ1| ≤

∣∣∣∣1 + z2q

3! +
z4q

5! + · · ·
∣∣∣∣ = ∣∣∣∣∣ ∞∑

n=1

zq(2n)

(2n+1)!

∣∣∣∣∣.
In the same way, we get |sinh (yq)| ≥ |yq| |ℏ2| in which |ℏ2| ∈ (0, 1] and |ℏ2| ≤

∣∣∣∣∣ ∞∑
n=1

yq(2n)

(2n+1)!

∣∣∣∣∣; and

|sinh (xq)| ≥ |xq| |ℏ3| in which |ℏ3| ∈ (0, 1] and |ℏ3| ≤

∣∣∣∣∣ ∞∑
n=1

xq(2n)

(2n+1)!

∣∣∣∣∣ .
Theorem 3.1. Assume that T (z) = a sinh (z)q + bz + c, q ≥ 2, and

|z| ≥ |c| > max


(
2 + |b|
|a| |ℏ1|

) 1
q−1

,

(
2 + |b|
|a| |ℏ2|

) 1
q−1

,

(
2 + |b|
k |a| |ℏ3|

) 1
q−1
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in which 0 < k < 1 and c ∈ C. Let {zn}
∞
n=0 be an iterative sequence generated by PMP orbit (2.4) by

taking z0 = z, y0 = y, x0 = x, and kn = k as under:

PMP Iteration Method
input: T, z0 ∈ C, k ∈ (0, 1]
For n = 0, 1, 2...,N: do

zn+1 = Tyn

yn = (1 − k) xn + kTxn

xn = Tzn

end for

(3.2)

Then |zn| → ∞ as n→ ∞.

Proof. Consider

|x| = |Tz| = |a sinh (z)q + bz + c|

≥ |a sinh (z)q + bz| − |c| (3.3)
≥ |a sinh (z)q

| − |bz| − |c|

= |a| |sinh (z)q
| − |b| |z| − |c|

and by using |z| ≥ |c| and (3.1), we get

|x| ≥ a |zq| |ℏ1| − |b| |z| − |z| = |z|
(
|a|

∣∣∣zq−1
∣∣∣ |ℏ1| − (|b| + 1)

)
. (3.4)

From the assumptions, we have

|z| >
(
2 + |b|
|a| |ℏ1|

) 1
q−1

⇔ |z|q−1 >

(
2 + |b|
|a| |ℏ1|

)
⇔ |z|q−1

|a| |ℏ1| > 2 + |b| .

That is, we obtain |z|q−1
|a| |ℏ1| − (|b| + 1) > 1. Hence, from (3.4), we get

|x| > |z| . (3.5)

Similarly,

|y| = |(1 − k) x + kTx|

= |(1 − k) x + k (a sinh (x)q + bx + c)|
≥ |(1 − k) x + k (a sinh (x)q + bx)| − k |c|

≥ |(1 − k) x + k (a sinh (x)q + bx)| − k |z| (since |z| ≥ |c|)

> |(1 − k) z + k (a sinh (x)q + bz)| − k |z| (since |x| > |z|)

≥ |k (a sinh (x)q + bz)| − (1 − k) |z| − k |z|

≥ |k (a sinh (x)q)| − (1 − k) |z| − k |b| |z| − k |z|

≥ |k (a sinh (x)q)| − |b| |z| − |z| (since |b| |z| > k |b| |z|)
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= k |a| |sinh (x)q
| − |b| |z| − |z| .

Since |sinh (xq)| ≥ |xq| |ℏ3|, we get

|y| ≥ k |a| |xq| |ℏ3| − |b| |z| − |z|

> k |a| |zq| |ℏ3| − |b| |z| − |z| (since |x| > |z|) (3.6)
= |z|

(
k |a|

∣∣∣zq−1
∣∣∣ |ℏ3| − (|b| + 1)

)
.

From the assumptions, we have

|z| >
(

2 + |b|
k |a| |ℏ3|

) 1
q−1

⇔ |z|q−1 >

(
2 + |b|
k |a| |ℏ3|

)
⇔ |z|q−1 k |a| |ℏ3| > 2 + |b| .

So, we have |z|q−1 k |a| |ℏ3| − (|b| + 1) > 1. Hence, from (3.6), we get

|y| > |z| . (3.7)

For the last step of (3.2),

|z1| = |a sinh (y)q + by + c|

≥ |a sinh (y)q + by| − |c|

≥ |a sinh (y)q + by| − |z| (since |z| ≥ |c|) (3.8)
> |a sinh (y)q + bz| − |z| (since |y| > |z|)

> |a sinh (y)q
| − |b| |z| − |z|

= |a| |sinh (y)q
| − |b| |z| − |z| .

Since |sinh (yq)| ≥ |yq| |ℏ2|, we get

|z1| ≥ |a| |yq| |ℏ2| − |b| |z| − |z|

> |a| |zq| |ℏ2| − |b| |z| − |z| (since |y| > |z|) (3.9)
= |z|

(
|a|

∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)
.

We also have

|z2| > |z1|
(
|a|

∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)
> |z|

(
|a|

∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)2
.

Iterating this process n-times, we have

|z3| > |z|
(
|a|

∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)3

|z4| > |z|
(
|a|

∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)4

...

|zn| > |z|
(
|a|

∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)n
.
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From the assumptions, we have

|z| >
(
2 + |b|
|a| |ℏ2|

) 1
q−1

⇔ |z|q−1 >

(
2 + |b|
|a| |ℏ2|

)
⇔ |z|q−1

|a| |ℏ2| > 2 + |b| .

Thus

|z|q−1
|a| |ℏ2| − (|b| + 1) > 1.

Then, we get

|zn| > |z| .

Thus, |zn| → ∞ as n→ ∞. □

Corollary 3.1. Suppose that

|zn| ≥ max

|c| ,
(
2 + |b|
|a| |ℏ1|

) 1
q−1

,

(
2 + |b|
|a| |ℏ2|

) 1
q−1

,

(
2 + |b|
k |a| |ℏ3|

) 1
q−1

 .
Because of |z|q−1

|a| |ℏ2| − (|b| + 1) > 1 and
∣∣∣zn+p

∣∣∣ > |z| (|a| ∣∣∣zq−1
∣∣∣ |ℏ2| − (|b| + 1)

)n+p
, then |zn| → ∞ as

n→ ∞.

3.2. Escape criteria for T (z) = a cosh (z)q + bz + c

|cosh (zq)| =

∣∣∣∣∣∣∣
∞∑

n=0

zq(2n)

(2n)!

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣1 + z2q

2!
+

z4q

4!
+ · · ·

∣∣∣∣∣∣
>

∣∣∣∣∣∣z2q

2!
+

z4q

4!
+ · · ·

∣∣∣∣∣∣ (3.10)

= |zq|

∣∣∣∣∣∣ zq

2!
+

z3q

4!
+ · · ·

∣∣∣∣∣∣
≥ |zq| |℘1|

in which |℘1| ∈ (0, 1] and |℘1| ≤

∣∣∣∣ zq

2! +
z3q

4! + · · ·
∣∣∣∣ = ∣∣∣∣∣ ∞∑

n=1

zq(2n−1)

(2n)!

∣∣∣∣∣.
In the same way, we get |cosh (yq)| ≥ |yq| |℘2| in which |℘2| ∈ (0, 1] and |℘2| ≤

∣∣∣∣∣ ∞∑
n=1

yq(2n−1)

(2n)!

∣∣∣∣∣; and

|cosh (xq)| ≥ |xq| |℘3| in which |℘3| ∈ (0, 1] and |℘3| ≤

∣∣∣∣∣ ∞∑
n=1

xq(2n−1)

(2n)!

∣∣∣∣∣.
Theorem 3.2. Assume that T (z) = a cosh (z)q + b (z) + c, q ≥ 2, and

|z| ≥ |c| > max


(
2 + |b|
|a| |℘1|

) 1
q−1

,

(
2 + |b|
|a| |℘2|

) 1
q−1

,

(
2 + |b|

k |a| |℘3|

) 1
q−1


in which 0 < k < 1 and c ∈ C. Let {zn}

∞
n=1 be an iterative sequence generated by (3.2). Then |zn| → ∞

as n→ ∞.
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Proof. Consider

|x| = |Tz| = |a cosh (z)q + bz + c|

≥ |a cosh (z)q + bz| − |c| (3.11)
≥ |a cosh (z)q

| − |bz| − |c|

= |a| |cosh (z)q
| − |b| |z| − |c|

and by using |z| ≥ |c| and (3.10), we get

|x| ≥ a |zq| |℘1| − |b| |z| − |z| (3.12)
= |z|

(
|a|

∣∣∣zq−1
∣∣∣ |℘1| − (|b| + 1)

)
.

From the assumptions, we have

|z| >
(
2 + |b|
|a| |℘1|

) 1
q−1

⇔ |z|q−1 >

(
2 + |b|
|a| |℘1|

)
⇔ |z|q−1

|a| |℘1| > 2 + |b| .

That is, we obtain

|z|q−1
|a| |℘1| − (|b| + 1) > 1.

Hence, from (3.12), we get

|x| > |z| . (3.13)

Similarly,

|y| = |(1 − k) x + kTx|

= |(1 − k) x + k (a cosh (x)q + bx + c)|
≥ |(1 − k) x + k (a cosh (x)q + bx)| − k |c|

≥ |(1 − k) x + k (a cosh (x)q + bx)| − k |z| (since |z| ≥ |c|)

> |(1 − k) z + k (a cosh (x)q + bz)| − k |z| (since |x| > |z|)

≥ |k (a cosh (x)q + bz)| − (1 − k) |z| − k |z|

≥ |k (a cosh (x)q)| − (1 − k) |z| − k |b| |z| − k |z|

≥ |k (a cosh (x)q)| − |b| |z| − |z| (since |b| |z| > k |b| |z|)

= k |a| |cosh (x)q
| − |b| |z| − |z| .

Since |cosh (xq)| ≥ |xq| |℘3|, we get

|y| ≥ k |a| |xq| |℘3| − |b| |z| − |z|

> k |a| |zq| |℘3| − |b| |z| − |z| (since |x| > |z|) (3.14)
= |z|

(
k |a|

∣∣∣zq−1
∣∣∣ |℘3| − (|b| + 1)

)
.

From the assumptions, we have

|z| >
(

2 + |b|
k |a| |℘3|

) 1
q−1

⇔ |z|q−1 >

(
2 + |b|

k |a| |℘3|

)
⇔ |z|q−1 k |a| |℘3| > 2 + |b| .
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So, we have

|z|q−1 k |a| |℘3| − (|b| + 1) > 1.

Hence, from (3.14), we get

|y| > |z| . (3.15)

For the last step of (3.2),

|z1| = |a cosh (y)q + by + c|

≥ |a cosh (y)q + by| − |c|

≥ |a cosh (y)q + by| − |z| (since |z| ≥ |c|) (3.16)
> |a cosh (y)q + bz| − |z| (since |y| > |z|)

> |a cosh (y)q
| − |b| |z| − |z|

= |a| |cosh (y)q
| − |b| |z| − |z| .

Since |cosh (yq)| ≥ |yq| |℘2|, we get

|z1| ≥ |a| |yq| |℘2| − |b| |z| − |z|

> |a| |zq| |℘2| − |b| |z| − |z| (since |y| > |z|) (3.17)
= |z|

(
|a|

∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)
.

We also get

|z2| > |z1|
(
|a|

∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)
> |z|

(
|a|

∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)2
.

Iterating this process n-times, we have

|z3| > |z|
(
|a|

∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)3

|z4| > |z|
(
|a|

∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)4

...

|zn| > |z|
(
|a|

∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)n
.

From the assumptions, we have

|z| >
(
2 + |b|
|a| |℘2|

) 1
q−1

⇔ |z|q−1 >

(
2 + |b|
|a| |℘2|

)
⇔ |z|q−1

|a| |℘2| > 2 + |b| .

Thus,
|z|q−1

|a| |℘2| − (|b| + 1) > 1.

Then, we get |zn| > |z| . Hence, |zn| → ∞ as n→ ∞. □
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Corollary 3.2. Suppose that

|zn| ≥ max

|c| ,
(
2 + |b|
|a| |℘1|

) 1
q−1

,

(
2 + |b|
|a| |℘2|

) 1
q−1

,

(
2 + |b|

k |a| |℘3|

) 1
q−1

 .
Because of

|z|q−1
|a| |℘2| − (|b| + 1) > 1

and ∣∣∣zn+p

∣∣∣ > |z| (|a| ∣∣∣zq−1
∣∣∣ |℘2| − (|b| + 1)

)n+p
,

then |zn| → ∞ as n→ ∞.

4. Construction of fractals

In this section, some aesthetically pleasing fractals were generated for complex-valued hyperbolic
sine and hyperbolic cosine functions via PMP iteration method (3.2). The algorithms were
implemented in MATLAB® R2022a, and the experiments were performed on a computer with the
following specifications: Intel Core i5-7400 CPU @ 3.00 GHz, 8 GB DDR4 RAM, and Microsoft
Windows 11 Pro (64-bit).

4.1. Julia sets

The parameter tables for the Julia sets generated by Algorithms 1 and 2 are presented below.

Algorithm 1: The Julia set for the hyperbolic sine function
input: T (z) = a sinh (z)q + bz + c, a, b, c ∈ C, q ≥ 2, A ⊂ C-occupied area,
k ∈ (0, 1], P is the maximum number of iterations;
Output: Julia set for occupied area A
For z0 ∈ A: do

C1 =
(

2+|b|
|a||ℏ1 |

) 1
q−1 , C2 =

(
2+|b|
|a||ℏ2 |

) 1
q−1 , C3 =

(
2+|b|

k|a||ℏ3 |

) 1
q−1 ,

C = max {|c| ,C1,C2,C3}, n = 0, z0 = 0

while n ≥ P do

xn = Tzn, yn = (1 − k) xn + kTxn, zn+1 = Tyn

if |zn+1| > C then

break

end if

n = n + 1

end while

end for
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Algorithm 2: The Julia set for the hyperbolic cosine function
input: T (z) = a cosh (z)q + bz + c, a, b, c ∈ C, q ≥ 2, A ⊂ C-occupied area,
k ∈ (0, 1], P is the maximum number of iterations;
Output: Julia set for occupied area A
For z0 ∈ A: do

C1 =
(

2+|b|
|a||℘1 |

) 1
q−1 , C2 =

(
2+|b|
|a||℘2 |

) 1
q−1 , C3 =

(
2+|b|

k|a||℘3 |

) 1
q−1 ,

C = max {|c| ,C1,C2,C3}, n = 0, z0 = 0

while n ≥ P do

xn = Tzn, yn = (1 − k) xn + kTxn, zn+1 = Tyn

if |zn+1| > C then

break

end if

n = n + 1

end while

end for

Figure 1(a) This fractal, defined within the range [−3, 3] × [−3, 3], was generated in 1.916 seconds.
It exhibits symmetry with respect to the x-axis, a hallmark of classical Julia sets. The edges of
the fractal display softer color transitions and lower density, whereas the central region features
increased intensity and complexity. This contrast reflects the inherent characteristics of Julia sets,
where boundary regions are less repetitive and therefore less prominent. The relatively short
computation time suggests a lower density of intricate details within the selected range compared
to subsequent figures.

Figure 1(b) Defined in the range [−3.5, 3.5] × [−3, 3], this fractal required 3.259 seconds to generate.
The symmetry about the x-axis persists, while the extended horizontal axis introduces greater
detail and complexity in the peripheral regions. The sharper color transitions near the edges
contrast with the denser color gradients in the central region, highlighting the intricate structure
of the Julia set. The broader domain necessitated more extensive computations, leading to an
increase in generation time compared to Figure 1(a).

Figure 1(c) This fractal, confined to the range [−2.5, 2.5] × [−3, 3], was generated in 4.043 seconds.
The narrowed horizontal domain emphasizes finer details, particularly in the central region,
where color gradients intensify significantly. Symmetrical and well-defined features are evident
along the edges, underscoring the dynamic structures characteristic of Julia sets at their
boundary regions. The extended computation time reflects the higher resolution and increased
density of details resulting from the reduced range.

Figure 1(d) Defined within the range [−2.5, 2.5] × [−2.5, 2.5], this fractal was produced in 3.710
seconds. The reduced range along both axes yields a more homogeneous distribution of details,
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enhancing the symmetry of the fractal’s structure. The central regions exhibit sharper color
gradients, while the edges display smoother transitions. The narrower domain reduces the
overall computational burden compared to Figure 1(c), resulting in a slight decrease in
generation time despite the high resolution of the details.
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Figure 1. Fractals obtained from the Julia set according to the q values in Table 1.

Table 1. The parameters applied in Figure 1.

Fig. No a b c k ℏ1 ℏ2 ℏ3 q
1(a) 3.1 2.2 1.3 0.0009 0.0005 0.0004 0.0003 2
1(b) 3.1 2.2 1.3 0.0009 0.0005 0.0004 0.0003 3
1(c) 3.1 2.2 1.3 0.0009 0.0005 0.0004 0.0003 4
1(d) 3.1 2.2 1.3 0.0009 0.0005 0.0004 0.0003 5

Figure 2(a) This fractal exhibits a structure strongly reminiscent of classical Julia sets, characterized
by intricate patterns and sharp boundaries. The fractal demonstrates perfect symmetry along
both horizontal and vertical axes, reflecting a balanced geometric composition. Defined within
the range [−2, 2] × [−2, 2], it was generated in 1.986 seconds, highlighting the efficiency of the
computational algorithm. The color intensity peaks near the center and gradually diminishes
toward the edges, signifying a concentration of iterations in the central regions.
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Figure 2(b) This fractal bears similarities to the Mandelbrot set, displaying a broader and more
expansive structure. The fractal is perfectly symmetric about its central axis, presenting a
visually striking equilibrium. Spanning the range [−3, 3] × [−3, 3], this shape was produced in
1.992 seconds, showcasing the algorithm’s capability to handle larger domains effectively. The
color intensity is most pronounced at the center, fading progressively toward the periphery,
indicating a decline in iteration density with increasing distance from the core.

Figure 2(c) This fractal deviates from classical Julia sets with its asymmetrical configuration,
exhibiting symmetry along the horizontal axis but a slight asymmetry along the vertical axis,
resulting in a distinctive form. Defined over the range [−3, 2.5] × [−2, 2], this fractal required
2.026 seconds for generation, suggesting that its complexity has a noticeable impact on
computational time. The color intensity features abrupt transitions and dramatic variations in
certain regions, highlighting the dynamic and variable nature of the iteration process.

Figure 2(d) This fractal presents a compact and dense structure, distinguishing itself from more
traditional Julia sets. While it maintains symmetry along the vertical axis, it lacks complete
symmetry along the horizontal axis. Defined within the restricted range [−2, 2] × [−1, 1], it was
generated in 1.995 seconds, illustrating the computational advantage of a smaller domain. The
color intensity is markedly high at the center and diminishes significantly toward the edges,
underscoring the concentration of iterations near the central area.
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Figure 2. Fractals obtained from the Julia set for varying values of all parameters except q
according to Table 2.
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Table 2. The parameters applied in Figure 2.

Fig. No a b c k ℏ1 ℏ2 ℏ3 q
2(a) 3+0.0005i 1+0.0004i 1+0.0004i 0.0005 0.0003 0.0004 0.0005 2
2(b) 1+0.0001i 1-0.0002i 2+0.0003i 0.0030 0.0090 0.0095 0.0065 2
2(c) -1+1.8i -1+1.5i -2+2.4i 0.0088 0.0011 0.0022 0.0033 2
2(d) 2+0.004i 2+0.003i 2+0.005i 0.0034 0.0023 0.0044 0.0024 2

Figure 3(a) This fractal demonstrates characteristics commonly associated with Julia sets, particularly
in its intricate and recursive structures. It exhibits perfect symmetry along both horizontal and
vertical axes, creating a balanced and aesthetically pleasing geometry. Defined over the range
[−3, 3]×[−3, 3], it was generated in 2.021 seconds, reflecting efficient computation for a relatively
large domain. The color intensity is concentrated near the center and diminishes toward the
periphery, indicating a high density of iterations in central regions.

Figure 3(b) This fractal retains similarities to traditional Julia sets but introduces a more compact
and localized structure. It showcases vertical and horizontal symmetry, though with a slightly
distorted balance compared to Figure 3(a). Defined within [−2.5, 2]× [−2, 2], the generation time
was 3.249 seconds, longer than Figure 3(a), possibly due to increased computational complexity
in parameter adjustments. The color intensity features smooth transitions, with a gradual fade
from the center outward, highlighting the iterative concentration in central zones.

Figure 3(c) This fractal deviates from the traditional Julia sets by presenting a denser and more
confined structure. It is symmetric along both axes, maintaining a sense of equilibrium and
uniformity. Defined over [−2, 2] × [−2, 2], this fractal required 3.995 seconds for generation,
suggesting that its compact form and parameter intricacies added to the computational load. The
color intensity is highly concentrated in certain regions, with sharp variations that emphasize the
dynamic effects of iterative processes.

Figure 3(d) This fractal offers a broader and more intricate configuration compared to the others,
resembling a hybrid of Julia and Mandelbrot set characteristics. It exhibits near-perfect
symmetry along both axes, contributing to its visually compelling design. Defined within the
range [−2.5, 2.5] × [−2.5, 2.5], it was generated in 3.978 seconds, reflecting the computational
demands of its complex and detailed structure. The color intensity varies smoothly across the
fractal, with higher concentrations near the center and subtler gradients extending outward,
illustrating the influence of the underlying iterative dynamics.

Table 3. The parameters applied in Figure 3.

Fig. No a b c k ℘1 ℘2 ℘3 q
3(a) 2.0009 0.0001 0.0002 0.0080 0.70 0.80 0.90 2
3(b) 2.0009 0.0001 0.0002 0.0080 0.70 0.80 0.90 3
3(c) 2.0009 0.0001 0.0002 0.0080 0.70 0.80 0.90 4
3(d) 2.0009 0.0001 0.0002 0.0080 0.70 0.80 0.90 5
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Figure 3. Fractals obtained from the Julia set according to the q values in Table 3.

Figure 4(a) The fractal depicted in Figure 4(a) corresponds to a Julia set defined within the range
[−1, 1] × [−2, 2]. This structure demonstrates a strong resemblance to classical Julia sets,
characterized by intricate branching patterns and self-similar geometries. The configuration
exhibits bilateral symmetry with respect to the vertical axis, which enhances its visual regularity.
The computational process required 2.038 seconds, suggesting efficient rendering within this
constrained range. Color gradients in this representation emphasize the complexity of its
boundaries, highlighting regions of high iterative density.

Figure 4(b) This fractal presents a Julia set generated over a broader area, [−2, 2] × [−3, 3]. This
fractal maintains key features of traditional Julia sets, including recursive branching and intricate
edge structures. Notably, the symmetry extends across both horizontal and vertical axes, creating
a balanced and harmonious visual pattern. The computation time of 2.011 seconds indicates a
comparable efficiency despite the expanded domain. The distribution of color intensities reveals
intricate transitions between regions of high and low iteration counts, enriching the fractal’s
aesthetic appeal.

Figure 4(c) The fractal illustrated here spans the range [−2.5, 2.5] × [−2.5, 2.5], further extending the
spatial domain. This Julia set diverges slightly from strict axial symmetry, instead showcasing
localized symmetries around its central region. The rendering required 2.037 seconds, consistent
with the computational times observed in smaller domains. The color scheme underscores the
fine-grained complexity of the structure, particularly in areas where iterative behaviors shift
rapidly, offering a dynamic and textured visual experience.
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Figure 4(d) This fractal features a Julia set defined over the range [−3, 3] × [−2, 2], the largest
domain among the analyzed shapes. While the fractal exhibits horizontal asymmetry in its global
structure, local symmetries persist, especially near prominent features. The computation time
of 2.025 seconds highlights the scalability of the generation algorithm across varying domain
sizes. The variation in color intensity accentuates the fractal’s intricate edges and inner patterns,
reinforcing the depth and richness of its geometry.

Table 4. The parameters applied in Figure 4.

Fig. No a b c k ℘1 ℘2 ℘3 q
4(a) 2+0.001i 0.0001+0.0001i 0.002+0.002i 0.0010 0.0004 0.0008 0.0016 2
4(b) 2+0.005i 0.05-0.001i 0.06+0.002i 0.0020 0.0022 0.0024 0.0026 2
4(c) 2i 0.1i 0.2i 0.030 0.10 0.20 0.30 2
4(d) 2+0.02i 0.001i 0.0011+0.0003i 0.0040 0.42 0.44 0.46 2
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Figure 4. Fractals obtained from the Julia set for varying values of all parameters except q
according to Table 4.

4.2. Mandelbrot sets

The parameter tables for the Mandelbrot sets generated by Algorithms 3 and 4 are presented below.
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Algorithm 3: The Mandelbrot set for the hyperbolic sine function
input: T (z) = a sinh (z)q + bz + c, a, b, c ∈ C, q ≥ 2, A ⊂ C-occupied area,
k ∈ (0, 1], P is the maximum number of iterations;
Output: Mandelbrot set for occupied area A
For z0 ∈ A: do

C1 =
(

2+|b|
|a||ℏ1 |

) 1
q−1 , C2 =

(
2+|b|
|a||ℏ2 |

) 1
q−1 , C3 =

(
2+|b|

k|a||ℏ3 |

) 1
q−1 ,

C = max {|c| ,C1,C2,C3}, n = 0, z0 = 0

while n ≥ P do

xn = Tzn, yn = (1 − k) xn + kTxn, zn+1 = Tyn

if |zn+1| > C then

break

end if

n = n + 1

end while

end for

Algorithm 4: The Mandelbrot set for the hyperbolic cosine function
input: T (z) = a cosh (z)q + bz + c, a, b, c ∈ C, q ≥ 2, A ⊂ C-occupied area,
k ∈ (0, 1], P is the maximum number of iterations;
Output: Mandelbrot set for occupied area A
For z0 ∈ A: do

C1 =
(

2+|b|
|a||℘1 |

) 1
q−1 , C2 =

(
2+|b|
|a||℘2 |

) 1
q−1 , C3 =

(
2+|b|

k|a||℘3 |

) 1
q−1 ,

C = max {|c| ,C1,C2,C3}, n = 0, z0 = 0

while n ≥ P do

xn = Tzn, yn = (1 − k) xn + kTxn, zn+1 = Tyn

if |zn+1| > C then

break

end if

n = n + 1

end while

end for

Figure 5(a) This fractal exhibits the classical features of the Mandelbrot set, characterized by its
distinct branching structures and symmetric geometry. Defined within the range
[−2, 2] × [−3, 3], the fractal demonstrates clear symmetry along both the horizontal and vertical
axes. The computation time for this figure was 2.025 seconds, reflecting a relatively efficient

AIMS Mathematics Volume 10, Issue 1, 1529–1554.



1546

generation process. The color intensity transitions smoothly outward from the center,
emphasizing the intricate complexity of the set and enhancing visual clarity for detailed analysis.

Figure 5(b) This fractal, defined over the extended range of [−2.5, 2.5] × [−3, 3], provides a more
detailed visualization of the Mandelbrot set’s familiar structures. Its symmetry is particularly
evident in the branching patterns concentrated near the center. The figure required 3.322 seconds
for generation, a notable increase due to the broader domain. The variation in color intensity
effectively highlights the intricate internal structures, facilitating in-depth visual and
computational exploration.

Figure 5(c) This fractal, constrained within the compact domain of [−2, 2] × [−2, 2], offers a more
concentrated depiction of the Mandelbrot set. The fractal preserves its symmetric properties,
presenting a dense and complex pattern centered around the origin. The generation time of 3.952
seconds reflects the computational effort required to detail such a densely packed structure. The
gradient in color intensity accentuates both the central details and the boundary formations,
providing a comprehensive representation of the set’s complexity.

Figure 5(d) This fractal, defined over the largest range [−3, 3] × [−2, 2], resembles the general
appearance of the Mandelbrot set more closely. While slight asymmetries are observable along
the horizontal axis, the overall structure maintains its characteristic order. The figure was
generated in 3.728 seconds, reflecting the additional computational requirements for a broader
domain. The variation in color intensity is particularly effective in emphasizing the curvature of
the outer layers and the intricacy of the internal regions.
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Figure 5. Fractals obtained from the Mandelbrot set according to the q values in Table 5.
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Table 5. The parameters applied in Figure 5.

Fig. No a b c k ℏ1 ℏ2 ℏ3 q
5(a) 1 0.0001 0.0002 0.0005 0.60 0.70 0.85 2
5(b) 1 0.0001 0.0002 0.0005 0.60 0.70 0.85 3
5(c) 1 0.0001 0.0002 0.0005 0.60 0.70 0.85 4
5(d) 1 0.0001 0.0002 0.0005 0.60 0.70 0.85 5

Figure 6(a) The fractal defined in the domain [−2, 2] × [−2, 2] exemplifies the characteristic features
of the Mandelbrot set, specifically its compact branching patterns and self-similarity. The figure
demonstrates clear symmetry along both the vertical and horizontal axes, aligning with
well-established representations of the Mandelbrot set. With a generation time of 1.995 seconds,
this fractal stands out for its computational efficiency. The gradual variation in color intensity
enhances the visibility of the intricate boundary regions and internal structures, aiding in the
visual differentiation of its features.

Figure 6(b) This fractal, constructed over the larger domain [−3, 3] × [−3, 3], offers a broader
visualization of the Mandelbrot set, allowing for a more expansive display of its branching
complexity. The fractal retains its symmetry along both axes, with the expanded domain
contributing to a more comprehensive depiction of its intricate external layers. The generation
time of 2.010 seconds is slightly longer than that of Figure 6(a), consistent with the increased
domain size. The color transitions are smoother and subtler, emphasizing both the central
density and the detailed peripheral structures.

Figure 6(c) The fractal defined over the domain [−2.5, 2.5] × [−3, 3] represents an intermediate
perspective of the Mandelbrot set, balancing compactness and breadth. The fractal displays a
near-perfect symmetry along the vertical axis, while horizontal variations are less pronounced
but observable. The generation time of 2.091 seconds reflects the additional computational effort
required for capturing finer details in this domain. The distribution of color intensity across the
structure highlights the dense center and gradually fades outward, underscoring the transition
between high-complexity and low-complexity regions.

Figure 6(d) This fractal, covering the domain [−2.5, 2.5] × [−2.5, 2.5], offers a balanced and detailed
representation of the Mandelbrot set, focusing on both the inner and outer features. Symmetry is
well-preserved, with uniformity evident along both axes. The computation time of 2.060 seconds
indicates a relatively stable performance despite the square domain’s slightly larger computational
demands. The color intensity variations are finely tuned, accentuating the fractal’s intricate inner
regions while providing a clear contrast with the outer boundary layers.

Table 6. The parameters applied in Figure 6.

Fig. No a b c k ℏ1 ℏ2 ℏ3 q
6(a) 0.001+0.002i 1.002+0.003i 0.003+0.004i 0.04 0.20 0.50 0.40 2
6(b) 0.05+0.06i 1.001+0.002i 0.001-0.003i 0.08 0.050 0.040 0.030 2
6(c) 0.01+0.01i 1.02+0.02i 3.05+0.03i 0.75 0.04 0.05 0.06 2
6(d) 0.0001i 2.0001+0.0003i 2.0002+0.0002i 0.07 0.35 0.25 0.40 2
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Figure 6. Fractals obtained from the Mandelbrot set for varying values of all parameters
except q according to Table 6.

Figure 7(a) This fractal, defined in the domain [−2, 2]×[−2, 2], adheres closely to the well-established
properties of the Mandelbrot set. Its symmetric structure along both vertical and horizontal axes
is indicative of the set’s inherent geometric regularities. The fractal required a computation time
of 3.410 seconds, reflecting the intricate details captured within this domain. The color intensity
gradients are smoothly distributed, emphasizing the transition from high-complexity regions near
the center to less-detailed peripheral areas.

Figure 7(b) This fractal, spanning the extended range of [−2.5, 2.5] × [−2.5, 2.5], provides a broader
representation of the Mandelbrot set. The figure retains strong symmetry along both axes, with
the additional domain size allowing for a more comprehensive depiction of the fractal’s branching
patterns. The generation time of 3.425 seconds is consistent with the increased computational
demand of the larger area. The subtle shifts in color intensity effectively highlight the fractal’s
intricate internal and external structures.

Figure 7(c) This fractal, defined within a narrow domain of [−1, 1] × [−2, 2], offers a more focused
perspective of the Mandelbrot set. The fractal’s symmetry is preserved, with the compact domain
emphasizing central details while limiting the visualization of the outer regions. The computation
time of 3.422 seconds suggests the additional effort required to detail the dense central structures.
The color intensity variation is well-applied, concentrating on the intricate core and progressively
softening toward the edges.

Figure 7(d) The fractal defined over the expansive domain [−2.5, 2.5] × [−3.5, 3.5] provides an
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extended view of the Mandelbrot set, capturing both its central complexity and peripheral
features. The fractal exhibits strong vertical and horizontal symmetry, with slight asymmetries in
the outer layers due to domain-specific variations. The computation time of 3.326 seconds is
slightly lower, possibly reflecting optimization in generating the outer structures. The color
intensity transitions are notably smooth, enhancing the visual differentiation between
high-complexity and low-complexity regions.

Table 7. The parameters applied in Figure 7.

Fig. No a b c k ℘1 ℘2 ℘3 q
7(a) 1.02+1.02i 0.002+0.001i 0.03+0.01i 0.10 0.099 0.099 0.099 3
7(b) 1.004+1.004i 0.02+0.05i 1.03+0.02i 0.60 0.04 0.06 0.08 3
7(c) 1.003+0.09i 0.002+0.002i 0.02-0.02i 0.60 0.10 0.10 0.10 3
7(d) 0.002i 1.1+0.1i 0.1+0.1i 0.09 0.39 0.49 0.59 3
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Figure 7. Fractals obtained from the Mandelbrot set for varying values of all parameters
except q according to Table 7.

Figure 8(a) This fractal, generated over the domain [−2.5, 2.5] × [−2.5, 2.5], closely aligns with the
standard characteristics of the Mandelbrot set. Its symmetry is evident along both vertical and
horizontal axes, reflecting the uniformity of its underlying mathematical structure. With a
generation time of 2.002 seconds, this fractal demonstrates high computational efficiency. The
color intensity transitions are evenly distributed, providing a balanced emphasis on both central
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details and boundary regions, which underscores the fractal’s intricate nature.

Figure 8(b) It is defined within the same domain as Figure 8(a), highlighting the influence of
parameter variation, particularly the value of q. The fractal retains its symmetry but exhibits a
more pronounced complexity in its inner structures. The generation time of 4.054 seconds is
significantly longer, suggesting a higher computational demand due to the enhanced detail. The
color intensity is notably vibrant, particularly in regions of high complexity, accentuating the
fractal’s intricate branching patterns.

Figure 8(c) The fractal spanning a larger domain of [−3, 3] × [−3, 3] offers a broader representation
of the Mandelbrot set. The fractal displays symmetry along both axes and emphasizes outer
structural details, which are less pronounced in Figures 8(a) and 8(b). The computation time
of 4.042 seconds reflects the increased computational effort required for capturing the expanded
area. The color intensity gradients are subtly varied, emphasizing the transition from dense central
regions to sparse outer layers, creating a visually striking effect.

Figure 8(d) This fractal, defined over the domain [−2.5, 2.5] × [−3, 3], balances the compactness of
Figures 8(a) and 8(b) with the broader perspective of Figure 8(c). The fractal maintains strong
vertical and horizontal symmetry, with slightly elongated features due to the domain’s asymmetry.
The generation time of 4.304 seconds, the longest among the four, reflects the added complexity of
this domain. The color intensity variations are particularly pronounced, highlighting the fractal’s
rich internal structures and enhancing the visual distinction between dense and sparse regions.
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Figure 8. Fractals obtained from the Mandelbrot set for different values of q according to
Table 8.
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Table 8. The parameters applied in Figure 8.

Fig. No a b c k ℘1 ℘2 ℘3 q
8(a) 1.003 1.002 0.001 0.05 0.001 0.009 0.008 2
8(b) 1.003 1.002 0.001 0.05 0.001 0.009 0.008 4
8(c) 1.003 1.002 0.001 0.05 0.001 0.009 0.008 6
8(d) 1.003 1.002 0.001 0.05 0.001 0.009 0.008 8

5. Conclusions

In this study, a three-step, fixed-point iteration method was employed to determine escape criteria
for complex-valued hyperbolic sine and complex-valued hyperbolic cosine functions. Additionally,
the study examined how the fractals generated using these escape criteria can be shaped based on the
constants a, b, c, and q in the equations, as reflected in the data presented in Tables 1–8. The findings
indicate that the choice of q, whether treated as a fixed or variable parameter, plays a critical role in
determining the shapes of the resulting fractals (e.g., whether they exhibit circular structures).

It was observed that the color intensity of the fractals increases significantly, particularly when q = 4
(see Figures 1(c), 3(c), 5(c), and 8(b)). A similar effect was noted for q = 8, as illustrated in Figure 8(d).
These results demonstrate that the PMP iteration method exhibits remarkable technical potential in
fractal generation, demonstrating notable mathematical precision, structural depth, and algorithmic
efficiency. Furthermore, the findings contribute to the growing body of application-oriented theoretical
work that integrates fixed-point iteration methods with fractal geometry.

In future work, we aim to investigate the presence of Parrondo’s paradox within Mandelbrot and
Julia sets of complex hyperbolic sine and cosine functions via PMP orbit. This phenomenon,
previously observed in polynomial fractals, suggests that a combination of losing strategies can yield
a winning outcome [28]. A comparative analysis with existing studies will be conducted to explore
whether a similar behavior exists in this iteration. Additionally, we plan to examine the interplay
between h-convexity and the PMP iteration method, focusing on its impact on escape criteria and
fractal geometries, which may lead to the discovery of novel fractal structures.

Further research will also address the optimization of parameters such as a, b, c, and q, evaluating
their effects on computational efficiency, symmetry, and color intensity in fractal generation.
Moreover, we intend to explore the applicability of these fractals in modeling dynamic systems,
particularly in stability and chaos analyses, thereby bridging theoretical advancements in fractal
geometry with practical applications in physics and engineering.
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